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We establish the full range Gagliardo-Nirenberg and the Caffarelli-Kohn-Nirenberg interpolation inequalities associated with Coulomb-Sobolev spaces for the (fractional) derivative 0 ≤ s ≤ 1. As a result, we rediscover known Gaglairdo-Nirenberg interpolation type inequalities associated with Coulomb-Sobolev spaces which were previously established in the scale of H s with 0 < s ≤ 1 and extend them for the full range W s,p with 0 ≤ s ≤ 1 and 1 < p < +∞. Using these newly established weighted inequalities, we derive a new family of one body Hardy-Lieb-Thirring inequalities and use it to establish a new family of many body Hardy-Lieb-Thirring inequalities with a strong repulsive interaction term in L p scale.

The first part of the paper is devoted to the following type inequality, for g ∈ C ∞ c (R d ),

(1.1)

||g|| L γ (R d ) ≤ C g β 1 p Ẇ s,p (R d ) ˆRd ˆRd |g(x)| q |g(y)| q |x -y| d-α dx dy β 2
, for 1 < γ < +∞, 1 ≤ p, q < +∞, 0 ≤ s ≤ 1, 0 < α < d, 0 < β 1 , β 2 < +∞ under appropriate assumptions on these parameters, where C is a positive constant independent of g. One can easily check by scaling that (1.1) holds only if the following two identities hold

β 1 p + 2β 2 q = 1 and (d -sp)β 1 + (d + α)β 2 = d/γ, (1.3)
Mathematically, inequalities of type (1.1) were first studied by Lions [31,32]. In his pioneering work, he established

||g|| L 3 (R 3 ) ≤ C ||∇g|| 1 3 L 2 (R 3 ) ˆR3 ˆR3 |g(x)| 2 |g(y)| 2 |x -y| dxdy 1 6
∀g ∈ C ∞ c (R 3 ), (1.4) and used it in the study of Hartree-Fock equations. In the spirit of the famous Gagliardo-Nirenberg's inequalities [START_REF] Gagliardo | Ulteriori proprietà di alcune classi di funzioni in più variabili[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF], (1.4) has been extended to a more general setting of the form (1.1). Inequality (1.1) is so far only known for p = 2 and 0 < s ≤ 1. More precisely, (1.1) has been previously established by Bellazzini, Frank, Visciglia [2, Proposition 2.1] in the case p = 2, q = 2, and 0 < s < 1 (see also [34, (21)] for the case p = q = 2, α = d -2s), by Mercuri,Moroz,Van Schaftingen [38] in the case p = 2 and s = 1, and by Bellazzini, Ghimenti, Mercuri, Moroz, and Van Schaftingen [3, Theorems 1.1 and 1.2] in the case p = 2 and 0 < s < 1. The case p = 2 is thus completely understood but only established very recently unless s = 0. The case p = 2 is open even for s = 1 and the case s = 0 has not been considered previously.

The first main result of this paper is on the Gagliardo-Nirenberg interpolation type inequalities involving the Coulomb term. We have Theorem 1.1. Let d ≥ 1, 0 ≤ s ≤ 1, 1 < γ < +∞, 1 ≤ p, q < +∞, 0 < α < d, and 0 < β 1 , β 2 < +∞. Assume (1.3) and the following fact

(1.5) β 1 γ + β 2 γ ≥ 1.
Then (1.1) holds for all g ∈ L 1 (R d ) with compact support 1 .

Remark 1.1. Condition (1.5) is optimal, see Remark 2.2.

Remark 1.2. One can ask what happens in Theorem 1.1 if β 1 = 0 or β 2 = 0. In fact, Theorem 1.1 holds with β 2 = 0. However, when β 2 = 0, (1.1) is just the standard Sobolev inequality and there is nothing new. Concerning β 1 , one can check that β 1 cannot be 0 since the assumption (d -sp)β 1 + (d + α)β 2 = d/γ 1 We use here the convention +∞ ≤ +∞.

implies that if β 1 = 0 then

γβ 2 = d (d + α)
< 1 : which contradicts (1.5).

Remark 1.3. Theorem 1.1 also holds for γ = 1. In this case, since

β 1 γ + β 2 γ = 1 and (d -sp)β 1 + (d + α)β 2 = d,
it follows that p = q = 1, s = 0, and α = d. Then (1.1) is again just the standard Gagliardo-Nirenberg inequality.

Remark 1.4. Theorem 1.1 also holds for α = d. Nevertheless, the conclusion in this case just follows from the the standard Gagliardo-Nirenberg inequalities.

Theorem 1.1 is known for the case p = 2 with s > 0 as mentioned above. Nevertheless, the known assumptions are stated in a more involved manner than condition (1.5). More precisely, when p = 2, instead of (1.5), the conclusion of Theorem 1.1 was shown under the condition (d+α)-q(d-2s) = 0 and (1.6) below or (d + α) -q(d -2s) = 0 and (1.7) below , where

             2(α + 2qs) α + 2s ≤ γ ≤ 2d d -2s if 2s < d and (d + α) -q(d -2s) > 0, 2d d -2s ≤ γ ≤ 2(α + 2qs) α + 2s if 2s < d and (d + α) -q(d -2s) < 0, 2(α + 2qs) α + 2s ≤ γ < ∞ if 2s ≥ d, (1.6) and 
(1.7)

α(d -2s) 2d(α + 2s) ≤ β 1 < +∞, 0 ≤ β 2 ≤ s(d -2s) d(α + 2s) .
The proof is then given to case by case separately. One can check that (1.5) is equivalent to these conditions (see Section 2.3). In this paper, we present a new approach to obtain Theorem 1.1 in which condition (1.5) appears very naturally.

We next extend Theorem 1.1 in the spirit of Caffarelli-Kohn-Nirenberg's inequalities. Caffarelli, Kohn, and Nirenberg [START_REF]First order interpolation inequalities with weights[END_REF] (see also [8]) proved the following well-known inequality

(1.8) |x| τ g L γ (R d ) ≤ C |x| α ∇g a L p (R d ) |x| β g (1-a) L q (R d ) for g ∈ C 1 c (R d ),
under appropriate assumptions of the parameters. This family of inequalities has been extended by Nguyen and Squassina [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] (see also [43]) for fractional Sobolev spaces where the quantity

|x| α ∇u p L p (R d ) is replaced by ˆRd ˆRd |g(x) -g(y)| p |x| α 1 p |y| α 2 p |x -y| d+sp dx dy
under appropriate assumptions on the parameters. Previous results can be found in [START_REF] Abdellaoui | Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications[END_REF][START_REF] Frank | Non-linear ground state representations and sharp Hardy inequalities[END_REF][START_REF] Mazýa | On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces[END_REF].

In this direction, we establish our second main result of this paper on the Caffarelli-Kohn-Nirenberg interpolation inequalities associated with the Coulomb term.

