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ABSTRACT: Intrinsically disordered proteins are ubiquitous throughout all known
proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry.
To understand their function, it is necessary to determine their structural and dynamic
behavior and to describe the physical chemistry of their interaction trajectories. Nuclear
magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural
and dynamic parameters that report on each assigned resonance in the molecule, unveiling
otherwise inaccessible insight into the reaction kinetics and thermodynamics that are
essential for function. In this review, we describe recent applications of NMR-based
approaches to understanding the conformational energy landscape, the nature and time
scales of local and long-range dynamics and how they depend on the environment, even in
the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of
functional disordered molecular assemblies that are important for human health.
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1. INTRODUCTION

Unexpected discoveries regularly revolutionize our under-
standing of molecular biology. The remarkable observation
that intrinsically disordered proteins are prevalent throughout
all known proteomes represents one such example, forcing a
reassessment of established approaches for investigating bio-
logical function at the molecular level.1−5 Unlike folded
proteins, the primary amino acid sequence of intrinsically
disordered proteins (IDPs) does not adopt a stable tertiary fold
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to function but dynamically samples a broad free-energy surface.
IDPs thus access a vast conformational landscape that
nevertheless encodes specific biological activity.6 This con-
formational heterogeneity endows IDPs with considerable
advantages over their folded counterparts, for example, the
ability to interact withmultiple partners, possibly simultaneously
as in the case of hub-proteins. Combining transient and local
disorder-to-order transitions with rapid dissociation rates allows
efficient processing and provides the necessary level of
multivalent, weak intermolecular binding to transiently form
membraneless organelles7 (another phenomenon whose
importance has revised our understanding of cell regulation
and function). In general, although the potential benefits of
conformational disorder are quite well discussed in the
literature, we are still discovering the true breadth of functional
diversity encoded in IDPs.
Structural dynamics are of course essential to biological

function in all proteins, and the characterization of the
conformational fluctuations that enable function is a vital aspect
of our quest for a molecular understanding of biology.
Complementary to the stabilization of distinct conformational
substates and the determination of their three-dimensional
structures at given points in a functional cycle, direct physical
methods such as infrared,8,9 terahertz,10 neutron,11 dielectric12

Mössbauer,13 and Raman14 spectroscopies can be used to
describe the characteristic time scales of protein motions. Time-
resolved X-ray diffraction techniques15 and X-ray free electron
lasers16 also provide simultaneous access to both high resolution
structure and dynamics. Within the broad panoply of physical
techniques available to characterize biomolecular dynamics,
nuclear magnetic resonance (NMR) spectroscopy occupies a
unique place, providing atomic resolution information over an
incredibly broad range of motional time scales extending from
tens of picoseconds to hours or even days (Figure 1).
Flexibility and dynamics not only define the physical nature

but also the biological function of IDPs, and the two major

challenges facing interpretation of experimental data from IDPs
are related to these characteristics. The first concerns the
accurate description of the conformational space sampled by the
protein. NMR reports on a population-weighted average over
the ensemble of interconverting states sampled at equilibrium so
that as long as the exchange rates are fast on an NMR time scale,
conformation-dependent parameters, such as chemical shift or
scalar and dipolar couplings, report on interconversion between
a potentially immense number of conformers. In practice for
NMR studies of proteins using 1H, 15N, and 13C nuclei, this
means interconversion on time scales faster than hundreds of
microseconds. Interpretation of experimental data therefore
requires statistical mechanical approaches to evaluate the nature
of the conformational ensemble. The available degrees of
conformational freedom that are accessible to IDPs significantly
outweigh the ability of the experimental constraints to uniquely
define the free-energy surface. Regardless of the approach used
to delineate the conformational space, caution must therefore be
employed to derive meaningful ensemble models that correctly
describe the long-range and local conformational sampling. To
this end, there has been considerable methodological develop-
ment aiming to delineate the contours and limits of local and
long-range conformational space sampled by IDPs in
solution,17−27 from NMR, and other complementary biophys-
ical techniques such as small angle scattering and single molecule
Förster resonance energy transfer (smFRET).28−32 Progress in
this direction has focused on the use of extensive exploration of
conformational space, using for example stochastic sampling of
the available degrees of freedom, and subsequent identification
of combinations of conformers that when assembled into
representative ensembles agree with experimental data and can
describe the contours of the Boltzmann ensemble.33−37 The
success of such approaches is predicated on the ability to
accurately calculate the expected value of experimental data for a
given conformation or conformational sampling regime. The
same end can be achieved via ensemble restrained molecular

Figure 1.NMR probes biomolecular conformational changes on a vast range of time scales. NMR spin relaxation provides accurate information on the
reorientational properties of relaxation-active interactions, normally interatomic bonds, up to tens of nanoseconds. In the fast exchange limit, a single
NMR peak represents a population weighted average over the chemical shifts of each populated substate. When the exchange rate is in the same range
as the difference in chemical shifts of the distinct states, on time scales from tens of microseconds to hundreds of milliseconds in proteins, line-
broadening is observed, and 1H, 13C, and 15N NMR exchange approaches can be used to characterize interconversion between the different
conformational states. Exchange that is significantly slower than the difference in chemical shifts of the distinct states gives rise to slow exchange,
allowing all states to be individually investigated.
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dynamics simulation,38−41 for example, by including exper-
imental data into the force field via a target function applied over
the entire ensemble.42−51 The amount of detail concerning the
conformational sampling of IDPs in solution that can be derived
from all of these ensemble approaches depends of course heavily
on the extent of experimental data available.52

The advantage of the fast exchange regime, reporting on a
population-weighted average over an ensemble of states that
interconvert on time scale faster than 100 μs, also highlights its
key limitation that more precise information about the
associated motional time scales is not explicitly contained in
this average. Knowledge of the time scales of diffusion and chain
dynamics, of interconversion rates between locally structured
binding-competent and incompetent substates, and of transient
contacts relating the conformational properties of distant
regions of IDPs will all play an essential role in developing a
deeper understanding of IDP reaction kinetics and thermody-
namics. Understanding the dynamic properties of IDPs
complements Cartesian descriptions of their exploration of
conformational space, providing a new and essential dimension
to our description of their functional behavior. In response to
this challenge, time scales of conformational rearrangements of
IDPs have been investigated using a vast range of experimental
techniques,53 sensitive to local conformational dynamics such as
infrared,54,55 Raman,56 or neutron spectroscopy57−59 or to long-
range interactions using single molecule fluorescence,60−69

electron paramagnetic resonance,70−72 and NMR paramagnetic
relaxation spectroscopies,73−79 but by far the most powerful
technique is the use of NMR spin relaxation.
NMR spin relaxation probes the angular correlation functions

of relaxation active mechanisms, typically dipole−dipole
interactions between neighboring nuclei, arising due to
reorientation processes of macromolecules on time scales
ranging from 10s of picoseconds to 10s of nanoseconds or
even slower. These time scales are also readily accessible to
atomistic molecular dynamics (MD) simulation of fully solvated
proteins, rendering the combination ofMD andNMR extremely
powerful. Advances in molecular simulation, in terms of
accuracy of force-fields or sampling of slower dynamic time
scales,80−85 have always accompanied advances in our under-
standing of the interpretation of NMR relaxation in terms of
global and local molecular motions, demonstrating the synergy
between these two atomic resolution techniques. Indeed, 15N
and 13C NMR relaxation data have often been used to test and
benchmark MD force fields and algorithms,82,86−91 establishing
the accuracy of dynamic trajectories of soluble, folded proteins.

