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SOME TORSION-FREE SOLVABLE GROUPS WITH FEW
SUBQUOTIENTS

ADRIEN LE BOUDEC AND NICOLÁS MATTE BON

Abstract. We construct finitely generated torsion-free solvable groups G that have in-
finite rank, but such that all finitely generated torsion-free metabelian subquotients of
G are virtually abelian. In particular all finitely generated metabelian subgroups of G
are virtually abelian. The existence of such groups shows that there is no “torsion-free
version” of P. Kropholler’s theorem, which characterises solvable groups of infinite rank
via their metabelian subquotients.

1. Introduction

A solvable group G has finite rank if there is k ě 1 such that all finitely generated (fg)
subgroups of G are generated by at most k elements. The class of groups of finite rank
is stable under the operations of taking subgroups and quotients, and hence under taking
subquotients. Recall that a group Q is a subquotient of G if there are subgroups K,H of
G with K CH and Q » H{K. The simplest example of a fg solvable group of infinite rank
is the wreath product Cp o Z. The following celebrated theorem of P. Kropholler asserts
that looking at the metabelian subquotients of a fg solvable group G suffices to detect that
G has infinite rank.

Theorem ([Kro84]). If G is a fg solvable group of infinite rank, then G admits a subquotient
isomorphic to Cp o Z for some prime p.

One of the motivating questions of the present article is whether there exists a “torsion-
free version” of this theorem. More precisely, if G is a fg torsion-free solvable group of
infinite rank, does G always admit a fg torsion-free metabelian subquotient of infinite rank
? We answer this question in the negative:

Theorem 1.1. The group G below is a fg 3-step solvable group with the following properties:
(1) G is torsion-free;
(2) G contains a normal subgroup that is free abelian of infinite rank;
(3) every finitely generated torsion-free metabelian subquotient of G is virtually abelian.

Even before considering subquotients, if G is a fg n-step solvable group (n ě 3) with
a given property P, it is natural to ask whether G admits fg metabelian subgroups that
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retain P. Natural examples are provided by “P “ not being virtually abelian”, or “P “

not being virtually nilpotent”. A positive answer to that kind of questions generally allows
to reduce the study of certain problems about fg solvable groups to fg metabelian groups,
which are generally much more tractable. When P is the property of having inifnite rank,
the following consequence of Theorem 1.1 shows that the answer is negative. The existence
of groups with this property is also new.

Corollary 1.2. The group G is a fg torsion-free solvable group of infinite rank such that
every fg metabelian subgroup of G is virtually abelian.

Recall that a solvable group has finite torsion-free rank if it admits a series with
abelian quotients Gi{Gi`1 satisfying dimQpGi{Gi`1 b Qq ă 8. Another natural ques-
tion that arises from P. Kropholler’s theorem is to ask whether every fg solvable group of
infinite torsion-free rank admits fg metabelian subquotients of infinite torsion-free rank.
This was answered in the negative by P. Kropholler, who constructed counter-examples in
[Kro85]. Despite having infinite torsion-free rank, these examples admit rather large sub-
groups containing torsion elements. The study of the class of solvable groups admitting no
metabelian subquotient of infinite torsion-free rank is the subject of the recent work [JK20]
of Jacoboni–Kropholler. Theorem B in [JK20] shows these groups enjoy strong structural
restrictions.
On the construction. Our family of groups from Theorem 1.1 is very much inspired by