Theorem 1.2. Let d ≥ 1, 0 ≤ s ≤ 1, 1 ≤ γ , p, q < +∞, 0 < α < d, 0 < β 1 , β 2 < +∞, τ , α 1,1 , α 1,2 , α 2,1 , α 2,2 ∈ R. Set α 1 = α 1,1 + α 1,2 and α 2 = α 2,1 + α 2,2
, and define σ, γ by

(1.9) σ = β 1 pα 1 + β 2 qα 2 and (d -sp)β 1 + (d + α)β 2 = d/γ.
Assume that

β 1 p + 2β 2 q = 1, 1 γ + τ d = 1 γ + σ d , (1.10) (1.11) γ ≥ γ , γ > 1,
and, either

(1.12)

β 1 γ + β 2 γ ≥ 1, or (1.13) 1 p (sp -d -α 1 p) + 1 2q (α + d + α 2 q) = 0 and β 1 γ + β 2 γ > 1 .
Then, if either

1 γ + τ d > 0 and g ∈ L 1 (R d ) with compact support, or 1 γ + τ d < 0 and g ∈ L 1 loc (R d ) with g = 0 in a neighborhood of 0, then it holds (1.14) ˆRd |g| γ |x| τ γ 1 γ ≤ C g pβ 1 Ẇ s,p,α 1,1 ,α 1,2 × ˆRd ˆRd |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dx dy β 2 ,
where C > 0 is a constant independent of g.

Here and in what follows, we denote, for t 1 , t 2 ∈ R, 1 ≤ p < +∞, and 0 ≤ s ≤ 1,

(1.15)

g p Ẇ s,p,t 1 ,t 2 (R d ) =              ˆRd ˆRd |g(x) -g(y)| p |x| t 1 p |y| t 2 p |x -y| d+sp dx dy for 0 < s < 1 ˆRd |g(x)| p |x| (t 1 +t 2 )p dx for s = 0, ˆRd |∇g(x)| p |x| (t 1 +t 2 )p dx for s = 1.
Remark 1.5. The case α = d, corresponds to the usual Caffarelli-Kohn-Nirenberg inequalites, see [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] to compare the conditions satisfied by the parameters. The study of the best constant of such inequalities is in general highly non-trivial and of great interest, see e.g., [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF][START_REF] Dolbeault | Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces[END_REF] and references therein.

As an application of Theorem 1.2, we derive a new family of one body interpolation inequalities and then use it to establish a new family of many body interpolation inequalities. These are our third main results of this paper and presented later in Section 4.

We now review briefly several known approaches for (1.1). One is based on the standard Gagliardo-Nirenberg inequality and the fractional chain rule, see e.g. [START_REF] Gatto | Product rule and chain rule estimates for fractional derivatives on spaces that satisfy the doubling condition[END_REF], and standard interpolation inequalities, as in [START_REF] Bellazzini | Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces[END_REF]2]. Another approach is based on the Hardy-Lieb-Thirring's many body interpolation inequalities, as in [START_REF] Lundholm | Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems[END_REF]. These approaches use essentially the fact that p = 2. Also, part of the results in [38, Proposition 3.1] are derived using the theory of maximal functions.

In this paper, we propose a different approach to establish Theorem 1.1 and Theorem 1.2. The proof of Theorem 1.1 follows closely the approach proposed by Nguyen [41] in his study Sobolev's inequalities associated with non-local, non-convex functionals. The idea is first to establish the corresponding Poincaré inequality. One then uses a covering argument to derive from it an estimate in L γ w (L γ -weak). The estimate in L γ is then established via the estimate in L γ w and involves the truncation technique due to Maz'ya and a result of the theory of maximal (sharp) functions due to Fefferman and Stein. The proof of Theorem 1.2 uses similar arguments of Nguyen and Squassina [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] where the authors established the full range Cafffarelli-Kohn-Nirenberg's inequality for fractional Sobolev spaces. The idea is to first establish the conclusion of Theorem 1.2 under the assumption (1.12). The starting point is the corresponding Gagliardo-Nirenberg type inequality established in Theorem 1.1 (see Lemma 3.1). One then decomposes the space into annulus and applies appropriately the corresponding Gagliardo-Nirenberg type inequality. This idea has its roots from harmonic analysis when the decomposition is given for the frequency variables. The proof in the case (1.13) is derived from (1.12) using a scaling argument.

The organization of the paper is as follows. Section 2 and Section 3 are devoted to the proof of Theorem 1.1 and Theorem 1.2, respectively. In Section 2 (Section 2.3), we also derive a connection between our conditions in Theorem 1.1 with the known result forms. In Section 4, we use Theorem 1.2 to establish a new family of one body interpolation inequalities. Another main ingredient of this proof is the sharp (fractional) Hardy inequalities with the remainder due to Frank and Seiringer [START_REF] Frank | Non-linear ground state representations and sharp Hardy inequalities[END_REF]. We then use this family of one body interpolation inequalities to establish a new family of many body interpolation type inequalities following the strategy of Lundholm, Nam, and Portmann [START_REF] Lundholm | Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems[END_REF]. These results are new even in the case s = 1 and p = 2 and their proofs are new even in the case p = 2.

Gagliardo-Nirenberg interpolation inequalities involving Coulomb terms -

Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof is in the spirit of the one given in [41] where the author established new Poincaré and Sobolev inequalities related to new characterizations of Sobolev spaces via non-local, non-convex terms in [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF][START_REF] Bourgain | A new characterization of Sobolev spaces[END_REF][START_REF]Further characterizations of Sobolev spaces[END_REF] (see also [6,[START_REF]Non-local functionals related to the total variation and connections with image processing[END_REF][START_REF] Mallick | Exponential integrability in the spirit of Moser-Trudinger's inequalities of functions with finite non-local, non-convex energy[END_REF] for related topics). The ideas of the proof are as follows. We first derive a Poincaré inequality involving Coulomb terms, which is almost free in this context. The integrability desired is then established via Vitali's covering lemma and the truncation method, which has its root in the work of Mazda [START_REF] Vladimir | Sobolev spaces[END_REF]. This part also uses an interesting result of the theory of sharp functions due to Fefferman and Stein [START_REF] Fefferman | H p spaces of several variables[END_REF]. This section containing three subsections is organized as follows. Several useful lemmas are presented in the first subsection. The proof of Theorem 1.1 is then given in the second one. In the last subsection, we discuss other forms of the assumptions of Theorem 1.1. We begin with a simple but useful version of Poincaré inequality involving a Coulombian term. 

Lemma 2.1. Let d ≥ 1, 0 ≤ s ≤ 1, 1 < γ < +∞, 1 ≤ p, q < +∞, 0 < α < d,
∈ L 1 (B), B |u -(u) B | dx ≤ C |B| 1 γ ||u|| β 1 p Ẇ s,p (B) ˆB ˆB |u(x)| q |u(y)| q |x -y| d-α dxdy β 2 ,
where C > 0 is a constant independent of u and B.

Proof. It is easy to check that B |u -(u) B | dx ≤ B B |u(x) -u(y)| dx dy ≤ C |B| d-sp pd ||u|| Ẇ s,p (B) (2.1) and (2.2) B |u -(u) B | dx ≤ 2 B |u| dx ≤ 2 |B| 1 q ˆB |u(x)| q dx 1 q ≤ C |B| d+α 2qd ˆB ˆB |u(x)| q |u(y)| q |x -y| d-α dxdy 1 2q
.