15N spin relaxation provides a remarkably sensitive probe of
the motional time scales exhibited by IDPs, characterizing the
dynamic properties of bond vectors throughout the length of the
unfolded protein.92 The physical interpretation of the dynamic
time scales contributing to the quenching of the angular
correlation function is however less straightforward than in the
case of folded proteins. The amount of information that can be
extracted from spin relaxation is also limited by the efficiency
with which fast large-scale motions quench the angular
correlation function. 15N spin relaxation measurements in
unfolded proteins have nevertheless been measured extensively,
leading to the detection of extensive pico- and nanosecond
motions, as well as clear correlations between motional time
scales and structural propensities detected from chemical shifts
and scalar and dipolar couplings.93−114

Further insight into the actual physical origin of the motional
modes and time scales giving rise to NMR spin relaxation can

again be derived from the combination of MD simulation with
spin relaxation measurements.115−118 Measured relaxation rates
report on population-weighted averages so that accurate
simulation should account for fast motions occurring over the
ensemble of states sampled by the protein. The value of
relaxation rates associated with each substate depends on the
nature of this conformation, so that in principle it would be
necessary to simulate each of the substates and average the
individual rates as a function of their populations, or to simulate
sufficiently long trajectories to sample all individual states. In the
case of globular proteins, the identification and simulation of
distinct conformational substates that are in fast exchange on the
chemical shift time scale but that exhibit distinct fast
reorientational properties have indeed been shown to
significantly improve the description of the ensemble of fast
motions, as measured by the reproduction of experimental 15N
relaxation rates.119 This demonstrates the improved accuracy of
dynamic information when considering the entire free-energy
surface but also the interdependence of fast and slower motions
in proteins. For IDPs, this potential interdependence has an
even greater importance and underlines the relevance of
adequate sampling of the ensemble of conformational states.120

Despite major progress in the simulation of highly flexible or
unfolded proteins,42,118,121−123 a more general application of
these techniques has been hindered by the inability of state-of-
the-art force fields to describe the dynamics of IDPs with
acceptable accuracy.90,124,125 While the degrees of conforma-
tional freedom available to internuclear covalent bonds present
in folded proteins are mainly dictated by the immediate
environment, and therefore intraprotein interactions, for IDPs
the solvent protein interactions take on a far greater importance,
so that an imbalance between potential energy terms reporting
on protein−protein and protein−solvent interactions124 may
result in inaccurate kinetic and thermodynamic behavior. The
resolution of this question, and the development of force fields
that can describe both folded and unfolded proteins with equal
accuracy,126 remains an important challenge.90,120,124,127−130

The availability of accurate and calibrated NMR relaxation rates
from proteins with well-described conformational behavior will
undoubtedly contribute to this important task.
Beyond the fast exchange regime, NMR relaxation experi-

ments no longer represent a population-weighted average of the
reorientational properties of the exchanging species but report
on motions occurring on time scales defined by the difference in
chemical shifts of the exchanging subspecies, in the range of
micro to milliseconds. In this regime, NMR exchange spectros-
copy is particularly powerful way to probe the molecular
mechanisms underlying the exchange contributions, providing
information on the thermodynamics, free-energy landscape, and
kinetics of the interconversion between the species.131−136

Finally, our understanding of the functional modes adopted
by IDPs is enriched by every physiologically relevant complex
that is characterized experimentally. The functional interactome
of IDPs is vast and potentially highly diverse, and our
experimental sampling of the interaction modes employed by
IDPs remains extremely punctual. Although specific model
systems that are experimentally well-characterized provide
useful bench-marks, insight into the true diversity of the IDP
interactome requires more sampling, of more diverse systems, at
atomic resolution. Exchange NMR, whether fast, intermediate,
or slow, provides powerful tools to deliver this essential insight.
The aim of this review is to describe recent developments of

NMR-based approaches to understand the conformational
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Figure 2. Experimental comparison of conformational behavior of the intrinsically disordered δ subunit of bacterial RNA polymerase. (A)
Experimental parameters measured on wild-type protein (green bars) compared to ensemble-averaged values calculated from 10 ensembles
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dynamic behavior of IDPs in physiological, and even cellular
environments, and to illustrate the insight that NMR offers to
reveal the mechanistic basis of functional disordered assemblies
that are important for human health. Part of the power of NMR
spectroscopy lies in the use of combinatorial approaches with
structural techniques such as cryoEM and X-ray diffraction that
provide the structural context within which the functional role of
IDRs can be best understood. Examples will also be shown of the
ability of NMR to characterize large-scale dynamics of complex
biomolecular assemblies comprising highly disordered elements.

2. ACCURATE MAPPING OF THE CONFORMATIONAL
LANDSCAPE OF IDPS

An accurate understanding of the conformational properties of
IDPs, and intrinsically disordered regions (IDRs) of multi-
domain proteins, is of primordial importance. The dynamic
behavior of IDPs is defined by the amino acid sequence, and the
ability of the protein to interact via, for example linear motifs, is
encoded and controlled by the intrinsic conformational
sampling. In addition, IDRs, often linking folded domains,
define the free-energy landscape of the protein, providing the
degrees of conformational freedom of the entire molecular
assembly.6,137−139 Characteristics such as charge and hydro-
phobicity distribution of IDPs have been interpreted in terms of
their role in controlling physical parameters, for example,
compactness and extendedness,140 and the ability of IDPs to
participate in multivalent interactions.141−144 Similarly, regu-
lation of these degrees of freedom can be achieved by post-
translationally modifying the chemical nature of the
chain.145−148

Two recent studies described herein illustrate the importance
of a detailed consideration of the averaging properties of
different experimental data types to understand the conforma-
tional nature of IDRs. In particular, the combination of long-
range and local transient structure poses specific challenges to
the analysis of disordered proteins in terms of representative
ensembles, and certain pitfalls must be avoided to extract
accurate structural information.
Chemical shifts and scalar couplings present two important

features that directly impact their interpretation. First, they
depend primarily on the local structural environment of the
observed spin, and second, if interconversion between the
different states is much faster than the difference between the
expectation values of the different states in isolation, the
measured NMR spectrum represents a weighted average of the
ensemble of states. Conversely, parameters whose experimental
values depend on time-dependent interactions, such as para-
magnetic relaxation for example, require a more detailed
consideration of the averaging properties, as has been
discussed.79 Residual dipolar couplings (RDCs) depend on
the average of the orientations of the internuclear vector (I−S)
with respect to the magnetic field,

θ= ⟨ ⟩D K P (cos )IS IS IS2 (1)

where KIS describes physical constants such as the gyromagnetic
ratio and the internuclear distance, and P2 (x) = (3x2 − 1)/2. In
a molecule of fixed shape, we can expand this average,

∑θ α α⟨ ⟩ = ⟨ ⟩
∈

P S(cos ) cos cosIS
k l x y z

kl k l2
, ( , , ) (2)

where αk refers to the orientation of the internuclear vector with
respect to a traceless second rank tensor S that describes the
alignment properties of the molecule.
In highly flexible proteins, S can clearly vary significantly over

the ensemble such that proteins of different shape, and therefore
different alignment properties, but identical local sampling,
would give rise to very different RDCs:
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Using simple and intuitive simulation of target ensembles, it was
demonstrated that ensemble descriptions derived from RDCs of
molecular systems whose shape varies significantly over the
ensemble can actually reproduce experimental data very closely,
even without explicit consideration of the alignment properties
of the component conformations. However, the orientational
properties of the internuclear vectors are then severely
compromised and inaccurately describe the conformational
space compared to the target ensemble.149 This reiterates the
long-held observation that to accurately describe local and long-
range conformational sampling, it is necessary to respect both of
these contributions to the average over the ensemble of states.150

The importance of considering long-range order in the
interpretation of RDCs was also illustrated in a recent study of
the δ domain of RNA polymerase (δ−RNAP), where multiple
NMR parameters and small angle scattering data were combined
using the ensemble selection approach, ASTEROIDS, to
compare the free energy landscape of different forms of the
protein. ASTEROIDS uses extensive conformational sampling
described in an initial prior database, broadly sampling amino-
acid specific statistical-coil distribution for the unfolded
chain,151,152 and a genetic algorithm, to select representative
subensembles of conformers that in combination are in
agreement with the experimental data. The sampling of the
prior database is modified iteratively until convergence is
achieved within the estimated uncertainty.37

In the case of δ−RNAP, the 90 amino acid C-terminal IDR
follows the similarly sized folded domain.153 The IDR is locally
highly charged, with mainly acidic but also basic stretches of
amino acids. As in the case of a number of acidic disordered
domains in RNA-polymerasemachinery, the acidic sequence has
been suggested as an RNA mimic.154

Experimental data used to describe the conformational
sampling of the IDR included 13C, 15N, and 1H backbone