the construction of solvable groups of P. Kropholler [Kro85], Brieussel [Bri15] and Brieussel–
Zheng [BZ21]. The constructions from [Bri15, BZ21] take as inputs several parameters,
including a sequence of groups ∆n “ xsn, tny coming with a specified pair of generators;
and produce solvable groups G such that on the one hand even if the groups ∆n are very
small (for instance finite or virtually abelian), the group G might be much larger; and on
the other hand good choices for the ∆n allow some control on the algebraic structure of G.
It was already observed in [JK20] that a construction close to [Bri15] yields solvable groups
of infinite torsion-free rank which do not admit metabelian subquotients of infinite torsion-
free rank (like the groups in [Kro85]). The construction has the property that in order to
avoid metabelian subquotients of infinite torsion-free rank, it is necessary that the groups
∆n have torsion elements, and as a consequence the groups G from [Bri15] and [JK20] have
torsion elements. The delicate aspect of our construction is to ensure torsion-freeness of
the group G while keeping the other properties intact.
Acknowledgments. We are very grateful to Peter Kropholler for decisive discussions

regarding this problem, and for his comments on a preliminary version of this work. We
thank Jérémie Brieussel and Tianyi Zheng for a conversation on the return probability on
the groups constructed here.

2. Proofs

2.1. Torsion-free metabelian subquotients. The purpose of this paragraph is to prove
Proposition 2.3 below, which will be used to check item 3 in Theorem 1.1. That proposition
follows from standard arguments. We include proofs for completeness.
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Recall that the FC-center FCpGq of a group G is the subgroup of G consisting of elements
having a finite conjugacy class. A subgroup of G is termed FC-central if it is contained
in the FC-center of G. Recall also that a group is locally finite if all finitely generated
subgroups are finite.

In the sequel we denote by L the class of groups G that admit a normal subgroup L such
that L is locally finite and abelian, and G{L is cyclic. We note that the class L is stable
under passing to subgroups and under taking quotients.

Lemma 2.1. Let G be a finitely generated group that is torsion-free. If G admits a finitely
generated abelian normal subgroup A such that A is FC-central in G and G{A is in L, then
G is virtually abelian.

Proof. Since A is finitely generated, its centralizer CGpAq has finite index in G. Hence upon
replacing G by a finite index subgroup, we can assume that A is central in G. Let N be a
normal subgroup of G containing A and t P G such that G “ N ¸ xty and N{A is abelian.
Since A is central in G, N is nilpotent. Since N is torsion-free, the quotient N{ZpNq of N
by its center is also torsion-free [Rob96, 5.2.19]. But here N{ZpNq must be locally finite,
so it follows that N{ZpNq is trivial. So we deduce that N is abelian. Now given x P N ,
there exists k ě 1 such that xk lies in the center of G. Hence xk “ txkt´1 “ ptxt´1qk. But
x and txt´1 commute since N is abelian, so rt, xsk “ 1. Since G is torsion-free, we infer
that x commutes with t. Since x was arbitrary in N and G “ N ¸ xty, this shows that G
is abelian. �

We also denote by C the class of groups G such that G{FCpGq belongs to L.

Proposition 2.2. Let G be a finitely generated group that belongs to C. If G is torsion-free
and metabelian, then G is virtually abelian.

Proof. Since metabelian groups satisfy the maximal condition on normal subgroups [Hal54],
the subgroup FCpGq is finitely generated. The group G being torsion-free, FCpGq is also
abelian [Rob96, 14.5.9]. Hence it follows that FCpGq is a finitely generated abelian group,
and Lemma 2.1 then implies that G is virtually abelian. �

We deduce the following.

Proposition 2.3. If G is a group in C, then every finitely generated torsion-free metabelian
subquotient of G is virtually abelian.

Proof. Let K be a fg torsion-free metabelian subquotient of G. The class C being stable
under taking subgroups and quotients, K belongs to C. The statement then follows from
Proposition 2.2. �

2.2. Notation. In the sequel we denote by Ck “ Z{kZ “ t0, . . . , k ´ 1u. Let D “
@

a, b | a2 “ b2 “ 1
D

be the infinite dihedral group, and Z the infinite cyclic subgroup of
D generated by ab, so that D “ Z ¸xay “ Z ¸xby. We denote by D1 the derived subgroup
of D, which is the index two subgroup of Z generated by pabq2.
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2.3. The groups. Choose two increasing sequences pdnq and pknq of positive integers such
that kn ě 2dn. For n ě 1, let Hn “ Dkn ¸ Ckn , where the action of Ckn on Dkn is a cyclic
permutation of the factors.