Here and in what follows in this proof, C denotes a positive constant independent of u and B.

Since

β 1 , β 2 > 0 and pβ 1 + 2qβ 2 = 1 by (1.
3), we have

(2.3) B |u -(u) B | = B |u -(u) B | pβ 1 B |u -(u) B | 2qβ 2 (2.1),(2.2) ≤ C |B| (d-sp)β 1 d + (d+α)β 2 d ||u|| β 1 p Ẇ s,p (B) ˆB ˆB |u(x)| q |u(y)| q |x -y| d-α dxdy β 2 . Since 1 γ (1.3) = (d -sp)β 1 d + (d + α)β 2 d ,
the conclusion follows from (2.3).

We next present a variant of [41, Lemma 7], whose proof is based on Vitali's covering lemma.

Lemma 2.2. Let d ≥ 1, 1 < γ < +∞, and 0 < β 1 , β 2 < +∞ be such that β 1 γ + β 2 γ ≥ 1. Let h 1 , h 2 ∈ L 1 (R d )
, and let g be a measurable function defined in R d . Assume that

(2.4) g(x) ≤ sup B 1 |B| 1 γ ˆB |h 1 | β 1 ˆB |h 2 | β 2 for a.e. x ∈ R d ,
where the supremum is taken over all open balls (or open cubes) containing x. Then

(2.5)

t γ g > t ≤ C ||h 1 || β 1 γ L 1 (R d ) ||h 2 || β 2 γ L 1 (R d )
∀t > 0, for some positive constant C depending only on γ, β 1 , β 2 , and d.

Proof. We only consider the case where the supremum is taken over all open balls containing x. The case where the supremum is taken over all open cubes containing x follows in the same lines and is omitted.

Fix t > 0. From (2.4), for a.e. y ∈ {g > t}, there exists an open ball B y containing y such that

t ≤ 2 |B y | 1 γ ˆBy |h 1 | dx β 1 ˆBy |h 2 | dx β 2 , which yields 
|B y | ≤ 2 t γ ˆBy |h 1 | dx β 1 γ ˆBy |h 2 | dx β 2 γ
.

By applying Vitali's covering lemma to the set g > t and to the family of open ball B y , there exists a countable collection of mutually disjoint open balls (B i ) such that outside a set of zero measure,2 

(2.6)

{g > t} ⊂ ∪ i 5B i ,

and

(2.7)

|B i | ≤ C t γ ˆBi |h 1 | β 1 γ ˆBi |h 2 | β 2 γ
.

Applying Lemma 2.3 below with τ = β 1 γ and η = β 2 γ, after noting that

β 1 γ + β 2 γ ≥ 1, we have |{g > t}| (2.6) ≤ C ∞ i=1 |B i | (2.7) ≤ C t γ i ˆBi |h 1 | β 1 γ ˆBi |h 2 | β 2 γ Lemma 2.3 ≤ C t γ ˆRd |h 1 | β 1 γ ˆRd |h 2 | β 2 γ
, which is the conclusion.

Remark 2.1. The proof of Lemma 2.1 and Lemma 2.2 also work for γ = 1. Nevertheless, these results are later only applied to the case γ > 1.

The following simple result, whose proof is omitted, is used in the proof of Lemma 2.2.

Lemma 2.3. For τ, η > 0 with τ + η ≥ 1, we have

(2.8) ∞ i=1 |a i | τ |b i | η ≤ ∞ i=1 |a i | τ ∞ i=1 |b i | η for a i b i ∈ R.
As a consequence of (2.5), one derives that g ∈ L γ w (R d ) (L γ -weak) if g is non-negative and satisfies (2.4). We next present a variant of Lemma 2.2 which deals with the L γ -integrability of g instead of L γ -weak integrability. This variant inspired by [41, Lemma 8] is the main ingredient of the proof of Theorem 1.1. To this end, we first recall the definition of the dyadic maximal functions and the dyadic sharp maximal functions, see, e.g., [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF].

Definition 2.1. Let g ∈ L 1 loc (R d ).
The dyadic maximal function M ∆ g and the dyadic sharp maximal function g ,∆ are defined as follows

M ∆ g (x) := sup Q Q |g|dy, and 
g ,∆ (x) := sup Q Q |g -(g) Q |dy,
where the supremum is taken over all dyadic cubes Q containing x.

The following definition is also useful.

Definition 2.2. For each k ∈ Z and a non-negative function g defined in R d , define the truncation operator

T k (g)(x) =        10 k+1 -10 k if x ∈ g > 10 k+1 , g -10 k if x ∈ 10 k < g ≤ 10 k+1 , 0 if x ∈ g ≤ 10 k .
We are ready to present a variant of Lemma 2.2 concerning L γ -integrability.

Lemma 2.4. Let d ≥ 1, 1 < γ < +∞, and 0 < β 1 , β 2 < +∞ be such that (2.9) andset (2.10)

β 1 γ + β 2 γ ≥ 1. Let g ∈ L 1 (R d ) with |{|g| > 0}| < +∞,
g k = T k (g) for k ∈ Z.
Assume that there exist two sequences (h 1,k ), (h 2,k ) ⊂ L 1 (R d ), and two non-negative functions

h 1 , h 2 ∈ L 1 (R d ) such that, for t > 0 and k ∈ Z, (2.11) g ,∆ k > t ≤ 1 t γ ||h 1,k || β 1 γ L 1 (R d ) ||h 2,k || β 2 γ L 1 (R d )
, and, for j = 1, 2, (2.12)

∞ k=1 |h j,k | ≤ h j in R d . Then g ∈ L γ (R d ) and g L γ (R d ) ≤ C ||h 1 || β 1 L 1 (R d ) ||h 2 || β 2 L 1 (R d )
for some positive constant C independent of g, h 1 , and h 2 .

Proof. Let 0 < b < 1, c > 0, and f ∈ L 1 loc (R d ). We recall that, see, e.g., [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]Estimate (22), p.153],

M ∆ f > α, f ,∆ ≤ cα ≤ 2 d c 1 -b M ∆ f > bα ∀α > 0. (2.13) Applying (2.13) with f = g k , b = 1
10 , α = 10 k , and 0 < c < 1 2 (to be chosen later), we have

M ∆ g k > 10 k ≤ c2 d+1 M ∆ g k > 10 k-1 + g ,∆ k > c10 k .
This yields, for any m, n ∈ Z with n ≥ m + 1,

(2.14)

n k=m 10 kγ M ∆ g k > 10 k ≤ c2 d+1 n k=m 10 kγ M ∆ g k > 10 k-1 + n k=m 10 kγ g ,∆ k > c10 k .
We first derive an lower bound for the LHS of (2.14). From the definition of g k and the fact

M ∆ g k > 10 k ⊃ g k > 10 k , we have, for n ≥ m + 1, n k=m 10 kγ M ∆ g k > 10 k ≥ C ˆ10 n+2 10 m+1 t γ-1 |{|g| > t}| dt. (2.15)
Here and in what follows in this proof, C > 0 denotes a constant independent of g, h 1 , h 2 , and k, m, n.