Figure 2. continued

comprising 200-strong ASTEROIDS ensembles (red lines). From top to bottom: secondary chemical shifts, paramagnetic relaxation enhancements
(labeled at residue 132), residual dipolar couplings, and SAXS. Bottom: comparison of distribution of radii of gyration from a statistical coil pool
(black) and the ASTEROIDS ensemble (red). Structural models of five conformations are displayed below the plots (ordered domain in green, IDR in
yellowwith positively and negatively charged residues highlighted in blue and red, respectively. (B) Same parameters for themutated protein in which a
lysine-rich tract 96KAKKKKAKK104 are replaced by 96EAEEEEAEE104. This results in a clear abrogation of long-range contacts with the C-terminal half
of the domain that collapse the protein. This collapse, and its abrogation, are visible not only in SAXS and PRE data but also in the residual dipolar
coupling data. (Reproduced with permission from Kuban et al. 2019 Copyright 2019 ACS156).
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chemical shifts, paramagnetic relaxation enhancements (PREs),
residual dipolar couplings (RDCs), and small-angle X-ray
scattering data. PREs provide clear evidence of transient long-
range order in the IDP, with apparent contacts between regions
exhibiting opposite charges (Figure 2).155 Analysis of δ-RNAP
in terms of representative ensembles results in close agreement
with expected behavior of the averaged RDCs. Characteristic
modulations of multiple RDCs were observed in each peptide
unit (manifest as quenching of the RDCs measured between the
points of contact), and these RDCs were only correctly
predicted when the long-range contact identified from the
PREs was included in the analysis.
Mutation of the cluster of basic amino acids to acidic residues

abrogates the long-range contacts, resulting in extinction of the
characteristic PRE- and SAXS-derived evidence of compaction
in the wild type protein, revealing a highly extended IDR in the
absence of the basic cluster, and a disappearance of the
characteristic long-range RDC modulation. The combined
analysis thus results in an accurate, integrated description of
the ensemble of states sampled by both wild-type and mutant
protein in solution, providing insight into the impact of the
electrostatic charge distribution on local and long-range
conformational behavior.156 Interestingly, the loss of long-
range contacts induced by mutagenesis influences cell fitness
and transcription efficiency in vitro. While the complete
knockout of the delta subunit makes transcription too fast and
insensitive to regulation by initiating nucleoside triphosphates,
the mutation disrupting long-range contacts has the opposite
effect: it inhibits transcription from promoters that form
unstable complexes with RNA polymerase.

3. NMR STUDIES OF IDP DYNAMIC MODES AND
TIMESCALES

3.1. NMR Relaxation of IDPs and Models of Correlation
Functions

As introduced earlier, NMR relaxation occurs due to angular
fluctuations of relaxation-active interactions resulting in
transitions and incoherent dephasing that relax the spin state
back to equilibrium.92,157,158 The angular reorientation of such
interactions can be described in the time domain (correlation
function C(τ)) or the frequency domain (the spectral density
function J(ω)). Protein backbone dynamics are typically
characterized in solution using longitudinal (R1) and transverse
(R2) autocorrelated

15N relaxation rates, heteronuclear 1H−15N
cross-relaxation, and 15N longitudinal (ηz) and transverse (ηxy)
cross-correlated dipole−dipole/CSA (chemical shift anisotro-
py) cross-relaxation (σNH).

92 The advantage of measuring
different rates lies in their distinct dependence on different
combinations of the angular spectral density function at the
characteristic Larmor frequencies defined by the spin system,
ωN, ωH, ωH ± ωN.
If enough measurements are available, the spectral density

functions can be mapped from the different relaxation
rates159,160 using reduced spectral density mapping161−164 to
estimate J(0), J(ωN) and an approximate mean value at high
frequencies <J(0.87ωH)> throughout the sequence. Alterna-
tively, the correlation function of internal motional modes can
be described analytically, in terms of geometric and temporal
parameters (for example, n-site jumps of diffusion in a cone),
although it can be difficult to differentiate between these models
on the basis of NMR relaxation rates alone. A simple and popular
alternative is to use the model-free approach, where

mathematical contributions to the autocorrelation function are
parametrized. The approach is simply understood in the case of
internal modes in a folded protein,165−169 where it is possible to
express the angular correlation function as

=C t C t C t( ) ( ) ( )O I (4)

where CO (t) is the correlation function for global motion, and a
faster internal contribution, that is not associated with a specific
motional mode, describes restricted motion relative to the
molecular frame:

μ μ= ⟨ ̂ × ̂ ⟩C t P t( ) ( (0) ( ))I 2 (5)

where μ̂ is a unit orientation vector of the relevant relaxation-
active interaction (dipolar or CSA).
If the internal correlation function CI(t) is approximated to a

single exponential, the associated spectral density function can
be described as
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where τe
’ = (τR
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diffusion and S2 is the generalized order parameter. Extension168

to two internal components with distinct correlation times (τf
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where τs′ = (τR
−1 + τs

−1)−1, τf′ = (τR
−1 + τf

−1)−1.
This formalism is commonly used to interpret relaxation

measured in folded proteins, with the global contribution to the
autocorrelation and spectral density functions assumed to be
common for all sites. Although, due to their high flexibility, IDPs
are not expected to exhibit a shared diffusion tensor for distinct
regions in the chain, the same mathematical formalism can be
used to model the spectral density functions of each site
independently, assuming that the time scales of the component
modes are sufficiently separated, and that all the motions are
isotropic:

∑= τ−C t A( ) e
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k
t/ k

(8)

with ∑k Ak = 1, and
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This formalism has been diversely exploited for the
interpretation of relaxation from partially denatured proteins
and IDPs.93,95,97,170−173 Alternatively, it is possible to describe
the spectral density function in terms of an analytical
distribution of motions, of which the model-free approach
represents one of the simplest manifestations.99,103,110,174 Here
again, the complexity of the models makes differentiation
difficult, although they have been successfully used to explain the
dynamic behavior of synthetic homopolymers,175 and surely
provide a more physical representation of the complex dynamics
of flexible proteins.103

In highly dynamic molecules such as IDPs, large-amplitude
motions occur in the range of nanoseconds,93−114 rapidly
quenching angular correlation and reducing the slowest sensitive
time scales to the nanosecond range (at room temperature and
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in free solution). Nevertheless, the existence of segmental
motions was suggested from the bell-shaped dependence of
transverse relaxation components (with respect to primary
sequence, tailing off to low values at both termini), in chemically
denatured and intrinsically disordered proteins,104 relating to
stiffness or side chain bulkiness,96,176 and from 1H relaxom-
etry.177 IDRs connected to folded domains have been shown to
induce slower components on the rotational diffusion properties
of multidomain proteins indicating the importance of local
viscosity and drag on dynamic time scales.178−181 Faster time
scales are expected to relate tomore local dynamics, for example,
of backbone dihedral angles, whichmay be important in terms of
local folding or binding;6,23,182−192 however, in general the
physical origin of observed relaxation rates remains weakly
characterized.

