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Dipayan Chakraborty† Florent Foucaud† Aline Parreau‡ Annegret Wagler†

October 7, 2022

Abstract

The problems of determining the minimum-size identifying, locating-dominating and open
locating-dominating codes of an input graph are special search problems that are challenging
from both the theoretical and computational viewpoints. In these problems, one selects
a dominating set C from the vertex set V (G) of a graph G such that the vertices of a
chosen subset of V (G) (i.e. either V (G)\C or V (G) itself) are uniquely determined by their
neighborhoods in C. A typical line of attack for these problems is to determine tight bounds
for the minimum codes in various graphs classes. In this work, we present tight lower and
upper bounds for all three types of codes for block graphs (i.e. diamond-free chordal graphs).
Our bounds are in terms of the number of maximal cliques (or blocks) of the block graph
and the order of the graph. Two of our upper bounds verify conjectures from the literature
— with one of them being now proven for block graphs in this article. As for the lower
bounds, we prove them to be linear in terms of both the number of blocks and the order of
the block graph. For each of our bounds, we provide examples of families of block graphs
whose minimum codes attain these bounds, thus showing each bound to be tight.

Keywords— identifying code, locating-dominating, domination number, block graph, maximal clique,
order of a graph, articulation

1 Introduction

For a graph (or network) G that models a facility or a multiprocessor network, detection devices can
be placed at its vertices to locate an intruder (like a faulty processor, a fire or a thief). Depending on
the features of the detection devices, different types of dominating sets can be used to determine the
optimum distributions of these devices across the vertices of G. In this article, we study three problems
arising in this context, namely the three types of dominating sets — called the identifying codes, locating-
dominating codes and open locating-dominating codes — of a given graph. Each of these problems has
been extensively studied during the last decades (see the bibliography maintained by Lobstein [29]).
These three types of codes are among the most prominent notions within the larger research area of
identification problems in discrete structures pioneered by Rényi [34], with numerous applications in
fault-diagnosis [33], biological testing [30] or machine learning [12].
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Figure 1: Examples of (a) an ID-code, (b) an LD-code and (c) an OLD-code. The set of black vertices in each
of the three graphs constitute the respective code of the graph.

Let G = (V (G), E(G)) be a graph, where V (G) and E(G) denote the set of vertices (also called the
vertex set) and the set of edges (also called the edge set), respectively, of G. The (open) neighborhood of
a vertex u ∈ V (G) is the set NG(u) of all vertices of G adjacent to u; and the set NG[u] = {u}∪NG(u) is
called the closed neighborhood of u. A subset C ⊆ V (G) is called an identifying code [28] (or an ID-code
for short) of G if

• NG[u] ∩ C ̸= ∅ for all vertices u ∈ V (G) (i.e. C is said to be a dominating set of G, or is said to
possess the property of domination in G); and

• NG[u] ∩C ̸= NG[v] ∩C for all distinct vertices u, v ∈ V (G) (i.e. C is called a closed-separating set
of G, or is said to possess the property of closed-separation in G).

See Figure 1a for an example of an ID-code. A graph G admits an ID-code if and only if G has no
closed-twins (i.e. a pair of distinct vertices u, v ∈ V with NG[u] = NG[v]). Said differently, a graph G
admits an ID-code if and only if G is closed-twin-free.

A subset C ⊆ V (G) is called a locating-dominating code [36, 37] (or an LD-code for short) of G if

• NG[u] ∩ C ̸= ∅ for all vertices u ∈ V (G) (i.e. C is a dominating set of G); and

• NG(u) ∩ C ̸= NG(v) ∩ C for all distinct vertices u, v ∈ V (G) \ C (i.e. C is called a locating set of
G, or is said to possess the property of location in G).

See Figure 1b for an example of an LD-code. Note that every graph has an LD-code.

Finally, a subset C ⊆ V (G) is called an open locating-dominating code [35] (or an OLD-code for short)
of G if

• NG(u) ∩ C ̸= ∅ for all vertices u ∈ V (G) (i.e. C is called an open-dominating set of G, or is said
to possess the property of open-domination in G)1; and

• NG(u) ∩ C ̸= NG(v) ∩ C for all distinct vertices u, v ∈ V (G) (i.e. C is called an open-separating
set of G, or is said to possess the property of open-separation in G).

See Figure 1c for an example of an OLD-code. A graph G admits an OLD-code if and only if G has neither
isolated vertices nor open-twins (i.e. a pair of distinct vertices u, v ∈ V (G) such that NG(u) = NG(v)).
Again, said differently, a graph G admits an OLD-code if and only if G has no isolated vertices and is
open-twin-free.

A graph with neither open- nor closed-twins is simply referred to as twin-free.

For the rest of this article, we often simply use the word code to mean any of the above three ID-, LD-
or OLD-codes without distinction. Given a graph G, the identifying code number γID(G) (or ID-number
for short), the locating-dominating number γLD(G) (or LD-number for short) and the open locating-
dominating number γOLD(G) (or OLD-number for short) of a graph G are the minimum cardinalities
among all ID-codes, LD-codes and OLD-codes, respectively, of G. In other words, for simplicity, for any

1The property of open-domination is often called that of total-domination in the literature. See for example
??
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symbol X ∈ {ID, LD, OLD}, we have the X-number: γX(G) = min{|C| : C is an X-code of G}. In the
case that all three codes are addressed together as one unit anywhere in the text, i.e. any specific symbol
for X ∈ {ID, LD, OLD} is irrelevant to the context, we then simply refer to the X-numbers as the code
numbers of G.

Given two sets A and B, the set A△B = (A\B)∪(B\A) is called the symmetric difference of A and B. For
a subset C ⊂ V (G) and distinct vertices u, v ∈ V (G), if there exists a vertex w ∈ (NG(u)∩C)△(NG(v)∩C)
(resp. (NG[u] ∩ C)△(NG[v] ∩ C)), then C is said to open-separate (resp. closed-separate) the vertices u
and v in G. Moreover, the vertex w is said to open-separate (resp. closed-separate) the vertices u and v
in C.

1.1 Known results

Given a graph G, determining γID(G) or γLD(G) is, in general, NP-hard [11] and remains so for several
graph classes where other hard problems become easy to solve. These include bipartite graphs [11] and
two subclasses of chordal graphs, namely split graphs and interval graphs [21]. In fact, for both bipartite
and split graphs, it is NP-hard to even approximate the ID-number and LD-number within a factor
of log |V (G)| [14]. Determining γOLD(G) is also, in general, NP-hard [35] and remains so for perfect
elimination bipartite graphs [31] and interval graphs [21]. On the other hand, determining γOLD(G)
becomes APX-complete for chordal graphs with maximum degree 4 [31].

As these problems are computationally very hard, a typical line of attack is to determine bounds on the
code numbers for specific graph classes. Closed formulas for these parameters have so far been found only
for restricted graph families (e.g. for paths and cycles [8, 37, 35], for stars [24], for complete multipartite
graphs [3, 5] and for some subclasses of split graphs including thin headless spiders [4]). Lower bounds for
all three code numbers for several graph classes like interval graphs, permutation graphs, cographs [20]
and lower bounds for ID-numbers for trees [9], line graphs [16], planar graphs [32] and many others of
bounded VC-dimension [10] have been determined. As far as upper bounds for the code numbers are
concerned, for certain graph classes, upper bounds for ID-codes (See [6, 19, 22]), LD-codes (see [6, 18, 23])
and OLD-codes (see [26]) have been obtained.

1.2 Our work

In this paper, we consider the family of block graphs, defined by Harary in [25], see also [27] for equivalent
characterizations. A block graph is a graph in which every maximal 2-connected subgraph (or block) is
complete. Equivalently, block graphs are diamond-free chordal graphs [7]. Linear-time algorithms to
compute all three code numbers in block graphs have been presented in [2]. In this paper, we complement
these results by determining tight lower and upper bounds for all three code numbers for block graphs.
We give bounds using (i) the number of vertices, i.e. the order of a graph, as has been done for several
other classes of graphs; and (ii) the number of blocks of a block graph, a quantity equally relevant to
block graphs. In doing so, we also prove the following conjecture.

Conjecture 1.1 ([1, Conjecture 1]). The ID-number of a closed-twin-free block graph is bounded above
by the number of blocks in the graph.

In addressing LD-codes for twin-free block graphs, we prove (for block graphs) the following conjecture
posed by Garijo et al. [23] and reformulated in a slightly stronger form by Foucaud et al. [18].

Conjecture 1.2 ([18, Conjecture 2]). Every twin-free graphG with no isolated vertices satisfies γLD(G) ≤
|V (G)|

2 .

1.3 Notations

For a block graph G, we let K(G) denote the set of all blocks of G, i.e. the set of all maximal cliques of
G. Noting that any two distinct blocks K and K ′ of G intersect at at most a single vertex, any vertex
x ∈ V (G) such that {x} = V (K) ∩ V (K ′) is called an articulation vertex of both K and K ′. We define
art(K) to be the set of all articulation vertices of a block K ∈ K(G). For a connected block graph, we fix
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Figure 2: Example of different layer numbers, articulation vertices (grey) and non-articulation vertices (white)
of a connected block graph.

a root block K0 ∈ K(G) and define a system of assigning numbers to every block of G depending on “how
far” the latter is from K0. So, define a layer function f : K(G) → Z on G by: f(K0) = 0, and for any
other K (̸= K0) ∈ K(G) (also called a non-root block), define inductively f(K) = i if V (K) ∩ V (K ′) ̸= ∅
for some block K ′ ( ̸= K) ∈ K(G) such that f(K ′) = i− 1. For a pair of blocks K,K ′ ∈ K(G) such that
f(K) = f(K ′) + 1, define art−(K) = V (K) ∩ V (K ′); and for the root block K0, define art−(K0) = ∅.
Note that for a block K ∈ K(G) such that f(K) ≥ 1, we have |art−(K)| = 1, and the only vertex in
art−(K) is called the negative articulation vertex of the block K. In contrast to the negative articulation
vertices of G, define art+(K) = art(K) \ art−(K) to be the set of all positive articulation vertices of the
block K and art(K) = V (K) \ art(K) to be the set of all non-articulation vertices of K. Any block K
with |art(K)| = 1 is called a leaf block and all blocks that are not leaf blocks are called non-leaf blocks.
For simplicity, we also denote the set f−1({i}) by f−1(i). Then, for each i ≥ 0, f−1(i) is called the i-th
layer of G and each block K ∈ f−1(i) is said to be in the i-th layer of G. See Figure 2 for an illustration
of the layers and the related concepts in a connected block graph.

