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Introduction

A solvable group G has finite rank if there is k ě 1 such that all finitely generated (fg) subgroups of G are generated by at most k elements. The class of groups of finite rank is stable under the operations of taking subgroups and quotients, and hence under taking subquotients. Recall that a group Q is a subquotient of G if there are subgroups K, H of G with K H and Q » H{K. The simplest example of a fg solvable group of infinite rank is the wreath product C p Z. The following celebrated theorem of P. Kropholler asserts that looking at the metabelian subquotients of a fg solvable group G suffices to detect that G has infinite rank.

Theorem ( [START_REF] Kropholler | On finitely generated soluble groups with no large wreath product sections[END_REF]). If G is a fg solvable group of infinite rank, then G admits a subquotient isomorphic to C p Z for some prime p.

One of the motivating questions of the present article is whether there exists a "torsionfree version" of this theorem. More precisely, if G is a fg torsion-free solvable group of infinite rank, does G always admit a fg torsion-free metabelian subquotient of infinite rank ? We answer this question in the negative:

Theorem 1.1. The group G below is a fg 3-step solvable group with the following properties:

(1) G is torsion-free;

(2) G contains a normal subgroup that is free abelian of infinite rank;

(3) every finitely generated torsion-free metabelian subquotient of G is virtually abelian.

Even before considering subquotients, if G is a fg n-step solvable group (n ě 3) with a given property P, it is natural to ask whether G admits fg metabelian subgroups that Date: June 14, 2022. Supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency. retain P. Natural examples are provided by "P " not being virtually abelian", or "P " not being virtually nilpotent". A positive answer to that kind of questions generally allows to reduce the study of certain problems about fg solvable groups to fg metabelian groups, which are generally much more tractable. When P is the property of having inifnite rank, the following consequence of Theorem 1.1 shows that the answer is negative. The existence of groups with this property is also new.

Corollary 1.2. The group G is a fg torsion-free solvable group of infinite rank such that every fg metabelian subgroup of G is virtually abelian.

Recall that a solvable group has finite torsion-free rank if it admits a series with abelian quotients G i {G i`1 satisfying dim Q pG i {G i`1 b Qq ă 8. Another natural question that arises from P. Kropholler's theorem is to ask whether every fg solvable group of infinite torsion-free rank admits fg metabelian subquotients of infinite torsion-free rank. This was answered in the negative by P. Kropholler, who constructed counter-examples in [START_REF]A note on the cohomology of metabelian groups[END_REF]. Despite having infinite torsion-free rank, these examples admit rather large subgroups containing torsion elements. The study of the class of solvable groups admitting no metabelian subquotient of infinite torsion-free rank is the subject of the recent work [START_REF] Jacoboni | Soluble groups with no Z Z sections[END_REF] of Jacoboni-Kropholler. Theorem B in [START_REF] Jacoboni | Soluble groups with no Z Z sections[END_REF] shows these groups enjoy strong structural restrictions.

On the construction. Our family of groups from Theorem 1.1 is very much inspired by the construction of solvable groups of P. Kropholler [START_REF]A note on the cohomology of metabelian groups[END_REF], Brieussel [START_REF] Brieussel | About the speed of random walks on solvable groups[END_REF] and Brieussel-Zheng [START_REF] Brieussel | Speed of random walks, isoperimetry and compression of finitely generated groups[END_REF]. The constructions from [START_REF] Brieussel | About the speed of random walks on solvable groups[END_REF][START_REF] Brieussel | Speed of random walks, isoperimetry and compression of finitely generated groups[END_REF] take as inputs several parameters, including a sequence of groups ∆ n " xs n , t n y coming with a specified pair of generators; and produce solvable groups G such that on the one hand even if the groups ∆ n are very small (for instance finite or virtually abelian), the group G might be much larger; and on the other hand good choices for the ∆ n allow some control on the algebraic structure of G. It was already observed in [START_REF] Jacoboni | Soluble groups with no Z Z sections[END_REF] that a construction close to [START_REF] Brieussel | About the speed of random walks on solvable groups[END_REF] yields solvable groups of infinite torsion-free rank which do not admit metabelian subquotients of infinite torsionfree rank (like the groups in [START_REF]A note on the cohomology of metabelian groups[END_REF]). The construction has the property that in order to avoid metabelian subquotients of infinite torsion-free rank, it is necessary that the groups ∆ n have torsion elements, and as a consequence the groups G from [START_REF] Brieussel | About the speed of random walks on solvable groups[END_REF] and [START_REF] Jacoboni | Soluble groups with no Z Z sections[END_REF] have torsion elements. The delicate aspect of our construction is to ensure torsion-freeness of the group G while keeping the other properties intact.

