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Introduction

The Covid-19 pandemic has spurred an enormous scientific interest in the spread of infective diseases and in the evolution op epidemic outbreaks of such diseases. For a long time these subjects had only appealed to a limited group of researchers, and the overall scientific output dealing with them had been somewhat on the modest side. Possibly responsible for this is (in part) the enormous progress in medicine, especially during the second half of 20th century, which has provided mankind with effective treatments and prophylactics against a wide variety of severe infections. Large-scale epidemic or even pandemic spread of dangerous pathogens, without a cure being available, was considered a thing of the past by many. The Covid-19 outbreak has shattered this wide-spread illusion in a most dramatic way.

Another reason for the somewhat limited interest in the subject of epidemic infection outbreaks is the nature of the subject itself, which, at a closer look, is one of (at least) substantial complexity. This complexity makes it a highly non-trivial exercise to capture even the most elementary features of the phenomenon in simple mathematical formulas that can be dealt with by algebraic methods alone. Even one of the earlier, and still frequently used, models for the spread of infectious diseases, known as the SIR model and proposed by Kermack and McKendrick [1], leads to a set of differential equations that does not allow for an algebraic solution except in the simplest of cases. However, it deals with some essential elements of an epidemic by parting the population in 3 categories of population members: susceptibles (S) that have not been infected but which are vulnerable to infection, active infections (I) spreading the infection via transmission to susceptible, and removed infections (R) representing those members that have been infected but who are no longer infectious (able to spread the infection). In its mathematical form introduced by Kermack and McKendrick, to be referred to as the standard SIR-model hereafter, the model is able to reproduce some remarkable features of epidemics like for instance the fact (often observed in real outbreaks) that no matter how easily transmitted the pathogen involved may be, a finite part of a population that falls victim to an epidemic will always remain uninfected (i.e. susceptible). Infection removal turns out to be responsible for this observation. Only when infections are not removed, and each active infection in a population will remain an active infection indefinitely, the entire population gets infected in the end. However, also the fact that not only the standard SIR model but also its extended versions require numerical techniques and, depending on the complexity of a particular model, quite the necessary computational power (CPU-time), is a reason to be considered for the fact that mathematical epidemiology is a field with quite some unexplored territories. Only during the last two decades or so, computational power previously only available from main-frame of super computers has become readily available to a wide community of researchers (and some problems in mathematical epidemiology simply do require that power). Some characteristics of epidemic growth of infections are not dealt with by the standard SIR-model however. When we look closer at the concept of a population from an epidemio-logical perspective, it is clear that a population actually represents a network of population members (nodes in mathematical terms), with each member being either in contact or involved in some other kind of "interaction" with other members (nodes) in the population. The standard SIR-model does not account for this network structure. It is obvious however, that this network structure is likely to have an influence on the propagation of an infection through a population. In physical systems consisting of networks or showing network-like structures (such as crystal lattices, porous media, electric circuits etc.), effects related specifically to the network characteristics of the system are not only common but, actually, the rule. There is no reason to assume that population networks will make an exception in this respect, especially not in the context of infection propagation. In fact, the spread of an infection through a population lattice can be perceived as a physical process analogous to the flow of a liquid trough a porous medium, or to the (macroscopic) polarisation of spins on a lattice or network under the influence of the (microscopic) interactions between the individual spins (for which the Ising model, which we will encounter more than once throughout this paper, represents the simplest case [2]). The standard SIR model, however, treats the spread of infectious diseases in terms of an analogue of the so-called mean-field approaches used in physics to describe systems with collective interactions. The environment of the population members (nodes) of a specific type (S, I or R) is considered the same for all members of the type and equal to some average over all the members of that type. Local fluctuations and lattice effects are averaged out. This yields a fair approximation in some cases, but generally leads to quantitative and, possibly, even qualitative differences from the exact behaviour of an infection in a given population and for given parameters.

An important phenomenon directly related to physical systems with a network structure is percolation (for a good introduction to the subject see [3]). Percolation becomes relevant when larger numbers of nodes in a network are removed (either randomly or according to some spatial distribution function), or become "inert" in the sense that they can no longer pass-on an interaction of some kind. Examples are the removal of spins on an Ising lattice, the replacement of magnetic atoms or ions by non magnetic ones in real magnetic systems, or the removal of joints in a network of resistors. The essence of percolation is the formation of a single macroscopic cluster of "active" or non-removed nodes that spans throughout the entire population, having a size of the same order of magnitude as the size of the population. Such a cluster is formed when the number of removed or "inert" nodes is sufficiently low. In cases where there are no nodes removed at all, the cluster becomes identical with the population. When a large enough number of nodes is (randomly) removed however, the macroscopic cluster starts breaking up into many smaller isolated clusters, until at some critical value of the removal rate the macroscopic cluster vanishes completely, leaving only so-called secondary clusters of "microscopic" size. The latter is referred to as the percolation transition, which has all the characteristics of a real phase transition from the viewpoint of statistical physics, including universality, scaling laws and critical exponents. Percolation transitions have a huge impact on the properties of real systems. In magnetic systems for instance, they relate to a collapse of the magnetic order (magnetisation), whereas in resistor networks they are accompanied by a notable increase in the equivalent resistance of the network. It may be obvious that, by their very nature, percolation phenomena may also play a role in the spread of infectious diseases. Their is a conceptual similarity for instance between the (random) replacement of magnetic atoms in a solid by non-magnetic ones and (random) vaccination of susceptible members of a population network. Vaccination with a vaccine that provides full immunity against infection turns a susceptible member of a population into an "inert" member that will not only remain uninfected but, inherently, will also not be able to pass on an infection to another member. The relevance of percolation to the problem of epidemic growth of infections is clear therewith. Despite this, the role of percolation in an epidemiological context has not been investigated extensively. Of the first notable research efforts dealing with the issue (like for instance [4]) a significant part has been presented only quite recently. One of the reasons for this must be sought in the fact that it is notoriously difficult to capture the essence as well as the complexity of percolation phenomena in mathematical formulas: easy as they are to visualise, describing them in mathematical terms is an entirely different matter. Therefore, computer simulations are the most widely used tool for investigating percolation. Monte-Carlo techniques provide a very useful (and frequently deployed) method in this respect [5], since these techniques can simulate the actual process of (random) noderemoval and, where appropriate, its evolution with time. They also allow for a comprehensive evaluation of results. However, a disadvantage of Monte-Carlo methods is that they require (very) substantial computational efforts for achieving meaningful results and, correspondingly, a lot of CPU time compared to many other computational exercises. Hence, it was only after (relatively) fast and powerful computing facilities had become readily available on a thus far unprecedented scale during the last few decades, that the possibility of actually using Monte-Carlo techniques became easily accessible to a wider scientific audience. It is therefore not unsurprising that, until very recently, the role of percolation in the epidemic spread of infections has attracted only a relatively modest level of attention by the scientific community.

Another issue with Monte-Carlo simulations is that the results they generate do not readily provide theoretical insight into the simulated phenomenon. They are experiments in their own right, carried out on a computer instead of in a laboratory, but nevertheless they often require further analysis in the same way data obtained in the real world need to be analysed before they make sense.

The first aim of this paper is to deal with the aforementioned shortcomings of the standard SIR-model, and to incorporate the network structure of the population into a more general model. Such a model should thus account for lattice correlations as well as percolation effects. The partition of the population in susceptibles, active infections and removed infections is maintained. Only a 4th partition is introduced as an option, consisting of vaccinated population members who are (partially) immune to infection. However, the purpose of the model is insight, not numbers 1 . It consist of a mathematical framework that incorporates the influence of the network structure through expansion of key physical quantities as a (Taylor) series in the number of cumulative infections. These series expansions replace their simplified (linear) counterparts in the differential equations of the standard SIR-model. This approach leads to formulas which are exact, but only in a strictly formal sense, since the coefficients in the series expansions cannot be calculated "ab initio" in the majority of the cases of interest. Therefore, the framework is less suitable for making accurate predictions on how an existing epidemic in the real world will develop (the results presented in this paper make clear however that such predictions are generally highly problematic anyway). Nevertheless, valuable insights can be obtained on the basis of the model, as well as (qualitative) rules of thumb that can be of use during efforts to bring an actual epidemic under control. The model is extensively tested against data provided by Monte-Carlo simulations for both vaccinated and unvaccinated populations.

Another phenomenon addressed extensively in this paper is herd-immunity. A concept first mentioned in the literature by Potter [6] (following his experience as a veterinarian during an outbreak of the bacterial infection Brucella Abortus among cattle), herd-immunity has been a slippery subject ever since. In fact, the concept of herd-immunity is not even welldefined [7]. Within the scientific community there are many definitions circulating. One of the most prominent ones defines herd-immunity as the stage in the evolution of an epidemic where the number of active infections has reached its peak, after which it is dropping down to eventually fade-out. However, the fact that the active infection rate drops does not imply an immediate return to normality. The transmission of the infection to susceptible population members will still go on for a while and new infections will continue to emerge. Another definition of herd-immunity, one that resonates more with intuition, is in a more literal sense and is obtained when we define herd-immunity as the stage in the evolution of an epidemic where the number of active infections has become almost negligible, leaving a population immune to new major (epidemic) outbreaks of the pathogen involved under all circumstances. It is obvious that these 2 definitions are conceptually related, and therefore probably also relate to the same underlying mechanisms, thus illustrating the confusion that surrounds the concept of herd-immunity. As to the underlying mechanisms there is some confusion as well. In the standard SIR-model, herd-immunity (no matter which definition is used of the 2 definitions mentioned) is a direct result of infection removal. However, the achievement of herd-immunity is often illustrated/explained in a pictorial way on the basis of a (partially immunised) population network in which (fully) immunised members block the routes of the infection towards susceptible members of the population, thus "screening" them from active infections. Obviously the mechanisms leading to herd-immunity are not entirely clear as well, or at least the subject of ambiguity. It does even occur that in the same paper results from the standard SIR-model are quoted (for instance to calculate the herd-immunity threshold), whereas an explanation of herd-immunity is given in terms of the aforementioned pictorial scheme (see [8] for example). An additional aim of this paper is therefore to bring some clarity in these issues. The inclusion, also presented in this paper, of the network-structure of populations and percolation effects into a generalised SIR-model seems to provide an ideal foundation for such an effort.

Another central aspect of mathematical epidemiology are reproduction numbers, among which the basic reproduction number R 0 has a special status. Reproduction numbers are usually defined as the total number of secondary infections that a single active infection generates from a given moment in time onwards. The basic reproduction number R 0 is a special case here, and represents the total number of secondary infections generated by a single active infection present at the start of an outbreak (t = 0). In practice, estimates for reproduction numbers are calculated in many different ways. However, a closer inspection shows that very often such calculations are in fact approximations based on a rather crude translation of the actual concept of reproduction numbers, as it is defined, into an algebraic expression in terms of the parameters of an underlying epidemiological model (such as the SIR-model). For instance, the expression for R 0 on the basis of the standard SIR-model is very often written as R 0 = p i /p r , where p i and p r are the central parameters of the SIR-model, namely the transmission rate (p i ) and the rate of removal, or constant of removal (p r ). The reasoning thereby is that τ = 1/p r represents the average lifetime of an active infection (p r has dimension 1/time) and that with a transmission rate p i (which also has dimension 1/time) the total number of infections generated during the lifetime of an active infection present at t = 0 is simply given by R 0 = τ p i = p i /p r . But what is entirely ignored here is that the number of susceptibles is not a constant during the lifetime of an active infection and may even vary substantially when p r is small (i.e. τ is large) relative to p i . Since the (temporal) values of reproduction numbers are often considered as indicators for herd-immunity (for instance, the herd-immunity threshold obtained on the basis of the standard SIR-model is often expressed as 1 -1/R 0 ) a more detailed discussion about them seems inevitable in the context of this paper. The aim is to clarify how exact, non-approximative, expressions for reproduction numbers can be given on the basis of the generalised SIR-model presented here, as well as to see whether (and how) the network structure of a population has an effect on reproduction numbers generally, and what the precise relation is between reproduction numbers and herd-immunity.

This paper is primarily written with a readership consisting of physicists and (mathematical) epidemiologists in mind. In line with this objective, much emphasis is laid on analogies between epidemiological phenomena and phenomena in physics. Concepts and notions borrowed from statistical and condensed matter physics make their appearance regularly (though this may not be mentioned explicitly on every occasion). The issues dealt with are addressed therewith from a physics perspective, with the aim of providing a wider viewpoint on a the spread of infectious diseases, a topic that not only gained an enormous (instant) relevance when the Covid-19 pandemic broke out, but which will remain of importance in times still to come.