1.4 Structure of the paper

Our results on the upper bounds for the code numbers are contained in Section 2 of this paper, whereas
Section 3 is dedicated to the lower bounds for the code numbers. Section 2 is further subdivided into
three subsections with each of the latter containing the results for a particular code. We conclude in
Section 4.

2 Upper bounds

In this section, we establish upper bounds on the ID-, LD- and OLD-numbers for block graphs. Two of
these upper bounds are in fact proving Conjectures 1.1 and 1.2. All our results in this section are for
connected block graphs. However, applying the results to each connected component of a block graph,
the results of Theorem 2.1, 2.2 and 2.4 hold equally well for all block graphs.

2.1 Identifying codes

The number of blocks is, structurally speaking, as relevant a quantity for block graphs as is the number
of vertices for trees. In the next result, we prove Conjecture 1.1 to provide an upper bound for γID(G)
for a block graph G in terms of its number of blocks.

Theorem 2.1. Let G be a connected closed-twin-free block graph and let K(G) be the set of all blocks
of G. Then γID(G) ≤ |K(G)|.

4



Proof. Assume by contradiction that there is a closed-twin-free block graph G of minimum order such
that γID(G) > |K(G)|. We also assume that G has at least four vertices since it can be easily checked that
the theorem is true for block graphs with at most three vertices. Suppose that K ∈ K(G) is a leaf-block
of G. Due to the closed-twin-free property of G, one can assume that V (K) = {x, y} and, without loss
of generality, that x and y are the non-articulation and the negative articulation vertices, respectively, of
K. Let G′ = G− x be the graph obtained by deleting the vertex x ∈ V (G) (and the edge incident on x)
from G. Then G′ is a block graph with |K(G′)| = |K(G)| − 1. We now consider the following two cases.

Case 1 (G′ is closed-twin-free). By the minimality of the order of G, there is an ID-code C ′ of G′ such
that |C ′| ≤ |K(G′)| = |K(G)| − 1. First, assume that y /∈ C ′. Then by the property of domination of C ′,
there exists a vertex z ∈ V (G′) such that z ∈ NG′(y) ∩C ′. We claim that C = C ′ ∪ {x} is an ID-code of
G. First of all, that C is a dominating set of G is clear from the fact that C ′ is a dominating set of G′.
To prove that C is a closed-separating set of G, we see that x is closed-separated in C from all vertices
in V (G′) \ {y} by itself and is closed-separated in C from y by the vertex z ∈ C ′. Moreover, all other
pairs of distinct vertices closed-separated by C ′ and are also closed-separated by C. Thus, C, indeed, is
an ID-code of G. This implies that γID(G) ≤ |C| ≤ |K(G)|, contrary to our assumption.

We therefore assume that y ∈ C ′. If again, there exists a vertex z ∈ NG′(y) ∩ C ′, then by the same
reasoning as above, C = C ′ ∪ {x} is an ID-code of G. Otherwise, we have N [y] ∩ C ′ = {y}. Now,
since G is connected, we have degG(y) > 1 and therefore, there exists a vertex w ∈ NG(y) \ {x}. Then
C = C ′∪{w} is an ID-code of G. This is because, first of all, C still closed-separates every pair of distinct
vertices in V (G′). Also, x is closed-separated in C from all vertices in V (G′) \ {y, w} by y, from y by
the vertex w ∈ C and from w by w itself. Moreover, C is clearly also a dominating set of G. Hence, this
leads to the same contradiction as before.

Case 2 (G′ has closed-twins). Assume that vertices u, v ∈ V (G′) are a pair of closed-twins of G′. Since
u and v were not closed-twins in G, it means that x is adjacent to u, say, without loss of generality. This
implies that u = y. Note that v is then unique with respect to being a closed-twin with y in G′. This is
because, if u and some vertex v′(̸= v) ∈ V (G′) were also closed-twins in G′, then it would mean that v
and v′ were closed-twins in G, contrary to our assumption. Now, let G′′ = G′−v. We claim the following.

Claim 2A. G′′ is closed-twin-free.

Proof of Claim 2A. Toward a contradiction, if vertices z, w ∈ V (G′′) were a pair of closed-twins in G′′,
it would then mean that the vertex z ∈ NG′(v), without loss of generality. This would, in turn, imply
that z ∈ NG′(y) (since the vertices z and w are closed-twins in G′). Or, in other words, y ∈ NG′′(z).
Now, since z and w are closed-twins in G′′, we have y ∈ NG′′(w), i.e. w ∈ NG′(y). Again, by virtue of
y and v being closed-twins in G′, we have w ∈ NG′(v). This implies that z and w are closed-twins in G
which is a contradiction to our assumption. ♦

We also note here that the vertices y and v must be from the same block for them to be closed-twins
in G′. Thus, G′′ is a connected closed-twin-free block graph. Therefore, by the minimality of the order
of G, there is an ID-code C ′′ of G′′ such that |C ′′| ≤ |K(G′′)| < |K(G)|. If y /∈ C ′′, then we claim that
C = C ′′ ∪ {x} is an identifying code of G. This is true because, firstly, C is a dominating set of G (note
that, by the property of domination of C ′′ in G′′, there exists a vertex z ∈ NG′′(y) ∩ C ′′; and since y
and v are closed-twins in G′, we have z ∈ NG(v) ∩ C). Moreover, x is closed-separated in C from every
other vertex in V (G) \ {y} by x itself; vertices x and y are closed-separated in C by some vertex in
NG′′(y)∩C ′′ that dominates the vertex y; the vertices y and v are closed-separated in C by x; the vertex
y is closed-separated in C from all vertices in V (G′′) \ {y} and so is v, since y and v have the same closed
neighborhood in G′. Finally, every pair of distinct vertices closed-separated by C ′′ still remain so by C.
Thus, C, indeed, is an ID-code of G. This implies that γID(G) ≤ |C| ≤ |K(G)|; again a contradiction.

Let us, therefore, assume that y ∈ C ′′. This time, we claim that C = (C ′ \ {y}) ∪ {x, v} is an ID-code of
G. That C is a dominating set of G is clear. So, as for the closed-separating property of C is concerned,
as before, x is closed-separated in C from every other vertex in V (G) \ {y} by x itself; vertices x and y
are closed-separated in C by v; the vertices y and v are closed-separated in C by x and the vertices v and
x are closed-separated in C by v. Since y and v have the same closed neighbourhood in G′ and since y
is closed-separated in C ′′ from every other vertex in V (G′′), both v and y are also each closed-separated
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in C from every vertex in V (G′′) \ {v, y}. Finally, every pair of distinct vertices of G′′ closed-separated
by C ′′ still remain so by C. This proves that C is an ID-code of G and hence, again, we are led to the
contradiction that γID(G) ≤ |C| ≤ |K(G)|.
This proves the theorem.

Note that, besides for stars [24], the upper bound in Theorem 2.1 is attained by the ID-numbers of thin
headless spiders [4] which, therefore, serve as examples of cases where the bound in Theorem 2.1 is tight.
Note further that this bound does not even hold for chordal graphs, let alone for general graphs. A
counterexample to the bound in Theorem 2.1 for chordal graphs is the graph P k−1

2k (the graph obtained
from a path on 2k vertices with edges introduced between all pairs of vertices u, v ∈ V (P2k) such that
dP2k

(u, v) ≤ k − 1) which is closed-twin-free, has only two maximal cliques, but needs 2k − 1 vertices in
any identifying code [17].

2.2 Locating-dominating codes

In this subsection, we prove two results on upper bounds for the LD-numbers of block graphs. The first
result is a more general one in which the upper bound is in terms of the number of blocks and other
quantities arising out of the structural properties of a block graph. On the other hand, the second result
is proving Conjecture 1.2 for block graphs. We begin with the more general result.

Theorem 2.2. Let G be a connected block graph, K(G) be the set of blocks in G and SG = {S ⊂ K ∈
K : S is a maximum set of pairwise closed-twins in G}. Then γLD(G) ≤ |K(G)|+∑

S∈SG
(|S| − 2).

Proof. We define a set C ⊂ V (G) by the following rules.

Rule 1: For every block K ∈ K(G) which does not contain any closed-twins, i.e. with at most one
non-articulation vertex, pick any one vertex from V (K) \ art−(K) in C.

Rule 2: For every block K ∈ K(G) which contains closed-twins, i.e. with at least two non-articulation
vertices, pick any |art(K)| − 1 vertices from art(K) in C.