We next derive an upper bound of the RHS of (2.14). By the theory of maximal functions, we deduce from the definition of g k in (2.18) that, for n ≥ m + 1, (2. [START_REF] Frank | Non-linear ground state representations and sharp Hardy inequalities[END_REF])

n k=m 10 kγ M ∆ g k > 10 k-1 ≤ C n k=m ˆRd |g k | γ dx ≤ C ˆ10 n+2 10 m t γ-1 |{|g| > t}| dt.
We also have (2.17)

n m 10 kγ g ,∆ k > c10 k (2.11) ≤ 1 c γ n m h 1 k β 1 γ L 1 (R d ) h 2 k β 2 γ L 1 (R d ) (2.9) ≤ 1 c γ ||h 1 || β 1 γ L 1 (R d ) ||h 2 || β 2 γ L 1 (R d ) .
Plugging the estimates (2.15), (2. [START_REF] Frank | Non-linear ground state representations and sharp Hardy inequalities[END_REF]) and (2.17) into (2.14) we obtain ˆ10 n+2

10 m+1 t γ-1 |{|g| > t}| dt ≤ C c2 d+1 ˆ10 n+2 10 m t γ-1 |{|g| > t}| dt + 1 c γ ||h 1 || β 1 γ L 1 (R d ) ||h 2 || β 2 γ L 1 (R d ) .
Choosing c small enough so that Cc2 d+1 = 1 2 , we have ˆ10 n+2

10 m+1 t γ-1 |{|g| > t}| dt ≤ ˆ10 m+1 10 m t γ-1 |{|g| > t}| dt + C ||h 1 || β 1 γ L 1 (R d ) ||h 2 || β 2 γ L 1 (R d ) .
Letting first n → +∞, then m → -∞, and noting that |{|g| > 0}| < +∞, we obtain

ˆRd |g(x)| γ dx ≤ C ||h 1 || β 1 γ L 1 (R d ) ||h 2 || β 2 γ L 1 (R d ) ,
which implies the conclusion. 

g k = T k (|g|) for k ∈ Z,
where T k is given by Definition 2.2. Define, for x ∈ R d ,

h 1 (x) =          |g(x)| p for s = 0, ˆRd |g(x) -g(y)| p |x -y| d+sp dy for s ∈ (0, 1), |∇g(x)| p for s = 1, h 1,k (x) =          |g k (x)| p for s = 0, ˆRd |g k (x) -g k (y)| p |x -y| d+sp dy for s ∈ (0, 1), |∇g k (x)| p for s = 1, h 2 (x) := |g(x)| q ˆRd |g(y)| q |x -y| d-α dy, and h 2,k (x) := |g(x)| q ˆRd |g k (y)| q |x -y| d-α dy. We claim that, for j = 1, 2, (2.19) k∈Z |h j,k | ≤ h j and h j ∈ L 1 (R d ).
We admit Claim (2. [START_REF] Hoffmann-Ostenhof | Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF]) and continue the proof. By Lemma 2.1, we have

g ,∆ k (x) ≤ C sup Q 1 |Q| 1 γ ˆQ |h k 1 | β 1 ˆQ |h k 2 | β 2
, where the supremum is taken over all cubes Q containing x ∈ R d . Applying Lemma 2.2, we obtain, for k ∈ Z,

g ,∆ k > t ≤ C t γ h 1 k β 1 γ L 1 (R d ) h 2 k β 2 γ L 1 (R d ) for t > 0.
The conclusion now follows from Lemma 2.4.

It remains to prove Claim (2. [START_REF] Hoffmann-Ostenhof | Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF]). We first establish Claim (2.19) with j = 1. Claim (2.19) with j = 1 is clear for s = 0 and s = 1. Claim (2.19) with j = 1 in the case s ∈ (0, 1) follows from the fact p ≥ 1 and

(2.20)

k∈Z |g k (x) -g k (y)| ≤ |g(x) -g(y)|,
which can be proved as follows.

We We have, for k ∈ Z,

g k (x) =        0 for k ≥ m + 1, |g(x)| -10 m for k = m, 10 k+1 -10 k for k < m,
and Claim (2.19) with j = 2 is just a consequence of (2.21) and the fact q ≥ 1.

g k (y) =        0 for k ≥ n + 1, |g(y)| -10 n for k = n, 10 k+1 -10 k for k < n. This yields, if n ≥ m + 1, k∈Z |g k (x) -g k (y)| = m k=-∞ |g k (x) -g k (y)| +
The proof is complete.

Remark 2.2. It is worth noting that (1.1) is false if (1.5) does not hold, which shows the optimality of (1.5). Indeed, let

a ∈ R d \ {0} and η ∈ C ∞ (R d ) \ {0} be such that 0 ≤ η ≤ 1, η = 1 in B 1/8 , and supp η ⊂ B 1/4 . For m ∈ N, define v m,a (x) = m k=1 η(x + ka) for x ∈ R d . Then v m,a ∈ C ∞ c (R d ), and for |a| → ∞ we have v m,a L γ ≥ Cm 1/γ , v m,a β 1 p Ẇ s,p (R d ) ≤ Cm β 1 , and 
ˆRd ˆRd |v m,a (x)| q |v m,a (y)| q |x -y| d-α dx dy β 2 ≤ Cm β 2 .
Here C denotes a positive constant independent of m. Thus if (1.1) holds then m ≤ Cm β 1 γ+β 2 γ . This proves the optimality of (1.5).

2.3.

Other forms of the assumptions of the Gagliardo-Nirenberg interpolation inequalities. In this section, we give another form of condition (1.5), which is often found in the literature.

We begin with (compare with (1.6) for p = 2) 

Lemma 2.5. Let d ≥ 1, 0 ≤ s ≤ 1, 1 ≤ γ, p, q < ∞, 0 < α < d,
               p(α + 2qs) α + sp ≤ γ ≤ pd d -sp if sp < d and (d + α)p -2q(d -sp) > 0, pd d -sp ≤ γ ≤ p(α + 2qs) α + sp if sp < d and (d + α)p -2q(d -sp) < 0, p(α + 2qs) α + sp ≤ γ < ∞ if sp ≥ d.
(2.22)

Proof. Since (d + α)p -2q(d -sp) = 0, it follows from (1.3) that (2.23) β 1 = γ(d + α) -2qd γ (p(d + α) -2q(d -sp))
and

β 2 = pd -γ(d -sp) γ (p(d + α) -2q(d -sp))
.

We then have

β 1 γ + β 2 γ -1 = 1 p(d + α) -2q(d -sp) [γ(d + α) -2qd + pd -γ(d -sp) -p(d + α) + 2q(d -sp)] = α + sp p(d + α) -2q(d -sp) γ - p(α + 2qs) α + sp .
Since β 1 , β 2 > 0, we derive the equivalence of (1.5) and (2.22).