The general outline of the paper is as follows. Chapter 1 presents the generalised SIRmodel that accounts for network-effects and local fluctuations. Chapter 2 deals with repro-duction numbers and their interpretation. Semi-algebraic solution methods for 3 relevant approximative examples of the basic differential equations of the generalised SIR-model (presented in chapter 1) are discussed in chapter 3. In chapter 4 the generalised SIR-model is tested against to results of Monte-Carlo simulations of epidemic outbreaks in an SIR context. Chapter 5 deals with properties and consequences of the model, and with several important insights obtained from it that lay the basis for the more detailed discussion of herd-immunity presented in the next chapter. Chapter 6 is entirely devoted to herd-immunity. It addresses the general mechanisms responsible for herd-immunity, the definition of herd-immunity and the herd-immunity threshold. As a logical follow up of chapter 6, chapter 7 deals with vaccination and vaccine-acquired herd-immunity. Finally, chapter 8 gives an in-depth account of the role of percolation effects in the spread of infectious diseases and establishes an interesting link between herd-immunity transitions and phase transitions as they are known from statistical physics. It is also shown how the generalised SIR model presented in chapter 1 is able to account for these percolation effects.

SIR-model with network correlations and local fluctuations

We represent the population in which the epidemic is spreading as a network (or lattice) of nodes (lattice points) connected by links (lattice bonds) to other nodes in the network (see fig. 1). The nodes represent the individuals belonging to the population, links connecting 2 nodes the social interaction between the individuals represented by the nodes. As such, the multiple of links connecting a single node to other nodes in the network can be seen as the social network of the individual represented by the central node. It is along these links that the infection is transmitted and the epidemic spreads.

Even the analysis of relatively simple networks and lattices is, in general, a complicated matter however. In most cases, many typical phenomena that may take place in a network, such as cluster-formation and percolation-transitions, defy an exact (algebraic) treatment, and their full analysis requires numerical methods or even rigorous computer-simulations. The purpose of this section however, is to capture some of the essential features of the spread of an epidemic in a phenomenological algebraic model that offers not only the possibility to obtain semi-quantitative results but, above all, more insight into the mechanisms and phenomena involved.

Following the standard SIR-model [1], we assume 3 "types" of individuals or nodes: s) susceptible ones (uninfected but vulnerable to infection via social contacts), i) infectious ones (active, transmissible infections), and r) removed infections, that relate to individuals that have either recovered from an infection and acquired (indefinite) full immunity, or individuals that have succumbed to an infection (unlike in real life, there is no difference between these two possibilities from a strictly mathematical viewpoint). To avoid unnecessary complications we assume that each individual keeps contact with the same number ν of other individuals in the population. That is, each node is connected via links to an equal number of other nodes in the network.

As soon as the first active infections occur in the population (either by having been "imported" from outside the population or by any other feasible mechanism) and the epidemic starts spreading, the respective population-fractions s s , s i , s r of respectively susceptible, infected and removed nodes/individuals start to evolve with time. However, it is easy to see that, by definition:

s s + s i + s r = 1 (1.1)
The standard SIR-model is entirely centred around these quantities s s , s i , s r and is based on viewpoints similar to those underlying the mean-field descriptions of thermodynamic phase transitions. Local fluctuations in the environments (social networks) of the individual nodes are neglected (in fact even ignored). The environment of a node (i.e. the nodes linked to a particular node) is supposed to be homogeneous, with each node in the environment being of type s, i, or r with a probability given by s s , s i , s r respectively. With p i representing the rate of transmission of infection (per active infection and per susceptible individual) and p r the rate of infection-removal, the following coupled set of (non-) linear differential equations describes the time-evolution of the epidemic in the SIR-model:

ṡi = p i s i s s -ṡr (1.2) ṡs = -p i s i s s (1.3) ṡr = p r s i (1.4)
where the dotted symbols represent the time-derivatives. We now introduce the cumulative number of infections at a given time:

s = s i + s r (1.5)
in terms of which s s can be expressed (via (1.1)) as s s = 1 -s, so that by also using eq.

(1.4) we can rewrite eqs. (1.2) and (1.3) as:

ṡi = p i s i (1 -s) -p r s i (1.6) ṡ = p i s i (1 -s) (1.7)
The rationale behind the term p i s i s s = p i s i (1-s) is that a fraction s i of the population is infected and that each individual contacted by an infected person is susceptible to transmission with equal probability s s (the fraction of susceptible individuals among the total population). It is mainly in this particular Ansatz that the analogy between mean-field methods in the theory of thermodynamic phase transitions and the SIR-model is rooted (for a brief outline of mean-field methods see [2] for instance). However, it is well known that such an approach does not come without significant shortcomings, even in a qualitative sense. Not only the local fluctuations are ignored, but also the correlations that exist between probabilities of finding individual nodes linked to nodes of a certain type. Such correlations nearly always arise and depend on the particular geometry and topology of the lattice or network (the number of surrounding nodes to which each particular node is linked (ν) plays a crucial role in this respect for instance). This is particularly important in the context of percolation-phenomena, which can be seen as a useful paradigm for understanding group-or herd-immunity (as we will see later on).

To obtain an approach that, at least in a formal sense, takes account of local fluctuations and the above-mentioned correlations, we focus on the different type of links (or pairs of nodes) that can be identified in the network. We have links connecting an active infection (i) with a susceptible (s) node, links connecting an active infection with another active infection, links connecting a susceptible node with a removed infection (r) and so on. When the epidemic spreads, the total numbers of these links or pairs in the network (n xy , x, y = s, i, r) evolve with time until a stationary (equilibrium) state is reached (marking the end of the epidemic). From simple considerations (adopted from solid-state physics where they are applied to crystallattices), the following relations between the numbers of pairs of each type and the number ν of social contacts of an individual can be obtained:

2n ii + n is + n ir = nνs i (1.8)
2n ss + n is + n sr = nνs s (1.9)

2n rr + n ir + n sr = nνs r (1.10)
where n represents the total number of nodes in the population/network. The idea here is that each node is equally attributed to (divided among) the ν links connecting it to the other nodes in the network. As such, a link connecting a node of type x (x = s, i, r) to a node of type y (y = s, i, r) accounts for 1/ν of an x-type node and 1/ν of an y-type node (and when x=y for 2/ν of an x-type node). Summing over all the links (which is equivalent to summing over all the pairs of nodes connected via a (single) link) should yield the total number of s-, i-and r-nodes in the network.

We number the nodes of each particular type x = s, i, r from 1 to ns x . Let ν yx (l x ) be the number of nodes of type y = s, i, r linked to the l x -th node of type x.

We introduce:

< s yi > = 1 n i l i ν yi (l i ) = 1 ns i l i ν yi (l i ) (1.11) < s ys > = 1 n s l s ν ys (l s ) = 1 ns s l s ν ys (l s ) (1.12) < s yr > = 1 n r l r ν yr (l r ) = 1 ns r l r ν yr (l r ) (1.13)
The < s yx > represent the average number of y-type nodes linked to an x-type node (where the average is taken over all the nodes of x-type in the network). It is easy to verify that when x = y, the numbers of xy-links or pairs in the network are directly related to the averages < s yx > via:

n xy = ns x < s yx > = ns y < s xy > (1.14)
and when y = x via:

n xx = 1 2 ns x < s xx > (1.15)
where the division by 2 corrects for double-counting x-nodes. By using these identities and dividing out the ns x , eqs. (1.8), (1.9) and (1.10) can be rewritten for those cases where s i , s s , s r = 0 as:

< s ii > + < s si > + < s ri > = ν (1.16) < s ss > + < s is > + < s rs > = ν (1.17) < s rr > + < s ir > + < s sr > = ν (1.18)
a result not too surprising in itself.

Transmission of infection may take place only upon contact between individuals with an active infection (i) and a susceptible person (s), i.e. between i-type and s-type nodes in the network (forming an i-s pair). The rate of transmission is therefore proportional to the number of i-s pairs n is and can be expressed as:

ṡ = p i n is n (1.19)
which may serve as a replacement for eq. (1.7), whereas the rate of change of the active infections can be written as: 

ṡi = p i n is n -p r s i (1.
ṡ = (p i /n) l i ν si (l i ) = p i s i < s si > (1.21)
and (1.20) as:

ṡi = p i s i < s si > -p r s i (1.22)
It is worth noticing that (1.21) and (1.22) are in fact exact results for infinitely large populations and finite s i (and as such expected to apply also very well to finite yet sufficiently large populations). They constitute an exact generalisation of the standard SIR-model that accounts, at least in principle, for fluctuations and for correlations arising from to the typical network-structure of the population.

To demonstrate how the master-equations (1.6) and (1.7) of the standard SIR-model relate to their generalisation in the form of (1.21) and (1.22) it is useful to focus more closely on the parameters p i and p i and to express them in terms of other relevant parameters. For that purpose we introduce the frequency f cn , which stands for the number of contacts made per node (or individual) per unit of time, as well as the transmission probability w i , which is the probability that the infection is passed on from one person to another upon contact. It is easy to see from its definition implied by (1.6) and (1.7) that:

p i = w i f cn (1.23)
so that the normalised rate of new infections in the standard SIR-model (eq. (1.7)) can be reexpressed as:

ṡ = w i f cn s i (1 -s) (1.24)
The total number of pairs (i.e. links) in the network is n p = νn/2 (each node is connected via ν links, each link is shared by 2 nodes). Now, let f cl be the number of contacts per unit time made via a single link.

The total number of contacts per unit time made throughout the entire population can now be written straightforwardly as:

f cp = νnf cl 2 (1.25)
and, since it is easy to see that f cn = νf cl , alternatively as:

f cp = nf cn 2 (1.26)
Of all the n p = νn/2 pairs (i.e. links) in the network, a fraction:

α si = n si n p = 2n si νn (1.27)
consists of s -i pairs. For the number of s -i contacts per unit time we get:

f si = α si f cp = n si f cn ν (1.28)
Using this result, the normalised rate of new infections in our generalisation of the SIR-model is now obtained as as:

ṡ = w i f si n = w i f cn n si νn (1.29)
which, since n si /n = s i s si (see (1.11)), can be rewritten as:

ṡ = w i f cn s i s si ν (1.30)
Comparison of (1.21) and (1.30) shows that we can identify p i as p i = w i f cn /ν = p i /ν (which is in fact quite a logical result that also follows from the definition of w i and p i ). In addition we have from (1.16):

s si = ν -( s ii + s ri ) (1.31)
so that (1.30) can be reworked into:

ṡ = p i s i s si ν = p i s i 1 - s ii + s ri ν (1.32)
An alternative (but equivalent) expression for ṡ can be obtained by deploying the symmetry relation (see (1.14)):

n si = n i s si = n s s is (1.33)
by which we can also write n si /n as:

n si /n = s s s is = (1 -s) s is (1.34)
Substitution into (1.29) then yields (with w i f cn /ν = p i /ν):

ṡ = w i f cn (1 -s) s is ν = p i (1 -s) s is ν (1.35)
And with s is written as (see eq. (1.17)):

s is = ν -( s ss + s rs ) (1.36)
we thus obtain:

ṡ = p i (1 -s) 1 - s ss + s rs ν (1.37)
The differential equation relating s r to s i remains unchanged in the presence of correlations and is, as before, represented by (1.4). Comparison of (1.32) and eq. (1.7) thus shows that extending the SIR-model by including correlations arising from the typical network structure of the population implies (at least in a mathematical sense) in fact nothing more than replacing the factor (1 -s) in (1.7) by 1 -( s ii + s ri ) ν , or the factor s i by 1 -( sss + srs ) ν . With ṡ written as in either (1.32) or (1.37), we thus obtain 2 equivalent equations to replace (1.6), respectively given by: ṡi = p i s i 1 -

s ii + s ri ν -p r s i (1.38) ṡi = p i (1 -s) 1 - s ss + s rs ν -p r s i (1.39)
By arbitrarily combining one of the equations (1.32) and (1.37) with one of the equations (1.38) and (1.39), we obtain a system of 2 ordinary differential equations by which (in principle) the variation of s and s i with time is defined (and indirectly, via (1.1) and (1.5), also the variation of s s and s r ). However, an actual solution of such a system requires the explicit algebraic form of either s ii and s ri or s ss and s rs to be known. It is for that purpose that we seek an appropriate parameter in terms of which not only the s i , s s and s r but also the averages s xy (x, y = i, s, r) can be expressed. That is, we look for an independent quantity in terms of which the entire problem can be parametrised. Strictly speaking, time (t) meets that requirement, but is also an inappropriate/impossible choice since we actually want to solve s i , s s and s r for t. A proper choice however is s. Accounting for the cumulative number of infections, s = s(t) can only increase with time. As a result, s(t) is a bijective function of t (i.e. each t corresponds to a unique value of s). This implies that a parametrisation of individual quantities in terms of only s is possible and, moreover, entirely equivalent to a parametrisation of those quantities in terms of t (as such, s plays a role similar to that of the state-variables in thermodynamic systems).