Note that the vertices added in C by the above rules are all distinct. Therefore, the following is the size
of C.

|C| =
∣∣∣{K ∈ K(G) : |art(K)| ≤ 1}

∣∣∣+ ∑
K∈K(G),

|art(K)|≥2

(|art(K)| − 1) = |K(G)|+
∑

K∈K(G),

|art(K)|≥2

(|art(K)| − 2)

which is the same as the right-hand side of the inequation in the statement of the theorem, since the size
of the maximum set of closed-twins in any block K ∈ K(G) with |art(K)| ≥ 2 is |art(K)| itself. The
result, therefore, follows from proving that C is an LD-code of G.

First of all, we notice that, by the construction of C, for every block K ∈ K(G), there exists a vertex
vK ∈ V (K) ∩ C. Therefore, C is a dominating set of G. We now show that C is also a locating set
of G. So assume that u, v ∈ V (G) \ C are distinct vertices of G. Then, by the construction of C, we
must have u ∈ V (K) and v ∈ V (K ′) for a distinct pair of blocks K,K ′ ∈ K(G). Now, there exist
vertices vK ∈ V (K) ∩ C and vK′ ∈ V (K ′) ∩ C such that vK ̸= vK′ . This is because, if not, then either
vK ∈ art−(K) or vK′ ∈ art−(K ′) which would be a contradiction to our construction of C. This implies
that at least one of vK and vK′ must open-separate u and v in C and, hence, C is a locating set of G.

There are an infinite number of arbitrarily large connected block graphs whose LD-numbers attain the
upper bound in Theorem 2.2. One such subclass of block graphs is the following. For positive integers
t,m1,m2, . . . ,mt, we define a class of graphs St(m1,m2, . . . ,mt) by the following rule: Assume that X
is a copy of the complete graph on t vertices and name its vertices v1, v2, . . . , vt. Also, for all 1 ≤ i ≤ t,
suppose that Yi is a copy of the complete graph on mi vertices. Let St(m1,m2, . . . ,mt) be the block
graph obtained by identifying a vertex of Yi with vi of X for every 1 ≤ i ≤ t. For brevity, we continue to
call the identified vertices resulting in St(m1,m2, . . . ,mt) by the same names of v1, v2, . . . , vt as before.
See Figure 3 for an example of the graph St(m1,m2, . . . ,mt) constructed with t = 5, and m1 = m3 = 4,
m2 = m5 = 3 and m4 = 5. We then show the following.
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Figure 3: Graph S5(4, 3, 4, 5, 3) whose LD-number attains the upper bound in Theorem 2.2. The black vertices
represent those included in the LD-code C of G as described in the proof of Theorem 2.2.

Proposition 2.3. For t ≥ 2, and m1,m2, . . . ,mt such that mi ≥ 3 for all 1 ≤ i ≤ t, we have

γLD(St(m1,m2, . . . ,mt)) = |K(St(m1,m2, . . . ,mt))|+
∑

S∈SSt(m1,m2,...,mt)

(|S| − 2).

Proof. Let G = St(m1,m2, . . . ,mt). We note here that the number of blocks in G is t + 1; and the
only blocks K ∈ K(G) with |art(K)| ≥ 2 are Yi, Y2, . . . , Yt (as per the notations used in the preceeding
discussion). Moreover, for each 1 ≤ i ≤ t, we have |art(Yi)| = mi − 1. So, the upper bound for the
LD-number of G by Theorem 2.2 is t+ 1 +

∑t
i=1(mi − 3) = 1− 2t+

∑t
i=1 mi.

Now, assume that C is a minimum LD-code of G. Then, we have |V (Yi) ∩ C| ≥ mi − 2. Moreover,
V (Yi) \ {vi} ̸⊂ C for every 1 ≤ i ≤ n, or else, for t ≥ 2, we would have |C| ≥ −t +

∑t
i=1 mi >

1 − 2t +
∑t

i=1 mi, the upper bound by Theorem 2.2 resulting in a contradiction. So, without loss of
generality, assume that y1 ∈ (V (Y1) \ {v1}) \ C. Now, if vi /∈ C for all 1 ≤ i ≤ t, then C does not
open-separate v1 and y1 which is a contradiction. Therefore, vi ∈ C for some 1 ≤ i ≤ t. Hence,
|C| ≥ |{vi}|+

∑t
i=1 |V (Yi) ∩ C| ≥ 1− 2t+

∑t
i=1 mi = |K(G)|+∑

S∈SG
(|S| − 2).

Imposing additional structural constraints on a block graph, one could still limit the number of vertices
one needs to choose from each of its blocks in order to form an LD-code of the graph. Our next result
shows exactly that.

Theorem 2.4. Let G be a connected twin-free block graph. Then γLD(G) ≤ |V (G)|
2 .

Proof. To prove the theorem, we partition the vertex set of G into two special subsets C∗ and D∗.

Assume that K0 ∈ K(G) is a leaf block of G. Then, |V (K0)| = 2, as G is twin-free. Assign K0 to be
the root block of G, i.e. define a layer function f : K(G) → Z on G such that f(K0) = 0. We then
construct the sets C∗ and D∗ by the following rules applied inductively on i ∈ f(K(G)). See Figure 4 for
a demonstration of this construction.

Rule 1: Pick the (positive) articulation vertex of the root block K0 in D∗ (i.e. let art+(K0) ⊂ D∗) and
pick the (other) non-articulation vertex of K0 in C∗ (i.e. let art(K0) ⊂ C∗). See Figure 4a for
an example.

Rule 2: For every non-root block K ∈ K(G) with at least one non-articulation vertex (i.e. art(K) ̸= ∅)
and whose negative articulation vertex is in D∗ (i.e. art−(K) ⊂ D∗), pick all non-articulation
vertices of K in C∗ (i.e. let art(K) ⊂ C∗); and all positive articulation vertices of K in D∗ (i.e.
let art+(K) ⊂ D∗). See Figure 4b for an example.
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K0

art+(K0)

art(K0)

1

(a) Rule 1

art−(K)

1

(b) Rule 2

art−(K)

1

(c) Rule 3

K

art−(K)

K ′art−(K ′)

1

(d) Rule 4

art−(K)

1

(e) Rule 5

Figure 4: Example of each rule in the proof of Theorem 2.4 for the construction of the sets C∗ or D∗. In each
example, the black vertices represent those picked in C∗ and the white vertices represent those picked in D∗. The
blocks with solid edges represent those blocks (in i-th layer, say) from which vertices are chosen either in C∗ or
D∗. The blocks with dashed edges represent those blocks in the next layer (the (i + 1)-th) which, inductively,
are yet to be analysed for their choices of vertices in C∗ and D∗; but whose presence in the figure is necessary to
determine the positive, negative and the non-articulation vertices of the block in i-th layer.

Rule 3: For any non-root block K ∈ K(G) with no articulation vertices (i.e. art(K) = ∅) and whose
negative articulation vertex is in D∗ (i.e. art−(K) ⊂ D∗), pick one positive articulation vertex,
say, w of K in C∗ and the rest of the positive articulation vertices in D∗ (i.e. let art+(K)\{w} ⊂
D∗). See Figure 4c for one such case.

Rule 4: For every non-root block K ∈ K(G) with at least one non-articulation vertex (i.e. art(K) ̸=
∅) and whose negative articulation vertex is in C∗ (i.e. art−(K) ⊂ C∗), pick one positive
articulation vertex (if available), say, w ofK in C∗; and pick all other vertices in V (K), except the
vertex w and the negative articulation vertex of K, in D∗ (i.e. let V (K)\(art−(K)∪{w}) ⊂ D∗).
See Figure 4d for both examples of when articulation vertices are available (block K) and when
they are not, i.e. in the case of leaf blocks (block K ′).

Rule 5: For every non-root block K ∈ K(G) with no non-articulation vertices (i.e. art(K) = ∅) and
whose negative articulation vertex is in C∗ (i.e. art−(K) ⊂ C∗), pick all positive articulation
vertices of K in D∗ (i.e. art+(K) ⊂ D∗). See Figure 4e for an illustration.

From the construction, C∗ and D∗ are complements of each other in V (G). We claim that both C∗ and
D∗ are LD-codes of G. We first show that both are dominating sets of G.

Claim A. Both C∗ and D∗ are dominating sets of G.

Proof of Claim A. To prove that both C∗ and D∗ are dominating sets of G, it is enough to show that,
for every block K ∈ K(G), both V (K)∩C∗ ̸= ∅ and V (K)∩D∗ ̸= ∅. By Rule 1, the claim is true for the
root block K0. So, assume K ∈ K(G) to be a non-root block. First, suppose that the negative articulation
vertex of K belongs to D∗. Then, by Rules 2 and 3, we have V (K) ∩ C∗ ̸= ∅. Next, suppose that the
negative articulation vertex of K belongs to C∗. Then, by Rules 4 and 5, we have V (K) ∩D∗ ̸= ∅. ♦

We now show that both C∗ and D∗ are also locating sets of G. We start with C∗.

Claim B. C∗ is a locating set of G.

Proof of Claim B. Assume that u, v ∈ D∗ are distinct vertices of G. Since G is twin-free, there exist
a pair of distinct blocks K,K ′ ∈ K(G) such that u ∈ V (K) and v ∈ V (K ′). By the proof of Claim A,
there exist vertices vK ∈ V (K) ∩C∗ and vK′ ∈ V (K ′) ∩C∗. If vK ̸= vK′ , then either one of vK and vK′

must locate u and v in C∗. So, let us assume that no such pairs of distinct vertices vK ∈ V (K)∩C∗ and
vK′ ∈ V (K ′) ∩ C∗ exist, i.e. V (K) ∩ V (K ′) ⊂ C∗ and that V (K)△V (K ′) ⊂ D∗.

