
HAL Id: hal-03809994
https://hal.science/hal-03809994

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Assessment Platform of Cybersecurity Attacks
against the MQTT Protocol using SIEM

Mohamed Hadded, Gaspard Lauras, Jérôme Letailleur, Yohann Petiot, Anouk
Dubois

To cite this version:
Mohamed Hadded, Gaspard Lauras, Jérôme Letailleur, Yohann Petiot, Anouk Dubois. An Assess-
ment Platform of Cybersecurity Attacks against the MQTT Protocol using SIEM. 25th International
Conference on Software Telecommunications and Computer Networks SOFCTOM 2022, Sep 2022,
Split, Croatia. �hal-03809994�

https://hal.science/hal-03809994
https://hal.archives-ouvertes.fr


An Assessment Platform of Cybersecurity Attacks
against the MQTT Protocol using SIEM
Mohamed Hadded, Gaspard Lauras, Jérôme Letailleur, Yohann Petiot and Anouk Dubois

IRT SystemX, 2 Bd Thomas Gobert, 91120 Palaiseau, France

{mohamed.elhadad, firstname.surname}@irt-systemx.fr

Abstract—The industry of shared self-driving is increasingly
interested in the Message Queuing Telemetry Transport (MQTT)
solution to develop and evaluate their autonomous and shared
mobility services. This solution would have the advantage of
making data exchange easier between autonomous vehicles
themselves and between vehicles and infrastructure. Nevertheless,
there are a number of security threats due to the design and the use
of the MQTT protocol. Some of these threats are denial of service
(DoS), spoofing, information disclosure and data corruption. These
security issues can be caused by external attackers as well as
internal entities that are successfully authenticated. This paper
analyzes the impact of these attacks on the performance of
MQTT protocol with TLS in terms of CPU/RAM usage and
latency. For that, we provide in this paper an in-depth overview
of cybersecurity attacks that can disrupt the MQTT protocol and
we also present an evaluation platform using Security Information
and Event Management (SIEM) architecture that automatically
collects and aggregates system events from the server to assess
the impact of the cyber attacks. The results indicate that these
attacks have highly negative influence on the performance of
broker. These results will contribute in the future to implement
new countermeasures to improve cybersecurity of MQTT protocol.

Autonomous and shared mobility services, IoT, Cybersecurity,
Attacks, MQTT, Broker, Pub/Sub, TLS, SIEM.

I. INTRODUCTION AND MOTIVATION

In the context of connected driving, the reliable and secure
transfer of a large quantity of data between the connected cars
and the infrastructure (edge, cloud platform, traffic supervision
center, etc) is a main challenge. New generations of cellular
technologies meet the needs of connected and autonomous
driving in terms of bandwidth and low latency [1]. However,
at the application level, it is necessary to consider a secure
messaging technology to allow the various actors (connected
vehicles, road infrastructure, service providers, edge and core
infrastructure, etc) to publish and consume data with very low
latency. The Message Queuing Telemetry Transport (MQTT)
protocol is currently considered to be the ideal messaging
solution for Vehicle to Everything (V2X) communication over
4G/5G cellular networks [2]–[5].

The MQTTs publish/subscribe protocol is positioned at the
application layer of TCP/IP stack. Being a protocol adopted
initially in Internet of Thing (IoT), it has also become recently
suited for sharing information between connected vehicles and
infrastructure [2]. Many car manufactures have attempted to
implement a connected car service using MQTT. For instance,
BMW Mobility Services has announced their use of MQTT as

the messaging platform, especially HiveMQ, to provide reliable
messaging for their car-sharing application [6]. Therefore,
communications security is a critical and delicate aspect, since
the transmitted and processed information are related to real-
time and sensitive context.