Recall that the FC-center F CpGq of a group G is the subgroup of G consisting of elements having a finite conjugacy class. A subgroup of G is termed FC-central if it is contained in the FC-center of G. Recall also that a group is locally finite if all finitely generated subgroups are finite.

In the sequel we denote by L the class of groups G that admit a normal subgroup L such that L is locally finite and abelian, and G{L is cyclic. We note that the class L is stable under passing to subgroups and under taking quotients.

Lemma 2.1. Let G be a finitely generated group that is torsion-free. If G admits a finitely generated abelian normal subgroup A such that A is FC-central in G and G{A is in L, then G is virtually abelian.

Proof. Since A is finitely generated, its centralizer C G pAq has finite index in G. Hence upon replacing G by a finite index subgroup, we can assume that A is central in G. Let N be a normal subgroup of G containing A and t P G such that G " N ¸xty and N {A is abelian. Since A is central in G, N is nilpotent. Since N is torsion-free, the quotient N {ZpN q of N by its center is also torsion-free [Rob96, 5.2.19]. But here N {ZpN q must be locally finite, so it follows that N {ZpN q is trivial. So we deduce that N is abelian. Now given x P N , there exists k ě 1 such that x k lies in the center of G. Hence x k " tx k t ´1 " ptxt ´1q k . But x and txt ´1 commute since N is abelian, so rt, xs k " 1. Since G is torsion-free, we infer that x commutes with t. Since x was arbitrary in N and G " N ¸xty, this shows that G is abelian.

We also denote by C the class of groups G such that G{F CpGq belongs to L. Proposition 2.2. Let G be a finitely generated group that belongs to C. If G is torsion-free and metabelian, then G is virtually abelian.

Proof. Since metabelian groups satisfy the maximal condition on normal subgroups [START_REF] Hall | Finiteness conditions for soluble groups[END_REF], the subgroup F CpGq is finitely generated. The group G being torsion-free, F CpGq is also abelian [Rob96, 14.5.9]. Hence it follows that F CpGq is a finitely generated abelian group, and Lemma 2.1 then implies that G is virtually abelian.

We deduce the following.

Proposition 2.3. If G is a group in C, then every finitely generated torsion-free metabelian subquotient of G is virtually abelian.

Proof. Let K be a fg torsion-free metabelian subquotient of G. The class C being stable under taking subgroups and quotients, K belongs to C. The statement then follows from Proposition 2.2.

Notation.

In the sequel we denote by C k " Z{kZ " t0, . . . , k ´1u. Let D " @ a, b | a 2 " b 2 " 1 D be the infinite dihedral group, and Z the infinite cyclic subgroup of D generated by ab, so that D " Z ¸xay " Z ¸xby. We denote by D 1 the derived subgroup of D, which is the index two subgroup of Z generated by pabq 2 . 2.3. The groups. Choose two increasing sequences pd n q and pk n q of positive integers such that k n ě 2d n . For n ě 1, let H n " D kn ¸Ckn , where the action of C kn on D kn is a cyclic permutation of the factors.

Let ∆ " Z ˆśn H n . We denote by π 0 : ∆ Ñ Z the projection from ∆ to the first factor Z, and for all n ě 1 π n : ∆ Ñ H n is the projection from ∆ to H n .

We define two elements s, t P ∆ as follows:

' Let σ 0 be a generator of the first factor Z of ∆. For n ě 1, we denote by σ n the element of H n that belongs to the normal subgroup D kn of H n , and that is defined by σ n p1q " a, σ n pd n q " b, and σ n pjq " id for every j P t1, . . . , k n u such that j ‰ 1, d n . We denote by s the element of ∆ defined by π 0 psq " σ 0 and π n psq " σ n for all n ě 1. ' t is the element of ∆ defined by π 0 ptq " 0, and π n ptq is the generator 1 of C kn for all n ě 1.

Definition 2.4. We denote by G the subgroup of ∆ generated by s and t.

The group G depends on pd n q and pk n q, but to simplify we omit pd n q and pk n q from the notation.

Notation 2.5. In the sequel for i P Z, we write s i " t i st ´i.

Lemma 2.6. The element s 2 is central in G.

Proof. s 2 belongs to the first factor Z of ∆ since π n psq has order 2 for all n ě 1.

Lemma 2.7. For all i ě 0 the following hold:

(1) π n prs, s i sq belongs to pD 1 q kn for all n ě 1.

(2) If n is such that d n ´1 " i then the d n -coordinate of π n prs, s i sq is equal to pbaq 2 , and all other coordinates of of π n prs, s i sq are trivial.

(3) for all n such that d n ´1 ą i, π n prs, s i sq is trivial.

Proof. 1 is clear since π n ps i q belongs to pDq kn for all n ě 1. When d n ´1 " i, the first statement of 2 is a simple computation, and the second statement follows from the fact that the supports of π n psq and π n ps i q intersect only at coordinate d n ´1 " i in view of the inequality k n ě 2d n . 3 is the true for the same reason.