We now claim that either u is an articulation vertex of K or v is an articulation vertex of K ′. So, toward
contradiction, assume that both u and v are non-articulation vertices of K and K ′, respectively. Then
the following two cases arise.
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Case 1 (K and K ′ belong to different layers). Without loss of generality, assume that f(K ′) = f(K)+1.
Then, K ̸= K0, or else, by Rule 1, u, being a non-articulation vertex of K, must belong to C∗, contrary
to our assumption. Therefore, K is a non-leaf block. Now, V (K)△V (K ′) ⊂ D∗ implies that the negative
articulation vertex of K belongs to D∗. Since u is a non-articulation vertex of K, by Rule 2, u ∈ C∗

which is a contradiction to our assumption.

Case 2 (K and K ′ belong to the same layer). In this case, K and K ′ cannot both be leaf blocks, or else,
G would have twins. So, without loss of generality, suppose that K is a non-leaf block. Now, the negative
articulation vertex of K belongs to C∗. Since K is a non-leaf block, there exists a positive articulation
vertex of K and, hence, by Rule 4, art+(K)∩C∗ ̸= ∅ which contradicts the fact that V (K)△V (K ′) ⊂ D∗.

This proves our claim that either u is an articulation vertex of K or v is an articulation vertex of K ′. So
if, without loss of generality, we assume that u is an articulation vertex of K, then {u} = V (K)∩V (K ′′)
for some block K ′′ ( ̸= K,K ′) ∈ K(G) and so, some vertex in V (K ′′) ∩C∗ (which exists due to the proof
of Claim A) must locate u and v in C∗. This proves our current claim. ♦

We now prove the same for D∗.

Claim C. D∗ is a locating set of G.

Proof of Claim C. Assume that u, v ∈ C∗ are distinct vertices of G. Since G is twin-free, there exist a
pair of distinct blocks K,K ′ ∈ K(G) such that u ∈ V (K) and v ∈ V (K ′). By the proof of Claim A, there
exist vertices vK ∈ V (K) ∩D∗ and vK′ ∈ V (K ′) ∩D∗. If vK ̸= vK′ , then either one of vK and vK′ must
open-separate u and v in D∗. So, let us assume that no such pairs of distinct vertices vK ∈ V (K) ∩D∗

and vK′ ∈ V (K ′) ∩D∗ exist, i.e. V (K) ∩ V (K ′) ⊂ D∗ and that V (K)△V (K ′) ⊂ C∗.

We now claim that either u is an articulation vertex of K or v is an articulation vertex of K ′. So, toward
contradiction, assume that both u and v are non-articulation vertices of K and K ′, respectively. Then
the following two cases arise.

Case 1 (K and K ′ belong to different layers). Without loss of generality, assume that f(K ′) = f(K)+1.
If |V (K ′)| ≥ 3, since G is twin-free and since v is a non-articulation vertex of K ′, then K ′ contains exactly
one non-articulation vertex and thus art+(K ′) ∩ D∗ ̸= ∅. This, however, is a contradiction to the fact
that V (K)△V (K ′) ⊂ C∗. So, assume that |V (K ′)| = 2, in which case, K ′ is a leaf block (since, again, v
is a non-articulation vertex of K ′). This implies that K is a non-leaf block, or else, G would have twins.
So, in particular, K ̸= K0, the root block of G. Moreover, V (K)△V (K ′) ⊂ C∗ implies that the negative
articulation vertex of K belongs to C∗. Therefore, since u is a non-articulation vertex of K, by Rule 4,
u ∈ D∗ which is a contradiction to our assumption.

Case 2 (K and K ′ belong to the same layer). In this case, K and K ′ cannot both be leaf blocks, or
else, G would have twins. So, without loss of generality, assume K to be a non-leaf block. Therefore,
|V (K)| ≥ 3, or else, u would be an articulation vertex of K, contrary to our assumption. The negative
articulation vertex of K belongs to D∗. Therefore, by Rule 2, art+(K) ∩ D∗ ̸= ∅ which contradicts
V (K)△V (K ′) ⊂ C∗.

This, therefore, proves our claim that either u is an articulation vertex of K or v is an articulation vertex
of K ′. If, without loss of generality, u is an articulation vertex of K, then {u} = V (K)∩V (K ′′) for some
block K ′′ (̸= K) ∈ K(G) and so, some vertex in V (K ′′) ∩D∗ (which exists due to the proof of Claim A)
must open-separate u and v in D∗. This, again, proves our current claim. ♦

Combining Claims A, B and C, we find that C∗ and D∗ are both LD-codes of the twin-free block graph
G with no isolated vertices. Moreover, since C∗ and D∗ are complements of each other in V (G), at least
one of them must have cardinality of at most half the order of G. This proves the theorem.

Theorem 2.4 therefore proves Conjecture 1.2 for block graphs.

Corollary 2.5. Let G be a twin-free block graph without isolated vertices. Then γLD(G) ≤ |V (G)|
2 .
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1

Figure 5: Graph H3 whose LD-number attains the upper bound in Theorem 2.4. The black vertices represent
those included in the LD-code C∗ of G described in the proof of Theorem 2.4.

The trees attaining the bound of Theorem 2.4 were characterized in [18]. There are also arbitrarily large
twin-free block graphs that are not trees and whose LD-numbers attain the bound given in Theorem 2.4.
To demonstrate this attainment, we look at the following subclass of block graphs which we denote by
Ht: For a fixed integer t ≥ 1, assume that T1, T2, . . . , Tt are t copies of K3, the complete graph on three
vertices. Suppose that V (Ti) = {vi, wi, xi} for each 1 ≤ i ≤ t. Assume R,R1, R2, . . . , Rt, R

′
1, R

′
2, . . . , R

′
t

to be 2t + 1 copies of P2, the path on two vertices. Also, let V (R) = {u, v} and for all 1 ≤ i, i′ ≤ t, let
V (Ri) = {y′i, yi} and V (R′

i′) = {z′i′ , zi′}. We then identify the vertices v, v1, v2, . . . , vt to a single vertex
which we continue to call v; and, for each 1 ≤ i ≤ t, we identify the vertices wi and y′i to a single vertex
and the vertices xi and z′i to a single vertex. In the latter two cases, we continue to call the identified
vertices wi and xi, respectively. The new resulting graph is what we call Ht. See Figure 5 for an example
of Ht with t = 3. With that, we now prove the following.

Proposition 2.6. For each integer t ≥ 1, γLD(Ht) =
|V (Ht)|

2 .

Proof. Since |V (Ht)| = 4t+ 2, we therefore have from Theorem 2.4 that γLD(Ht) ≤ 2t+ 1.

We now prove that γLD(Ht) ≥ 2t + 1. Since each of the 2t + 1 edges uv, wiyi, xizi (for 1 ≤ i ≤ t) of
Ht contains a vertex of degree 1, therefore any LD-code of Ht, by its the property of domination, must
contain at least one endpoint of each of these edges. Since the above edges are all pairwise disjoint, any
LD-code of Ht must contain at least 2t+ 1 vertices of Ht.

2.3 Open locating-dominating codes

We now focus our attention on upper bounds for OLD-numbers for block graphs. Before we get to our
results, we define the following two special graphs.

1. The 4-path (or P4 in symbol) is a graph defined by its vertex set V (P4) = {p1, p2, p3, p4} and its
edge set E(P4) = {p1p2, p2p3, p3p4}.

2. The bull graph (or B5 in symbol) is a graph defined by its vertex set V (B5) = {b1, b2, b3, b4, b5}
and its edge set E(B5) = {b1b2, b2b3, b3b4, b4b5, b2b4}. See Figure 7 for a depiction of a bull graph.

We note here that both P4 and B5 are block graphs with articulation vertices p2 and p3 for P4 and b2
and b4 for B5. For P4, the vertices p1 and p4 are called the leaf vertices; and for B5, the vertices b1
and b5 are the leaf vertices. Assume G′ to be any graph and X to be a graph which is either a copy of
P4 or B5. For a fixed vertex q ∈ V (G′), we define a new graph G′ �q X to be the graph obtained by
identifying the vertex q with an articulation vertex of X (see Figures 6a and 6b for examples of K4�q P4

and K4 �q B5, respectively). As a matter of reference, we call the new vertex in G′ �q X — obtained as
a result of identifying two vertices — as the quotient vertex ; and continue to refer to the quotient vertex
as q itself. We now turn to our results. Firstly, it is easy to establish the following.
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q

4-path

1

(a) K4 �q P4

q

Bull graph

1

(b) K4 �q B5

Figure 6: Examples of G′ �q X, where G′ ∼= K4 and X ∈ {P4, B5}. The vertex q (in grey) is obtained by
identifying a vertex of G′ and an articulation vertex of X.

Lemma 2.7. If P is a 4-path, then γOLD(P ) = 4.

Lemma 2.8. If B is a bull graph, then γOLD(B) = 3.

Proof. Let V (B) = {b1, b2, b3, b4, b5}, where b2 and b4 are the articulation vertices; and b1 and b5 are the
leaf vertices of B. Then it is easy to check that {b2, b3, b4} is an OLD-code of B and hence γOLD(B) ≤ 3.
See Figure 7 for the OLD-code demonstrated with black vertices in the figure.

b3

b2b4

b1b5

1

Figure 7: The Bull graph B5. The set of black vertices constitute an OLD-code of B5.

On the other hand, assume that C is an OLD-code of B. Since b1 and b5 are degree 1 vertices, their only
neighbours, namely b2 and b4, respectively, must be in C for the latter to be an open-dominating set of
B. Moreover, at least one of b1 and b3 must be in C for b2 and b5 to be open-separated in C. Hence,
|C| ≥ 3 and this establishes the result.

This brings us to our result on the upper bound for OLD-numbers for block graphs.