Let ∆ “ Zˆ
ś

nHn. We denote by π0 : ∆ Ñ Z the projection from ∆ to the first factor
Z, and for all n ě 1 πn : ∆ Ñ Hn is the projection from ∆ to Hn.

We define two elements s, t P ∆ as follows:
‚ Let σ0 be a generator of the first factor Z of ∆. For n ě 1, we denote by σn the
element of Hn that belongs to the normal subgroup Dkn of Hn, and that is defined
by σnp1q “ a, σnpdnq “ b, and σnpjq “ id for every j P t1, . . . , knu such that
j ‰ 1, dn. We denote by s the element of ∆ defined by π0psq “ σ0 and πnpsq “ σn
for all n ě 1.

‚ t is the element of ∆ defined by π0ptq “ 0, and πnptq is the generator 1 of Ckn for
all n ě 1.

Definition 2.4. We denote by G the subgroup of ∆ generated by s and t.

The group G depends on pdnq and pknq, but to simplify we omit pdnq and pknq from the
notation.

Notation 2.5. In the sequel for i P Z, we write si “ tist´i.

Lemma 2.6. The element s2 is central in G.

Proof. s2 belongs to the first factor Z of ∆ since πnpsq has order 2 for all n ě 1. �

Lemma 2.7. For all i ě 0 the following hold:
(1) πnprs, sisq belongs to pD1qkn for all n ě 1.
(2) If n is such that dn ´ 1 “ i then the dn-coordinate of πnprs, sisq is equal to pbaq2,

and all other coordinates of of πnprs, sisq are trivial.
(3) for all n such that dn ´ 1 ą i, πnprs, sisq is trivial.

Proof. 1 is clear since πnpsiq belongs to pDqkn for all n ě 1. When dn ´ 1 “ i, the first
statement of 2 is a simple computation, and the second statement follows from the fact
that the supports of πnpsq and πnpsiq intersect only at coordinate dn´ 1 “ i in view of the
inequality kn ě 2dn. 3 is the true for the same reason. �

Proposition 2.8. The subgroup FCpGq is free abelian of infinite rank, and Q “ G{FCpGq
is isomorphic to C2 o Z.

Proof. Let R “
À

ně1pD
1qkn . So R is the subgroup of

ś

nHn consisting of elements having
all their coordinates in pD1qkn , and only a finite number of these coordinates are non-trivial.
Set A “ xσ20y ‘ R. We claim that G contains A. Since πnpsq “ σn has order two for all
n ě 1 and π0ps

2q “ σ20, it is enough to see that R lies inside G, or equivalently that G
contains pD1qkn for all n ě 1. Since πnptq permutes transitively the factors of Dkn , it is
actually enough to see that G contains the copy of D1 located at the dn-coordinate in Dkn .
Arguing by induction on n, we see that this follows from Lemma 2.7.
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We note that A is normal in G, as it is actually normalized by the entire group ∆. We
shall now check that A lies in FCpGq. Since s2 in central in G (Lemma 2.6), it is enough
to check that pD1qkn is FC-central in G for all n ě 1. For a fixed n ě 1, the subgroup Gn
of G consisting of elements g such that πnpgq P pD1qkn is a finite index subgroup of G since
D1 has finite index in D and Ckn is finite. Moreover Gn commutes with pD1qkn because D1

is abelian, so pD1qkn indeed lies in the FC-center of G.
We shall now verify that Q “ G{A is isomorphic to C2 o Z. If we denote by si the image

of si in Q, then si has order two for all i, and it follows from Lemma 2.7 that rs, sis is trivial
for all i. This implies that the map from Q to C2 o Z that sends s to the Dirac function at
the identity and t to a generator of Z induces a surjective group homomorphism. Moreover
we easily see that no si belongs to the subgroup generated by the sj for j ă i. This implies
that QÑ C2 oZ is an isomorphism. And since C2 oZ has trivial FC-center, we also see that
A “ FCpGq. �

We deduce the following:

Corollary 2.9. Every finitely generated torsion-free metabelian subquotient of G is virtually
abelian.

