

Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters

Jean-Baptiste Trebbia

Laboratoire Photonique, Numérique et Nanosciences - LP2N Université Bordeaux - IOGS - CNRS : UMR 5298

Entanglement


```
Four separable states
```

Coherently coupled emitters :

Hilbert space

Eigen States :

$ e_1\rangle e_2\rangle$
$1/\sqrt{2}(e_1\rangle g_2\rangle + g_1\rangle e_2\rangle)$
$1/\sqrt{2}(e_1\rangle g_2\rangle - g_1\rangle e_2\rangle)$
$ g_1\rangle g_2\rangle$

Two entangled states

Motivations

Controlled, coherent manipulation of delocalized quantum systems

- An important challenge in modern science
- Significant applications in quantum technologies

Scalable solid-state quantum devices

networks of strongly interacting qubits

Collective quantum states: at the heart of many important phenomena

Single molecule at low temperature (2K)

Two photon interferences (ZPL)

J.-B. Trebbia et al., Phys. Rev. A., 82, 063803, (2010)

Ultra fast Rabi oscillations :

T₂ determination with Ramsey measurement

Stark Effect

Molecular transition frequency shifts with electric fields :

Linear Stark Shift

Permanent dipole moment: $\Delta \mu \sim$ 0.3 D, (~1GHz/MV/m)

 $\hbar\omega(E) - \hbar\omega_0 = -\Delta\mu E - \frac{1}{2}\Delta\alpha E^2$

Quadratic Stark Shift

J. Phys. Chem. A 103, 2429-2434 (1999)

Extremely sensitive probe of local electric fields

Evidence of the electric field induced by a magnetization inhomogeneity in an iron garnet film.

Phys. Rev. Lett. 115, 027601 (2015)

Coherent optical dipole coupling of two emitters

First experimental demonstration of the Coherent Optical Dipole Coupling of Two Individual Molecules

Need for an optical method to image the interacting emitters

Cryogenic super-resolution microscopy by Excited State Saturation (ESSat)

Super-resolution fluorescence microscopies Imaging with resolutions below the diffraction limit

- revolutionized imaging capabilities offered by far-field optical microscopy
- development mainly driven by the need for better resolutions to study biological processes in live samples
- nm optical resolutions give access to nanoscale molecular organizations

Photo: Matt Staley/HHMI Eric Betzig Prize share: 1/3

Stefan W. Hell Prize share: 1/3

Wikimedia Commons, CC BY-SA-3.0 William E. Moerner Prize share: 1/3

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell and William E. Moerner *"for the development of super-resolved fluorescence microscopy"*.

Demonstrated @ Room temperatures and are based on: controlling fluorescence emission volumes to highly localized regions, using structured illumination schemes or stochastic detection of single emitters

Principle of ESSat nanoscopy

Helix phase plate : Unaffected axial resolution

0-π phase plate : 3D intensity gradient around the center

3D ESSat nanoscopy

2D-Excited State Saturation Nanoscopy (ESSat)

Modulated Excitated State Saturation at 2K :

Finding close emitters at 2K :

Molecular entanglement ?

Coherent Optical Dipole Coupling of Two Individual Molecules

 $\hbar\omega_2$

 $|e_2\rangle$

 γ_0

 $\dot{\mathbf{x}} |g_2\rangle$

 $\gamma_{-} = \gamma_0 - 2\alpha\beta \ \gamma_{12}$

 $|E\rangle = |e_1e_2\rangle$

Coupling constant :

 $\hbar\omega_1$

+

$$V = \frac{3\hbar\gamma_0}{4(kd)^3} \left[(\widehat{\boldsymbol{\mu}}_1, \widehat{\boldsymbol{\mu}}_2) - 3(\widehat{\boldsymbol{\mu}}_1, \widehat{\boldsymbol{e}}_{12}) (\widehat{\boldsymbol{\mu}}_2, \widehat{\boldsymbol{e}}_{12}) \right]$$