We next establish (compare with (1.7) for p = 2)

Lemma 2.6. Let d ≥ 1, 0 ≤ s ≤ 1, 1 ≤ γ, p, q < ∞, 0 < α < d, and 0 ≤ β 1 , β 2 < +∞, and assume (1.3), and (d + α)p -2q(d -sp) = 0. Then (1.5) holds iff the following two conditions hold

(2.24) α(d -sp) pd(α + sp) ≤ β 1 < +∞, 0 ≤ β 2 ≤ s(d -sp) d(α + sp) .
Proof. Since (d + α)p -2q(d -sp) = 0, it follows that sp < d and q = p(d+α) 2(d-sp) . By (1.3), we have

(d -sp)β 1 + (d + α)β 2 = d γ and β 1 + d + α d -sp β 2 = 1 p .
This yields γ = pd d -sp .

We then have

β 1 γ + β 2 γ -1 = β 1 pd d -sp - β 1 pd d + α + d d + α -1 = β 1 (α + sp)pd (d -sp)(d + α) - α d + α . Therefore β 1 γ + β 2 γ ≥ 1 if and only if β 1 ≥ α(d-sp) pd(α+sp) . Since β 1 + d+α d-sp β 2 = 1 p , we derive that β 1 ≥ α(d-sp)
pd(α+sp) if and only if (2.24) holds.

Caffarelli-Kohn-Nirenberg interpolation type inequalities involving Coulomb terms -Proof of Theorem 1.2

The main goal of this section is to prove Theorem 1.2. We closely follow the techniques introduced by Nguyen and Squassina in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] (see also [43]) to derive our results. We begin with a consequence of Theorem 1.1. Lemma 3.1. Let d ≥ 1, 0 ≤ s ≤ 1, 1 < γ < +∞, 1 ≤ γ , p, q < +∞, 0 < α < d, and 0 < β 1 , β 2 < +∞. Assume that (1.3) and (1.5) hold, and

γ ≥ γ .
Let λ > 0 and 0 < r < R, and set

D λ := x ∈ R d : λr < |x| < λR .
We have, for g ∈ L 1 (D λ ),

D λ |g -(g) D λ | γ 1 γ ≤ C λ d γ ||g|| β 1 p Ẇ s,p (D λ ) ˆDλ ˆDλ |g(x)| q |g(y)| q |x -y| d-α dx dy β 2 ,
for some positive constant C independent of λ and g.

Proof. Using (1.3), by scaling we can assume that λ = 1. Lemma 3.1 is now a consequence of Theorem 1.1.

In the next two subsections, we present the proof (i) and (ii) of Theorem 1.2, respectively.

3.1. Proof of (i) of Theorem 1.2. We are ready to give the proof of Theorem 1.2. We closely follow the strategy in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF]. We only consider the case 0 < s < 1, the proof in general case follows similarly and is omitted.

The proof is divided into two steps.

• Step 1: We establish (i) of Theorem 1.2 assuming (1.12).

• Step 2: We establish (i) of Theorem 1.2 assuming (1.13) and γ < γ. It is clear that Assertion (i) then follows from Steps 1 and 2.

We now proceed Steps 1 and 2.

Step 1: We establish (i) of Theorem 1.2 assuming (1.12).

Set

A k := x ∈ R d : 2 k ≤ |x| < 2 k+1 .
By Lemma 3.1, we derive from (1.11) that (3.1)

A k |g -(g) A k | γ 1 γ ≤ C 2 dk γ ˆAk ˆAk |g(x) -g(y)| p |x -y| d+sp dxdy β 1 × ˆAk ˆAk |g(x)| q |g(y)| q |x -y| d-α dxdy β 2 .
Here and in what follows in the proof of Theorem 1.2, C denotes a positive constant independent of g and k (and also independent of m, and n, which appear later). Since

2 τ γ k ˆAk |g| γ ≤ C2 (τ γ +d)k A k |g -(g) A k | γ + C2 (τ γ +d)k A k g γ ,
using condition (1.10) and the definition of σ, we derive that (3.2)

ˆAk |g| γ |x| τ γ dx ≤ C2 (γ τ +d)k A k g γ + C ˆAk ˆAk |g(x) -g(y)| p |x| α 1,1 p |y| α 1,2 p |x -y| d+sp dx dy γ β 1 × ˆAk ˆAk |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dx dy γ β 2 .
Let m, n ∈ Z be such that m ≤ n -2. Summing (3.2) with respect to k from m to n, we get

(3.3) ˆ{2 m <|x|<2 n+1 } |g| γ |x| τ γ ≤ C n k=m 2 (γ τ +d)k A k g γ + C n k=m ˆAk ˆAk |g(x) -g(y)| p |x| α 1,1 p |y| α 1,2 p |x -y| d+sp dx dy γ β 1 × ˆAk ˆAk |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dx dy γ β 2 .
Applying Lemma 2.3, we derive from (3.3) that

(3.4) ˆ{2 m <|x|<2 n+1 } |g| γ |x| τ γ ≤ C n k=m 2 (γ τ +d)k A k g γ + C ˆRd ˆRd |g(x) -g(y)| p |x| α 1,1 p |y| α 1,2 p |x -y| d+sp dx dy γ β 1 × ˆRd ˆRd |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dx dy γ β 2 .
We next estimate the first term of the RHS of (3.4). We have, as in (3.1), (3.5)

A k g - A k+1 g γ ≤ C 2 dk γ ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x) -g(y)| p |x -y| d+sp dx dy γ β 1 × ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x)| q |g(y)| q |x -y| d-α dx dy γ β 2 .
With c := 2/(1 + 2 γ τ +d ) < 1 (since γ τ + d > 0), we have c2 τ γ +d > 1. We derive from (3.5) that

(3.6) 2 (γ τ +d)k A k g γ ≤ c2 (γ τ +d)(k+1) A k+1 g γ + C ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x) -g(y)| p |x| α 1,1 p |y| α 1,2 p |x -y| d+sp dxdy γ β 1 × ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dxdy γ β 2 .
Since g has a compact support, we derive that, for large n,

(3.7) n k=m 2 (γ τ +d)k A k g γ ≤ C n k=m ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x) -g(y)| p |x| α 1,1 p |y| α 1,2 p |x -y| d+sp dxdy γ β 1 × ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dxdy γ β 2 .
Applying Lemma 2.3 and letting m → -∞, we obtain

(3.8) k∈Z 2 (γ τ +d)k A k g γ ≤ C ˆRd ˆRd |g(x) -g(y)| p |x| α 1,1 p |y| α 1,2 p |x -y| d+sp dx dy γ β 1 × ˆRd ˆRd |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dx dy γ β 2 .
Combining (3.4) and (3.8) and letting n → +∞, m → -∞, we obtain (i) of Theorem 1.2. The proof of Step 1 is complete.

Step 2: We establish (i) of Theorem 1.2 assuming (1.13) and γ < γ.