Proof. This follows from Propositions 2.3 and 2.8. �

2.4. Torsion-freeness. The construction of the group G above is a variation of Brieussel’s
construction in [Bri15], which involves three sequence p`nq, pdnq and pknq, and the groups
Hn “ Dkn

`n
¸ Ckn , where D`n are finite dihedral groups. This also leads to FC-central

extensions of C2 oZ, but with the property that FCpGq is locally finite (and hence torsion).
With the hope to avoid the appearance of torsion, in our definition the finite dihedral groups
have been replaced by the infinite dihedral group D, and the extra factor Z has been added
in order to make the generator s of infinite order. But at this point torsion-freeness of the
group G is very much not guaranteed. Observe that the projection of G to each factor Hn

contains many elements of finite order (for instance πnpsiq P Hn is an involution for every n
and every i). One might expect that by taking appropriate commutators of such elements
(so as to arrange in particular the projection to the factor Z to be trivial), it should be
easy to find elements of finite order in G. And indeed for most choices of the sequences
pdnq, pknq, the group G will contain many elements of finite order. Perhaps surprisingly, it
turns out that for the specific choice dn “ n ` 1, the group G is torsion-free. The goal of
this paragraph is to prove this assertion.

Definition 2.10. We denote ϕa : D Ñ C2 the epimorphism such that ϕapaq “ 1 and
ϕapbq “ 0 (here and below we use additive notation for C2 “ t0, 1u, so that 1 denotes its
generator). Similarly we denote ϕb : D Ñ C2 the epimorphism such that ϕbpbq “ 1 and
ϕbpaq “ 0.

Thus ϕapgq is given by the parity of the number of a’s in any word representing g, and
similarly for ϕbpgq. We will use the following easy lemma.

Lemma 2.11. Let γ P D be such that ϕapγq “ ϕbpγq “ 1. Then γ has infinite order.
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Proof. Let ϕ : D Ñ C2 ˆ C2 be given by ϕ “ pϕa, ϕbq. Recall that an element g P D has
order 2 if and only if it is conjugate either to a or to b, thus ϕpgq P tp1, 0q, p0, 1qu. Thus the
condition ϕpγq “ p1, 1q tells at once that γ is not trivial (since ϕpγq is not-trivial) and not
an involution, and therefore has infinite order. �

Proposition 2.12. Suppose that dn “ n`1 for all n ě 1. Then the group G is torsion-free.

Proof. We retain the above notation, so that A “ FCpGq and Q “ G{A. Given g P G
non-trivial, we show that g has infinite order. Write g as a word in s˘1, t˘1 and, by a
standard argument, replace this word by an equivalent word in the free group generated by
s, t to write g as

g “ sε1i1 ¨ ¨ ¨ s
εk
ik
tm,

with ij , εi,m P Z. Note that an expression of g of the form above is far from being unique
(in particular, there might be repetitions in the indexes ij).

If m ‰ 0, then the projection of g to Q has infinite order, and thus so does g. Therefore
we can assume that m “ 0. Similarly we note that if

řk
j“1 εj ‰ 0, then π0pgq P Z is

non-trivial, and thus again g has infinite order. Therefore we can suppose that g has the
form

(1) g “ sε1i1 ¨ ¨ ¨ s
εk
ik
, εj P Z,

ÿ

j

εj “ 0.

For every ` P Z let αp`q P C2 be given by

αp`q “
ÿ

j : ij“`

εj (mod 2).