3.2. Recent Applications of Model-Free Approaches to IDPs

It is clear from eq 9 that amplitudes and time scales of the
different components may be correlated and that the resulting
parametrization will depend on the accurate estimation of the
number of contributions. In the context of identifying the most
appropriate model for the accurate interpretation of NMR
relaxation from IDPs, a number of recent studies used extensive
data sets to shed important light on the available information
content. Rather than fixing the number of models and determine
the most appropriate correlation times, Ferrage and co-
workers193 used an array of fixed correlation times (τk),
distributed on a logarithmic scale, with variable amplitudes
(Ak), that could also be zero, to analyze the spectral density
function from eq 9. The backbone dynamics of the partially
disordered protein Engrailed 2 were analyzed using a large range
of auto- and cross-correlated relaxation rates measured at five
magnetic fields between 400 and 1000 MHz 1H frequencies.
This provides a grid of motional amplitudes corresponding to six
characteristic correlation times for the entire protein, clearly

delineating the folded and unfolded domains, and revealing
dominant time scales around 1 ns in the unfolded domain.
Gill et al.194 also studied the dynamics of a partly unfolded

protein, the basic leucine-zipper region of GCN4. In this case,
15NR1,R2, and σNH, measured at 600, 700, 800, and 900MHz 1H
frequency were analyzed by rearranging the measured relaxation
rates using a modified spectral density mapping, and comparing
these results to amodel free analysis using eq 9 to determine how
many independent contributions can be extracted from this
analysis. The results demonstrate that the extended model-free
approach accurately describes the experimental data as well as
being statistically justified on the basis of the experimental
uncertainty. The authors note that more than three contribu-
tions cannot be theoretically justified from these data.
A similar study of the dynamic behavior of the 126 amino acid

C-terminal disordered domain of Sendai virus nucleoprotein
(NT), examined 15N R1, R2, σNH, ηz, and ηxy measured at four
magnetic field strengths (600, 700, 850, and 950 MHz 1H
frequency). In a first step, autocorrelated and cross-correlated
rates measured at each field strength were analyzed using
reduced spectral density mapping at each magnetic field
strength, confirming the self-consistency of the data, and the
absence of exchange contributions to R2. The data were then
analyzed using eq 9 to determine the optimal number of
contributions. Two procedures were undertaken, the first based
on statistical testing, to determine the minimum number of
contributions for each site. Models with 2 (τ 1 and θ), 4 (τ 1, τ2,
A2, and θ), 5 (A2, A3, τ 2, τ3, and θ), or 6 (A2, A3, τ 1, τ 2, τ3, and θ)
parameters for all sites in the molecule, corresponding to 1, 2, or
3 contributions to the relaxation-active correlation function. The
3-component model was found to be justified throughout the
protein. Second, 10% of all data were removed from each data
set, and their values predicted from the parameters determined
from the remaining data sets, again demonstrating that 3
components are essential to correctly predict experimental

Figure 3. Temperature-dependent 15N relaxation maps three modes of intrinsically disordered protein dynamics. (A) 15N auto- and cross-relaxation
rates of NT measured at different magnetic field strengths (green, 600 MHz 1H frequency; blue, 700 MHz; red, 850 MHz; orange, 950 MHz) and at
different temperatures (top: 298 K, second row 288 K, third row 278 K, bottom 274 K). (B−F) Analysis of all relaxation data in (A), using a three-
component model-free approach, with characteristic correlation times related via an Arrhenius expression. (B) Slow (τ3) and intermediate (τ2)
correlation times at 274 K (red), 278 K (orange), 288 K (green), and 298K (blue). (C) Activation energies for slow (red) and intermediate (blue) time
scales for each residue. (D−F) Amplitude of slow (D), intermediate (E), and fast (F) time scale contributions (Reproduced with permission from
Abyzov et al. JACS 2016 Copyright 2016 ACS199).
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values. This implies that sufficient relaxation data have been
measured to justify the more complex model.
Experimentally measured relaxation rates vary significantly

throughout the length of IDPs, exhibiting apparent correlation
with transient secondary structure/linear motifs and differential
dynamic behavior depending on sequence composition. It is
therefore interesting to investigate the physical origin of the
three components. The ability to measure NMR relaxation rates
in complex environments such as liquid−liquid phase
separation195−197 and in cellulo198 also calls for a careful analysis
of the possible physical mechanisms underlying these
experimentally observed dynamic modes. To this end, two
approaches, described below, have recently shed more light on
the information content of this site-specific variation of
relaxation in IDPs, in particular concerning the relative
importance of local backbone conformational sampling and
long-range chain-like behavior. The first concerns the depend-
ence of the different components on environmental parameters
such as temperature and crowding, and the second combines
novel MD-based approaches to the interpretation of relaxation
in IDPs.

4. DEVELOPING A UNIFIED DESCRIPTION OF IDP
DYNAMICS IN SOLUTION

4.1. Temperature-Dependent Relaxation Reveals
Properties of Distinct Dynamic Modes

The study of NT, a disordered protein containing a short helical
linear motif was extended tomeasure R1, R2 and σNH, and ηxy and
ηz at fourmagnetic field strengths (600, 700, 850, and 950MHz)
and over a large range of temperatures (268−298 K) (Figure
3A).199 Up to 61 rates were measured for each amide group in
the protein and interpreted using a simple Arrhenius relation-
ship to couple the correlation times at the different temperatures
(in analogy to the study of the temperature-dependent response
of a microcrystalline protein by solid state NMR200):

τ τ= ∞T e( )k k
E RT

,
/k a, (10)

The different temperature dependences of the three
components are described by temperature coefficients, or
activation energies given by Ek,a (τk,∞ is the Arrhenius prefactor).
Fitting to this function requires the determination of parameters
defining the relative amplitude of the three components at each
temperature and the effective temperature coefficients of the
intermediate and slowest contribution (the fastest contribution
around 50 ps shows insignificant temperature dependence).
Again, cross-validation by removal of either 10% of all data, or
data from each magnetic field, indicates that the analysis is
satisfactorily overdetermined. It is worth pointing out that
predictive cross-validation is not so common in analysis of
protein dynamics from NMR spin-relaxation but when applied
shows a reassuring level of confidence in the data analysis.199

The simultaneous analysis of data from all five temperatures
(Figure 3B−F) reveals fascinating insight into the origin of the
three resolved components. The amplitude of the slowest
component exhibits a bell-shaped distribution with respect to
primary sequence, with a clear maximum in the helical region.
The time scale parallels this distribution, reaching time scales up
to 25 ns in the helical region at 268 K. Although this
contribution is dominated by the slowest times experienced by
the helix, the effective activation energy, or rate of change of τ3
with temperature, exhibits a smooth function along the
sequence, reaching a maximum (20−25 kJ mol−1) in the center

of the sequence. It was proposed that the slowest contribution
reports on chain or segmental dynamics. The reason that slower
motions are detected in the helix is that C(t) is not as efficiently
quenched by the high amplitude fast motions occurring in the
remaining unfolded part of the chain. The residual order left
after themore restricted fast motions occurring in the helix allow
for the detection of slower motion that has little effect on
correlation functions from the less-structured parts of the chain.
This is further supported by the analysis of data measured using
protein constructs engineered to comprise 50, 75, or 126 amino
acids, revealing a clear dependence of the τ3 on the length of the
peptide chain, as expected for chain dynamics considered using
Rouse or Zimm models.201−203

The intermediate motion has a much flatter distribution over
the unfolded regions, and the apparent activation energies are in
the range expected from studies of peptide backbone free energy
landscapes.204,205 In this case, there is a discontinuity in
activation energy between the unfolded and helical regions,
motivating the suggestion that these contributions report
respectively on local fluctuations within Ramachandran wells
and constrained internal dynamics or partial unfolding in the
helix.54,128,206,120

Although relaxation in IDPs is often thought to provide
information essentially concerning subnanosecond motions, the
analysis shown here clearly demonstrated that short, structured
motifs in unfolded polymers are also dependent on slower,
segmental or chain-like motions, or whatever other motion
finally quenches the angular correlation function. Most regions
are not sensitive to these motions because of the extent of the
faster motions, but if one can locally quench these, a great deal of
insight can be derived from the resulting relaxation rates.
We note that while the contribution of the slowest motion

increases at lower temperatures, as the fastest motion falls, the
amplitude of the intermediate motion systematically passes
through a maximum at 288 K. This may provide us with
information about the shape of the actual distribution of
correlation times and their impact on the sampled correlation
function.