Nevertheless, there are a number of security threats due to
the design and the use of the MQTT protocol [7]. Some of
these threats are denial of service (DoS) [8], [11], spoofing,
information disclosure, escalation of privilege and data corrup-
tion. These security issues can be caused by external attackers
as well as internal entities that are properly authenticated
[9]. Indeed, with valid authentication information but without
any authorization to access a topic, an attacker can flood
the broker with unauthorized sub/pub requests which lead
to a significant consumption of the broker’s CPU resources
during the verification of these requests [11]. The detection
of these attacks is therefore a crucial element to guarantee
the security of the MQTT protocol against possible malicious
acts, and in particular to allow the rapid implementation of
countermeasures. The goal of this paper is first to provide an
overview related to cybersecurity attacks that can disrupt the
MQTT protocol and we also discuss their impacts. Moreover,
we present an evaluation platform using Security Information
and Event Management (SIEM) architecture to collect and
aggregate the system event logs and assess the impact of these
attacks on the performance of MQTT broker (e.g. Mosquitto).
The main contributions of our paper are:

• We cover cyber-attacks that can disrupt the MQTT
protocol and compare them in terms of vulnerabilities
exploited by attackers, sending methods, etc.

• We present an evaluation platform using Security Infor-
mation and Event Management (SIEM) architecture that
automatically collects and aggregates system events from
the server.

• Finally, we implement two DoS attack scenarios and
evaluate their impacts on broker’s performance in terms
of memory and CPU computing resources as well as the
latency.

The remainder of this paper is organized as follows: Section
II presents an overview of MQTT protocol. In Section III,
we describe the security vulnerabilities that can affect the
performance of MQTT broker. Then, in Section IV, we present



the impact assessment platform. In section V, we give the
experimental results and analyze the impact of SlowTT attack
and last will payload flooding attack on the performance of
MQTT broker. Finally, in Section VI, we conclude the paper
and highlight some future work.

II. OVERVIEW OF MESSAGE QUEUING TELEMETRY
TRANSPORT (MQTT)

MQTT is a lightweight M2M communication (machine to
machine) protocol implementing a pub/sub messaging model
of publishing messages and subscribing to topics. In MQTT,
the central point is the MQTT broker in charge of relaying
messages from publishers (senders) to subscribers (destination
clients). If a device wants to publish a message, it sends it to
the broker under a specific topic which describes the content
of the message (for example: the weather, temperature, home,
etc). The broker then transmits this message to each client that
has previously subscribed to this topic.

The MQTT supports three QoS levels which define the effort
that is made to ensure that the data reaches the broker.

• QoS 0 ”At most once”: the message is sent only once.
Once the message is sent by the client it is rejected from
the outbound message queue and therefore it is not re-
transmitted by the sender. In addition, the receiver does
not confirm receipt of the message.

• QoS 1 ”At least once”: the message is sent at least one
time to the receiver until delivery is guaranteed. It might
be delivered multiple times if the sender does not receive
an acknowledgment after a period of time.

• QoS 2 ”Exactly once”. Each message is guaranteed to be
delivered only once by the subscriber. This level provides
the safest and slowest quality of service level.

The use of one level or another depends on the characteristics
and reliability needs of the system. Logically, a higher level of
QoS requires a higher exchange of verification messages with
the client and, therefore, a higher load on the system.

The MQTT protocol has various security mechanisms
that can be adopted to protect communications [20]. This
includes, in particular, SSL/TLS protocols, authentication by
user/password or by certificate and Access Control List (ACL).
Since the MQTT protocol does not provide security on its
own, its specification recommends TLS as a transport option
to secure the protocol using port 8883. The devices with low
latency and resource constraints, especially in industrial IoT
deployments, can benefit from using TLS session resumption
to reduce the re-connection cost. It is also possible to configure
the broker to accept anonymous connections. All of these
features must be considered when setting up an MQTT system,
and the risks of each must be understood, as well as their
impact on the effectiveness of the system.

III. DOS ATTACK MODELS IN MQTT

In this section, we present the different DoS attacks that
can disrupt the MQTT protocol. Generally, the main goal of
DoS attacks is to overwhelm broker resources and thus to
deny access to legitimate clients. DoS attacks accomplish this

by forcing the victim broker to perform complex computing
operations making it inaccessible to its intended clients. Several
DoS attack models can target this protocol which exploit
network configuration vulnerabilities of the MQTT protocol
and its different access levels available for clients (QoS 0, QoS
1, QoS 2) as well as the different control packet types available
in MQTT (CONNECT, PUBLISH, SUBSCRIBE, etc).