Theorem 2.9. Let G be a connected open-twin-free block graph with no isolated vertices. Moreover,
let G neither be a copy of P2 nor of P4. Moreover, let mQ(G) be the number of non-leaf blocks of G with
at least one non-articulation vertex. Then γOLD(G) ≤ |V (G)| −mQ(G)− 1.

Proof. To start with, if G is a copy of the bull graph, then |V (G)| = 5 and mQ(G) = 1. Moreover, by
Lemma 2.8, γOLD(G) = 3 = |V (G)| −mQ(G)− 1 and so, we are done. So, let us assume that G is not a
copy of the bull graph.

We first choose a root block K0 ∈ K(G) according to the following two possibilities.

Possibility 1: G ∼= G′ �q X for some block graph G′ and some graph X that is a copy of either P4 or
B5. In such a case, assume that x is the articulation vertex of X which is identified with the vertex q of
G′ to form G. Then, we choose K0 to be the block of G isomorphic to a P2 with vertices {x, z}, where z
is the leaf vertex of X adjacent to x.
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Possibility 2: G ̸∼= G′ �q X for any block graph G′ and any X that is a copy of either P4 or B5. In this
case, choose K0 ∈ K(G) such that |V (K0)| = min{|V (K)| : K is a leaf block of G}.
Next, we construct a set C ⊂ V (G) by the following rules.

Rule 1: For every non-root leaf block K ∈ K(G), pick all vertices of K in C.

Rule 2: For every block K ∈ K(G) that is either the root block K0 or is a non-leaf block in K(G) \ {K0},
(i) pick all articulation vertices of K in C; and
(ii) pick all but one non-articulation vertices of K in C.

To compute the size of C, we note that, for the root block and every other non-leaf block K with
at least one non-articulation vertex, exactly one vertex is left out from it in C. This gives |C| =
|V (G)| −mQ(G)− 1. Thus, the upper bound for γOLD(G) in the theorem is established on showing that
C, indeed, is an OLD-code of G; which is what we prove next.

To show that C is an OLD-code of G, we notice first of all that, if the root block K0 is isomorphic to
P2, then the (only) non-articulation vertex of K0 is open-dominated by the articulation vertex of K0

which belongs to C. In every other case, all blocks K ∈ K(G) have |V (K) ∩ C| ≥ 2. This makes C an
open-dominating set of G. Now we show that C is also an open-separating set of V (G). So, let us assume
that u, v ∈ V (G) are distinct vertices of G. We now consider the following three cases.

Case 1 (u, v ∈ V (K) for some block K ∈ K(G)). We note here that, by the construction of C, for every
block K ∈ K(G), at most one vertex of K is not in C. This implies that at least one of u and v, say u
without loss of generality, must be in C. Then u open-separates u and v in C.

Case 2 (u ∈ V (K), v ∈ V (K ′) for distinctK,K ′ ∈ K(G) and neither of u and v belong to V (K)∩V (K ′)).
In this case, if V (K)∩V (K ′) = ∅, then u and v are open-separated by the negative articulation vertex ofK
(which belongs to C, by construction) and so, we are done. Therefore, assume that V (K)∩V (K ′) = {w}
for some vertex w ∈ V (G). Now, if either of V (K) and V (K ′), say V (K) without loss of generality, has
size at least 4, then |V (K) ∩ C| ≥ 3 and so, at least one vertex in V (K) \ {u,w} belongs to C which
open-separates u and v in C. So, assume that |V (K)| ≤ 3 and |V (K ′)| ≤ 3. We next look at the following
two subcases.

Subcase 2.1 (|V (K)| = |V (K ′)| = 2). Then, at least one of K and K ′ must be a non-leaf block, or
else, G would have open-twins. So, without loss of generality, suppose that K is a non-leaf block. Then
{u} = V (K)∩ V (K ′′) for some block K ′′ ( ̸= K,K ′) ∈ K(G). If however, K ′ too is a non-leaf-block, then
{v} = V (K ′)∩V (K ′′′) for some block K ′′′ ( ̸= K ′,K,K”) ∈ K(G). Now, at least one of K ′′ and K ′′′ is not
the root block. Without loss of generality, therefore, assume that K ′′ is not the root block. Then there
is at least one vertex in V (K ′′) \ {u} which is in C and, hence, open-separates u and v in C. So, let us
assume that K ′ is a leaf block, i.e. v is a non-articulation vertex of K ′. Now again, if K ′′ is not the root
block, then there is at least one vertex in V (K ′′) \ {u} which is in C and, hence, open-separates u and v
in C. So, now let us assume that K ′′ is the root block. Since K ′ is a leaf block and |V (K ′)| = 2, by the
minimality in size of the root block, we must have |V (K ′′)| = 2. So, assume z to be the non-articulation
vertex of K0. If P = G[z, u, w, v], we have P ∼= P4 with u and w being the articulation vertices and z
and v being the leaf-vertices of P . Since G ̸∼= P4, we must have G ∼= G′ �q P for some block graph G′

and some vertex q ∈ {u,w} (note that both z and v are non-articulation vertices of G). However, by
the way we have chosen the root block K0, we must have q = u. This implies that u is the negative
articulation vertex K∗ for some K∗ ∈ K(G) such that K∗ /∈ {K,K0}. This, in turn, implies that u and
v are open-separated in C by some vertex in (V (K∗) ∩ C) \ {u}.
Subcase 2.2 (At least one of V (K) and V (K ′) has size 3). Without loss of generality, let us assume that
|V (K)| = 3. So, assume that K = G[w, u, y] for some vertex y ∈ V (G). We must have y /∈ C (otherwise
y would open-separate u and v). We first assume that K is the root block. If v is an articulation vertex
of K ′, then {v} = V (K ′) ∩ V (K ′′′) for some block K ′′′ ( ̸= K ′) ∈ K(G). This implies that there exists a
vertex in V (K ′′′) \ {v} which open-separates u and v in C. Moreover, if v is a non-articulation vertex of
K ′, then we must have |V (K ′)| = 3 (or else, K ′ is a leaf block of size smaller than the root block which is
a contradiction). Assume that V (K ′) = {w, v, a} for some vertex a ∈ V (G). If a too is a non-articulation
vertex of K ′, then K ′ is a leaf block that is not a root block and, hence, a ∈ C. If however, a is an
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articulation vertex of K ′, then too, a ∈ C. Thus, either way, a open-separates u from v in C. Thus, we
are done in the case that K is the root block of G.

So, let us now assume that K is not the root block of G. Now, if y ∈ C, then y open-separates u and
v in C. So, let us assume that y /∈ C, which implies that y is a non-articulation vertex of K. This, in
turn, implies that u is an articulation vertex of K, or else, K would be a leaf block of G that is not
the root block and so, y ∈ C, contrary to our assumption. So, let {u} = V (K) ∩ V (K ′′) for some block
K ′′ ( ̸= K) ∈ K(G). If however, v too is an articulation vertex of K ′, then {v} = V (K ′) ∩ V (K ′′′) for
some block K ′′′ (̸= K ′) ∈ K(G). Now, at least one of K ′′ and K ′′′ is not the root block. So, without loss
of generality, assume that K ′′ is not the root block. Then, there is at least one vertex in V (K ′′) \ {u}
which is in C and, hence, open-separates u and v in C. So, let us assume that v is a non-articulation
vertex of K ′. Again, if K ′′ is not the root block, then there exists at least one vertex in V (K ′′) \ {u}
which is in C and, hence, open-separates u and v in C. So, now assume K ′′ to be the root block. If
|V (K ′′)| ≥ 3, then there exists a vertex of V (K ′′)\{u} in C and, hence, open-separates u and v in C. So,
let us assume that |V (K ′′)| = 2 and that z is the non-articulation of K ′′. If |V (K ′)| = 3, then suppose
that V (K ′) = {w, v, a} for some vertex a ∈ V (G). If a too is a non-articulation vertex of K ′, then K ′

is a leaf block that is not a root block and hence, a ∈ C. If however, a is an articulation vertex of K ′,
then too, a ∈ C. Thus, either way, a open-separates u from v in C and we are done in the case that
|V (K ′)| = 3. So, let us finally assume that |V (K ′)| = 2 and that v ∈ V (K ′) is a non-articulation vertex
of K ′.

If B = G[z, u, y, w, v], we have B ∼= B5 with u and w being the articulation vertices and z and v being
the leaf-vertices of B. Since by our assumption, G ̸∼= B5, we have G ∼= G′ �q B for some block graph G′

and some vertex q ∈ {u,w} (note that z, y and v are non-articulation vertices of G). Now, by the way
we have chosen the root block, this implies that we must have q = u. This further implies that u is the
negative articulation vertex of K∗ for some K∗ ∈ K(G) such that K∗ /∈ {K,K0}. Hence, u and v are
open-separated in C by some vertex in V (K∗) ∩ C \ {u}.
This, therefore, proves that C is an OLD-code of G and with that, we prove the theorem.

Applying Theorem 2.10 to each connected component of a block graph, one has the following general
result.

Corollary 2.10. Let G be an open-twin-free block graph with k connected components and no isolated
vertices. Moreover, let G neither be a copy of P2 nor of P4. Also, let mQ(G) be the number of non-leaf
blocks of G with at least one non-articulation vertex. Then γOLD(G) ≤ |V (G)| −mQ(G)− k.

Foucaud et al. [15] have shown that, for any open-twin-free graph G, γOLD(G) ≤ |V (G)| − 1 unless G
is a special kind of bipartite graph called half-graph (a half-graph is a bipartite graph with both parts of
the same size, where each part can be ordered so that the open neighbourhoods of consecutive vertices
differ by exactly one vertex [13]). Noting that P2 and P4 are the only block graphs that are half-graphs,
Theorem 2.10 can be seen as a refinement of this result for block graphs.