Note that the projection of g to G{A » C2 o Z coincides with the configuration α P ‘ZC2.
If the latter is the trivial configuration, we have g P A, and thus g has infinite order by
Proposition 2.8. Therefore we can assume that this is not the case, so that there exists
some ` such that αp`q “ 1. On the other hand by definition of α we have

ÿ

jPZ
αpjq “

k
ÿ

i“1

εk “ 0 (mod 2),

so we deduce that the set
E “ t` P Z : αp`q “ 1u

is non-empty and has even cardinality. Thus |E| ě 2. Let m and M be respectively
the smallest and largest element of E. Upon conjugating g by t´m, we can suppose that
m “ 0, while M ą 0. To show that g has infinite order, we will show that the projection
πM pgq P HM has infinite order. To this end note that for every i P Z the element πM psiq
belongs to the normal subgroup DkM of HM , and is equal to the element ri P DkM given
by

(2) ripxq “

$

&

%

a if x “ i` 1 pmod kM q
b if x “M ` i` 1 pmod kM q
e otherwise.
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From (1) it follows that πM pgq is equal to the element f P DkM given by

f “ rε1i1 ¨ ¨ ¨ r
εk
ik
.

We wish to show that the coordinate in fpM ` 1q P D is an element of infinite order of D
by applying Lemma 2.11. To this end, note that ϕbpfpM ` 1qq is determined by the parity
of the number of bs that appear in the expression

fpM ` 1q “ rε1i1 pM ` 1q ¨ ¨ ¨ rεkik pM ` 1q.

By (2), we have rjpM ` 1q “ b if and only if ij P kMZ. Thus

ϕbpfpM ` 1qq “
ÿ

j : ijPkMZ
εj “

ÿ

`PkMZ
αp`q (mod 2).

Now recall that 0 and M are respectively the minimum and maximum values of ` P Z such
that αp`q “ 1 (mod 2). Since kM ą 2M ` 1 ą M , it follows that in the previous sum
there is exactly one term equal to 1 (mod 2), namely αp0q. Therefore ϕbpfpM ` 1qq “ 1.
A similar reasoning shows that

ϕapfpM ` 1qq “
ÿ

j : ijPkMZ`M
εj “

ÿ

`PkMZ`M
αp`q (mod 2),

and again, in the last sum there is exactly one term equal to 1 (mod 2) namely, αpMq.
Thus ϕapfpM ` 1qq “ 1. By Lemma 2.11, fpM ` 1q has infinite order. Therefore so does
f “ πM pgq, and so does g. �

2.5. Conclusion. The proof of Theorem 1.1 is now complete, as it follows from Proposition
2.12, Proposition 2.8 and Corollary 2.9.

2.6. Final comments. Our initial motivation for wondering about the existence of (non-
virtually abelian) fg torsion-free solvable groups with every fg metabelian subgroup virtually
abelian, grew out from the work [LBMB22]. There we prove that if G is a fg torsion-free
metabelian group, then the growth of every faithful action of G (as defined in [LBMB22])
is at least quadratic, provided G is not virtually abelian. We also conjecture that the same
holds for torsion-free solvable groups. Since the desired property passes to overgroups, the
metabelian case automatically implies that the conjecture holds for the solvable groups that
contain a fg metabelian subgroup that is not virtually abelian. The examples presented in
this note show that this does not include all torsion-free solvable groups.

Finally we mention that another motivation for a better understanding of the class of
torsion-free solvable groups comes from the study of random walks and isoperimetry. Pittet
and Saloff-Coste showed that on any torsion-free solvable group of finite rank which is not
virtually nilpotent, the return probability of the simple random walk has the slowest possible
decay for a group of exponential growth, namely expp´n

1
3 q [PSC03]. They conjectured

that, conversely, this decay should characterise groups of finite rank among torsion-free
solvable groups [SC04]. This conjecture is naturally related to the theory surrounding
Kropholler’s theorem and its possible generalisations, as the return probability does not
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decrease when passing to subquotients. But the groups constructed here seem unlikely to
be counterexamples to the conjecture.
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