A. Last will payload flooding attack

This attack can be easily launched and it exploits the Last
Will and Testament feature available in MQTT protocol [12].
This feature is used to notify other subscribers about an
unexpected disconnected client. The last will message is set by
the publisher client when it connects to the broker. It is stored
by the broker until publishing client disconnects ungracefully.
If the client is abruptly disconnected, the broker sends the
message on behalf of the publisher to all its clients that are
subscribed to the topic which was specified in the last will
message. The last will payload flooding attack consists so in
sending a massive number of CONNECT messages to the
broker with a greater size of the last will payload (more than
10000 characters) in order to increase the size of the packets,
which will have a strong impact on the bandwidth at the victim
broker. Additionally, it will also increase the resources needed
to process messages, which may causes the overall RAM and
CPU usage to be higher than normal. This attack can have very
serious consequences, if the attackers connect and disconnect
frequently from the broker. This will force the broker to publish
the message and so increase more the impact of the attack
on server resources, preventing it from processing new TCP
connections.

B. Unauthorized subscription flooding attack

It is DoS attack in which an attacker with valid credentials
information but no authorization to access various topics seeks
to make the broker resource unavailable to legitimate clients
[8]. This can be happened by flooding the broker with invalid
subscribe or publish requests. This will result in consumption
of broker CPU and RAM resources in verifying individual
requests.

C. ACK-PSH flooding attack

It is a kind of DDoS attack which consists of sending
PSH-ACK packets towards the broker without establishing
a TCP handshake [10]. This means that the broker will detect
this packet as not belonging to a session and respond with a
RST packet. This attack can be carried out by sending classic
ACK packets. Its goal is to disrupt MQTT network activity by
saturating bandwidth and resources on MQTT broker.

D. SlowTT attack

As described in [13], slow denial of service attack against
MQTT called SlowTT aims to saturate and block the available
TCP connections of the broker as much as possible in order
to prevent other legitimate clients from establishing MQTT
sessions and therefore from being able to send or receive



messages due to lack of connections sockets. Once the
communication with the broker is initiated by the attacker,
it exploits the network configuration parameters adopted by the
MQTT protocol, especially the KeepAlive parameter, to keep
connections alive for an indefinite time. In addition, SlowTT is
able to keep connections open for a long time even with lower
keepAlive values by exploiting PINGREQ and PINGRESP
packets to simulate legitimate behavior. This attack can be
summarized into two major steps:

• Initiate connection with the MQTT broker by using the
CONNECT packet.

• Sending PING packets to keep the connection alive for
an indefinite time

As a result, maintaining the TCP connections alive prevents
the legitimate clients from using them as soon as they are
released by the broker.

E. Connect Flooding attack

The attacker sends a large number of CONNECT packets
to the victim broker to overwhelm it with the processing of
authentications requests [8]. Moreover, attackers can exhaust
the CPU or memory resources on the target broker by sending a
considerable number of CONNECT packets that have a higher
QoS level 2 making services unavailable for legitimate clients.

F. Elevation of privilege attack

Through unauthorized publishing/subscription, the attackers
can gain privileges that should not be available to them [12].
In fact, the wildcard feature (e.g. #) available in the MQTT
protocol allows the clients to subscribe to multiple topics
simultaneously and learn about the list of topics available on
the broker and log every message exchanged. As a result, all
data published by MQTT clients will be vulnerable to access
by the attackers due to wildcard topics.

G. OpenSSL infinite loop attack

This vulnerability has been discovered recently and tracked
as CVE-2022-0778 with a CVSS score of 7.5 [17]. The
problem comes from a bug that arises when parsing malformed
security certificates that contain invalid elliptic curve public
keys, resulting in what’s so called an ”infinite loop.” This
issue can be exploited by the attackers to trigger a DoS and
remotely crash TLS servers consuming client certificates. Table
1 summarizes and compares the different attacks presented
above.