However, the task of finding a representation of the s xy in terms of s is a tough problem bedevilled with difficulties that also arise in the analysis of Ising-problems (or lattice-problems in general). Ironically, the root cause of these difficulties is actually the same thing that we seek to incorporate into our present analysis, namely the lattice-or network correlations. They very often prevent an easy systematic enumeration of the states of the system that correspond to a specific value of a relevant state-variable (as a consequence, the exact solution to the 3D Ising-problem is still an open issue for instance). A pragmatic way out of these difficulties is to consider the exact s xy as series expansions in s:

s xy = ∞ k=0 a xy k s k (1.40)
to be truncated at will in practice, thus providing us with approximations for the s xy in the form of finite-order polynomials in s.

We now assume a scenario where the initial number of active infections at the onset of an epidemic is finite but almost negligible at the scale of the total population, so that s i ≈ 0 at t = 0. We furthermore assume that no infections were present before the start of the epidemic, so that there are no recovered and immune individuals at t = 0 and therefore s r (0) = 0 (exactly). For such a situation, we can easily identify the expansion parameters a si 0 and a is 0 as a si 0 = ν and a is 0 = 0, so that (see, respectively, (1.31) and (1.36)):

ν -( s ii + s ri ) = s si = ν + ∞ k=1 a si k s k (1.41a) ν -( s ss + s rs ) = s is = ∞ k=1 a si k s k (1.41b)
Substituting of (1.41a) for the terms in brackets respectively in (1.38) and (1.32) we get:

ṡi = p i s i   1 + ∞ k=1 a si k s k ν   -p r s i (1.42a) ṡ = p i s i   1 + ∞ k=1 a si k s k ν   (1.42b)
whereas substitution of (1.41b) for the terms in brackets in respectively (1.37) and (1.39) yields:

ṡi = p i (1 -s) ∞ k=1 a is k s k ν -p r s i (1.43a) ṡ = p i (1 -s) ∞ k=1 a is k s k ν (1.43b)
As to the series expansions in (1.42a,b) it should be emphasized that only cases where a si 1 < 0 have relevance and "physical" meaning, since generally s si must decrease with increasing s. This to hold, also when s << 1, specifically requires that a si 1 < 0. After truncation of terms of order > 3 in the series expansions in (1.42a,b) we have:

ṡi ≈ p i s i 1 + a si 1 ν s + a si 2 ν s 2 + a si 3 ν s 3 -p r s i (1.44a) ṡ ≈ p i s i 1 + a si 1 ν s + a si 2 ν s 2 + a si 3 ν s 3 (1.44b)
The prime purpose of truncating terms specifically of order > 3 here is that 3 is the largest polynomial order that offers the possibility of a relatively simple analytical solution of (1.42a).

Another benefit is that it keeps the number of model-parameters within limits, while still allowing for a fair to very good description of the exact s-dependence of s si and s si . Eqs. (1.42a,b) and (1.44a,b) provide a most insightful example of how correlations and fluctuations enter the mathematics of the problem and into the basic equations of the SIR-model. Comparison with (1.6) and (1.7) shows that the inclusion of correlations and fluctuations into the SIR-model comes down to nothing more than a replacement of the term (1 -s) in (1.6) and (1.7) by a series expansion of the form (1 + a si 1 s/ν + a si 2 s 2 /ν + a si 3 s 3 /ν + ...). Since the expansion coefficients a si k are generally expected to be functions of ν, the characteristics of the population network (and more in particular the number ν of social contacts of an individual) thereby enter the problem via the quotients a si k /ν. Only if the coefficients a si k were proportional to ν, the influence of ν would cancel out against the ν-dependence of the a si k . This is generally not the case however, and it is therefore already, that the structures of social networks within a population can be considered as a key factor in the evolution of an epidemic. This is in itself not an entirely new or unexpected insight (in fact it provides the epistemic basis for all practical measures limiting social contacts in order to bring outbreaks of infectious diseases under control). The particular merit of eqs. (1.42a,b) and (1.44a,b) however is that they put this already known viewpoint in simple mathematical terms that allow for a better understanding of the phenomena involved. It may be obvious that similar considerations also apply to the expansion coefficients a is k and the quotients a is k /ν, and therefore also to eqs. (1.44a,b) (for which truncation of terms of order > 3 has the same benefits as in the case of (1.42a,b)).

Reproduction numbers

The main results from the model outlined in this paper primarily evolve around the parameters p i and p r , with an additional role for the parameters accounting for the network structure of the population. However, the dynamics of the spread of infectious diseases is often described and analysed in terms of different key parameters: the (well-known) basic reproduction number R 0 [1] and the effective reproduction number R(t). These are defined, respectively, as the total number of new active infections generated by a single active infection already in existence at t = 0 , and as the total number of new active infections generated by a single active infection counted from a moment in time t > 0 onwards. On the basis of the present model, expressions for R 0 and R can be given in direct accordance with these definitions.

Consider an ensemble of n i = n 0 active infections at time t = t 0 . Due to infection-removal, the ensemble decays over time according to ṅi = -p r n i so that for t ≥ t 0 :

n i (t) = n 0 e -pr(t-t 0 ) (2.1)
where n i (t) represents the remaining number of active infections at an instant t. The (average) total number of new infections generated after t = t 0 by an infection active at t = t 0 ≥ 0 is thus given by:

R = 1 n 0 ∞ ¡ t 0 p i n i (t) s si (t) ν dt = p i ∞ ¡ t 0 e -pr(t-t 0 ) s si (t) ν dt
which can be reexpressed as:

R = - p i p r ∞ ¡ t 0 s si (t) ν de -pr(t-t 0 ) (2.2)
thus establishing the effective reproduction number R. Note that R number is time dependent: R = R(t 0 ). Introducing:

Q = Q(t 0 , p i , p r , ν) ≡ - ∞ ¡ t 0 s si (t) ν de -pr(t-t 0 ) (2.3)
we can write the identity for R given by (2.2) as:

R = Q • p i p r (2.4)
The factor Q accounts for the depletion of the reservoir of susceptibles that results from the spread of the infection (i.e. the reduction of s s and therewith of s si with increasing s(t)).

The basic reproduction number R 0 can now be considered as the value for R in the special case where t 0 = 0 and Q = Q(0, p i , p r , ν) ≡ Q 0 . That is:

R 0 = Q 0 • p i p r (2.5)
In the literature, reproduction numbers are often linked to criteria for epidemic spreading of an infection. For instance, it is often stated that an (exponential) increase in the number of infections will emerge when R > 1 (R 0 > 1 ), whereas the infection rates will decline and fade-out when R < 1 (R 0 < 1 ). To illustrate such criteria, a pictorial impression of epidemic evolution is often presented, in which active infections pass on their infection to a total of R susceptibles which, once infected themselves, pass on their infection to another R susceptibles etc. The result is a "tree" of infections, in which each infection forms a node (branch splitting) from which its infection is passed on along a total of R outgoing branches, so that after N generations (branch splittings) a total of R N infections can be (indirectly) assigned to a single infection. Although quite illustrative and of considerable educational value, this picture is not entirely correct however. For instance, it ignores the depletion, accounted for by Q, of the reservoir of susceptibles upon progression of the epidemic. This depletion continues to progress for t > t 0 as well. As such, each generation of new infections will find less susceptibles available to pass the infection on to than the previous generation. Therefore, the frequently drawn image (for the purpose of explaining exponential growth of the number of (cumulative) infections with time) of an infection tree with an equal R-related number of branches "growing" out of each infected node does not give a fully correct representation of what actually happens. In chapter 5 we will see that, although often taken for granted, also the condition R > 1 (R 0 > 1) for epidemic growth of the number of infections requires serious (re)consideration.
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Solving the differential equations a) 3rd-order polynomial approximation of s si

Truncation of the terms of order > 3 in the series expansions representing s si in (1.42a,b) has the advantage that the resulting set of ODE's (1.44a,b) can be solved easily via partially analytical methods. With ṡi = ṡ (∂s i /∂s) we can rewrite (1.44a) as:

ṡ ∂s i ∂s = ṡ -p r s i
which, upon writing (1.44b) as ṡ = s i P i (s), can be reworked into:

∂s i ∂s = 1 - p r P i (s) (3.1)
Substitution of the term in brackets in (1.44a) for P i (s) subsequently yields:

∂s i ∂s = 1 - νp r /p i ν + a si 1 s + a si 2 s 2 + a si 3 s 3
which we rewrite as:

∂s i ∂s = 1 - νp r /a si 3 p i (s -s 1 )(s -s 2 )(s -s 3 ) (3.2)
with s 1,2,3 representing the roots (real and complex) of the 3rd-order polynomial a si 3 s 3 + a si 2 s 2 + a si 1 s + ν = 0, which can be calculated exactly via the somewhat tedious algebraic scheme of Cardano's method (see, for instance, [1]). This scheme is easily implemented in a computational procedure however. We rewrite the fraction on the right-hand side of (3.2) via decomposition by parts:

∂s i ∂s = 1 - ν p r a si 3 p i a (s -s 1 ) + b (s -s 2 ) + c (s -s 3 ) (3.3)
where the a, b, c are readily obtained as:

a = s 3 -s 2 s 2 s 3 (s 3 -s 2 ) + s 1 s 3 (s 1 -s 3 ) + s 1 s 2 (s 2 -s 1 ) (3.4a) b = s 1 -s 3 s 2 s 3 (s 3 -s 2 ) + s 1 s 3 (s 1 -s 3 ) + s 1 s 2 (s 2 -s 1 ) (3.4b) 
and:

c = s 2 -s 1 s 2 s 3 (s 3 -s 2 ) + s 1 s 3 (s 1 -s 3 ) + s 1 s 2 (s 2 -s 1 ) (3.4c)
Integration of (3.3) is straightforward:

s i = ¡ 1 - ν p r a si 3 p i a (s -s 1 ) + b (s -s 2 ) + c (s -s 3 ) ds = s - ν p r a si 3 p i • log (s -s 1 ) a (s -s 2 ) b (s -s 3 ) c + C (3.5)
where the complex logarithm function is implicated, and C represents the constant of integration. The latter follows from the (initial) condition that s i = s = s 0 when t = 0:

C = ν p r a si 3 p i • log (s 0 -s 1 ) a (s 0 -s 2 ) b (s 0 -s 3 ) c (3.6) 
so that (3.5) can be rewritten as:

s i = s - ν p r a si 3 p i • log (s 0 -s 1 ) a (s 0 -s 2 ) b (s 0 -s 3 ) c (s -s 1 ) a (s -s 2 ) b (s -s 3 ) c (3.7)
Via substitution of this result into (1.44b), the following non-linear ordinary differential equation for s as a function of t is obtained at last:

ṡ ≈ p i 1 + a si 1 ν s + a si 2 ν s 2 + a si 3 ν s 3 s - ν p r a si 3 p i • log (s 0 -s 1 ) a (s 0 -s 2 ) b (s 0 -s 3 ) c (s -s 1 ) a (s -s 2 ) b (s -s 3 ) c (3.8)
which can only be solved numerically, thus finalising the solution of the system of ODE's given by (1.44a) and (1.44b).

b) 3rd-order polynomial approximation of s is

When approximating s is via a series expansion up to 3rd order in s, we can obtain the solution of the system of ODE's that (1.43a) and (1.43b) therewith become along somewhat similar lines.