We now show that the upper bound given in Theorem 2.10 is tight and is attained by arbitrarily large
connected block graphs. To prove so, for two non-negative integers k and l such that k + l ≥ 1, let us
define a subclass Gk,l of block graphs by the following rule: Assume that T1, T2, . . . , Tk are k copies of K3

with V (Ti) = {ui, vi, wi} for each 1 ≤ i ≤ k. Further, assume that A1, A2, . . . , Ak are k copies of P2 with
V (Ai) = {ai, bi} for each 1 ≤ i ≤ k, and that L1, L2, . . . , Ll are l copies of P3 with V (Lj) = {xj , yj , zj}
for each 1 ≤ j ≤ l. Let Gk,l be the graph obtained by identifying the vertices vi with bi for each 1 ≤ i ≤ k
and identifying the vertices ui and zj for all 1 ≤ i ≤ k and 1 ≤ j ≤ l into a single vertex u, say. See
Figure 8 for an example of a construction of Gk,l with k = 2 and l = 3. As a matter of reference, we
continue to call the vertices of Gk,l obtained by identifying vi with bi, for all 1 ≤ i ≤ k, as vi itself.

Proposition 2.11. For all positive integers k and l with l+k ≥ 2, γOLD(Gk,l) = |V (Gk,l)|−mQ(Gk,l)−1.

Proof. First of all, we have |V (Gk,l)| = 3k + 2l + 1, and mQ(Gk,l) = k. Therefore, by Theorem 2.10, we
have γOLD(Gk,l) ≤ 2(k + l).
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1

Figure 8: Graph G2,3 whose OLD-number attains the upper bound in Theorem 2.10. The black vertices
represent those included in the OLD-code C of G as described in the proof of the Theorem 2.10.

Now, let C be an OLD-code of Gk,l. For C to be an open-dominating set of Gk,l, the only neighbours vi
and yj of the degree 1 vertices ai and xj , respectively, of Gk,l must be in C. Moreover, u ∈ C for each
pair of wi and ai to be open-separated in C. Similarly, all but one of the xi’s must belong to C for each
pair of vertices yi and yj , for 1 ≤ i < j ≤ l, to be open-separated in C. Finally, for all 1 ≤ i ≤ k, at least
one of wi and ai must be in C for each pair of vertices vi and vj , for 1 ≤ i < j ≤ k, to be open-separated
in C. Adding up, therefore, we have |C| ≥ 2(k + l).

3 Lower bounds

The general lower bound for the size of an identifying code using the number of vertices is γID(G) ≥
⌈log2(|V (G)|+ 1)⌉ [28]. However, to reach this bound, a graph needs to have a large VC-dimension [10]
(the VC-dimension of a graph G is the size of a largest shattered set, that is, a set S of vertices such that
for every subset S’ of S, some closed neighbourood in G intersects S exactly at S′). Indeed, if a graph
has VC-dimension c, then any identifying code has size at least O(|V (G)|1/c) [10]. The value 1/c is not
always tight, see for example the case of line graphs, which have VC-dimension at most 4 but for which
the tight order for the lower bound is Ω(|V (G)|1/2) [16]. Similar results hold for LD- and OLD-codes, by
using the same techniques as in [10].

Block graphs have VC-dimension at most 2 (one can check that a shattered set of size 3 would imply
the existence of an induced 4-cycle or diamond), and thus, using the result from [10], their ID-number is
lower bounded by Ω(|V (G)|1/2). In this section, we improve this lower bound to a linear one, and give a
tight result.
For the rest of this article, given a block graph G, by Kleaf (G) we shall mean the set of all leaf blocks
of G with at least one edge in the block. Moreover, by the symbol ni(G), we shall mean the number of
vertices of degree i in the graph G.

Lemma 3.1. Let G be a connected block graph with at least one edge. Then we have

|K(G)| ≤ |V (G)| − 1− |Kleaf (G)|+ n1(G).

Proof. Let L(G) = {L ∈ Kleaf (G) : L ∼= K2} and G∗ be a graph obtained from G by, for each L ∈ L(G),
introducing a new vertex and making it adjacent to both elements of V (L). Thus, G∗ is a block graph
in which every leaf block has at least 3 vertices. We also note here that

(1) |L(G)| = n1(G),

(2) |V (G∗)| = |V (G)|+ |L(G)| = |V (G)|+ n1(G),

14



(3) |K(G)| = |K(G∗)| and that

(4) |Kleaf (G)| = |Kleaf (G
∗)|.

Now, let |K(G∗)| = h and that K(G∗) = {K1,K2, . . . ,Kh}. Since each block of a connected block graph
has at least one edge, assume that e1 = (v11v

1
2), e2 = (v22v

2
3), e3 = (v33v

3
4) . . . , eh = (vhhv

h
h+1) are h edges of

G∗ from each of E(K1), E(K2), . . . , E(Kh), respectively; where vij ∈ V (Ki) for all 1 ≤ i ≤ h and 1 ≤ j ≤
h+ 1. Since, by the structure of a block graph, for any subset S ⊂ {vij : 1 ≤ i ≤ h; 1 ≤ j ≤ h+ 1}, G∗[S]

does not contain a cycle as a subgraph, each of the vertices v11 , v
1
2 , v

2
3 , . . . , v

h
h+1 are distinct. Moreover,

since at least one vertex in each leaf block of G∗ is not any of the vertices vij , we have

|K(G)| = |K(G∗)| = h = |{v11 , v12 , v23 , v34 , . . . , vhh+1}| − 1 ≤ |V (G∗)| − |Kleaf (G
∗)| − 1

= |V (G)|+ n1(G)− |Kleaf (G)| − 1.

Corollary 3.2. Let G be a block graph with k connected components. Then, we have

|K(G)| − n0(G) ≤ |V (G)| − k − |Kleaf (G)|+ n1(G).

Proof. Assume that k = p + q such that G1, G2, . . . , Gp are the connected components of G, each with
at least one edge; and that S1, S2, . . . , Sq are the components of G, each with a single vertex. Then, we
have

|K(G)| =
∑

1≤i≤p

|K(Gi)|+
∑

1≤j≤q

|K(Sj)|

≤ q − p+
∑

1≤i≤p

(
|V (Gi)| − |Kleaf (Gi)|+ n1(Gi)

)
[using Lemma 3.1]

= |V (G)| − k − |Kleaf (G)|+ n1(G) + n0(G) [since q = n0(G)]

Corollary 3.3. Let G be a block graph with k connected components. Then we have

|K(G)| − n0(G) ≤ |V (G)| − k.

Proof. The result follows from Corollary 3.2 and the fact that n1(G) ≤ |Kleaf (G)|.

Before we come to our results, we define the following notations.

For a given code C of a connected block graph G, let us assume that C1, C2, ..., Ck are the k connected
components of the subgraph G[C] of G induced by C. Note that each Ci is a block graph. Then, V (G)
is partitioned into the four following parts.

(1) V1 = C,

(2) V2 = {v ∈ V (G) \ V1 : |N(v) ∩ C| = 1},
(3) V3 = {v ∈ V (G) \ V1 : there exist distinct i, j ≤ k such that N(v) ∩ Ci ̸= ∅ and N(v) ∩ Cj ̸= ∅},
(4) V4 = V (G) \ (V1 ∪ V2 ∪ V3). Note that, for all v ∈ V4, N(v) ∩ C ⊂ V (Ci) for some i and that

|N(v) ∩ V (Ci)| ≥ 2.

We now prove a series of lemmas establishing upper bounds on the sizes of each of the vertex subsets
V1, V2, V3 and V4 of a connected block graph G.

Lemma 3.4. Let G be a connected block graph and C be a code of G. Then following are upper bounds
on the size of the vertex subset V2 of G.

(1) |V2| ≤ |C| − n0(G[C]) if C is an ID-code.

(2) |V2| ≤ |C| if C is an LD-code.
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(3) |V2| ≤ |C| − n1(G[C]) if C is an OLD-code.

Proof. By definition of V2, each vertex v ∈ V2 has a unique neighbor u in C, i.e. N(v)∩C = {u}. Hence,
there can be at most |C| vertices in V2 and this proves (2).

If C is an ID-code, u cannot be isolated in G[C] (or else, u and v will not be closed-separated in C).
Thus, there are at most |C| − n0(G[C]) vertices in V2 and this proves (1).

Finally, if C is an OLD-code and u has a neighbor w ∈ N(u) ∩ C such that degG[C](w) = 1, then v and
w are not open-separated. Thus, there are at most |C| − n1(G[C]) vertices in V2 and this proves (3).

Next, given a connected block graph G and a code C of G, we define the following auxiliary graph
FC(G). As above, let C1, C2, . . . , Ck be the k connected components of G[C] and that the vertex set
V (G) be partitioned into the subsets V1, V2, V3, V4. Then, consider the bipartite graph FC(G) where
A = {aj : vj ∈ V3} and B = {ui : Ci is a connected component of G[C]} are the two parts of V (FC(G)).
As for the edge set E(FC(G)), for each vertex vj in V3, we add an edge between aj and ui if vj is adjacent
to a vertex of Ci.

Lemma 3.5. For a connected block graph G and a code C of G, the auxiliary graph FC(G) is a forest.

Proof. If there is a cycle in FC(G), there would be a cycle in G involving two vertices of different connected
components Ci and Cj , say. By the definition of a block graph, the latter cycle in G has to induce a
complete subgraph in G. However, that would imply that Ci and Cj must be the same component of
G[C] which is a contradiction. Thus, FC(G) is cycle-free and, hence, is a forest.