IV. ATTACKS EFFECTS EVALUATION PLATFORM

In order to be able to measure the impact of attacks on
an MQTT system, we have deployed a realistic architecture
using MQTT protocol version 3.1 through open-source broker
and client software tools (e.g. Mosquitto, Paho MQTT client)
running on virtual machines. As shown in Figure 1, this
architecture includes a broker, a legitimate client as well as
an attacker. For this purpose, Proxmox Virtual Environment
7.2-4 [14] running on Debian machine was used to host the
virtual machines and deploy the broker and client software.

Each virtual machine was configured with 2 CPU, 4GB RAM
and running Ubuntu 20 OS. This means that it allows to
install different operating systems (Windows, Linux, Unix,
etc.) on a single computer or a cluster of machines and it also
allows deployment and management of containers. Moreover,
it provides a REST API for third-party tools. One physical
machine is used to configure and manage MQTT network
deployed on Proxmox using command-line tools. We first
installed the MQTT broker on the broker host VM. Then,
we set up a normal network (10.0.10.0/24) of one MQTT
publisher node and one MQTT subscriber node running on
the MQTT Client VM. The subscriber client is subscribed on
different topics on the MQTT broker. We set up one publisher,
publishing data across different topics. Similarly, we set up
an attacker client running on separate Ubuntu OS 20 virtual
machine connected to the broker network which is configured
to launch two different types of attacks on the MQTT broker,
namely last will payload flooding attack and SlowTT attack.
In addition, a separate physical machine running Ubuntu OS
20 installed in another network (192.168.60.180/23) used to
set up and configure the MQTT network.

The two open-source MQTT broker and client implemen-
tations deployed in this study were namely: Paho MQTT
client implementation from [15] since it supports the three
MQTT QoS levels, SSL/TLS protocols and Mosquitto broker
implementation from [16] in version 2.0.14 as an MQTT
broker. To ensure the reliability of identities and the security
of information exchange between broker and clients, we
generated the certificates required for TLS 1.3 using OpenSSL
3.0.2 as this release has addressed the infinite loop issue
presented in OpenSSL 3.0 [17]. The broker was configured with
Access Control List (ACL) feature to allow only authorized
clients to publish and/or subscribe to various topics. Moreover,
Anonymous connections with the broker was disabled to
authorise only authenticated clients to publish and/or subscribe
to topics.

In order to collect and aggregate system events from the
broker to assess the impact of the cyber attacks, another
separated VM machine was configured to host cyber risk
monitoring platform using SIEM. This platform was designed
to monitor an MQTT broker and it allows to collect a certain
number of network and system logs. The objective of this
platform is to cover a large part of the behaviors of the
TCP/IP model on the network side and for the system. The
SIEM architecture includes mainly three components. At the
Linux userland level, the platform allows to collect all the
application logs. At the kerneland level, some endpoint of
the infrastructure contains a kernel probe that analyzes the
system calls launched by the userland applications. Finally,
this SIEM allows to monitor a large number of system behavior
via prometheus metrics. These metrics are used to monitor
statistics produced by Linux such as disk space used, CPU
load, memory consumption, etc.

As shown in Figure 1, one instance of node exporter is
deployed at the broker (endpoint) to expose system metrics
via a REST interface. Subsequently, a very light ETL (Extract,



TABLE I
FEATURES COMPARISON BETWEEN ATTACKS

Attacks Vulnerabilities User Sending methods Vectors

Last will payload flooding attack CONNECT
Last will payload Internal Flooding Dispatching a large number of

CONNECT packets accompanied
by malicious last will payload.

ACK-PSH flooding attack TCP External
Internal Flooding Sending a massive amount of

PSH/ACK packets towards the bro-
ker without without establishing a
TCP handshake.

Unauthorized Sub/Pub flooding attack
ACL

PUBLISH
SUBSCRIBE

Internal Flooding Sending a large number of invalid
subscribe or publish requests using
valid credentials to the unauthorized
topics in the broker.