We have:

ṡ = p i (1 -s) s is ν = p i (1 -s) • (a is 1 s + a is 2 s 2 + a is 3 s 3 ) ν (3.9a) or: ṡ s (1 -s)(s -s + )(s -s -) = a is 3 p i ν (3.9b)
where the s ± represent the roots of a is 3 s 2 + a is 2 s + a is 1 = 0. Via separation by parts and some algebra we can write:

1 s (1 -s)(s -s + )(s -s -) = a s + c 1 -s + c s -s + - d s -s - (3.10) 
where:

a = 1 s + s - b = 1 s + (1 -s + )(1 -s -) c = 1 s + (1 -s + )(s + -s -) d = 1 s -(1 -s -)(s + -s -) (3.11)
Remember that ṡdt = ds since s is a "state variable". The solutions of the differential equations (3.9a,b) are now easily obtained by substitution of (3.10) into:

¡ ds s (1 -s)(s -s + )(s -s -) = a is 3 p i t ν + C (3.12)
yielding, apart from a constant of integration:

¡ ds s (1 -s)(s -s + )(s -s -) = log s a (1 -s) b • (s -s + ) c (s -s -) d (3.13)
where, as in subsection a), the complex logarithm function is applied. Via substitution of (3.11) for a, b, c, d into (3.13) we get, after some algebra:

log      s 1 s + s -• (s -s + )(1 -s) -s 2 + 1 s + (1 -s + )(s + -s -) • (s -s -)(1 -s) -s 2 - 1 s -(1 -s -)(s --s + )      = a is 3 p i t ν + C (3.14)
The constant of integration C is determined by value s of s at some arbitrary time t = t > 0 :

2 C =    log      s 1 s + s -• (s -s + )(1 -s ) -s 2 + 1 s + (1 -s + )(s + -s -) • (s -s -)(1 -s ) -s 2 - 1 s -(1 -s -)(s --s + )      - a is 3 p i t ν    (3.15)
Combining (3.14) and (3.15) we then obtain:

log      s s 1 s + s -• (s -s + )(1 -s) -s 2 + (s -s + )(1 -s ) -s 2 + 1 s + (1 -s + )(s + -s -) • (s -s -)(1 -s) -s 2 - (s -s -)(1 -s ) -s 2 - 1 s -(1 -s -)(s --s + )      = a is 3 p i (t -t ) ν (3.16)
Note that the argument of the logarithm is always real, for when one of the roots s ± is complex, the other one is its complex conjugate. Solving s(t) for given t directly from this equation cannot be done via algebraic methods and requires a numerical procedure. However, the entire s-t curve can be obtained straightforwardly by using (3.16) to calculate t as a function of s and subsequently swap the axes. In principle, the parameters t and s can thereby be chosen in an arbitrary way. The remaining ODE for s i , obtained by truncating terms of order > 3 in the series expansion in (1.43a), reads:

ṡi = p i (1 -s) • a is 1 s + a is 2 s 2 + a is 3 s 3 ν -p r s i (3.17)
This equation must be solved via numerical integration under substitution of the appropriate values for s(t) obtained on the basis of (3.16). This then concludes the solution of (1.43a) and (1.43b) for this case.

c) 2nd-order polynomial approximation of s si Truncation of the series expansion of s si down to the terms of order ≤ 2 provides a relatively simple approximative expression for s i (s) that nevertheless contains a lot of the essential features of exact s i vs s relations, and thus provides an excellent "toy-model" for studying some of the fundamentals of the spread of infectious diseases through a population. This case is basically the limiting case where a si 3 → 0 in the 3rd-order expansion case discussed under a).

With P i (s) = p i (ν + a si 1 s + a si 2 s 2 )/ν for this case, eq. (3.1) becomes:

∂s i ∂s = 1 - νp r /p i ν + a si 1 s + a si 2 s 2 (3.18)
which we rewrite as:

∂s i ∂s = 1 - νp r /a si 2 p i (s -s + )(s -s -) (3.19)
with s + and s -representing the roots (real and complex) of the equation a si 2 s 2 + a si 1 s + ν = 0, as given by:

s ± = a si 1 2a si 2 -1 ± 1 -4 ν a si 2 / (a si 1 ) 2 (3.20) 
which have the rather convenient property that s + s -is given by the very simple expression s + s -= ν/a si 2 , which will be of use later. Eq. (3.19) can be rewritten as:

∂s i ∂s = 1 - νp r /a si 2 p i s + -s - 1 (s -s + ) - 1 (s -s -) (3.21)
and its integration is straightforward:

s i = ¡ 1 - νp r /a si 2 p i s + -s - 1 (s -s + ) - 1 (s -s -) ds = s - νp r /a si 2 p i s + -s - log s -s + s -s - + C (3.22)
with, again, the complex logarithm function used, and C the constant of integration. The latter follows from the (initial) condition that s i = s = s 0 when t = 0.

We have:

C = νp r /a si 2 p i s + -s - log s 0 -s + s 0 -s - (3.23)
so that (3.22) can be rewritten as:

s i = s - νp r /a si 2 p i s + -s - log (s 0 -s -) (s -s + ) (s 0 -s + ) (s -s -) (3.24)
Using this result, the ODE for s in this case can then be integrated (which also requires a numerical procedure as in the case for the 3rd-order approximation of s si discussed under a), thus concluding the solution of the set of coupled ODEs (1.42a,b) in the present approximation.

As a general remark, it should be mentioned that solutions for s(t) have "physical" meaning only for 0 ≤ s ≤ 1 , and when they describe a situation where ṡ ≥ 0, since (by definition) the cumulative number of infections cannot decrease with time. As such, physical solutions are confined to the specific interval of s-values where:

ṡ = p i s i s si ν = p i (1 -s) s is ν > 0
that is, where:

s si ≡ a si 3 s 3 + a si 2 s 2 + a si 1 s + ν > 0 ∧ s is ≡ a is 3 s 3 + a is 2 s 2 + a is 1 s > 0 (3.25)

Simulations

The merits of the extension of the standard SIR-model presented in the previous chapters (essentially consisting of the introduction of the series expansions (1.11),(1.12) and (1.13)) can be demonstrated very well on the basis of results from simulations of the spread (in an SIR context) of infections through entire populations.

For the purpose of the aforementioned simulations, populations were considered in the form of a 2-dimensional (2D) square lattice, each node of a lattice representing a population member, while the edges of the lattice connect the nodes to their 4 nearest-neighbours contacts. Contacts were not restricted to nearest-neighbour contacts only however. To simulate the effects of a wider variety of restrictive social measures, nodes could also be considered as being at the centre of a (2N + 1) × (2N + 1) square of nodes representing potential contacts (note that there is always an even number of contacts to a single node in such cases). The values of N could be chosen at will. The limit of N → ∞ was approximated through a simulation where the contacts of a node were selected among all other members of the population. Nodes could be labelled as either susceptible (S), infected (I) or removed (R), in accordance with the SIR context chosen as the epidemiological model or setting. Periodic boundary conditions were applied to guarantee that all nodes have a similar "social bubble", i.e. an equal number of contact-links connected to it.

The spread of an infection through a population can basically be seen as a stochastic process of a Markov type [1]. Such processes are particularly suited for simulations on the basis of a Monte-Carlo scheme (see [2] p. 17ff). With code written in Fortran, the algorithm used here was basically as follows. First of all, the population lattice is brought in its initial state by labelling all population members (nodes) as susceptible (S), except for a fixed number of randomly selected population members (nodes) that will be labelled as infected (I) and serve as initial infections. Random selection of nodes is done by calculating their 2D coordinates on the square lattice on the basis of 2 (pseudo-) random numbers provided by the build-in random-number generator of the compiler. Then the simulation of the actual spread of the infections through the population begins and proceeds in the following way. A member of the population (node) is selected at random. Then a 2nd node is selected in the same way from the nodes in the contact environment of the 1st node (that is, from the nodes linked to the 1st node as its possible contacts). If the 1st node is labelled infected (I) and the 2nd node is susceptible (S), or vice versa, a pseudo-random random number r is generated and compared to the transmission probability w i = p i /2 (chosen by the user as a constant). If r ≤ w i the infection is passed on to the susceptible node by labelling it as infected as well (instead of susceptible). For the purpose of simulating infection removal, another node (population member) is then selected, again at random. If this node turns out to be labelled as infected, a new random number r is generated and compared to the (user-defined) constant of infection removal p r . If r ≤ p r , the node is relabelled as a removed infection (R). This entire procedure of infection and subsequent removal is repeated a vast number of times.

When such a procedure is applied to each population in a large ensemble of N e populations that are all in same state, an average number of N t ≈ N e p i s i s si of infections will be transmitted, whereas an average total of N r ≈ N p p r s i active infections will be removed. It is easy to see therewith that successive application of this procedure to a single population simulates the process of infection and removal described by the master equations (1.38) and (1.39).

The spread of the infection can be followed at arbitrary time scales by regularly monitoring the status (S,I or R) of all nodes in the population. The unit of time is itself the subject of a certain arbitrariness as well in this respect. In can be defined as corresponding to a fixed but arbitrarily chosen number of successive contacts made. In the simulations presented throughout this paper, the unit of time was taken such that it spans a number of contacts equal to the number of nodes/members in the population. So, in a single unit of time each member of the population makes exactly 1 contact on average. Fig. 4.1 illustrates the results of a simulation for a case where p r = 0 and contacts of the nodes were selected throughout the entire population. Every node is a potential contact to every other node therewith. Such cases represent the equivalent of the so-called mean-or molecular-field cases in the theory of (magnetic) phase transitions [3]. They are limiting As such, they make an excellent test case to verify whether the simulation scheme described in the above may be a useful validation tool for models that go beyond the standard SIR-model. Simulations presented throughout this paper were generally carried out on population lattices with a number of nodes typically in the order magnitude of 10 6 . The data presented in fig. 4.1 for instance where obtained from a simulation where the population was represented by a 2001 × 2001 square lattice (i.e. n = 4004001 nodes). These are quite large population population sizes indeed, which comes with the advantage that simulations become less prone to the typical finite-size effects that often complicate the interpretation of Monte-Carlo simulations for systems of relatively small size (see [2] p. 35ff). It should also be noted that such population sizes are actually quite realistic. A 2001 × 2001 square lattice consists of a number of nodes in the order of the size of the population of a country like Norway for example [4].

The simulation data presented in fig. 4.1 are in perfect agreement with the standard SIRmodel. The dashed curve in the main figure shows the cumulative number of infections vs. time as obtained by solving eq. (1.7) for the same initial conditions and parameters used in the simulation (i.e. n 0 = 999 so that s 0 = n 0 /n = 2.4950 • 10 -4 , p i = 2w i = 1, p r = 0). The solutions of the standard SIR-model are given by a so-called logistic function [5] in this case:

s(t) = s i (t) = 1 ae -p i t + 1
where a = (1 -s 0 )/s 0 . The simulated data follow the dashed curve remarkably well, and create confidence therewith in the adequacy of the implemented simulation scheme. An even more significant match with the standard SIR-model can be observed in the variation of ṡ vs. s shown in the inset of fig. 4.1. The standard SIR-model yields ṡ = p i s(1 -s) for p r = 0 (see eqs. (1.6) and (1.7)), which is represented by the dotted curve in the inset. The datapoints ( ) show ṡ as obtained from a numerical evaluation from the simulated data. The (near) perfect agreement between the simulated data and the standard SIR-model is again obvious. As such, we may conclude that the simulations provide very reliable data for this case. It should also be noted in this respect that the large size of the populations used in the simulations already seems to pay off in the absence of any visual stochastic noise in the simulated data (which smoothly follow the dashed/dotted curves).

Simulations of cases where p r = 0 confirm the adequacy of the simulation scheme even more. When contacts to a single node are again selected from the entire population, the standard SIR-model applies to these cases as well. Due to the removal of active infections, not the entire population gets infected during the epidemic in this case3 , and the cumulative number of infections will reach a final value n e < n (see the dashed horizontal line in fig. 4.2a indicating n = 2001 2 ).