Proposition 2.8. The subgroup F CpGq is free abelian of infinite rank, and Q " G{F CpGq is isomorphic to C 2 Z.

Proof. Let R " À ně1 pD 1 q kn . So R is the subgroup of ś n H n consisting of elements having all their coordinates in pD 1 q kn , and only a finite number of these coordinates are non-trivial. Set A " xσ 2 0 y ' R. We claim that G contains A. Since π n psq " σ n has order two for all n ě 1 and π 0 ps 2 q " σ 2 0 , it is enough to see that R lies inside G, or equivalently that G contains pD 1 q kn for all n ě 1. Since π n ptq permutes transitively the factors of D kn , it is actually enough to see that G contains the copy of D 1 located at the d n -coordinate in D kn . Arguing by induction on n, we see that this follows from Lemma 2.7.

We note that A is normal in G, as it is actually normalized by the entire group ∆. We shall now check that A lies in F CpGq. Since s 2 in central in G (Lemma 2.6), it is enough to check that pD 1 q kn is FC-central in G for all n ě 1. For a fixed n ě 1, the subgroup G n of G consisting of elements g such that π n pgq P pD 1 q kn is a finite index subgroup of G since D 1 has finite index in D and C kn is finite. Moreover G n commutes with pD 1 q kn because D 1 is abelian, so pD 1 q kn indeed lies in the FC-center of G.

We shall now verify that Q " G{A is isomorphic to C 2 Z. If we denote by s i the image of s i in Q, then s i has order two for all i, and it follows from Lemma 2.7 that rs, s i s is trivial for all i. This implies that the map from Q to C 2 Z that sends s to the Dirac function at the identity and t to a generator of Z induces a surjective group homomorphism. Moreover we easily see that no s i belongs to the subgroup generated by the s j for j ă i. This implies that Q Ñ C 2 Z is an isomorphism. And since C 2 Z has trivial FC-center, we also see that A " F CpGq.

We deduce the following: Corollary 2.9. Every finitely generated torsion-free metabelian subquotient of G is virtually abelian.

Proof. This follows from Propositions 2.3 and 2.8.

Torsion-freeness.

The construction of the group G above is a variation of Brieussel's construction in [START_REF] Brieussel | About the speed of random walks on solvable groups[END_REF], which involves three sequence p n q, pd n q and pk n q, and the groups H n " D kn n ¸Ckn , where D n are finite dihedral groups. This also leads to FC-central extensions of C 2 Z, but with the property that F CpGq is locally finite (and hence torsion). With the hope to avoid the appearance of torsion, in our definition the finite dihedral groups have been replaced by the infinite dihedral group D, and the extra factor Z has been added in order to make the generator s of infinite order. But at this point torsion-freeness of the group G is very much not guaranteed. Observe that the projection of G to each factor H n contains many elements of finite order (for instance π n ps i q P H n is an involution for every n and every i). One might expect that by taking appropriate commutators of such elements (so as to arrange in particular the projection to the factor Z to be trivial), it should be easy to find elements of finite order in G. And indeed for most choices of the sequences pd n q, pk n q, the group G will contain many elements of finite order. Perhaps surprisingly, it turns out that for the specific choice d n " n `1, the group G is torsion-free. The goal of this paragraph is to prove this assertion.

Definition 2.10. We denote ϕ a : D Ñ C 2 the epimorphism such that ϕ a paq " 1 and ϕ a pbq " 0 (here and below we use additive notation for C 2 " t0, 1u, so that 1 denotes its generator). Similarly we denote ϕ b : D Ñ C 2 the epimorphism such that ϕ b pbq " 1 and ϕ b paq " 0.

Thus ϕ a pgq is given by the parity of the number of a's in any word representing g, and similarly for ϕ b pgq. We will use the following easy lemma.

Lemma 2.11. Let γ P D be such that ϕ a pγq " ϕ b pγq " 1. Then γ has infinite order.

Proof. Let ϕ : D Ñ C 2 ˆC2 be given by ϕ " pϕ a , ϕ b q. Recall that an element g P D has order 2 if and only if it is conjugate either to a or to b, thus ϕpgq P tp1, 0q, p0, 1qu. Thus the condition ϕpγq " p1, 1q tells at once that γ is not trivial (since ϕpγq is not-trivial) and not an involution, and therefore has infinite order. Proposition 2.12. Suppose that d n " n`1 for all n ě 1. Then the group G is torsion-free.

Proof. We retain the above notation, so that A " F CpGq and Q " G{A. Given g P G non-trivial, we show that g has infinite order. Write g as a word in s ˘1, t ˘1 and, by a standard argument, replace this word by an equivalent word in the free group generated by s, t to write g as g " s 1 i 1 ¨¨¨s k i k t m , with i j , i , m P Z. Note that an expression of g of the form above is far from being unique (in particular, there might be repetitions in the indexes i j ).