SlowTT attack CONNECT
PING Internal Low rate

Periodic Sending PING requests everytime
before the KeepAlive timer is ex-
pired to maintain a MQTT connec-
tion alive.

Connect flooding attack CONNECT External
Internal Flooding Dispatching a large number of

MQTT CONNECT packets con-
tained a higher size of the payload.

Elevation of privilege attack PUBLISH
SUBSCRIBE Internal Low rate Sending subscribing requests to sub-

scribe to multiple topics simultane-
ously using wildcards.

OpenSSL infinite loop attack CONNECT External
Internal Flooding Sending subscribing requests to sub-

scribe to multiple topics simultane-
ously using wildcards.

Transform, and Load) called vector regularly extracts the
metrics to send them to our SIEM. This SIEM contains a
certain number of databases including Grafana Mimir which
allows to store all the time series. They are then made available
through a Grafana web interface.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. MQTT attack traffic generation

As shown in the Figure 1, the MQTT attack traffic was
generated from one separate VM machine based on the two
DoS attack scenarios, namely SlowTT and last will flooding
described in the section III.

The MQTT attacker’s machine was configured to generate
and transmit a massive number of CONNECT messages to
the broker with a varying sizes of the last will payload, where
a last will message is sent to notify other subscribers if the
client disconnects abruptly. The last will flooding attack was
generated using a python script that has been written based on
the Eclipse Paho MQTT Python client library. We also wrote
other python scripts for initializing and running the publishers
and subscribers nodes using the same MQTT client library.
As the last will payload flooding is generated from one attack
source connected to the network, a multi-processing and multi-
threading based approach were adopted in the attacker side to
increase its CPU computing power and thus to maximize the
impact on the target broker’s resources.

The SlowTT attack also was generated from the same MQTT
attacker’s machine. To do so, we wrote a Python script to send

MQTT CONNECT packets in order to establish a connection
with the victim broker. After setting the KeepAlive parameter
to 240s, the SlowTT attacker sends updates to the broker
using PING packets with a varying periodicity and before the
KeepAlive expires. The reason is to keep the connection alive
as well as to achieve a realistic message publishing rate.

B. Attack impact analysis

Three performance metrics were measured to assess the
impact of SlowTT and last will flooding attacks against the
MQTT broker: These three metrics include: latency, memory
utilization (RAM) and CPU utilization. Latency refers to the
amount of time it takes for data from sending out by a publisher
to receiving by a subscriber [19]. Latency was measured
using the MQTT broker latency measure tool given in [18].
On the other hand, CPU and memory utilization measures
were extracted from Graphana as a csv data. Moreover, we
executed each attack for 300s and all the measurements for
each performance metric were repeated 20 times to ensure the
reliability and validity of the results and the mean value for
each set of 20 measurements was provided in the next.

In Figures 2 and 3, we study the impact of the last will DoS
attack on the performance of the MQTT broker in terms of
memory and CPU utilisation, respectively. As a reminder, in
the last will DoS attack, the malicious client attempts to disrupt
the broker integrity by sending a large number of CONNECT
packets contain malicious last will payload.

We performed measurements for both scenarios with and
without attacks to identify the influence of malicious traffic



Fig. 1. MQTT broker deployment to assess SlowTT and last will payload flooding attacks.

flow on the server resources consumption. The last will payload
flooding attack was launched using 100, 200 and 300 threads.
Moreover, the size of the payload was fixed in these results
to 20000 characters. Figure 2 indicates that the amount of
memory remained constant during the normal traffic flow.
However, it was increased drastically during the attack due to
the high number of characters included in the last will payload.
We observe that the amount of memory used increases from
500Mo to 2000Mo at 10s with 300 threads and from 500Mo
to 1700Mo with 200 threads. These results show that the attack
caused the maximum impact on the memory utilization as the
RAM idle percentage of the broker reached zero especially
where the number of threads is 300.

The results in Figure 3 show the CPU used by the MQTT
broker during both normal and malicious traffic flows. These
results also show that the computing resources in terms of
CPU of the broker are vulnerable to the last will DoS attack.
Especially, we can note that the broker is suffering from high
CPU load during this attack and it can be potentially exploited
to slow down or completely halt the broker.