The simulated data in figs. 4.2a/b match the curves given by the standard SIR-model to a high degree of accuracy. We may therefore conclude that not only the stochastic nature of infection transmission, but also the stochastics of infection removal (decay) have been implemented correctly and realistically in the simulation scheme. This is further corroborated by fig. 4.3, which shows both ṡ/s i and ṡi /s i as a function of s, as derived on the basis of the data presented in fig. 4.2a/b via a simple numerical evaluation of ṡ and ṡi (s e = n e /n indicates the maximum rate of cumulative infections reached). The data thus obtained agree very well with the standard SIR-model (where ṡ/s i = p i (1 -s) and ṡi /s i = p i (1 -s) -p r ): each set of datapoints obviously follows the straight line that the standard SIR-model predicts for it, especially for mid-range values of s. Only at the very edges of the s-interval that applies, some stochastic noise becomes noticeable. This is due to the fact that both at the beginning as well as at the end of any (real) epidemic, the number of active infections is relatively low and therefore subject to (temporal) fluctuations. The fact that this phenomenon apparently presents itself also in the simulation process deserves attention, since it does not reveal any shortcomings in either the algorithms used in the simulation or their implementation. On the contrary, it is rather to be considered as a realistic artefact of an appropriate simulation of the stochastic processes involved in an actual epidemic.

However, as mentioned earlier, the standard SIR model is only a (mean-field like) approximation. Its breakdown comes when the social bubble of the nodes is increasingly reduced from an environment that spans the entire population (in which case the standard SIR model is exact) to smaller environments that contain only a limited number of nodes serving as contacts. This is clearly illustrated in figs. 4.4a/b, which respectively show s si and s is as a function of s for a series of simulations with p r = 0, so that the entire population becomes infected in the end and s varies between 0 and 1 as a consequence. The contacts of each node were selected from a (2N + 1) × (2N + 1) square of nodes surrounding it. For each simulation, a different value of N was taken, so that the size of the social bubble of the nodes (given by ν = (2N + 1) 2 -1) differed per simulation. The values of N varied N = 2 to N = 16 (that is, the size of social bubbles varied from 24 to 1088). The dotted lines s si = 1 -s in fig. 4.4a and s is = s in fig. 4.4b represent the standard SIR model. The departure (with increasing N (and ν)) in the behaviour of s si and s is with s from the mean-field characteristics of the standard SIR model cannot be missed. This observation strongly indicates that the incorporation of the influence of the structure of the social networks and the size of the social-bubbles into the analysis is not merely an exercise, but rather a matter of plain necessity, and that the standard SIR model has serious shortcomings in this respect. The usefulness of the method, presented in chapter 1, of dealing with the network structure via (truncated) series expansions in s for s si and s is can be illustrated well by deriving values of the expansion coefficients from the simulated data for either s si or s is , taking these values as input for calculations of s as a function of time (t) (by solving either (1.42a,b) or (143a,b)), and comparison of the results with the s -t-data obtained from the simulations. It turns out that the variations of s is with s shown in fig. 4.4b can be described very well by a 3rd-order polynomial of the type a is 1 s + a is 2 s 2 + a is 3 s 3 for all cases simulated (note that the standard SIR model is in fact a limiting case here with a is 1 = 1, a is 2 = 0, a is 3 = 0). This is clearly illustrated by fig. 4.5a and fig. 4.5b, in which the results of the best fits of the expansion coefficients a is 1 , a is 2 , a is 3 to the data for s is vs s obtained from the simulations for N = 6 and N = 10 are shown as representative examples. It is easy to see that, with the best-fitting values taken for a is 1 , a is 2 and a is 3 , the 3rd-order polynomials (dashed curves) describe the simulations (solid curves) to quite an acceptable level indeed. This is also true for the other cases investigated in this respect (i.e. N = 1, 2...16). That the best-fitting values for a is 1 thus obtained provide by themselves an excellent reflection of the breakdown of the standard SIR model deserves special attention here. Fig. 4.6 shows these values as a function of ν (i.e the number of contacts per node ν or, equivalently, the social-bubble size). For very large values of ν, the value of a is 1 reaches towards its asymptotic value a is 1 = 1 given by the standard SIR model (which represents the limiting case for ν → ∞). In the lower ν-regime however, the value of differs significantly from its mean-field value a is 1 = 1, and upon decreasing ν well below ν ≈ 300 there is actually a collapse that disqualifies the standard SIR model even as an approximation in this regime of ν-values. When p r = 0 (and therefore s i = s), the differential equations for s i become identical to those for s, so that, depending on whether we use an expansion for respectively s si or s is , we only have to solve either (1.42b) or (1.43b) to obtain s as a function of t. For N = 12, 10, 8, 6, 4, 2 (ν = 624, 440, 288, 168, 80, 24), the variation of s with t was calculated by numerically solving (1.43b) (see section 3b for details) for the best fitting values of a is 1 , a is 2 and a is 3 for each N (as obtained from the previously mentioned fits of s is vs s). The results are shown in figs. 6a-f. In each case, the marked datapoints represent the simulations and the dashed curves the respective solutions of (1.43b). The dotted curves relate to the results given by the standard SIR model for the particular set of parameters used here (i.e. w i = p i /2 = 0.5, s 0 = 2.4950 • 10 -4 ). The agreement between the solutions of (1.43b) and the simulated data is equally noticeable as the discrepancy that grows (with increasing N ) between them and the results from the standard SIR model. The significance of this observation is twofold. One one hand it shows that the method of expressing s is as a series expansion in s has its merit. On the other hand, it further corroborates our previous observations about the inadequacies of the standard SIR model and the mean-field approach that underlies it.

N=10 a 1 is = 0,9599 a 2 is = -1,3194 a 3 is = 1,1522 ν 〈 s is 〉 0 0,2 0,4 0,6 0,8 1 s 0 0,2 0,4 0,6 0,8 (a) 
When p r = 0 (so that s i = s), we have to solve either both equations (1.42a) and (1.42b) or both equations (1.43a) and (1.43b) simultaneously. Using 3rd-order polynomial approximations for s is vs s is not a viable option however. The reason is that s is drops sharply towards zero upon approaching s = s e (as a consequence of the removal of infections). At low to intermediate values of s, s is may still be approximated well by a 3rd-order polynomial as a function of s (as in the p r = 0 case), but the approach of s = s e is accompanied by a rather steep drop in s is towards zero (for an example see fig 4.8). The resulting functional dependence of s is on s over the entire interval s 0 ≤ s ≤ s e can no longer be appropriately described by a 3rd order polynomial in s, and using (1.43a,b) is therefore not an option. Fortunately, the dependence of s si on s does show the desired characteristics and can be approximated fairly well in terms of a 3rd-order polynomial, at least for N -and ν-values not too low (see fig. 8). We can

〈 s is 〉 〈 s si 〉 〈 s si 〉, 〈 s is 〉 0 0,2 0,4 0,6 0,8 1 s 0 0,2 0,4 0,6 0,8 1 
Fig. 4.8: Variation of s si and s is with s for w i = p i /2 = 0.5, p r = 0.25 and N = 10. therefore use (1.42a,b) to investigate the cases where p r = 0. Such cases are of particular additional interest, since they offer an extra possibility to demonstrate the merits of expressing s si or s is as series expansion in s, by showing that they not only allow for an accurate reproduction of the simulated s -t curves (cumulative infections) but of the s i -t curves (active infections) as well. The procedure for this is conceptually similar to the one followed in the above for the p r = 0 cases. We fit the simulated s si vs s data with a polynomial of the type 1 + a si 1 s + a si 2 s 2 + a so 3 s 3 and take the best fitting values of the coefficients a is 1 , a is 2 and a is 3 as input for solving the differential equations (1.42a,b) via the algebraic/numerical method outlined in section 3a.

Fig. 4.9 shows the results obtained in this context for w i = p i /2 = 1, p r = 0.25 and N = 12, 10, 8 (ν = 624, 440, 288). The graphs in the left column show the simulated data (marked as grey circles) of s i vs t, as well as the corresponding results obtained on the basis of the standard SIR model for the parameters involved (solid curves). The graphs in the right column show the same simulated data (also marked in grey) as in the graph to their left, but then with the solution of (1.42a,b) (solid curve) for the values of a is 1 , a is 2 and a is 3 best fitting to the respective s si vs s data obtained from the simulations. The left column shows again a dramatic failure of the standard SIR model. In contrast, the column to the right shows an excellent (N = 12) to still quite reasonable (N = 8) match between the simulated data and the solutions of (1.42a,b). This includes the position of the maximum so dramatically and consistently missed by the standard SIR model in the left column.

In case of the cumulative infection rate s vs t, the agreement between the simulated data and the corresponding solutions of (142a,b) is even slightly better than in the case of the active-infection rate s i . This is clearly shown in fig. 4.10. The solutions of (142a,b) (solid lines) follow the simulated data (markers) extremely well. We also see that with decreasing N , the curves show a tendency to shift to the right along the t-axis. A similar tendency can be observed in the curves for p r = 0 shown in fig. 4.7. This tendency can be understood as a direct manifestation of network and correlation effects. For instance, when the social bubbles become smaller, the relative decrease of the number of susceptibles that an active infection has left in its bubble after transmitting its infection to one of its contacts becomes larger. For smaller social bubbles, there is also an increased tendency towards the formation of small clusters of active infections sharing parts of their social bubble with other active infections. This typically leads to the kind of slow-down of the spread of the infection that we see in fig. 4.10. The solutions of (1.42a,b) follow this process perfectly well, in contrast to the standard SIR model which, from its very concept, does not account for network and correlation effects at all.

In conclusion we can say that the approximation of s si and s is as series expansions in s works quite satisfactory, especially in the p r = 0 cases but also when p r = 0, provided N (or, more general ν) is not too small in the latter cases. Simulations show that the effects of a finite size of the social bubbles becomes noticeable at fairly large sizes already. Even for N = 12, a situation where the total number of possible contacts of a single node is as large as 624, both the variations of s and s i with time (t) show significant quantitative variations from the mean-field behaviour that applies in the limiting case N, ν → ∞ and for which the standard SIR model is exact. Now, in real life, a number of 624 is a very large size for the social bubble of an average single member of a population when considered in an epidemiological context. From an epidemiological viewpoint, the social bubble of an individual in a population contains only those members of the population contacted intensively enough by the individual on a regular basis to make a transmission of an infection carried by one of the contacting members to the other possible (albeit not necessarily certain). As such, the socialbubble size depends on the critical exposure/uptake for the pathogen involved, defined as the exposure/uptake necessary for a full blown infection to develop in a population member: a lower critical exposure increases the social-bubble size. Also the route of transmission affects the social bubble size (airborne pathogens have their own notoriety in this respect). However, a number well in the hundreds for the (average) epidemiological social-bubble size in a population seems quite on the high side for even the more infectious of pathogens. Nevertheless, even in the cases of such large social bubbles, there is a substantial discrepancy between the actual time evolution of the infection numbers and the one provided by the standard SIR model for the applying parameter values. This has serious consequences in relation to the extraction of values for p i and p r from field-data about the spread of an actual infection. We see from figs. 4.7, 4.9 and 4.10 that the qualitative behaviour of the actual infection data does not differ significantly from that found for the mean-field case on the basis of the standard SIR model. It may seem tempting therefore to fit the standard SIR model to the actual data via adjustment of p i (and optionally p r where relevant). Especially in cases where only data on s vs t are used, this may result in fits that reproduce the field data fairly well. However, it is easy to see that the values for p i or p i /p r thus obtained substantially underestimate the actual values (a reduction of the social bubble size also reduces the growthrate ṡ of the number of cumulative infections for given p i or p i /p r ). This is a serious problem indeed, since R 0 = p i /p r is often taken for the basic reproduction number (see section chapter 5 section d)), which plays an important role in practice for the assessment of the severeness of an outbreak/epidemic or of the risks associated with a particular pathogen in itself. More reliable estimates for p i and p r can be obtained, at least in principle, via the method of series expansions outlined in this paper or via direct simulation. The problems do not end there however. It looks like the coefficients of the series expansions for s si and s is cannot be calculated easily via simple algebraic methods or easily implemented numerical methods, at least not for any network of arbitrary structure (for the purpose of this chapter the coefficients were extracted from data generated by rather CPU intensive simulations for instance). This is a serious issue, since the structure and topology of the population network are expected to have a profound impact on at least the quantitative aspects of the spread of an infection, but perhaps also on the qualitative aspects. In connection to this we may refer to the Ising problem, where the dimensionality of the lattice (which affects, for instance, the number of nearest neighbours to a site/node) has major implications even for the qualitative behaviour of the system under consideration. The 1-dimensional Ising model does not show any order at finite temperatures (no matter how low) [6], whereas the 2-and 3-dimensional versions of the model do exhibit ordering phenomena at temperatures above zero, but with different values of the corresponding critical temperature and critical exponents [7], the latter putting the 2 versions in different universality classes. Such observations are typical for systems with network or lattice features, and there is no reason to assume that population networks make an exception in this respect, especially since we will see in the coming sections that the spread of infectious diseases may be associated with its own kind of critical phenomena.