If m ‰ 0, then the projection of g to Q has infinite order, and thus so does g. Therefore we can assume that m " 0. Similarly we note that if ř k j"1 j ‰ 0, then π 0 pgq P Z is non-trivial, and thus again g has infinite order. Therefore we can suppose that g has the form

(1)

g " s 1 i 1 ¨¨¨s k i k , j P Z, ÿ j j " 0.

For every P Z let αp q P C 2 be given by αp q " ÿ j : i j " j (mod 2).

Note that the projection of g to G{A » C 2 Z coincides with the configuration α P ' Z C 2 . If the latter is the trivial configuration, we have g P A, and thus g has infinite order by Proposition 2.8. Therefore we can assume that this is not the case, so that there exists some such that αp q " 1. On the other hand by definition of α we have

ÿ jPZ αpjq " k ÿ i"1
k " 0 (mod 2), so we deduce that the set E " t P Z : αp q " 1u is non-empty and has even cardinality. Thus |E| ě 2. Let m and M be respectively the smallest and largest element of E. Upon conjugating g by t ´m, we can suppose that m " 0, while M ą 0. To show that g has infinite order, we will show that the projection π M pgq P H M has infinite order. To this end note that for every i P Z the element π M ps i q belongs to the normal subgroup D k M of H M , and is equal to the element r i P D k M given by (2)

r i pxq " $ & % a if x " i `1 pmod k M q b if x " M `i `1 pmod k M q e otherwise.
From (1) it follows that π M pgq is equal to the element f P D k M given by f " r 1 i 1 ¨¨¨r k i k . We wish to show that the coordinate in f pM `1q P D is an element of infinite order of D by applying Lemma 2.11. To this end, note that ϕ b pf pM `1qq is determined by the parity of the number of bs that appear in the expression f pM `1q " r 1 i 1 pM `1q ¨¨¨r k i k pM `1q. By (2), we have r j pM `1q " b if and only if i j P k M Z. Thus

ϕ b pf pM `1qq " ÿ j : i j Pk M Z j " ÿ Pk M Z αp q (mod 2).
Now recall that 0 and M are respectively the minimum and maximum values of P Z such that αp q " 1 (mod 2). Since k M ą 2M `1 ą M , it follows that in the previous sum there is exactly one term equal to 1 (mod 2), namely αp0q. Therefore ϕ b pf pM `1qq " 1. A similar reasoning shows that ϕ a pf pM `1qq "

ÿ j : i j Pk M Z`M j " ÿ Pk M Z`M αp q (mod 2),
and again, in the last sum there is exactly one term equal to 1 (mod 2) namely, αpM q. Thus ϕ a pf pM `1qq " 1. By Lemma 2.11, f pM `1q has infinite order. Therefore so does f " π M pgq, and so does g.

Conclusion.

The proof of Theorem 1.1 is now complete, as it follows from Proposition 2.12, Proposition 2.8 and Corollary 2.9. 2.6. Final comments. Our initial motivation for wondering about the existence of (nonvirtually abelian) fg torsion-free solvable groups with every fg metabelian subgroup virtually abelian, grew out from the work [START_REF] Boudec | Growth of actions of solvable groups[END_REF]. There we prove that if G is a fg torsion-free metabelian group, then the growth of every faithful action of G (as defined in [START_REF] Boudec | Growth of actions of solvable groups[END_REF]) is at least quadratic, provided G is not virtually abelian. We also conjecture that the same holds for torsion-free solvable groups. Since the desired property passes to overgroups, the metabelian case automatically implies that the conjecture holds for the solvable groups that contain a fg metabelian subgroup that is not virtually abelian. The examples presented in this note show that this does not include all torsion-free solvable groups.

Finally we mention that another motivation for a better understanding of the class of torsion-free solvable groups comes from the study of random walks and isoperimetry. Pittet and Saloff-Coste showed that on any torsion-free solvable group of finite rank which is not virtually nilpotent, the return probability of the simple random walk has the slowest possible decay for a group of exponential growth, namely expp´n 1 3 q [PSC03]. They conjectured that, conversely, this decay should characterise groups of finite rank among torsion-free solvable groups [START_REF] Saloff-Coste | Analysis on Riemannian co-compact covers[END_REF]. This conjecture is naturally related to the theory surrounding Kropholler's theorem and its possible generalisations, as the return probability does not decrease when passing to subquotients. But the groups constructed here seem unlikely to be counterexamples to the conjecture.
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Proofs

2.1. Torsion-free metabelian subquotients. The purpose of this paragraph is to prove Proposition 2.3 below, which will be used to check item 3 in Theorem 1.1. That proposition follows from standard arguments. We include proofs for completeness.