Figure 4 highlights the last will flooding attack impact on
the latency. We can note from this figure that the latency is
increasing significantly as the number of threads and payload
sizes increase. For instance, we can note that the latency has
almost reached 12ms where the number of threads is 300 and
the size of last will payload is 10000 characters. Therefore,
we can conclude from these results that the last will flooding
attack can lead to serious damages especially in very critical
environments (industrial, healthcare, smart cars, etc.) where
MQTT is used as the messaging protocol to exchange data
between IoT devices in real time. The loss of sensitive data
in the case where the broker is slow down can arise critical
situations.

Fig. 2. Last will payload flooding attack impact on the memory utilization
with a payload size of 20000 Characters

Fig. 3. Last will attack impact on the CPU utilization with a payload size of
20000 Characters



Figures 5, 6 and 7 highlight the SlowTT attack impact
on the memory, CPU usage and latency. The experiments
configuration was the same as the previous attack; only the
attack script changed and the number of threads was fixed to
1024 in these results, as we noted that there is no significant
impact of SlowTT attack on the performance of broker for a
lower number of threads. We can note from Figure 5 that the
memory usage is increased after launching the SlowTT attack
and remained constant after a short period of time. Figure 6
also indicates that the broker is vulnerable to SlowTT attack
but it has less impact on CPU utilization (more than 50%
less) compared to the last will flooding attack. The results of
latency given in 4 and 7 show also that SlowTT attack caused
less impact as the maximum latency achieved is almost 4ms
which is 60% less compared to the maximum impact caused
by the last will flooding attack. Figure 8 shows the Grafana
dashboard related to MQTT broker system metrics collected
through Node exporter container. Through a selection control,
it is possible to select and monitor different other system and
network metrics and time period.

Fig. 4. Last will flooding attack impact on the latency.

Fig. 5. SlowTT attack impact on the memory utilization.

Fig. 6. SlowTT attack impact on the CPU utilization.

Fig. 7. SlowTT attack impact on the latency.

VI. CONCLUSION

In this work, we have discussed and compared several DoS
attack models that can disrupt the MQTT protocol and we
have also presented an evaluation platform using Security
Information and Event Management (SIEM) architecture that
automatically collects and aggregates system events from the
server to assess the impact of the cyber attacks. Overall, the
results show that the MQTT protocol is vulnerable to several
DoS attack scenarios. As a conclusion to this research work, the
last will payload flooding attack can consequently drastically
impact the performance of MQTT broker in terms of CPU/RAM
usage and end-to-end latency. Moreover, the slowTT DoS attack
can also impact the performance but with less damage compared
to the last will payload flooding attack.

The detection of these attacks is a crucial element to
guarantee the security of the MQTT protocol against possible
attacks, and in particular to allow the rapid implementation of
adequate countermeasures. Therefore, new detection solutions
that can detect and report attacks are henceforward necessary
to improve the security of MQTT protocol. As a future work,
we plan to implement a Reinforcement Learning (RL) based
detection approach to detect and filter out malicious traffic flows
in MQTT protocol using system key performance indicators.



Fig. 8. Grafana dashboard used to monitor MQTT broker and also to analyze the server performance metrics.

ACKNOWLEDGEMENT

This research work has been carried out in the framework
of IRT SystemX, Paris-Saclay, France, and therefore granted
with public funds within the scope of the French Program
“Investissements d’Avenir”.

REFERENCES

[1] H. Abou-zeid, F. Pervez, A. Adinoyi, M. Aljlayl, Cellular V2X Transmis-
sion for Connected and Autonomous Vehicles: Standardization, Applications,
and Enabling Technologies, EEE Consumer Electronics Magazine, Vol. 8,
No. 6, Nov. 2019.

[2] Ian Skerrett, How 5G and MQTT Accelerate Vehicle-2-Everything (V2X)
Adoption, https://www.hivemq.com/blog/how-5g-and-mqtt-accelerate-v2x-
adaption, Jun. 2021.