Therefore, the extraction of p i -and p r -values from field data for the purpose of obtaining highly accurate estimates is a quite a problematic affair troubled by fundamental difficulties.

In order to obtain reliable values for instance, such an extraction cannot go without obtaining estimates for the coefficients in the series expansions of s is or s si as well, either from fieldor simulated data.

Properties of the model and its solutions: conditions for an epidemic, effects of infection removal

Even without solving the sets of differential equations represented by (1.42a,b) and (1.43a,b) completely, certain results key in the evolution of an epidemic can be derived from them.

a) Criterion for an epidemic to develop from a limited number of infections

From (1.42a) we immediately see that for ṡi to be positive for s → 0 (and thus for sufficiently low values of s):

p i -p r > 0 (5.1)
This is an interesting result, which actually implies a basic criterion for the possibility that a number of initial infections, so limited that s i = s 0 ≈ 0, will grow into a rampant epidemic or not. Only when the rate of transmission per active infection (p i ) is higher than the rate of removal (p r ), the number of active infections ns i (and therewith also the cumulative number of infections ns) will grow even on the basis of just a very few initial active infections. All this may sound plausible, but the inequality (5.1) not only provides a mathematical foundation to common sense in this respect, but also points directly towards general strategies that can be deployed during the onset of an epidemic. To reduce the spread of infection one may first of all refer to protective measures or reducing the frequency of social contact (i.e. reducing f cn ). The effect of these is a reduction of p i . The more effective they are, the more they will reduce p i and the slower the infection will propagate at given p r . On the other hand one may look at cures and medication (when available). The sooner active infections can be eliminated the larger p r will become, thus hampering the spread of the infection. In theory, the possibility even exists of smothering a major outbreak well before it even started: if by taking appropriate measures the value of p i -p r can be made negative (p i /p r < 1), a large scale epidemic might be averted. For that to achieve by protective measures alone, it is important to mention that it is not necessary to reduce p i to zero. Only a reduction of p i sufficient enough to make p i -p r negative (i.e. p i /p r < 1) will do. It is stressed however that when such measures fail and (5.1) is actually met, sooner or later the active infection rate will grow vigorously (in fact exponentially) with time, as may be inferred from (1.42a). For s 1, eq. (1.42a) reduces to ṡi = (p i -p r )s i , the solution of which is an exponential function of t, and when p i -p r > 0 the result will be an exponential increase in time of the active infection rate that may easily grow to epidemic proportions.

An important observation to be made here is that there is no reference to the structure of the individual social networks in the inequality (5.1): the criterion it represents follows independently of the social fabric of the population. As such, at least within the context of the model, (5.1) is universal and applies to all populations, irrespectively of their (social) network structure.

b) The maximum number of active infections reached during an epidemic Furthermore, eq. (1.42a) allows us to obtain an expression for the value of s at which the overall (global) maximum is reached in the number of active infections. A necessary condition for such a maximum is ṡi (s) = 0, which relates, in case of a global maximum, to an extremum both as a function of t and as a function of s. From (1.41a) and (1.42a) we see that that ṡi = 0 either when s i = 0 or when P(s) = p i s si /ν -p r = 0. The first case (s i = 0) can be discarded, since it relates to the end of the epidemic which, in strict mathematical terms, is (always) approached asymptotically when t → ∞.

We will now evaluate the criterion for a maximum in s i for the case where s si is approximated by a 2nd order polynomial in s. This case represents the simplest deviation from the standard SIR model possible. However, as a toy model it can be quite instructive. The relevant ODE's and their solutions are given in section 3c.

When a global maximum in s i exists in the context of a 2nd-order polynomial approximation of s si , it must relate to one of the solutions σ = σ ± of the quadratic equation

p i s si /ν -p r ≡ p i (ν + a si 1 s + a si 2 s 2 )/ν -p r = 0. That is: σ ± = -a si 1 ± (a si 1 ) 2 -4 νa si 2 (p i -p r ) /p i 2 a si 2 (5.2)
A particular solution σ ± actually corresponds to (global) maximum when: si = ṡi P(s) + s i ṡ ∂P(s) ∂s

s = σ ± < 0
With ṡi = 0 for s(t) = σ ± that is:

∂P (s) ∂s s = σ ± = p i (a si 1 + 2 a si 2 σ ± ) ν = ± p i ν (a si 1 ) 2 - 4 νa si 2 (p i -p r ) p i < 0 (5.3)
which can be met only in case of the minus sign, i.e. by the solution σ -, and (of course) only when the term under the square-root sign is non-negative. Since it seems fairly evident that a si 1 < 0 we have to distinguish between only 2 regimes of the expansion parameters, namely a si 2 < 0 and a si 2 > 0. An epidemic requires p i -p r > 0 to start and propagate (see section 3a). In such a situation, it can be inferred from (5.2) that when a si 2 < 0 then σ + < 0 and σ -> 0, and that when a si 2 > 0 then σ + > 0 and σ -> 0. Since σ -is positive for both a si 2 < 0 and a si 2 > 0, there can be a local maximum in both cases, its value being obtained by substitution of s = σ -into (3.24):

s i,max = σ -- νp r /a si 2 p i s + -s - log (s 0 -s -) (σ --s + ) (s 0 -s + ) (σ --s -) (5.4)
The maximum in s i results from a competition between the production of new infections ṡ and the removal of already existing infections -p r s i . For s-values below σ -, new infections arise at a higher rate than that existing infections are removed. At s = σ -the generation of new infections is precisely compensated by the infection removal and a maximum in s i is reached. For s > σ -, the removal of infections over-compensates the generation of new infections, and a reduction of s i sets in so that the epidemic or outbreak gradually fades out.

It is emphasized that, in general, the maximum in s i does not mark a simultaneous onset of a decrease in the growth rate of new infections ṡ.

With ṡ given by (1.32) the maximum in the rate of new infections is given by:

s = p i ν ṡi s si + s i ∂ s si ∂t = p i ν ṡi s si + s i ṡ ∂ s si ∂s = 0 (5.5)
This equation cannot be solved by algebraical methods in general. However, it is straightforward that when the maximum in s i (which corresponds to ṡi = 0) and the maximum in ṡ were to occur at to the same value of s, this would require the 2nd time-derivative of s:

s = p i ν ∂ s si ∂s = p i (a si 1 + 2a si 2 σ -) ν (5.6) 
to vanish. Via substitution of σ -that requirement is easily restated as:

s = -(a si 1 ) 2 -4 νa si 2 (p i -p r ) /p i = 0 (5.7)
which holds only for very specific parameter combinations that make the term under the square-root sign zero. Hence, the maxima in s i and ṡ do, in general, not occur at the same s and t. In fact, unless s = 0, the rate of new infections is always in decline already when s i reaches its maximum at s = σ -, since s ≤ 0 because of the minus sign in front of the square root in (5.7). The maximum in ṡ therefore precedes the maximum in s i , at least in the present model. This result may be of importance for policy and decision making during an ongoing epidemic. The observation that the rate of new infections has apparently reached its peak still means that the peak in the number of active infections is not there yet. Since the burden on the healthcare system due to an epidemic is largely determined by the number of active infections, this may have its implications, for instance with respect to matters of healthcare capacity.

c) The effects of infection removal and the herd-immunity pitfall

The final stage of the epidemic/outbreak is characterised by a stabilisation (asymptotic in time) of s at some finite value s e (n.b. 0 ≤ s e ≤ 1), whereas the active infections fade out (s i asymptotically approaches zero when t → ∞, s → s e ). More important, the entire spread of the infection gradually comes to a halt, as the rate of infection ṡ also becomes zero. The latter is in fact the quintessential feature of a fade-out of an epidemic, and the influence of the network structure of the population is crucial in it.

The role of the network structure in the evolution of an epidemic can be described in more detail as follows. When the number of active infections approaches zero (s i → 0), the social network of a susceptible individual will consist more and more of removed infections and (noninfected) susceptibles only. Only a decreasingly small and negligible minority of susceptible individuals is still vulnerable to infection by active infections from within their social network. The root cause of this phenomenon on a "microscopic" scale (that is, on the level of individual nodes) is the removal of infections (p r = 0), under the assumption that removed infections either relate to individuals that have overcome the infection and acquired immunity, or to individuals that have succumbed to the infection. In both cases, such an individual then corresponds to an "inert" node in the network, unable to become infected again and to pass on the infection to other nodes/individuals. The infection can no longer propagate through the population via such nodes. In fact, active infections may even become surrounded by removed infections (immunized nodes) only, thus providing a shield between that particular infection and the rest of the population (rendering the infection unable to infect other nodes). With time (and therefore with s), the number of inert nodes increases to such an extent (relative to the number of active infections s i ) that at some level the removal rate exceeds the rate of new infections: after having reached a maximum for s = σ -(see previous section), the number of active infections begins a steady decrease and the epidemic gradually fades out, as its propagation is more and more hampered by the mechanism described here. As an important corollary of such a mechanism, the epidemic generally comes to an end even before all the members of the population have been infected: the cumulative number of infections then stabilizes at a value s e = 1. The way in which the spread of the infection is hampered by inert nodes in the population lattice via a blockade of infection routes, makes that the spread of an infection has all the characteristics of a percolation phenomenon. We will discuss this extensively in chapter 8.

In mathematical terms, the end of an epidemic can be defined as the situation where s i = 0 (which implies also that ṡ = 0 (see for instance (1.42b)). This allows for obtaining an equation for s e . By setting s i = 0 in (3.24) (2nd order polynomial approximation of s si ), s e can be identified as the solution s of the equation:

s = ν(p r /p i ) a si 2 (s + -s -) log (s 0 -s -) (s -s + ) (s 0 -s + ) (s -s -) (5.8)
which we reexpress, with β = ν a si 2 (s --s + ) , as:

s = β p r p i log (s 0 -s + ) (s -s -) (s 0 -s -) (s -s + ) = f (s) (5.9)
As a condition to be met by s = s e , (5.9) can be reexpressed even further, via some algebra, in terms of the inverse of the function f (s) as:

s = s -1 + (s --s + ) /s - α exp( s/η) -1 = f -1 (s) (5.10)
where η = -β(p r /p i ), and the factor α is given by:

α = (s 0 -s + ) (s 0 -s -) (5.11)
Furthermore, it should be noted that when p r = 0, the function f (s) actually represents the number of removed infections at given s < 1, which at the end of the epidemic (s = s e ) becomes equal to the cumulative number of infections. It should be kept in mind that this is not the case for f -1 (s) however. The function f (s) differs from its inverse, and f -1 (s) has been introduced solely to reexpress the equilibrium condition for s implied by (5.9) and not to explicitly reexpress the right-hand part of (5.9) in general (i.e. for all s). As such the function f -1 represents the number of removed infections only for s = s e .

Eqs. (5.8), (5.9) and (5.10) cannot be solved for s via algebraic methods but require numerical or graphical techniques, the latter being quite instructive however. The function f -1 (s) is easier to handle than f (s) in that respect, mainly because of the divergent behaviour of f (s) at s = s -and s + . Furthermore, f -1 (s) is more appropriate for demonstrating analogies between certain aspects of the dynamics of an epidemic and concepts in thermodynamics and statistical mechanics. It is for these reasons that f -1 (s) was introduced in the first place to serve as a substitute for f (s) in (5.9).

As a consequence if a si 1 < 0 we have η ≤ 0, which can be verified easily by substitution of (3.20) for s ± :

η = ν(p r /p i ) a si 2 (s + -s -) = ν(p r /p i ) a si 1 (1 -4ν a si 2 /(a si 1 ) 2
(5.12) Also, the following inequalities apply to s ± , as can be verified easily on the basis of (3.20) as well:

a si 1 < 0, a si 2 < 0 : s -< 0 < s + (5.13a) a si 1 < 0, a si 2 > 0 : 0 < s + < s - (5.13b)
Focussing on the implications of the requirement expressed by (3.25) in case a si 3 = 0, it is straightforward that when a si 2 < 0 (i.e. when (5.13.a) applies) then ṡ = p i (a si 2 s 2 +a si 1 s+ν)/ν ≥ 0 only for 0 ≤ s ≤ s + . The same is true when a si 2 > 0 (that is, when (5.13.b) applies). We can therefore conclude that the root s + constitutes an upper bound to s e when s + ≤ 1.