 $\widehat{\boldsymbol{\mu}}_2$

 $\hat{\pmb{e}}_{12}$

 $\widehat{\boldsymbol{\mu}}_1$

Cross-damping rate :

$$\gamma_{12} = \gamma_0 \left(\widehat{\boldsymbol{\mu}}_1, \widehat{\boldsymbol{\mu}}_2 \right)$$

2 entangled « delocalized » states

$$\begin{cases} |+\rangle = (\alpha |e_1, g_2\rangle + \beta |g_1, e_2\rangle) \\ |-\rangle = (\beta |e_1, g_2\rangle - \alpha |g_1, e_2\rangle) \end{cases}$$

 $\hbar \omega_0$

 $|e_1\rangle$

 $|g_1\rangle$

 \longleftrightarrow V, γ_{12}

Ŷο

 $\gamma_{+} = \gamma_{0} + 2\alpha\beta \gamma_{12}$

 $|G\rangle = |g_1g_2\rangle$

16

Signatures of the coherent dipole dipole interaction

Excitation spectrum calculated using Master Equation :

Gallery of coupled molecules

Optical nanoscopy allows finding coherently coupled molecules with different degree of entanglement

Manipulating the molecular Entanglement

Nat Commun 13, 2962 (2022)

Aromatic molecules in Molecular Crystals

Emission Spectrum

- Narrow Zero Phonon Lines: purely radiative transition
- Red-shifted vibrational lines and phonon sidebands

sub/super-radiance for two coherently coupled molecules :

Delocalized states coupling to laser fields

Hamiltonian governing the coupled with a driving laser of frequency ω_L

$$H = \hbar\omega_0(|E\rangle\langle E| - |G\rangle\langle G|) + \hbar\Lambda(|+\rangle\langle +| - |-\rangle\langle -|)$$
$$-\frac{\hbar}{2} \{ [(\alpha\Omega_1 + \beta\Omega_2)|E\rangle\langle +| + (\beta\Omega_1 + \alpha\Omega_2)|+\rangle\langle G|]e^{i\omega_L t} + [(\alpha\Omega_2 - \beta\Omega_1)|E\rangle\langle -| - (\beta\Omega_2 - \alpha\Omega_1)|-\rangle\langle G|]e^{i\omega_L t} + h.c. \}$$

Complex Rabi frequencies: $\Omega_{\rm i} = -\vec{\mu}_i \cdot \vec{\mathcal{E}}(\vec{r}_{\rm i} - \vec{r}_{\rm c})/\hbar$

Matrix elements that govern the laser coupling strengths: $\langle -|H|G \rangle \propto \alpha \Omega_1 - \beta \Omega_2$ $\langle +|H|G \rangle \propto \beta \Omega_1 + \alpha \Omega_2$ $\Big\} \rightarrow$ depend on α, β and Ω_i

Gaussian laser spot centered between the molecules:

- Generation of in-phase dipole oscillations with $\Omega_1 = \Omega_2$. When Δ approaches zero ($\alpha \approx \beta \approx 1/\sqrt{2}$):
- Excitation of the superradiant state is enhanced (by up to $\sqrt{2}$), while that of the subradiant state becomes forbidden.

Enhanced laser coupling to the subradiant state

Doughnut-shaped laser spot centered between the molecules:

- Opposite-phase dipoles oscillations, $\Omega_1 = -\Omega_2$. When Δ approaches zero ($\alpha \approx \beta \approx 1/\sqrt{2}$):
- Excitation of the subradiant state is enhanced, while that of the superradiant state is forbidden.

Conclusions and Perspectives

Conclusions:

Ultra stable quantum system : excitation during weeks without any photobleaching, Optical nanoscopy to find and super-resolve coupled pairs in various configurations, Possibility to entangle and disentangle two molecules with an electric field.

Perspectives:

Quantum logic gates

Phys. Rev. Lett. 104, 010503 (2010)

Decoherence effects with the temperature

Nature, 2007, 446, 782-786 (2007)

Resonant fluorescent excitation spectra

Acknowledgements