Since 1 p (sp -d -α 1 p) + 1 2q (α + d + α 2 q) = 0, by scaling, without loss of generality, one might assume that (3.9)

ˆRd ˆRd |g(x) -g(y)| p |x| α 1,1 p |y| α 1,2 p |x -y| d+sp dx dy = ˆRd ˆRd |g(x)| q |g(y)| q |x| α 2,1 q |y| α 2,2 q |x -y| d-α dx dy = 1.
It then suffices to prove that

(3.10) | • | τ g L γ (R d ) ≤ C.
Let β 1,1 , β 1,2 and β 2,1 , β 2,2 close to β 1 and β 2 respectively and non-negative be determined later such that β j,1 p + 2β j,2 q = 1, which is equivalent to

p(β j,1 -β 1 ) + 2q(β j,2 -β 2 ) = 0.
Define σ j , γ j , γ j , and τ j for j = 1, 2, as follows

σ j = β j,1 pα 1 + β j,2 qα 2 , (d -sp)β j,1 + (d + α)β j,2 = d γ j . γ j = γ j , τ j = σ j .
We have

(3.11) 1 γ j + τ j d - 1 γ - τ d = 1 γ j + σ j d - 1 γ - σ d = 1 d (d -sp + pα 1 )(β j,1 -β 1 ) + (d + α + qα 2 )(β j,2 -β 2 ) .
Since 2q(d -sp + pα 1 ) = p(d + α + qα 2 ) and β 1 , β 2 > 0, one can choose positive β j,1 and β j,2 close to β 1 and β 2 such that (3.12) p(β j,1 -β 1 ) + 2q(β j,2 -β 2 ) = 0,

(3.13) 1 γ 2 + τ 2 d < 1 γ + τ d < 1 γ 1 + τ 1 d .
Since β j,1 and β j,2 are close to β 1 and β 2 and β 1 γ + β 2 γ > 1, we have

(3.14) β j,1 γ j + β j,2 γ j = β j,1 γ j + β j,2 γ j > 1 for j = 1, 2,
and

(3.15) γ j = γ j > γ for j = 1, 2.
Combining (3.13) and (3.15) yields

(3.16) | • | τ g L γ (R d \B 1 ) ≤ C | • | τ 1 g L γ 1 (R d \B 1 )
.

and

(3.17)

| • | τ g L γ (B 1 ) ≤ C | • | τ 2 g L γ 2 (B 1 )
On the other hand, applying Step 1, we have,

| • | τ 1 g L γ 1 (R d ) ≤ C and | • | τ 2 g L γ 2 (R d ) ≤ C. by (3.9), (3.18) 
Combining (3.9), (3.16), and (3.17) yields (3.10). The proof of Step 2 is complete.

The proof of (i) of Theorem 1.2 is complete.

3.2. Proof of (ii) of Theorem 1.2. The proof of (ii) of Theorem 1.2 is similar to that of (i). We only mention briefly the proof of (ii) assuming (1.12). We also have (3.4). To estimate the RHS of (3.4), one just needs to note that, instead of (3.6), with ĉ :

= (1 + 2 γ τ +d )/2 < 1 (since γ τ + d < 0), 2 (γ τ +d)(k+1) A k+1 g γ ≤ ĉ2 (γ τ +d)k A k g γ + C ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x) -g(y)| p ϕ α 1 ,p (x, y) |x -y| d+sp dxdy γ β 1 × ˆAk ∪A k+1 ˆAk ∪A k+1 |g(x)| q |g(y)| q ϕ α 2 ,q (x, y) |x -y| d-α dxdy γ β 2 .
Summing with respect to k, we also obtain (3.8). The conclusion now follows from (3.4) and (3.8).

Hardy-Lieb-Thirring Inequalities

In this section, as an application of Theorem 1.2, we establish the following family of many body Hardy-Lieb-Therring inequalities. 

4.1. Let d ≥ 1 and N ≥ 1, 0 < s ≤ 1 and 2 ≤ p < ∞ be such that sp < d. Given ψ ∈ C ∞ c R dN with ´RdN |ψ(X)| p dX = 1, define (4.1) ρψ(x) := N i=1 ˆ(R d ) N -1 ψ(X R i , x, X L i ) p dX R i dX L i ,
where we have denoted, for

X = (x 1 , • • • , x N ) with x i ∈ R d , (4.2) 
X R i = (x 1 , . . . , x i-1 ) and X L i = (x i+1 , . . . , x N ) for 1 ≤ i ≤ N . Then there exists a positive constant C depending only on s, p, d (C is independent of N ) such that

(4.3) E(ψ) + 1≤i<j≤N ˆRdN |ψ(X)| p dX |x i -x j | sp ≥ C ˆRd |ρψ(x)| 1+ sp d dx.
Here, for 0 < s < 1,

E(ψ) := N i=1 ˆRd(N-1) ˆRd ˆRd ψ(X R i , x i , X L i ) -ψ(X R i , y i , X L i ) p dx i dy i |x i -y i | d+sp -C d,s,p ˆRd ψ(X R i , x i , X L i ) p dx i |x i | sp dX R i dX L i ,
and, for s = 1,

E(ψ) := N i=1 ˆRd(N-1) ˆRd |∇ x i ψ(X R i , x i , X L i )| p dx i -C d,s,p ˆRd ψ(X R i , x i , X L i ) p dx i |x i | sp dX R i dX L i .
The constant C d,s,p in Theorem 4.1 is defined by, for 0 < s < 1,

(4.4) C d,s,p := 2 ˆ1 0 r sp-1 1 -r d-sp p p Φ d,s,p (r) dr, where (4.5) 
Φ d,s,p =          S d-2 ˆ1 -1 1 -t 2 d-3 2 dt (1 -2rt + r 2 ) d+sp 2 for d ≥ 2, 1 (1 -r) 1+ps + 1 (1 + r) 1+ps for d = 1,
and

C d,1,p = n -p p p .
When s = 1, p = 2, the following many body inequality was derived by Lieb and Thirring [START_REF] Lieb | Bound on kinetic energy of fermions which proves stability of matter[END_REF][START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schr dinger Hamiltonian and their relation to Sobolev inequalities[END_REF] in order to give a simpler proof of the stability of non-relativistic matter first given by Dyson and Lenard [START_REF] Lenard | Dyson Stability of matter. II[END_REF].

(4.6) ψ, N i=1 -∆ i ψ ≥ C LT ˆRd ρψ d+2 d ,
where ψ ∈ H 1 (R dN ), anti-symmetric and normalized in L 2 (R dN ). ρψ is same as in (4.1), and C LT > 0 is a constant independent of ψ and N . It is easy to that, (4.6) is no longer true if ψ is not anti-symmetric e.g. if ψ(x 1 , . . . , x N ) = u(x 1 ) . . . u(x N ), which is a typical state of boson. In [START_REF] Lundholm | Lieb-Thirring bounds for interacting Bose gases[END_REF], Lundholm, Portmann and Solovej noticed that Lieb-Thirring type inequalities still hold true for particles without any symmetry assumptions and therefore in particular for bosons, provided that the anti-symmetry assumption is replaced by a sufficiently strong repulsive interaction between particles. More precisely, they established (4.3) for s = 1, p = 2 in the absence of the inverse square potential 1 |x i | 2 . Subsequently, Lundholm, Nam and Portmann [START_REF] Lundholm | Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems[END_REF] established an improved version of this inequality. In fact, they proved (4.3) for s > 0 and p = 2. Our approach of proving Theorem 4.1 is as follows. First using Theorem 1.2 and a (fractional) Hardy inequality due to Frank and Seiringer [START_REF] Frank | Non-linear ground state representations and sharp Hardy inequalities[END_REF], we derive Proposition 4.1 below. Then we follow the strategy of [START_REF] Lundholm | Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems[END_REF] to derive Theorem 4.1 from Proposition 4.1.