4.2. IDP Dynamics under Crowded Conditions Experienced
In Cellulo

Although significant progress has thus been made over recent
years in our understanding of the information provided by NMR
relaxation studies of IDPs, it remained unclear how to interpret
data measured in more complex, and more specifically in the
more crowded, physiological environments in which they
function.208,209 This question is particularly relevant with
respect to NMR in cellulo,198,210−216 where IDPs function in
environments with molecular concentrations reaching 400 g/
L,217−219 very likely strongly affecting the time scales of IDP
dynamics.220−222 The effect of local environment on IDP
function is also relevant for understanding the mechanistic role
of IDPs in membraneless organelles.195−197,223−225 IDPs are
subjected to extreme solvent accessibility compared to folded
proteins, suggesting that the physiological environment in
complex multicomponent environments will very likely strongly
influence dynamic modes and time scales. Single molecule
fluorescence techniques have provided unique insight into the
importance of so-called internal and solvent friction on IDP
dynamics and partially folded or destabilized protein states as
well as on the kinetics of protein folding.66,226,227 These
approaches have been used to investigate the dynamics of
IDPs228,229 and protein function230 in the cellular environment.
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Similarly, NMR spectroscopy has been used to investigate
modulation of the folding/unfolding equilibrium of globular
proteins in cellulo, indicating changes in both population and
exchange rates as a function of the cellular milieu, and a
dependence on weak, so-called quinary231 interactions between
the protein of interest and diverse other molecules constituting
the intracellular matrix.232−234 NMR was also used to describe
the impact of the cellular milieu on protein dynamics, from small
globular proteins to IDPs.210,211,215,235−238 In a detailed study,
Theillet and co-workers compared the influence of different
viscogens on the dynamics of α-synuclein, with 15N relaxation
measurements made in mammalian cells, revealing changes in
dynamics of the termini of the protein, presumably associated
with crowding-induced compaction or inter- and intramolecular
interactions. The extent of changes appeared to be more
pronounced in cellulo, suggesting additional impact of
intermolecular interactions on the relative deceleration of the
NH-backbone fluctuations.198 In the context of these examples,
and the growing body of experimental data,239−244 a physical
framework that incorporates the effects of molecular crowding
on the dynamics of the protein would provide a welcome tool
allowing quantitative interpretation of NMR relaxation meas-
ured under physiological conditions.
Recent work further addressed this challenge by measuring

dynamics of IDPs as a function of environmental complexity. An
extensive set of multifield NMR relaxation rates were measured
over a broad range of conditions, using inert crowding agents to
systematically modify viscosity, as well as temperature (Figure
4).207 This calibration allowed the dynamics of two IDPs to be
mapped as a function of environmental conditions, including
both viscosity and temperature. The two IDPs exhibit distinct

physical properties, comprising both partially folded and highly
flexible elements. Local, or nanoviscosity was gauged by
measuring 1H longitudinal relaxation of water,157 which, at the
high magnetic fields used here, is expected to be dominated by
rotational diffusion of the water molecules.245−247 The overall
dependences of the nanoviscosity of the solvent and solute on
the concentration of viscogen show similar features, with the
intermediate and slow correlation times of the backbone of the
protein, and the 1H R1 both deviating from the linear regime in
the range of 200 mg/mL (Figure 4). Nevertheless, the two
motional modes of the protein backbone exhibit very different
responses, with friction coefficients that are much steeper
(approximately a factor of 3) for the slower motions. As noted
from fluorescence-based studies, viscosity probes of different
dimensions are expected to measure different effective
viscosities,248−252 so that friction coefficients would be expected
to be characterized by distinct length scales and to decrease for
smaller probes.253,254 This suggests, perhaps not surprisingly,
that intermediate and slow dynamic modes are associated with
fragments of different dimensions, for example, respectively,
single and multiple peptide units. The ratio of friction
coefficients corresponding to intermediate and slow motions
was reproduced for both experimental systems (over 200 amino
acids), suggesting that the observation may be general. The
observed differences in effective friction coefficients may be
related to observations made by Schuler and co-workers that
translational diffusion slows down considerably more than
rotational diffusion of the IDP prothymosin α inside crowded
cells, suggesting very different length scales and susceptibilities
to crowding.229

Figure 4. Viscosity-dependent 15N relaxation maps distinct response of local and longer-range dynamics in intrinsically disordered proteins. (A)
Transverse (R2) and longitudinal (R1) relaxation, transverse cross-correlated DD/CSA (ηxy) and heteronuclear {1H}-15N nuclear Overhauser
enhancement (NOE) recorded at 600, 700, and 850 MHz as a function of concentration of Dextran 40. (B) Longitudinal water relaxation (solid red
line, normalized to the value in free solution; ρ0) shows a similar dependence on concentration of viscogen to the intermediate time scale motion
(green points). The slow motional component (purple) resembles approximately 3* ρ0 (dotted line). (C) Friction coefficients (ε) for intermediate
backbone (blue) and slower, segmental (red) motions. (D) Cartoon representation of the length scales of intermediate and slower motions
(Reproduced with permission from Adamski et al. JACS 2019207 Copyright 2019 ACS).
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On the basis of these observations, it was possible to develop,
and test, a single expression to describe the dynamic modes and
their characteristic time scales of IDPs in complexmixtures, their
temperature and viscosity coefficients, using a minimal set of
physical parameters to relate both the intermediate and slow
time-scales (τk) to the nanoviscosity of the solvent:

τ τ ε ρ= ′ +∞C T C e( , ) ( ( ) 1)k k k
E RT

,
/a k, (11)

where ρ(C) = (ηC − η0)/η0 = (R1,C − R1,0)/R1,0, and R1,0 and η0
are the longitudinal relaxation rate of water and the viscosity in
the absence of viscogen, R1,C is the longitudinal relaxation rate,
ηC is the viscosity, and τ′k,∞ is a prefactor representing the
correlation time at infinite dilution and temperature. εk is the
residue-specific friction coefficient relative to ηC of intermediate
or slow motions. The model turns out to be robust and
remarkably transferable in vitro. For example, once sequence-
specific friction coefficients have been determined as a function
of concentration for a particular protein, highly sensitive
dynamic probes such as a complete set of 15N relaxation rates
measured in very different crowding conditions are predicted
with very high accuracy, simply on the basis of the measurement
of the water R1 (Figure 5A).
Perhaps most remarkably, the expression reproduces

experimental relaxation measured in cellulo in Xenopus oocytes,
on the basis of viscosity coefficients measured in vitro and
nanoviscosity measured in the cell (Figure 5B). This unified
description offers new insight into the nature of IDPs, and
extends our ability to quantitatively investigate their conforma-
tional dynamics in complex environments. Such a successful
application of experimental methodology from in vitro viscogen

to in cellulo observation may appear surprising in view of the
complexity of the cellular environment255 and the evident
inability of synthetic polymers to reproduce this complexity.256

This study suggests that such concerns do not prevent the
accurate prediction of average reorientational properties of IDPs
in cells and indicates that the averaging of observable signals
from IDPs and water remain closely coupled even in the
multicompartmental environment of the cell.

5. INTERPRETING NMR RELAXATION IN IDPS USING
MD SIMULATION

5.1. Accounting for Ensemble Conformational Sampling to
Interpret Relaxation from IDPs

Although MD simulation provides unique insight into the
conformational dynamics of IDPs,42,118,122,123 force-fields that
accurately describe the behavior of folded proteins often fail to
reproduce ensemble averaged properties of IDPs in solution,
probably due to the importance of protein−solvent interactions.
This in turn has motivated the conception of force fields that
have been specifically designed for IDPs.90,120,124,127−130

Spin relaxation remains the most powerful NMR observable
to characterize dynamic time scales at a sequence specific level,
and reproduction of experimental values is often the most
challenging for MD simulation. As described earlier, assuming
conformational exchange that is fast on the chemical shift (and
relaxation rate) time scale, experimentally observed rates derive
from a population-weighted average over individual relaxation
occurring within the different states sampled up to the micro- to
millisecond range, such that ⟨R⟩ = ∑i piR

i (pi and Ri are the
population and the relaxation of each state). The problem of

Figure 5. Residue-specific friction coefficients are transferable between different in vitro crowding environments and even predict values measured in
cellulo. (A) Experimental 15N relaxation rates recorded on Sendai virus NT in the presence of 135g/L PEG (gray bars) compared to values calculated
using sequence-specific friction coefficients (eq 11) (red lines) determined as a function of Dextran concentrations and water relaxation in the sample
of interest. For comparison, relaxation rates predicted under dilute conditions are shown in blue. (B) Relaxation rates measured at 600 MHz 1H
frequency at a concentration of 90 g/L PEG (colors as in (A)). (C) 15N relaxation rates recorded in-cell (red points) compared to values calculated on
the basis of dynamic parameters determined in vitro (green bars and line). Orange bars and lines show rates predicted for dilute conditions.
Experimentally determined friction coefficients and the experimental measurement of the water R1,0 in cellulowere used in the prediction. (Reproduced
with permission from Adamski et al. JACS 2019207 Copyright 2019 ACS).
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reproducing experimental relaxation rates from IDPs using MD
simulation is illustrated in Figure 6, where the 18 rates from
Sendai virus NT are compared to those derived from several
microseconds of fully solvated trajectories, using (in 2016) state-
of-the-art, IDP-adapted force fields.90,258