Lemma 3.6. Let G be a connected block graph, C be a code of G and C1, C2, . . . , Ck be k connected
components of G[C]. Then, we have |V3| ≤ k − 1.

Proof. By Lemma 3.5, FC(G) is a forest. Let V (FC(G)) = A ⊔ B be as defined above. Then we have
|B| = k. Since any vertex in the part A of V (FC(G)) is adjacent to at least two distinct vertices of B,
we have |V3| ≤ k − 1.

Lemma 3.7. Let G be a connected block graph and C be a code of G. Then, we have |V4| ≤ |C| − k.
In particular,

(1) |V4| ≤ |C| − 3k + 2n0(G[C]) if C is an ID-code;

(2) |V4| ≤ |K(G[C])| ≤ |C| − 2k1 − 3k2 + n1(G[C]) if C is an OLD-code; where

k1 = |{Ci : Ci is a connected component of G[C] and Ci
∼= K3}| and k2 = k − k1.

Proof. We first prove that every vertex in V4 is adjacent to the vertices of exactly one block of some Ci,
where Ci is a connected component of G[C]. So, consider a vertex v of V4. Let Ci be the component of
G[C] such that N(v) ∩ C ⊆ V (Ci). Since G[N(v) ∩ C] is a connected subgraph of G, the vertex subset
N [v] ∩C induces a 2-connected subgraph of G. By definition of a block graph, therefore, N [v] ∩C must
be a clique. In particular, N(v) ∩ C is a clique of Ci of size at least 2. Assume that it is not a block of
Ci. Let u be a vertex in the block of Ci containing N(v) ∩ C such that u is not adjacent to v. Then the
set {u, v} ∪ (N(v)∩C) induces a 2-connected subgraph of G that is not complete, a contradiction. Thus
N(v) ∩ C is a block of Ci.

Also, if v and v′ are two distinct elements of V4 adjacent to vertices of Ci, we must have N(v) ∩N(v′) ∩
V (Ci) of size at most 1 (since N(v)∩C and N(v′)∩C are distinct). This shows that each vertex v ∈ V4

corresponds to a unique block of size at least 2 of G[C]. This implies that |V4| ≤ |K(G[C])| −n0(G[C]) ≤
|C| − k, by Corollary 3. We now prove the more specific bounds for ID- and OLD-codes.

(1) First consider the case where C is an ID-code. Let Ci be a connected component of G[C] such that
at least one vertex of V4 is adjacent to some vertices of Ci. In particular, |V (Ci)| ≥ 2 and since C is a
ID-code, Ci is closed-twin-free. We first show the following.

Claim A. No element of V4 is adjacent to the vertices of the leaf blocks of Ci.
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1

Figure 9: Z: Graph of largest size whose minimum OLD-code is a 3-clique.

Proof of Claim A. Suppose that L is a leaf block of Ci. Then we must have L ∼= K2, or else, at
least two vertices in V (L) are not closed-separated in C. So, assume that V (L) = {x, y}. Then at least
one of x and y must be a non-articulation vertex of Ci. Without loss of generality, suppose that y is a
non-articulation vertex of Ci. If there exists a vertex v of V4 such that N(v) ∩ C = V (L), then v and y
would not be closed-separated in C which is a contradiction. Hence, no element of V4 is adjacent to the
vertices of the leaf blocks of Ci. ♦

This implies that the number of vertices of V4 that can be adjacent to the vertices of Ci are at most
|K(Ci)| − |Kleaf (Ci)|. Now, we must have the following.

Claim B. |Kleaf (Ci)| ≥ 2

Proof of Claim B. If, on the contrary, |K(Ci)| = 1, then |V (Ci)| = 1; or else, all pairs of vertices of Ci

are not closed-separated in C. This leads to the contradiction to the fact that |V (Ci)| ≥ 2. ♦

This, therefore, implies that the number of vertices of V4 adjacent to the vertices of Ci are at most
|K(Ci)| − |Kleaf (Ci)| ≤ |K(Ci)| − 2 ≤ |V (Ci)| − 3 (by Corollary 3) and, hence,

|V4| ≤
∑

|V (Ci)|≥2

(
|K(Ci)|−|Kleaf (Ci)|

)
= |K(G[C])|−n0(G[C])−2(k−n0(G[C])) ≤ |C|−3k+2n0(G[C]).

(2) In the case that C is an OLD-code of G, we have n0(G[C]) = 0. So, assume that Ci is a connected
component of G[C] with at least one edge. Then, by Lemma 3.1, we have |K(Ci)| ≤ |V (Ci)| − 1 −
|Kleaf (Ci)|+ n1(Ci). If Ci

∼= K3, then we have |K(Ci)| = 1 = |V (Ci)| − 2. If however, Ci ̸∼= K3, then we
have |K(Ci)| ≤ |V (Ci)| − 3 + n1(Ci). This implies that

|V4| ≤ |K(G[C])| =
∑

Ci
∼=K3

|K(Ci)|+
∑

Ci ̸∼=K3

|K(Ci)|

≤
∑

Ci
∼=K3

(
|V (Ci)| − 2

)
+

∑
Ci ̸∼=K3

(
|V (Ci)| − 3 + n1(Ci)

)
=

∑
1≤i≤k

(
|V (Ci)| − n1(Ci)

)
− 2k1 − 3k2 = |C| − 2k1 − 3k2 + n1(G[C]).

Finally, before we come to our next theorem on the lower bounds on the code-numbers of connected block
graphs in terms of the order of the graph, we first define a special graph on seven vertices that is an
exception to the result. We denote the special graph by Z, which is simply a graph with a three leaves
each adjacent to a unique vertex of the complete graph on four vertices (see Figure 9 for a depiction).
As shown in Figure 9 with the vertices marked in black, the OLD-number of Z is 3.

Theorem 3.8. Let G be a connected block graph. Then we have

• γID(G) ≥ |V (G)|
3 + 1;

17



• γLD(G) ≥ |V (G)|+1
3 .

• γOLD(G) ≥ |V (G)|
3 + 1 for all block graphs G that are not isomorphic to Z

Proof. Assume C to be a code of G and C1, C2, . . . , Ck to be the k connected components of G[C]. We
prove the theorem using the relation |V (G)| = |C|+ |V2|+ |V3|+ |V4| and the upper bounds for |V2| |V3|
and |V4| in Lemmas 3.4, 3.6 and 3.7, respectively.

If C is an ID-code, then we have

n = |C|+ |V2|+ |V3|+ |V4|
≤ |C|+ |C| − n0(G[C]) + k − 1 + |C| − 3k + 2n0(G[C])
= 3|C| − 2k − 1 + n0(G[C]).

Now, there must be at least as many connected components of G[C] as there are isolated vertices in
G[C], i.e. we have k ≥ n0(G[C]). This implies that n ≤ 3|C| − k − 1. Thus, for k ≥ 2, the results holds.
Moreover, when k = 1, we must have n0(G[C]) = 0 and so, again, the result holds.

If C is an LD-code, then
n = |C|+ |V2|+ |V3|+ |V4|

≤ |C|+ |C|+ k − 1 + |C| − k
= 3|C| − 1

and, hence, the result holds.

Finally, if C is an OLD-code, then we have

n = |C|+ |V2|+ |V3|+ |V4|
≤ |C|+ |C| − n1(G[C]) + k1 + k2 − 1 + |C| − 2k1 − 3k2 + n1(G[C])
= 3|C| − k1 − 2k2 − 1.

This implies that the result holds when either k1 ≥ 2 or when k2 ≥ 1.

If however, k1 = 1 and k2 = 0, then G[C] is isomorphic to K3. If n ≤ 6, the result holds since we have
n ≤ 3|C|−3. Thus n = 3|C|−2 = 7. Since no vertex in V (G)\C can be adjacent to exactly two vertices
of C (otherwise the last vertex of C would not be open-separated with this vertex), the four vertices in
V (G) \ C must each be adjacent to either exactly one vertex in C or all three vertices of C. Therefore,
G is isomorphic to the graph Z in Figure 9. This implies that the result holds for all block graphs not
isomorphic to Z.

Extremal cases where these bounds are attained can be constructed as follows (see Figure 10). Consider
the graph with one path on vertices u1, ...., uk (the vertices in the code C) and attach further vertices as
follows.

• for an ID-code C: attach a single vertex to each ui and vertices to the pairs ui, ui+1 for 1 < i < k−1,

• for an OLD-code C: attach a single vertex to u1, uk and each ui for 2 < i < k − 1 and vertices to
all the pairs ui, ui+1,

• for an LD-code C: attach a single vertex to each ui and vertices to all the pairs ui, ui+1.

Note that the graphs presented here are all the possible extremal cases for ID-codes, whereas further
extremal graphs for OLD-codes and for LD-codes exist. If we now consider the parameter |K(G)|, we
can use the relation |V (G)| ≥ |K(G)|+ 1 to obtain a similar lower bound. But this lower bound can be
improved as the next result shows.

Theorem 3.9. Let G be a connected block graph and K(G) be the set of all blocks of G. Then we have

• γID(G) ≥ 3(|K(G)|+2)
7 ;

• γLD(G) ≥ |K(G)|+2
3 ; and

• γOLD(G) ≥ |K(G)|+3
2 .
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(a) (b) (c)

Figure 10: Extremal cases where the lower bounds are attained, black vertices form a minimum (a) ID-code,
(b) OLD-code, (c) LD-code.

Proof. Assume C to be a code of G and that C1, C2, . . . , Ck are the k connected components of G[C].
First, we define an inclusion set IG(C) = {K ∈ K(G) : V (L) ⊂ V (K) for some L ∈ K(G[C])}. Next, we
define the following types of blocks of G.