To prove Theorem 4.1, we will establish the following Hardy-Lieb-Therring inequality. The proof of Proposition 4.1 contains two main ingredients. The first one is Theorem 1.2 and the second one is a (fractional) Hardy inequality due to Frank and Seiringer [START_REF] Frank | Non-linear ground state representations and sharp Hardy inequalities[END_REF].

The rest of this section containing two subsection is organized as follows. We prove Proposition 4.1 and Theorem 4.1 in the first subsection and the second subsection, respectively. We first consider the case 0 < s < 1. We have, see [16, where c p := min 0<r< 1 2

(1 -r) p -r p + pr p-1 . We apply Theorem 1.2 to ϕ with

p = q ≥ 2, γ = (d + sp) p d , α = d -sp, β 1 = d -sp p(d + sp) , β 2 = s d + sp , τ = - d -sp p , α 1,1 = α 1,2 = - d -sp 2p 
, and α 2,1 = α 2,2 = -d -sp p .

We then have

α 1 = α 1,1 + α 1,2 = - d -sp p , α 2 = α 2,1 + α 2,2 = - 2(d -sp) p , σ = β 1 pα 1 + β 2 qα 2 = -(d -sp)/p = τ , 1 γ = 1 d [(d -sp)β 1 + (d + α)β 2 ] = d p(d + sp) s = 1 γ .
One can check that (1.10) holds and 1 γ + τ d = s 2 p d(d+sp) > 0. We then obtain p u in (4.10) and then using (4.9), we derive (4.8). The proof in the case 0 < s < 1 is complete. The proof in the case s = 1 follows similarly. In this case, instead of (4.9), one has, see [START_REF] Frank | Non-linear ground state representations and sharp Hardy inequalities[END_REF]Remark 2.5] (see also [20, 

≤ N i=1 ˆRd(N-1) ˆRd ˆRd ψ(X R i , x i , X L i ) -ψ(X R i , y i , X L i ) p |x i | α 1 p |y i | α 2 p |x i -y i | d+sp dx i dy i dX R i dX L i .
Here ρψ is defined by (4.1), and X R i and X L i are given by (4.2).

For s = 1, we use the following lemma.

Lemma 4.3. Let d ≥ 1, N ≥ 1, 1 ≤ p < +∞, α 1 ∈ R and ψ be a smooth function defined in R dN .
We have

(4.13) ˆRd ∇ (ρψ) 1 p (x) p |x| α 1 p dx ≤ N i=1 ˆRdN |∇ x i ψ(X)| p |x i | α 1 p dX.
Here ρψ is defined by (4.1).

Inequality (4.13) was first discovered by Hoffman-Ostenhof in [START_REF] Hoffmann-Ostenhof | Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF], p = 2 and α 1 = α 2 = 0. Later on, in [START_REF] Lieb | The stability of matter in quantum mechanics[END_REF]Lemma 8.4], (4.12),(4.13) was proved for p = 2 and α 1 = α 2 = 0. The proofs in the general cases stated here follows in the same spirit. For the convenience of the proof, we give the proof in Appendix A.

The third lemma used in the proof of Theorem 4.1 is Lemma 4.4. Let d ≥ 1 and 1 ≤ p < +∞. For every 0 < γ < d and for every ψ ∈ L p R dN with ˆ|ψ(X)| p dX = 1, we have

ˆRdN 1≤i<j≤N |ψ(X)| p |x i -x j | γ dX ≥ 1 2 ˆRd ˆRd ρψ(x)ρψ(y) |x -y| γ dxdy -C LO ˆRd |ρψ(x)| 1+ γ d dx (4.14)
for a constant C LO > 0 depending only on d, γ and p. Inequality (4.14) was first studied in [START_REF] Elliot | A lower bound for Coulomb energies[END_REF][START_REF] Lieb | Improved lower bound on the indirect coulomb energy[END_REF] for the case γ = 1, d = 3 and p = 2 and known as the Lieb-Oxford inequality for homogeneous potential. Subsequently, it was derived in [25, Lemma 5.3] for γ = 1, d = 2, p = 2 and in [34, Lemma 16] for the case 0 < γ < d and p = 2. Interestingly, the proof of Lemma 4.4 in the assumption stated there does not differ much from that of [START_REF] Elliot | Ground states of large quantum dots in magnetic fields[END_REF] or [START_REF] Lundholm | Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems[END_REF] in the case p = 2, and is given in Appendix B for the completeness.

We are ready to give Proof of Theorem 4.1. We only consider the case 0 < s < 1, the proof in general case follows similarly and is omitted. We have

(4.15) N i=1 ˆRdN |ψ(X)| p dX |x i | sp = ˆRd ρψ(x) |x| sp dx.
Applying Lemma 4.2 and using (4.15), we obtain (4.16) 

N i=1 ˆRd(N-1) ˆRd ˆRd ψ(X R i , x i , X L i ) -ψ(X R i , y i , X L i ) p dx i dy i |x i -y i | d+sp -C d,s,p ˆRd ψ(X R i , x i , X L i ) p dx i |x i | sp dX R i dX L i ≥ ˆRd ˆRd (ρψ) 1 p (x) -(ρψ)
ε 1≤i<j≤N ˆ(R d ) N |ψ(X)| p dX |x i -x j | sp ≥ ε 2 ˆRd ˆRd ρψ(x)ρψ(y)dxdy |x -y| sp -C LO ε ˆRd |ρψ(x)| 1+ sp d dx.
Combining (4.16) and (4.17) yields (4.18) First we consider s = 1, i.e., we establish Lemma 4.3. In this case (4.13) is a direct consequence of the following estimate which is proved by using Hölder's inequality with exponents p, p p-1 .