Analysis of these trajectories indicates that the origin of the
discrepancy derived from the over-representation of rare events,
such as long-range contacts, whose frequency is poorly sampled,
leading to statistical instability because the sampled correlation
time does not fulfill the necessary criterion τef f ≪ tmax,

259 where
tmax is the maximal sampled time of the angular correlation
function. To address this problem, the following procedure was

adopted: The entire trajectory, or multiple distinct trajectories
nucleated from different conformations, are divided into
subtrajectories of 100 ns, from which correlation functions
Ci(τ) (and rates R

i) are calculated and combined in an ensemble
average that explicitly mimics the actual heterogeneous
conformational origin of the measured relaxation. The
maximum length of each subtrajectory is dictated according to
the experimental analysis described above for the studies of two
IDPs, NT andMKK4. At T = 298 K, the slowest contribution to
the rotational correlation function detected by experimental spin
relaxation (see above) is approximately 5 ns, so that the dynamic
reorientations occurring in each distinct substate can be

Figure 6. NMR relaxation allows for the identification of ensembles of time-dependent trajectories that represent fast motions in interconverting
substates. (A) Experimental 15N relaxation rates recorded on Sendai virus NT at 298 K in dilute conditions (gray bars) compared to values calculated
from 4 μs of MD simulation, (blue line). The red line shows values calculated from the ABSURD procedure targetting only transverse relaxation
measured at 850 MHz (orange box). (B) The ABSURD procedure results in average time-dependent correlation functions that can be decomposed
into local and segmental motions of the peptide chain. (Reproduced with permission from Salvi et al. JPCL 2016125 Copyright 2016 ACS and Salvi et
al. Angewandte Chemie 2017257 Copyright Wiley 2017).

Figure 7. Temperature-dependent NMR relaxation identifies accurate and transferable molecular force fields for IDPs. Experimental 15N{1H} steady-
state nOes (gray bars) measured on Sendai virus NT at different magnetic fields (left 600 MHz, middle 700 MHz, and right 850 MHz) and
temperatures. ABSURD-selected ensembles of trajectories using Charmm36m combined with the TIP4P/2005 water model (red) reproduces
experimental values better than when combined with TIP3P (blue), at all temperatures. (Reproduced with permission from Salvi et al. Sci. Adv.
2019125 Copyright 2019 AAAS).
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reasonably sampled using a sampling window of 100 ns (tmax= 50
ns). The ABSURD (average block selection using relaxation
data) approach then estimates the relative weights or segments
of Ci(τ) with respect to a single experimental relaxation rate,
compiling an ensemble of subtrajectories that interchange on
time scales significantly slower than the correlation time limit
(100 ns) and significantly faster than the chemical shift time
scale (100s of μs).125 In this way, a representative ensemble of
time-dependent trajectories is identified, thereby extending the
concept of conformationally averaged ensemble-descriptions
into the time dimension. Optimization against a unique
relaxation rate at a single field identifies an ensemble of
trajectories that systematically improves agreement with a broad
set of rates, sensitive to motions occurring on a range of time
scales (R1, R2, σNH, ηzmeasured at multiple fields) (Figure 6), as
well as local (13C chemical shift) and global (SAXS) conforma-
tional sampling properties.
The fact that the ensemble of trajectories improves

reproduction of “passive” dynamic reporters highlights the
importance of correctly sampling the free energy landscape of
the IDP in solution, and illustrates the complex interdependence
of motions occurring on time scales varying over many orders of
magnitude. While it has previously been shown that simulating
motions occurring in distinct substates improves reproduction
of relaxation in folded proteins,119,260 it is challenging to make
this observation for IDPs.120

5.2. Analytical Description of the Dynamics of IDPs
Sampled by NMR Relaxation

The ability to simulate the ensemble averaged angular
correlation functions is of course only half of the challenge. In
principle this function describes all of themolecular mechanisms
that are relaxation-active, but in practice it is not straightforward
to extract motional modes from this complex function. To
address this problem, the correlation function was recently
analytically decomposed into three components using internal
coordinates to describe librational and reorientational dihedral
angle modes relative to the average peptide plane, and tumbling
of each peptide relative to the laboratory frame.257 This
deconvolution of the angular components allowed the
identification of locally correlated and segmental motions
along the chain. The advantage of such an approach was
exemplified in a comparison of temperature dependent 15N
relaxation measured on Sendai virus NT, and compared to
relaxation calculated from average correlation functions derived
using different force fields.261 This allowed the identification of
the best force field over a range of temperatures (Figure 7) but
also the exact dynamic mode that was responsible for the
incorrect reproduction of experimental data (in this case the
reorientation of water molecules and their correlation with
intrasegmental backbonemotions). In this way, the combination
of ABSURD and the analytical description of the correlation
functions can be seen as a forensic tool to improve molecular
dynamics force fields with respect to experimental data.

6. HOW DO IDPS FUNCTION? TIME-RESOLVED
ATOMIC RESOLUTION DESCRIPTIONS OF IDP
COMPLEXES

The detailed study of IDP-binding to receptors and cofactors has
revealed that IDP-based affinities range from tight subnanomo-
lar binding of highly specific chaperone complexes to multi-
valent interactions with individual dissociation constants in the
millimolar range.262−267 NMR spectroscopy has the immense

benefit of providing residue- or even atomic-resolution detail of
the interaction trajectories of IDPs, even in the weak binding
regime, and it is in this range of affinities that it most often
provides unique functional insight.
Depending on the exchange regime between free and bound

protein, NMR chemical shifts report on the population-
weighted average of the free and bound forms of the protein
(fast exchange, where the exchange occurs at a rate faster than
the difference in chemical shifts ΔΔω in the two states) or slow
exchange, that in principle allows for simultaneous detection of
both environments.
The former regime has been elegantly exploited by

Brüschweiler et al. to investigate the binding modes of different
amino acids present in disordered proteins by measuring the
impact of aqueous colloidal dispersions of anionic silica
nanoparticles on the transverse relaxation rates of IDPs.268,269

Electrostatic and hydrophobic interactions are thought to
dominate these weak interactions, and these are shown to differ
largely between amino acid types. The authors show that these
interactions can be parametrized and the binding profile of a
given IDP can be accurately predicted using a simple
mathematical model. This method also has the considerable
advantage that transverse relaxation rates are impacted by
motions occurring on time scales that are normally difficult to
access by solution state NMR, also providing insight into the
intrinsic dynamics of folded proteins.270

Beyond the fast exchange limit, intermediate exchange,
occurring on time scales that are comparable to ΔΔω, leads to
line-broadening of the observable peaks (Figure 1). This latter
regime can be particularly informative because NMR exchange
spectroscopy can be used to unravel the molecular mechanisms
responsible for the observed broadening, even at very low
population of bound state, simultaneously providing informa-
tion both about the exchange kinetics and the free energy surface
of the exchanging environments. Rotating frame relaxation
(R1ρ),

134,135 Carr−Purcell−Meiboom−Gill (CPMG) relaxation
dispersion,131,132,136 chemical exchange saturation transfer
(CEST),133,271,272 and zz-exchange273,274 provide information
about exchange processes from the tens of microseconds to the
subsecond range.