1. Let KC(G) = {K ∈ IG(C) : V (K) ⊂ C} i.e. all blocks of G which are also blocks of the subgraph
G[C] (also a block graph) of G.

2. Let KC(G) = K(G) \IG(C). In other words, the set KC(G) includes all blocks of G which do not
contain any vertices of the code C.

3. For i = 2, 3, 4, let Ki(G) = {K ∈ IG(C) : V (K) ∩ Vi ̸= ∅}.

We note here that, K(G) = KC(G)∪KC(G)∪K2(G)∪K3(G)∪K4(G). We now have the following bounds.

Claim A. |K2(G)| ≤ |V2|.
Proof of Claim A. Since each vertex in V2 belongs to a unique block of G, the claim is true. ♦

We now invoke the auxiliary graph FC(G) of G and assume that there are l connected components of
FC(G). Then we have the following claim.

Claim B. |K3(G)| ≤ 2(k − l).

Proof of Claim B. Since each vertex of FC(G) in the part A is of degree at least 2, we have |E(FC(G))| ≥
2|A| = 2|V3|. Combining this with the fact that |E(FC(G))| = |V3| + k − l (since FC(G) is a forest by
Lemma 3.5), we have |V3| ≤ k − l. Hence, we have |K3(G)| ≤ |E(FC(G))| ≤ 2(k − l). ♦

Claim C. |KC(G)| ≤ l − 1.

Proof of Claim C. Let F1, F2, . . . , Fl be the l connected components of the auxiliary graph FC(G) of G.
To count |KC(G)|, we first observe that, for any K ∈ KC(G), there exists a vertex v ∈ V (G) in K such
that v is a positive articulation vertex of K. If K ′ ∈ K(G) such that V (K) ∩ V (K ′) = {v}, then there
exists a vertex v′ ∈ V (G) in K ′ such that v′ ∈ C. Now, if v′ ∈ V (Ci), we have K

′ ∈ IG(C). Assume that
ui is a vertex in B ∩Fj (for some 1 ≤ j ≤ l) of the vertex set V (FC(G)). Then, we associate Fj with the
block K ∈ KC(G). Moreover, we note that this association is one-to-one: if there exists another block
K1 ∈ KC(G) also associated with Fj , i.e. if v1 ∈ art+(K1), K

′
1 ∈ K(G) such that V (K1)∩ V (K ′

1) = {v1}
and there exists a v′1 ∈ V (K ′

1) ∩ V (Ci), then by virtue of both v ∈ art+(K) and v1 ∈ art+(K1), there
exists a cycle of length at least four in the block graph G which is a contradiction. This implies that
|KC(G)| ≤ l − 1 (the −1 in the upper bound appears due to the fact that a block in KC(G) cannot be a
root block of G). ♦

Claim D. |KC(G) ∪ K4(G)| ≤ |K(G[C])| − n0(G[C]).
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Proof of Claim D. Assume that K ∈ K(G) is a block of KC(G)∪K4(G). Then, V (K) contains at least
two vertices, say, u, v ∈ C. Therefore, uv ∈ E(G). So, assume L ∈ K(G[C]) to be the block such that
u, v ∈ V (L). Then, V (L) ⊂ V (K). Thus, every block K ∈ KC(G) ∪ K4(G) can be associated with a
block L ∈ K(G[C]) such that |V (L)| ≥ 2. Moreover, by the structure of a block graph, this association
is one-to-one. This implies that |KC(G) ∪ K4(G)| ≤ |K(G[C])| − n0(G[C]). ♦

To compute |K(G)| now, we have from the above Claims A, B, C and D that

|K(G)| ≤ |KC(G) ∪ K4(G)|+ |KC(G)|+ |K2(G)|+ |K3(G)|
≤ |K(G[C])| − n0(G[C]) + l − 1 + |V2|+ 2(k − l). (1)

Therefore, using Equation (1), we have

For ID-codes:

|K(G)| ≤ |K(G[C])| − n0(G[C]) + l − 1 + |V2|+ 2(k − l)

= |C| − k + l − 1 + |C| − n0(G[C]) + 2(k − l) [using Corollary 3.3 and Lemma 3.4(1)]

= 2|C|+ k − l − n0(G[C])− 1

≤ 2|C|+ k − n0(G[C])− 2.

Now, k − n0(G[C]) is the total number of components of C of size at least 2. Any such component
must contain at least 3 vertices of the code C. Therefore, 3(k − n0(G[C])) ≤ |C| − n0(G[C]). Therefore,
3|K(G)| ≤ 7|C| − n0(G[C])− 6 ≤ 7|C| − 6 and, hence, the result holds.

For LD-codes:

|K(G)| ≤ |K(G[C])| − n0(G[C]) + l − 1 + |V2|+ 2(k − l)

= |C| − k + l − 1 + |C|+ 2(k − l) [using Corollary 3.3 and Lemma 3.4(2)]

= 2|C|+ k − l − 1

≤ 3|C| − 2.

Finally, for OLD-codes: we assume the quantities k1 and k2 to be the same as in Claim 3.7 in the proof
of Theorem 3.8. Moreover, in this case, n0(G[C]) = 0. Hence, we have

|K(G)| ≤ |K(G[C])|+ l − 1 + |V2|+ 2(k − l)

= |C| − 2k1 − 3k2 + l − 1 + |C|+ 2(k − l) [using Lemmas 3.4(3) and 3.7(2)]

= 2|C|+ k1 − k − l − 1.

We therefore have the following two cases.

Case 1 (Either k > k1 or l ≥ 2). In this case, we clearly have |K(G)| ≤ 2|C| − 3 and, hence, the result
holds.

Case 2 (k = k1 and l = 1). In this case, every block K ∈ K(G) such that |V (K) ∩ C| ≥ 2 must have
|V (K) ∩ C| = 3. We now claim the following.

Claim 2A. Every block L ∈ K(G) such that L ∼= K2 must be a leaf block of G with the degree 1 vertex
in V (L) belonging to V2.

Proof of Claim 2A. (of Claim 2A). Assume that V (L) ∩ C = ∅. Then L cannot be a leaf block of
G. However, this means that l ≥ 2, contrary to our assumption. Hence, V (L) ∩ C ̸= ∅. However,
|V (L) ∩ C| = 1, or else, |V (L) ∩ C| = 3 which is not possible since |V (L)| = 2. This implies that L
must be a leaf block, or else, l ≥ 2 again. Now, if the degree 1 vertex in V (L) is in the code C, then
there exists a connected component Ci of C such that Ci ̸∼= K3 and so, k > k1, again contrary to our
assumption. Hence, the degree 1 vertex of V (L) must belong to V2. ♦

Now, assume that a block K of G belongs to K2(G) such that a vertex v ∈ V (K) ∩ V2 and that
u ∈ V (K)∩C is the only vertex of V (K) belonging to C. If there exists another vertex w ∈ V (K), then
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w /∈ C, or else, v ∈ V4 which is a contradiction. This implies that {u} is a connected component of C
and so, is not isomorphic to K3. Thus, k > k1 which is, again, the same contradiction. Hence, we must
have K ∼= K2 and, therefore, by Claim 2A, is a leaf block of G. This implies that |K2(G)| ≤ n1(G).
However, for the code C to have at least one connected component Ci

∼= K3, there must be at least one
block of size at least 4 in G. Thus, we must have |C| − n1(G) ≥ 4 (as is realised in Figure 9). This
implies that |K2(G)| ≤ n1(G) ≤ |C| − 4. Moreover, in a block graph G with k = k1 and l = 1, we also
have |KC(G)| = 0. Hence, using these bounds, we have

|K(G)| ≤ |KC(G) ∪ K4(G)|+ |K2(G)|+ |K3(G)|
≤ |K(G[C])|+ |C| − 4 + 2(k1 − 1)

= |C| − 2k1 + |C| − 4 + 2(k1 − 1) [using Lemma 3.7(2)]

= 2|C| − 6.

Thus, the result holds in this case as well.

Note that, since for any tree G we have |K(G)| = |E(G)| = |V (G)| − 1, the lower bounds in Theorem
3.9 are equivalent to the known lower bounds using the number of vertices (see [9] for ID-codes, [36] for
LD-codes and [35] for OLD-codes). In particular, there are infinite families of trees reaching the three
bounds in Theorem 3.9. Moreover, there are no such lower bounds for general graphs. For example, if
we consider the split graph G with its vertex set V (G) = {v1, ..., vk} ∪ {uX : X ⊆ {1, ..., k} and X ̸= ∅}.
The vertices v1, ...vk induce a clique, whereas the vertices uX induce an independent set. Moreover, there
is an edge between the vertices vi and uX if and only if i ∈ X. This graph has an identifying code of size
2k (the clique with the vertices corresponding to the singletons), but the number of blocks in G is 2k.

4 Conclusion

Block graphs form a subclass of chordal graphs for which all three considered identification problems can
be solved in linear time [2]. In this paper, we complemented this result by presenting lower and upper
bounds for all three codes. We gave bounds using both the number of vertices — as it has been done for
several other classes of graphs — and also using the parameter |K(G)| of the number of blocks of G that is
more fitting for block graphs. In particular, we verified a conjecture from [1] (Conjecture 1.1) concerning
an upper bound for γID(G), and also proved the conjecture on the LD-number [23] (Conjecture 1.2) for
the special case of block graphs. Moreover, we addressed the questions to find block graphs where the
provided lower and upper bounds are attained.

The structural properties of block graphs have enabled us to prove interesting bounds for the three
considered identification problems. It would be interesting to see whether other structured classes can be
studied in a similar way. It would also be interesting to prove Conjecture 1.2 for a larger class of graphs,
for example for all chordal graphs.
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