N i=1 ˆ(R d ) N -1 ˆRd ˆRd ψ(X R i , x i , X L i ) -ψ(X R i , y i , X L i ) p dx i dy i |x i -y i | d+sp -C d,s,p ˆRd ψ(X R i , x i , X L i ) p dx i |x i | sp dX R i dX L i + ε 1≤i<j≤N ˆ(R d ) N |ψ(X)| p dX |x i -x j | sp ≥ ˆRd ˆRd (ρψ) 1 p (x) -(ρψ)
|∇ x ρψ(x)| p ≤ (ρψ(x)) p-1 N i=1 ˆRd(N-1) ∇ x ψ(X R i , x, X L i ) p dX R i dX L i .
We next consider 0 < s < 1, i.e., we prove Lemma 4.2. We have, by (4.1), (A.1) (ρψ) Let χ R denote the characteristic function of the ball B(0, R). Then the following identity, due to Fefferman-de la Llave [START_REF] Fefferman | Relativistic stability of matter. I[END_REF] (see also, [START_REF] Lieb | Analysis[END_REF]Theorem 9. We have 

(B.4) 1≤i<j≤N χ R (x i -z)χ R (x j -z) = 1 2 N i=1 χ R (x i -z) 2 - 1 2 N i=1 χ R (x i -z) = 1 2 N i=1 χ R (x i -z) -f R (z) 2 + f R (z) N i=1 χ R (x i -z) - 1 2 f 2 R (z) - 1 2 N i=1 χ R (x i -z).
ˆ∞ 0 min{f 2 R (z), f R (z)} dR R d+γ+1 ≤ d γ(d -γ) |B 1 | 1+ γ d ρ * (z) 1+ γ d for z ∈ R d .
By the theory of maximal functions, see e.g. [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], ˆRd ρ * (z) 

  Here and in what follows, for any open set Ω ⊂ R d , we use the standard notation (1.2) ||g|| Ẇ s,p (Ω) x) -g(y)| p |x -y| d+sp dxdy 1 p for 0 < s < 1, ˆΩ |∇g(x)| p dx 1/p for s = 1, ˆΩ |g(x)| p dx 1/p for s = 0.

2. 1 .

 1 Preliminaries. For D a measurable set of R d and g ∈ L 1 (D), denote |D| its Lebesgue mesure and (g) D = D g(y) dy := 1 |D| ˆD g(y) dy.

  and 0 < β 1 , β 2 < +∞, and assume (1.3), and let B be an open ball or an open cube in R d . We have, for u

  first deal with the case |g(x)| = 0 and |g(y)| = 0. Let m, n ∈ Z be such that 10 m < |g(x)| ≤ 10 m+1 and 10 n < |g(y)| ≤ 10 n+1 . Without loss of generality, one might assume that |g(y)| ≥ |g(x)| and this in turn implies n ≥ m.
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 10 k+1 -10 k ) + |g(y)| -10 n = |g(y)| -|g(x)| ≤ |g(x) -g(y)|, and, if n = m, k∈Z |g k (x) -g k (y)| = |g m (x) -g m (y)| = |g(y)| -|g(x)| ≤ |g(x) -g(y)|. Hence Assertion (2.20) is proved in this case. We next deal with Assertion (2.20) in the case |g(x)| = 0 or |g(y)| = 0. This follows from the fact, for z ∈ R d , (2.21) k∈Z |g k (z)| = |g(z)|.

  and 0 ≤ β 1 , β 2 < +∞, and assume (1.3), and (d + α)p -2q(d -sp) = 0. Then (1.5) is equivalent to the fact

Theorem

  

Proposition 4 . 1 .

 41 Let d ≥ 1, 0 < s ≤ 1 and p ≥ 2 be such that sp < d. Then there exist C > 0 such that for any u ∈ C ∞ c (R d ) we have (4.7) F (u)

4. 1 .

 1 Proof of Proposition 4.1. Let u ∈ C ∞ c (R d ) and define ϕ(x) := |x| (d-sp)/p u(x).

(4. 10 )

 10 ˆRd ˆRd |ϕ(x) -ϕ(y)| p |x| -d-sp 2 |y| -d-sp 2 dxdy |x -y| d+sp 1-sp d × ˆRd ˆRd |ϕ(x)| p |ϕ(y)| p |x| -(d-sp) |y| -(d-sp) dxdy |x -y| sp

1

 1 8]) holds (B.1) 1 |x -y| γ = c d,γ ˆ∞ 0 ˆRd χ R (x -z)χ R (y -z) dzdR R d+γ+1 .for some positive constant c γ,d depending only on γ and d. Denotef R (z) = ˆRd ρψ(x)χ R (x -z)dx for z ∈ R d . It follows from (B.1) that ˆRd ˆRd ρψ(x)ρψ(y) |x -y| γ dxdy = c d,γ |x i -x j | γ dX = c d,γ ˆ∞ 0 ˆRd ˆRdN |ψ(X)| p 1≤i<j≤N χ R (x i -z)χ R (x j -z) dXdzdR R d+γ+1 .

χ|B 1 |

 1 χ R (x i -z)|ψ(X R i , x i , X L i )| p dx i dX R i dX L i (B.5) = ˆRd χ R (x -z)ρψ(x)dx = f R (z) From (B.4) we obtain (B.6) ˆRdN |ψ(X)| p 1≤i<j≤N χ R (x i -z)χ R (x j -z)dX ≥ ˆRdN |ψ(X)| p f R (z) R (x i -z) .We then derive from (B.5) and the fact ´RdN |ψ(X)| p dX = 1 that (B.7) ˆRdN |ψ(X)| p 1≤i<j≤N χ R (x i -z)χ R (x j -z)dX ≥ .7) into (B.3), using (B.2) and the fact f R (z) ≥ min{f R (z), f 2 R (z)}, we obtain (B.8) ˆRdN |ψ(X)| p 1≤i<j≤N 1 |x i -x j | γ dX ≥ 1 2 ˆRd ˆRd ρψ(x)ρψ(y) |x -y| γ dxdy -c d,γ 2 ˆ∞ 0 ˆRd min{f R (z), f 2 R (z)} dzdR R d+γ+1 .Let ρ * denote the Hardy-Littlewood maximal function of ρψ, i.e., (B.9)ρ * (z) := sup R>0 B(z,R) ρψ(x)dx = |B 1 | -1 sup R>0 f R (z) R d . For R * > 0 and z ∈ R d , we have ˆ∞ 0 min{f 2 R (z), f R (zR d ρ * (z) 2 dR R d+γ+1 + ˆ∞ R * |B 1 | R d ρ * (z) dR R d+γ+1 = |B 1 | 2 d -γ (R * ) d-γ (ρ * (z)) 2 + |B 1 | γ (R* ) -γ ρ * (z), Taking R * = (|B 1 | ρ * (z)) -1 d , we derive that (B.10)

  Proof of Theorem 4.1. The proof of Theorem 4.1 is based on Proposition 4.1 and the following three lemmas. The first one isLemma4.2. Let d ≥ 1, N ≥ 1, 0 < s < 1, 1 ≤ p < +∞, α 1 , α 2 ∈ Rand ψ be a measurable function defined in R dN . We have

					Theorem 1]),		
	(4.11)		ˆRd	|∇u(x)| p dx -C d,1,p	ˆRd	|u(x)| p dx |x| sp ≥ c p	ˆRd	|ϕ(x)| p |x| -(d-p) |x| p	dx.
	The rest of the proof is almost unchanged and is omitted.
	4.2. (4.12)	ˆRd ˆRd	(ρψ)	1 p (x) -(ρψ)	1 p (y)		

p |x| α 1 p |y| α 2 p |x -y| d+sp dxdy

Here 5Bi denotes the open ball with the same center as Bi but 5 times radius.
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