6.1. Describing the Interaction Trajectories of IDPs with
Their Partner Proteins

The power of CPMG relaxation dispersion to describe complex
interaction trajectories of IDPs was demonstrated by Sugase et
al.,182 who studied the interaction between the KIX domain of
CREB binding protein and the phosphorylated form of kinase
inducible activation domain (pKID). 15N CPMGmeasurements
in the presence of substoichiometric admixtures of KIX provided
evidence for weak binding between pKID and KIX, and allowed
the authors to propose a model of the binding trajectory
according to a three-site exchange model, describing binding via
a partially folded encounter complex. This approach has been
further exploited, using a combination of 1H, 13C, and 15N
CPMG, to map the interaction trajectory of Sendai NT upon
binding to the C-terminal domain of the phosphoprotein
(PX).191 While 1H and 15N amide chemical shifts are commonly
used as probes to map interaction interfaces, 13C backbone
chemical shifts are more sensitive to secondary structure. 1H,
13C, and 15N CPMG, measured at substoichiometric admixtures
of PX, was used to map the conformational transitions along the
interaction trajectory of the partially formed helical motif
(Figure 8). This motif had previously been characterized on the
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basis of RDCs and chemical shifts as a rapidly exchanging
ensemble of distinct helical elements.275 The initial step of the
interaction involves the stabilization of one of the helical
elements present in the free-state equilibrium in an encounter
complex on the surface of PX. This step is mainly characterized
by 13Ć differences between the free state and the encounter
complex. The second and final step, as reported mainly by 1H
and 15N shifts, involves binding of the stabilized NT helix into a
groove between two helices on the surface of PX. The
combination of multinuclear CPMG, measurements on both
partners and at multiple admixtures thus provides the necessary
information to reconstruct a complex interaction trajectory
involving both folding and binding. This study also highlights
the importance of the intrinsic conformational dynamics of the
binding partners that is already present in their free states. The
conformational equilibrium of free NT comprises a pre-existing
population of the state that is stabilized in the encounter
complex, while the second binding step appears to be limited by
breathing motions that open and close the binding pocket on PX
in its free form.108 This example also demonstrates that simple
models of intermolecular interaction such as “induced-fit” or
“conformational selection” are not necessarily applicable to
interactions involving highly dynamic proteins such as IDPs,
where a broader terminology, for example, conformational
funneling, would be necessary to describe such multistate
interaction trajectories.192

The crowded environment of living cells can clearly influence
interactions involving IDPs,255,276,277 impacting association and
dissociation rates, via nonspecific interactions or modulation of
the structural and dynamic behavior of the proteins described
above. Although fluorescence278 and simulation has provided
useful insight, for example, into the potential impact of attractive
and repulsive interactions with the cellular milieu on coupled
folding and binding,279 atomic or residue-specific experimental
characterizations of IDP-mediated interactions in vivo remain
relatively rare.198,280−282

To achieve a deeper understanding of the effects of crowding
on the thermodynamics and kinetics of reactions involving IDPs
and their partners, a more detailed, residue-specific picture is
required, for example, using relaxation and exchange measure-
ments in crowded environments and living cells. Kay and co-
workers already performed 15N R1ρ relaxation dispersion
experiment in a highly concentrated phase-separated state
(which can be regarded as a particular form of crowding) of the
germ granule protein Ddx4, discovering a slowly exchanging
excited state with increased intermolecular contacts.283

6.2. On the Importance of Multivalent, Weak Interactions in
Biology

It is becoming increasingly clear that not all IDPs fold upon
binding to their partners, even locally. The nuclear pore is filled
with proteins (FG-nucleoporins) comprising extremely long
IDRs, that are decorated with phenylalanine-glycine (FG)
motifs, that control transition between the cytoplasm and the

Figure 8. Multinuclear CPMG relaxation dispersion maps the molecular recognition trajectory of an intrinsically disordered protein as it binds its
physiological partner. (A) 1H, 13C, and 15N CPMG were used to map the interaction trajectory of Sendai virus NT with the C-terminal domain of the
phosphoprotein (PX). The combination of multinuclear CPMG, measured at multiple substoichiometric admixtures (2, 3.5, 5, and 8% of PX
compared to NT) provides the necessary information to reconstruct a complex interaction trajectory involving both folding and binding. (B) The first
step involves funnelling of one of the helical elements present in the equilibrium of rapidly exchanging substates, in an encounter complex on the
surface of PX. (C) The second step involves binding of the stabilized helix into a groove between two helices on the surface of PX. (D) Relaxation
dispersion measured on NT confirms that the second step coincides with events occurring on the surface of NT. (E) Representation of the most likely
interaction trajectory derived from the ensemble of the experimental data. (Reproduced with permission from Schneider et al. JACS 2015191 Copyright
2015 American Chemical Society).

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c01023
Chem. Rev. 2022, 122, 9331−9356

9343

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c01023?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c01023?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c01023?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c01023?fig=fig8&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c01023?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


nucleoplasm. Larger proteins can only pass the filter when
bound to nuclear transport receptors (NTRs). Despite the high
selectivity of the filter, transport across the pore is extremely fast.
The crucial interaction between NTRs and FG motifs was
recently investigated using NMR, revealing weak chemical shift
perturbations in the nucleoporin Nup153 in the presence of a
series of NTRs.68 In this case, 15N R1ρ and chemical shift
titration confirmed that the interaction was in fast exchange,
allowing an estimate of the intrinsic individual dissociation
constant of a single site of around 8 mM. The presence of
multiple motifs in a single protein clearly illustrated the effect of
multivalency on the apparent affinity, which decreased with
increasing multivalency. Finally, assignment of both free and
bound forms of Nup153 demonstrated a complete absence of
backbone conformational transition upon binding, with the
disordered domain maintaining a high level of plasticity in the
complex. On the basis of these results, a model was proposed of

rapid passage, assured by the quasi continuum of NTR-binding
sites present throughout the pore, and the fast on and off rates
that are maintained by multivalent ultraweak binding through-
out this continuum. Related results were also found for other
nucleoporins,284,285 suggesting that the mechanism may be
general.
Another example of the physiological importance of ultraweak

binding is shown from the study of the chaperone complex
between the partially disordered nucleoprotein (N) and the
intrinsically disordered phosphoprotein of Measles virus
(MeV).286 Paramyxoviral phosphoproteins (P) are essential
cofactors of the replication complex: they are tetrameric and all
comprise long IDRs that are hundreds of amino acids in length
and whose function remains largely unknown.287 N has a folded
domain that encapsidates the viral genome, protecting it from
the host immune system, and a disordered C-terminal domain.
ASTEROIDS analysis of the 304 amino acid IDR of P fromMeV

Figure 9. NMR detects essential, ultraweak interactions in the dynamic assembly of Measles virus nucleo/phosphoprotein complex. (A) 15N−1H
HSQC spectrum of the complex formed between PTAIL and the nucleoprotein. The complex comprises more than 450 intrinsically disordered amino
acids. (B) Representation of the two interaction sites involved in the complex. The phosphoprotein of Measles virus (yellow) is known to bind the
nucleoprotein (gray) in a tight complex at its N-terminal end. NMR reveals a second binding site (δα4) that is 150 amino acids away from the first
binding site, in the middle of a long intrinsically disordered domain that binds a distal site of the nucleoprotein. NMR exchange (C) 15N CPMG and
(D) rotating frame relaxation in the free and bound forms of the region 140−304 of PTAIL, reveals that the intrinsic affinity of this second site is 5 orders
of magnitude lower than the known binding site. (E) Normalized peak intensities (I/I0) of P1−304 (50 μM) with P1−50N1−525 (gray, 25; red, 50; green,
100; and blue, 150 μMconcentrations of P1−304. (F) Interaction profile of P1−304,HELL→AAAAmutation (concentrations as in E). Mutation of these
four residues in the binding site knocks out the second interaction and replication. (Reproduced with permission from Milles et al. Sci. Adv. 2018286

Copyright 2018 AAAS).
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identifies short helical elements in the N-terminal domain, and
an additional fourth helix 150 amino acids downstream of this
(α4), adjacent to a highly acidic strand. The N-terminal helices
bind tightly to N, maintaining it in its monomeric form prior to
encapsidation of the RNA genome. The 90 kDaNP complex was
investigated using NMR, including over 450 intrinsically
disordered residues, identifying the known N-terminal chaper-
one binding site, but also a second, previously unknown binding
site positioned at the fourth helical element, α4 (Figure 9).