[3] F. Pinzel, J. Holfeld, A. Olunczek, P. Balzer, and O. Michler, “V2v
and v2x-communication data within a distributed computing platform for
adaptive radio channel modelling,” in 2019 6th International Conference on
Models and Technologies for Intelligent Transportation Systems (MTITS),
pp. 1-6, 2019.

[4] R. Sedar, F. Vázquez-Gallego, R. Casellas, R. Vilalta, R. Muñoz, R. Silva,
L. Dizambourg, A. E. F. Barciela, X. Vilajosana, S. K. Datta, J. Härri and J.
Alonso-Zarate, Standards-Compliant Multi-Protocol On-Board Unit for the
Evaluation of Connected and Automated Mobility Services in Multi-Vendor
Environments, Sensors, Vol. 21, no. 6, Mar. 2021.

[5] MQTT in an IoV scenario, https://www.emqx.com/en/blog/mqtt-for-
internet-of-vehicles

[6] BMW Mobility Services, https://www.hivemq.com/case-studies/bmw-
mobility-services/

[7] F. Chen, Y. Huo, Z. Zhu and D. Fan, A Review on the Study on
MQTT Security Challenge, IEEE International Conference on Smart Cloud
(SmartCloud), Washington, USA, Nov. 2020.

[8] N. F. Syed, Z. Baig, A. Ibrahim and C. Valli, Denial of service attack
detection through machine learning for the IoT, Journal of Information and
Telecommunication, Vol. 4, No. 4, May. 2020.

[9] S. Andy, B. Rahardjo, B. Hanindhito, Attack scenarios and security analysis
of MQTT communication protocol in IoT system, International Conference
on Electrical Engineering, Computer Science and Informatics (EECSI),
Yogyakarta, Indonesia, Sep. 2017.

[10] Mohammed Abdulaziz Al-Naeem, Prediction of Re-Occurrences of
Spoofed ACK Packets Sent to Deflate a Target Wireless Sensor Network
Node by DDOS, IEEE Access, Vol. 9, 2021.

[11] U. Morelli, I. Vaccari, S. Ranise , E. Cambiaso, DoS Attacks in Available
MQTT Implementations: Investigating the Impact on Brokers and Devices,
and supported Anti-DoS Protections, The 16th International Conference on
Availability, Reliability and Security (ARES), pp. 1-9, Aug. 2021.

[12] A. J. Hintaw, S. Manickam, M. F. Aboalmaaly, and S. Karuppayah, MQTT
Vulnerabilities, Attack Vectors and Solutions in the Internet of Things (IoT),
IETE Journal of Research, DOI: 10.1080/03772063.2021.1912651, May.
2021.

[13] I. Vaccari, M. Aiello, E. Cambiaso, SlowTT: A Slow Denial of Service
against IoT Networks, Information 2020, vol. 11, no. 09, Sep. 2020.

[14] https://www.proxmox.com/en/
[15] https://pypi.org/project/paho-mqtt/
[16] Eclipse Mosquitto. Eclipse Mosquitto. Accessed: Mar. 23, 2022. [Online].

Available: https://mosquitto.org/
[17] Openssl infinite loop DoS vulnerability, CVE-2022-0778 (15 March

2022), https://www.openssl.org/news/secadv/20220315.txt
[18] MQTT broker latency measure tool, https://github.com/hui6075/mqtt-bm-

latency
[19] R. Banno, K. Ohsawa, Y. Kitagawa, T. Takada, and T. Yoshizawa,

Measuring Performance of MQTT v5.0 Brokers with MQTTLoader, in
Proceedings of the 2021 IEEE 18th Consumer Communications and
Networking Conference (CCNC 2021), Jan. 2021.

[20] M. Amoretti, R. Pecori, Y. Protskaya, L. Veltri, F. Zanichelli, A, Scalable
and Secure Publish/Subscribe-Based Framework for Industrial IoT, IEEE
Transactions on Industrial Informatics, Vol. 17, No. 6, 2020.