We will now investigate the characteristics of the function f -1 (s) in some more detail. For that purpose, we introduce the continuation of the function f -1 (s) on the interval 0 ≤ s ≤ s + to the function g(s) on (-∞, ∞):

g(s) = s -1 + (s --s + ) /s - α exp( s/η) -1 s ∈ R (5.14)
That is, we take the right-hand part of (5.10) as the rule of a function g(s) with domain R instead of the interval 0 ≤ s ≤ s + . The 1st derivative of g(s) is readily obtained as:

∂g(s) ∂s = α (s + -s -) η e s/η
(αe s/η -1)

2 (5.15a)
and reexpressed via substitution of η = ν(pr/p i )

a si 2 (s + -s -) and s + s -= ν/a si 2 as: ∂g(s) ∂s = α (s + -s -) 2 s + s - • p i p r e s/η (αe s/η -1) 2 ≥ 0 (5.15b)
Since η ≤ 0 when a si 1 < 0 (see (5.12): lim s→∞ ∂g(s) ∂s = 0 (5.16) so that we can conclude that g(s) approaches a horizontal asymptote as s → ∞. Furthermore, for those cases relevant, a quick examination 4 of the 2nd derivative ∂ 2 g(s)/∂s 2 shows that the function g(s) may have an inflection point only for negative s. So, as illustrated in fig. 5.1, for s ≥ 0 the function g(s) is therefore a monotonously increasing, concave function of s with a horizontal asymptote:

y = lim s→∞ s -1 + (s --s + ) /s - α exp( s/η) -1 = s + (5
.17) 4 The 2nd derivative ∂ 2 g(s)/∂s 2 is given by:

∂ 2 g(s) ∂s 2 = α(s --s + ) η 2 • e s/η (αe s/η + 1) (αe s/η -1) 3 ≈ α(s --s + ) η 2 • e s/η (s + e s/η + s -) (s + e s/η -s -) 3
where the approximation on the right applies when s 0 << 1 or, more in particular, when s 0 << |s + |, |s -| (which is basically the regime we focus on). Provided that s + = s -, the numerator of the 2nd term of the approximation on the right is positive or negative definite when s + , s -< 0 or s + , s -> 0. When s + and s - have different sign (i.e. when (5.13a) applies), the numerator may change sign only for some s < 0 (since η ≤ 0), whereas the denominator does not change sign for any s ∈ R. Therefore, if ∂ 2 g(s)/∂s 2 changes sign in the cases of our interest, it can only be when s + and s -have different sign, and only for some s < 0.

Furthermore, via straightforward substitution of s = s 0 = 0 into (5.14) we get g(0) = 0. Hence, for s > 0: 0 ≤ g(s) < s + and consequently, for 0 ≤ s ≤ s + :

0 ≤ f -1 (s) < s + (5.18)
Now, if they exist, the solutions s = s e of (5.10) are given by those intersections of the graph of f -1 (s) vs s and the straight line y = s that take place at an s-value in the interval 0 ≤ s < s + when s + < 1, or in the interval 0 ≤ s ≤ 1 when s + ≥ 1 (see fig. 5.1). Besides s = 0 (which is always a solution) there is only a single intersection possible at most for s > 0 (due to the monotonously increasing concave nature of g(s), the absence of inflection points for s > 0 and the horizontal asymptote of g(s)). So, if a solution s = s e > 0 of (5.10) exists (and therefore of (5.9), then that is the only solution.

Furthermore, when s + < 1 then s e < 1 as a direct consequence of (5.18). The latter mathematically demonstrates the possibility that significant parts of the population may remain uninfected during an epidemic mentioned on page 46. When p r = 0 however, the entire population actually will become infected in the end (that is s e = 1 when p r = 0). For the model to be consistent with this, the coefficients a si 1 and a si 2 are subject to a constraint in that particular case. From (5.12) it follows that η = 0 when p r = 0. For s = 1 to be a solution of (5.10) then requires:

1 = lim η ↑ 0 s -1 + (s --s + ) /s - α exp( s/η) -1 = s + (5.19)
Substitution of (3.20) for s + here yields, after some rearrangements, the following relation between a si 1 and a si 2 :

a si 2 a si 2 + a si 1 + ν = 0 (5.20a)
which implies:

a si 2 = 0 ∨ a si 2 = -( ν + a si 1 ) (5.20b)
The case a si 2 = 0 thereby corresponds to the standard SIR-model that we seek to replace by a more general approach in this paper. In contrast, the case a si 2 = -( ν + a si 1 ) does relate to the generalisation of the SIR-model that accounts for the network structure of the population (albeit in the simplest approximation possible). In fact, the case a si 2 = 0, and therewith the standard SIR-model, can be seen as a special case of a si 2 = -( ν + a si 1 ) where a si 1 = -ν (also see footnote 5 ). It is also worth mentioning that fulfilment of the requirement a si 2 + a si 1 + ν = 0 comes down to s si = 0 for s = s i = 1, and is therefore in full agreement with the requirement that s e = 1 for p r = 0: only when s = 1 and the number of susceptible nodes in the network becomes zero, and therefore the entire population has been infected will the spread of the infection come to a halt. In fact, demanding that s si = 0 for s = 1, would as well have lead us, in a totally valid way, to (5.20b).

It is emphasized that the constraint a si 2 = -(a si 1 + ν) only applies in this particular form in case of an approximative approach where terms of order higher than 2 in the series expansion of s si have been truncated.

p r /p i =1 f -1 (s) 0 0,2 0,4 0,6 0,8 1 s 0 0,2 0,4 0,6 0,8 1 
Fig. 5.1: f -1 (s) vs s for p r /p i = 0.01, 0.10, 0.25, 0.50, 0.75, 1 (solid curves) and the straight line y = s (dotted). Values of parameters: ν = 8, a 1 = -7.2, s 2 = -0.8. Solutions of (5.10) correspond to the intersections of the relevant graph of f -1 (s) vs s and the line y = s. s = 0 is always a solution. For p r /p i < 1 a 2nd solution s > 0 exists. With increasing p r /p i , the 2nd solution gradually moves towards s = 0. For p r /p i = 1, both solutions converge into a single solution s = 0, the line y = s being the tangent of the corresponding graph of f -1 (s). For p r /p i > 1, only s = 0 remains as a solution .

In the exact case, the demand that s si vanishes for s = 1 requires cancellation of all the expansion coefficients of the series, so that:

ν = - ∞ k=1 a si k (5.22)
Based on the full series, and therefore exact, this relation holds in the most general sense. On every population network, no matter its structure, an epidemic will develop in accordance with this rule when p r = 0, thus ensuring that s si = 0 for s = 1 and therefore s e = 1.

In general, the coefficients a si k not only depend on the structure of the population network, but also on p r /p i . However, in some cases the dependence on p r /p i is weak, and in cases where the social network of an individual/node consists of the entire population there is even no dependence on p r /p i or the network structure at all. In the latter case, the active infections and the removed infections will be distributed randomly over the population, so that (irrespective of p r /p i ) the standard SIR-model applies, in which a si 1 = -ν and a so 2 = 0. The effect of p r /p i = 0 in a case where the coefficients a si 1 and a si 2 are constants independent of p r /p i is illustrated in fig. 5.1. From (5.15b) it is clear that ∂g(s)/∂s (and therewith ∂f -1 (s)/∂s in the s-interval of relevance) decreases with increasing p r /p i for given s + and s - (that is, for given a si 1 and a si 2 ). As a result, the intersection of f -1 (s) and the straight line y = s shifts towards lower s-values when p r /p i increases, as can be seen in fig. 5.1. So s e decreases with p i /p r in those cases. Furthermore, as we will see next, it can even be shown now that also when a si 1 and a si 2 do depend on p r and p i , the value of s e actually becomes zero at a certain critical value of p r /p i .

Since f -1 (s) is a monotonously increasing, convex function on the s-interval of relevance, it is in fact obvious that for all values of p r /p i for which:

∂f -1 (s) ∂s s=0 ≤ 1 (5.23)
only s = 0 remains as a solution of (5.10), so that in all these cases s e = 0. Now, the derivative ∂f -1 (s)/∂s for s = s 0 is readily obtained from (5.15b) as:

∂f -1 (s) ∂s s=s 0 = α(s 0 ) (s + -s -) 2 s + s - • p i p r e s 0 /η α(s 0 )e s 0 /η -1 2
with α = α(s 0 ) given by (5.11). Substitution of s 0 = 0 and some rearrangements yields:

∂f -1 (s) ∂s s=0 = (s + -s -) 2 s + s - • p i p r α(o) α(o) -1 2 = p i p r
That is:

∂f -1 (s) ∂s s=0 = p r p i -1
(5.24)

Combining (5.23) and ( 5.24) we see that a threshold p r /p i = 1 exists which marks the boundary between a regime where s e > 0 (when p r /p i < 1) and a regime where s e = 0 (when p r /p i ≥ 1). It should be noticed that this threshold does not depend on a si 1 and a si 2 or on ν, and is therefore independent of the structure of the population network and thus quite general in nature (at least in the context of our truncated-series model). Related to this, there is a range of values of p r /p i where s e is always zero, given by p r /p i ≥ 1, irrespective of whether a si 1 and a si 2 depend on p i and p r or not (although such a dependence may have an influence on the value of s e itself when s e > 0). As a corollary, when p r /p i ≥ 1 a small limited number of infections cannot trigger (and develop into) an epidemic that involves large parts of the population. In essence, (5.23) and (5.24) represent the same result as that represented by (5.1). However, it is obtained here in a completely different way that strongly resembles the analysis of magnetic ordering in (ferro-) magnetic systems in terms of the Weiss molecular field theory [1]. As such, this approach anticipates the revelation of a striking analogy between a transition towards herd-immunity and thermodynamic phase transitions to be presented later on.

According to our analysis, an important general effect of infection removal seems to be a decrease of s e to values less than 1: infection removal suppresses the propagation of infections through the population, to the extend that even part of the population will escape infection. A similar result has been obtained in the past within the context of the standard SIR-model as well. However, the present analysis not only shows that it also applies in a model where the structure of the population network is explicitly taken into account, thus making it a more general result, but also puts it on more solid mathematical foundations.

A legitimate question now, is whether saturation of the cumulative number of infections at a value s = s e corresponds to a state of herd-immunity. The answer to that question largely depends on how we define herd-immunity. For instance, one might think of a state of herd-immunity in the broadest sense possible, namely as a situation in which an infection is unable to further propagate within a population. The answer to the aforementioned question would be affirmative in that case. Such a definition, however, is too general for practical use, as it leaves too much room for ambiguity and some quintessential issues unadressed. The whole point in this respect is that the value of s e depends on the circumstances under which the infection spreads (that is, on both p r and p i , as well as on the structure of the population network, which translates into the a si k ). As a result of this, there are serious pitfalls when it comes to rolling back measures aimed at preventing the spread of an infection, especially when the arguments to do so are based on positive expectations concerning the achievement of herdimmunity, however without an adequate notion/definition of its concept. To demonstrate this, consider a situation in which a clear tendency towards saturation of s at a particular value s e is observed after an infection has been spreading for a while under a regime of restrictive social measures. The effect of such measures is twofold thereby: they reduce p i and they restrict the size of the social networks of individual members of the population, thus affecting (lowering) the value of s si at given s. When the epidemic has already reached a stage where s makes an approach to its asymptotic value s e , the number of active infections s i may still not be zero but is already over its peak, and therefore :

ṡi = s i p i s si ν -p r < 0 (5.25a)
Rolling back social measures at this stage (for instance on the basis of an (inadequate) judgement regarding the achievement of herd-immunity) means that a new regime is entered however, which replaces p i by p i , s si by s si and ν by ν , so that the rate of change of s i now becomes:

ṡi = s i p i s si ν -p r (5.25b)
where it should be noted that ṡ i (t) is equal to s i (t) at the moment t = t 0 when measures are rolled back (that is: ṡ i (t 0 ) = s i (t 0 )). The problem here is that it is not at all certain that ṡ i is negative as well (like ṡi ). Depending on p i and s si it cannot even be excluded a priori that the term in brackets in (5.25b) is actually positive and consequently ṡ i > 0. In that case, the spread of the infection wile intensify again into a new wave of (active) infections, which will only attenuate after a new maximum in the number of active infections (s i ) has been reached. Such a scenario is illustrated in fig 5 .2 , where the results are shown for a simulation where a less tight regime of "social measures" follows upon a significantly more restrictive regime. The spread of the infections starts under a tight regime of social restrictions, in which the contacts of a particular (central) node are selected from a relatively small 2N + 2 × 2N + 1 square of nodes closest to (i.e. surrounding) the central node with N = 1 (the number of contacts to a single node thus being equal to ν = 8). The spread of the infection was simulated under this regime to a point where the epidemic had nearly come to a halt (i.e. s only weakly increasing with time, and s i almost zero). Then (at t = 500) a new, less strict, regime with N = 5 was introduced (so that the number of contacts per node increased to ν = 24), under which the few active infections left from the 1st regime/wave were given the opportunity to pass on their infection to the remaining susceptibles, thus restarting the epidemic. Fig. 5.2 clearly reflects this. After a near fade-out of the active infections after the 1st regime it takes only a little while after the implementation of the 2nd regime for the epidemic to regain strength, and very soon both the active and cumulative infection rates are clearly on the rise again.