15N
CPMG using a molecular construct comprising only this site
revealed that the interaction has an intrinsic affinity that is
around 5 orders of magnitude weaker than the main interaction
site, allowing P to transiently wrap around N, and to exchange
between compact and extended forms. Remarkably, the
conserved interaction motif is shown to be essential for viral
replication. Although the exact role of the second binding site
remains unknown, it is possible that conformational fluctuations
of the acidic loop between the binding sites on P frustrate access
to the surface of N, for example, by cellular RNA or inhibit self-
assembly with other N monomers. More generally, the
combination of two distant interactions involving the same
IDR suggests the existence of long-range coupling between the
two interaction sites linking opposite ends of N that is regulated
by the highly disordered nature of P. This example again

highlights the extreme sensitivity of NMR to detect ultraweak
interactions, even in the presence of very strong affinity
interactions between the same partners.

6.3. Atomic Resolution Descriptions of Highly Dynamic
Molecular Assemblies from NMR

Disordered domains are thought to play a role in the replication
of numerous single strand RNA viruses, with components of the
replication machinery from both negative287,288 and positive
sense289−293 RNA viruses exhibiting extensive disorder. A recent
description of the nucleoprotein of SARS-CoV-2, involved in
protection of the viral genome and regulation of gene
transcription, revealed that the flexible central region undergoes
a disorder to order transition, folding around the N-terminal
domain of its viral partner nsp3 and inducing a collapse of the
remainder of the protein that impacts its ability to bind RNA.294

Influenza A represents another example where extreme
disorder appears to play an essential role in viral function. To
efficiently replicate in human cells, avian influenza polymerase
undergoes host adaptation, with adaptive mutants (in particular
E627 K) localized on twoC-terminal (627 andNLS) domains of
the PB2 polymerase subunit. This region of the protein shows
remarkable behavior in solution, populating an equilibrium
between open and closed conformations that can be
characterized using 15N CEST experiments, revealing open

Figure 10. Influenza polymerase forms a highly dynamic assembly with the intrinsically disordered host transcription factor ANP32a in a species
specific-way. (A) PREs measured on hANP32A (orange, experimental; and blue, representative ensembles selected using ASTEROIDS) in the
presence of paramagnetically labeled human adapted 627-NLS. (B) Same information for avANP32A in the presence of paramagnetically labeled avian
adapted 627-NLS. (C, D) Representation of the dynamic complexes determined from the data shown in A and B, respectively. Multivalent interactions
between ANP32a (yellow/red) and the 627 domain (gray) are localized to the basic patch on the surface of 627. In the case of avANP32A and avian
adapted 627-NLS(E), ANP32A disordered domain is in general closer to theNLS domain (yellow)mediated by the hydrophobic hexapeptide (green).
(E) Position of the cysteine residues used to label 627-NLS. (F) Representation of the ensemble of conformers of the hANP32A:627-NLS complex.
(G) Average distance difference matrix (in Å) between ANP32A (x-axis) and the 627-NLS domains (y-axis) over the two ensembles. (Reproduced
with permission from Camacho-Zarco et al. Nat. Commun. 2020298).
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form chemical shifts that are essentially identical to the isolated
domains in free solution and determine the exchange rate to be
around 20 s−1.295 The closed form is stabilized by an
interdomain salt bridge296 while in the open form the linker
connecting the two domains becomes highly dynamic and the
two domains evolve freely. The host transcription factor
ANP32a was identified as an essential cofactor for the adaptation
of the viral polymerase,297 suggesting a direct interaction
between the two proteins. ANP32a has a highly acidic,
intrinsically disordered domain whose length varies between
species, with the avian form containing a 33 amino acid insert,
comprising a unique hydrophobic hexapeptide and a repeat of
the first 27 acidic amino acids. Somehow the absence of this
insert in mammals is compensated by a single E627 K mutation
of the avian polymerase, allowing cross-species infection. It was
therefore important to investigate the complexes between these
two highly flexible proteins.
Here again, the IDR mediates the interaction, with a

polyvalent interaction between the acidic tail of ANP32a and
the positively charged surface of the 627 domain.298 The
intrinsic KD measured from the side of ANP32a is more than 1
order of magnitude lower than the KD measured from the side of
627 due to the multiple interaction sites on ANP32a dispersed
along the IDR visiting the same sites on 627-NLS. To
characterize the dynamic ensembles, a series of eight cysteine
mutants of the avian and human adapted forms of 627-NLSwere
made, and PREs measured on ANP32a. In the fast exchange
regime, these data provide a sensitive map of the population-
weighted proximity of the two proteins over the dynamic
assembly and were used to develop an ensemble description of
the human and avian complexes using the ASTEROIDS
ensemble approach.
This comparison identifies clear distinctions between the

binding modes exploited in the two complexes (Figure 10), as
shown quantitatively in the average distance map, where closer
or more populated contacts are observed between the positively
charged 627 domain and the acidic IDR for the human complex
than for the avian complex where the electrostatic distribution
on the surface of 627 is disrupted by the E627 K mutation. This
study allows us to speculate further on the role of the interaction
in the function of the replication complex and more generally
demonstrates the ability of NMR to characterize intermolecular
complexes exhibiting extreme levels of flexibility and multi-
valency.
It is perhaps not surprising that electrostatic interactions in

low complexity IDPs can be responsible for highly multivalent
interactions. This was clearly demonstrated by a combination of
smFRET and NMR spectroscopy, together with coarse grained
MD simulation, to investigate the complex between two IDPs,
the strongly basic histone H1 and the highly negatively charged
prothymosin-α.299 Fluorescence spectroscopy reveals affinities
in the picomolar range, while NMR and smFRET reveal that the
proteins remain dynamic within the complex, implying a high
level of dynamic polyvalency and possible formation of transient
ternary complexes.300 The presence of dynamics in the bound
state of IDRs was also characterized in two recent studies of the
disordered domain of kinases MKK7,301 MKK4302,303 in
complex with JNK1 and p38α. CEST, CPMG, and spin
relaxation were measured as a function of stoichiometric ratio,
suggesting that the bound state of MKK7, and the kinase
specificity regions flanking the main interaction site of MKK4,
both exhibited additional dynamics in the bound state, in the
former case on the micro to millisecond time scale and the latter

on relaxation-active ps-ns time scales. Similar data were used to
investigate the interaction between Artemis and the DNA
binding domain of ligase IV, in this case identifying a single step
binding interaction.304

7. PERSPECTIVES
Over the course of this review, we have demonstrated the unique
insight that NMR offers concerning the structure, dynamics and
interactions of IDPs at atomic resolution not only in reduced
systems comprising isolated proteins but also in the context of
more complex molecular environments that are relevant to
physiological function. In particular, we have drawn attention to
the importance of describing the ensemble and time-averaging
processes that govern interpretation of NMR parameters, and
the remarkable insight that this can provide concerning the
functional modes exploited by such highly dynamic systems.
The power of NMR results in part from analytical understanding
of the ensemble and time-averaging processes occurring on time
scales covering orders of magnitude from pico- to milliseconds
that remains one of its unique advantages for studying flexible
molecules. In addition to providing unique new insight into the
relationship between protein flexibility and function, the
combination of atomic resolution characterization of essential
dynamic processes from NMR with complementary structural
and dynamic probes that can be measured on similar sample
preparations ensures an exciting future for NMR as an integral
tool for the investigation of increasingly complex biological
systems.
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IDP intrinsically disordered protein
IDR intrinsically disordered region
MKK4 mitogen-activated protein kinase kinase 4
MKK7 mitogen-activated protein kinase kinase 7
smFRET single molecule Förster resonance energy trans-

fer
ABSURD average block selection using relaxation data
ASTEROIDS a selection tool for ensemble representation of

intrinsically disordered systems
RNAP ribose-nucleic acid polymerase
ANP32a acidic leucine-rich nuclear phosphoprotein 32

(family member A)
NT C-terminal domain of paramyxoviral nucleopro-

tein
PX C-terminal domain of paramyxoviral phospho-

protein
KIX kinase-inducible domain (KID) interacting

domain
KID kinase inducible activation domain
NLS nuclear localization signal
CSA chemical shift anisotropy
PRE paramagnetic relaxation enhancement
RDC residual dipolar couplings
SAXS small angle X-ray scattering
MD molecular dynamics
UV ultraviolet
IR infrared
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