The result is that we are confronted with 2 subsequent waves of infections: one rather modest under a regime of tight social measures (N = 1) that seems to fade out after a while, and a 2nd one of a much fiercer intensity after a partial roll-back of the measures (N = 5), by which almost all members of the population that remained uninfected after the 1st wave become infected in the end. It is for the possibility of scenarios of this kind alone that some doubts are justified about strategies for coping with an epidemic based on the (assumed) achievement of herd-immunity under a regime of (limited) social measures (which, however, is just what a country like Sweden openly advocated and put into practice during the initial months of the Covid-19 pandemic). It is also clear that a better understanding (coupled to a tighter definition) of the concept of herd-immunity is necessary to make it of (safer) practical use. 

d) Reconsidering the meaning of reproduction numbers

It may be clear that, in view of the results presented in this chapter, the often quoted condition R 0 > 1 for an epidemic to get started requires some reconsideration. Via a similar line of though as the one followed in section 5a, both the standard SIR-model and the extended SIR-model presented in this paper lead to the criterion p i /p r > 1 for an epidemic to evolve from a small number of active infections in an otherwise fully susceptible population. With R 0 given by (2.5), this criterion is equivalent to R 0 /Q 0 > 1 rather than R 0 > 1. The criterion R 0 > 1 can only be preserved (as is often done by the way) via the introduction of a rather crude approximation that puts R 0 ≡ p i /p r (and thus implicitly takes Q 0 = 1). The rationale here is that τ = 1/p r is the average lifetime of an active infection in case of an exponential decay as given by (2.1) 6 . Taking s si = constant = ν , the number of new infections per unit time due to a single active infection can be taken as a constant as well, which is equal to p = p i so that the total number of new infections due to a single active infection becomes R 0 = τ p = p i /p r (variations on this simplified scheme exist [2,3] for the purpose of generalisation, but the basic ideas underlying them are the same). It is clear that such an approach basically comes down to substitution of s si = ν into (2.3) and taking t 0 = 0 :

R 0 = p i ∞ ¡ 0 e -prt dt = p i p r (5.26)
in which case the factor Q 0 , accounting for the s-dependence of s si , becomes indeed unity and R 0 = R 0 . However, in general R 0 = R 0 and R 0 is therefore not a reproduction number, but rather an effective reproduction number at best (whatever the deeper physical meaning of such a qualification may be). Similar considerations apply to R and the often mentioned criterion R > 1 for the number of active infections to be on the rise, as we will see at the end of the next chapter on herd-immunity. As such, the interpretation of the dynamics of epidemic outbreaks in terms of reproduction numbers is not entirely unproblematic.

Defining and understanding herd immunity a) Fundamentals

The aim is now to present a strict mathematical definition of herd immunity, in such a way that the result is not only rooted in the basic physical and mathematical principles of epidemic growth, but also makes sense from a practicle point of view.

For this purpose, we consider an epidemic that has been going on for a while under a regime of social and protective measures, such that at some moment t 0 in time, the cumulative number of infections is s = s 0 > 0 and the number of active infections s i = s i0 > 0. Furthermore:

lim t ↑ t 0 ṡi (t) < 0 (6.1a)
so that the number of active infections is over its peak and declining immediately before t = t 0 . The average number of s-nodes linked to an i-node immediately before t 0 is given by: lim

t ↑ t 0 s si = (1 -ξ 0 )ν (6.1b)
At t 0 a new regime is entered, whether by rolling back of the measures taken, or by some changes in the properties (for instance the transmissibility) of the pathogen that causes the infection. The structure of the population network thus may change, so that ν has to be replaced by ν . In addition, possible changes in the protective measures require the replacement of p i by p i . Changes in the the population network also imply the replacement of s si by s si and of 1 -ξ 0 by λ (1 -ξ 0 ). The parameter λ thereby accounts for changes in the structure and the topology of the population network and matches the value of 1 -ξ 0 to the new network: s si | t=t 0 = λ (1 -ξ 0 )ν . We finally consider s si as an expansion around s = s 0 :

s si = λ (1 -ξ 0 )ν + ∞ k=1 a k (s -s 0 ) k = λ (1 -ξ 0 )ν + ∞ k=1 a k s k (6.2)
where s = s -s 0 . Substitution of (6.2) into (5.25b) yields for the new regime (t ≥ t 0 ):

ṡi = p i s i   λ (1 -ξ 0 ) + 1 ν ∞ k=1 a k s k   -p r s i That is: ṡi = λ (1 -ξ 0 ) p i s i   1 + ∞ k=1 a k s k λ (1 -ξ 0 )ν   -p r s i (6.3)
which is, in effect, identical to the expression for ṡi in the case of an infection with transmission probability p i = λ (1 -ξ 0 ) p i spreading over a network on which the number of nodes linked to a central node is ν = λ (1 -ξ 0 )ν (instead of ν ). Upon truncating terms of order k > 2 in the series expansion in (6.3) we have:

ṡi = λ (1 -ξ 0 ) p i s i 1 + a 1 s + a 2 s 2 λ (1 -ξ 0 )ν -p r s i (6.4)
Now, like s, the variable s is a state variable, so that ṡi = ṡ (∂s i /∂s ). Therefore, upon making the identifications p i ≡ p i , ν ≡ ν and s ≡ s in (1.42a,b), the differential equation (6.4) can be dealt with in the same manner in which the differential equation of of identical form given by (1.42a) was dealt with in section 3c for the case of a 2nd-order polynomial approximation of s si . We thus obtain, straightforwardly from (3.18):

∂s i ∂s = 1 - ν p r /p i λ (1 -ξ 0 )ν + a 1 s + a 2 s 2
By analogy with (3.19), this can be reexpressed as:

∂s i ∂s = 1 - ν p r /a 2 p i (s -s + )(s -s -) (6.5) 
where (see (3.20)):

s ± = a 1 2a 2 -1 ± 1 - 4 λ (1 -ξ 0 ) ν a 2 (a 2 1 ) (6.6)
Via some minor rearrangements of (6.5) we obtain the following ODE (compare to (3.21)):

∂s i ∂s = 1 - ν p r /p i a 2 ( s + -s -) 1 (s -s + ) - 1 (s -s -) (6.7)
the solutions of which are given by:

s i = s - ν p r /a 2 p i s + -s - log s -s + s -s - + C (6.8)
The constant of integration C follows from the condition

s i | s=s 0 = s i | s = 0 = s i 0 (remember s = s -s 0 ): C = s i 0 + ν p r /p i a 2 ( s + -s -) log s + s - (6.9)
Combining (6.8) and (6.9) we finally obtain:

s i = s - ν p r /p i a 2 ( s + -s -) log s -s -s + s + (s -s -) + s i 0 (6.10)
The logarithmic term here on the right-hand side has a clear physical meaning that will prove key to the definition and understanding of herd-immunity. Calling this term s L we can write (6.10) as:

s i = s -s L + s i 0
With s = s -s 0 and s i 0 = s 0 -s r 0 that is:

s i = s -(s L + s r 0 ) (6.11)
where s r 0 = n r 0 /n relates to the total number of removed infections at t = t 0 (i.e. when s = s 0 , s = 0). In general s i (t) = s(t) -s r (t), so that (6.11) implies:

s r = s L + s r 0 (6.12)
With the given definition of s r 0 it is thus shown that the term:

s L = ν p r /a 2 p i s + -s - log s -s -s + s + (s -s -) (6.13)
represents the infections removed under the new regime (that is, after t = t 0 ). In view of this, an additional quantity of physical relevance becomes evident as well, namely:

∆s i = s -s L = s - ν p r /p i a 2 ( s + -s -) log s -s -s + s + (s -s -) (6.14)
representing, for given s (t), the nett change in the active-infection number since the new regime took effect at t = t 0 . The condition:

∆s i = 0 (6.15)
makes an important physical criterion. As stated earlier, we assume a situation where the number of active infections was in (sharp) decline under the old regime prior to t = t 0 . For that to remain the case under the new regime it is required that ∆s i < 0 for all s > 0 (all t > t 0 ). In contrast, when there is an interval 0 < s < s 0 of s -values for which ∆s i > 0, the number of active infections will initially rise again (maybe even strongly) after the new regime has come into effect. It may be obvious that such a situation is at variance with what one would intuitively think of as a state of herd-immunity. However, a completely different situation occurs when for all conceivable regimes to come into effect at t = t 0 (most importantly the regime of social normality) ∆s i is negative definite for s > 0 (that is, ∆s i < 0 for all s > 0). A necessary and sufficient condition for such a situation to occur is that solving ∆s i = 0 for s yields s = 0 as the only solution for any conceivable regime. Although there will even be new infections after t = t 0 in such a case, the total number of active infections meanwhile can do nothing then but decrease with t and s , and the epidemic is inevitably in state of decline and fading out.

To substantiate these viewpoints mathematically we define, by analogy with (5.9):

f (s ) = ν p r /p i a 2 ( s + -s -) log s + s -s - s -(s -s + ) (6.16)
The condition ∆s i = 0 can then be recast into the form (see (6.14)):

s = f (s ) (6.17a) 
or, equivalently, into:

s = f -1 (s ) (6.17b)
where f -1 (s ) represents the inverse of f (s ) which, being the analogue of f -1 (s) in (5.10), is readily obtained, with α = s + /s -taken as the analogue of α (see (5.11)), as:

f -1 (s ) = s -1 + s --s + s + exp( s /η ) -s - (6.18) 
where:

η = ν p r /p i a 2 ( s + -s -) (6.19)
Being identical in their mathematical form, the functions f -1 (s ) and f -1 (s) behave in a qualitatively similar way in relation to their respective arguments s and s. Hence, the line of thought followed in section 3c in connection with f -1 (s) applies to f -1 (s ) as well. As such, we find equations (6.17a) and (6.17b) to have 2 solutions when ∂f -1 (s )/∂s | s =0 > 1, one of them being s = 0 and the other one given by the intersection of the line y = s . When ∂f -1 (s )/∂s | s =0 ≤ 1 however, only the solution s = 0 remains and ∆s i < 0 for s > 0. When the latter is the case for any regime of social measures, the epidemic is in a stage of inevitable fade-out.

By analogy with (5.15a), the derivative ∂f -1 (s )/∂s is obtained as:

∂f -1 (s ) ∂s = s + s -s + -s - η e s /η
(s + e s /η -s -) 2 (6.20) Substitution of (6.19) for η here, while also using s + s -= λ (1 -ξ 0 )ν /a 2 (to be obtained straightforwardly on the basis of (6.6)), then yields:

∂f -1 (s ) ∂s = λ (1 -ξ 0 ) s + -s - 2 p r /p i e s /η
(s + e s /η -s -) 2 (6.21)

For s = 0 that is:

∂f -1 (s ) ∂s s =0 = λ (1 -ξ 0 ) p i p r (6.22)
The condition for the epidemic to remain fading out after t = t 0 (s > 0), also under the new regime, becomes therewith:

λ (1 -ξ 0 ) p i p r ≤ 1 (6.23)
That is:

λ p i ≤ p r (1 -ξ 0 ) (6.24)
In every new regime for which the product λ p i meets this (in)equality, the number of active infections will be subject to a monotonous decrease after t = t 0 . It is noteworthy that requiring ṡi ≤ 0 for s = 0 on the basis of (6.3):

ṡi = s i λ (1 -ξ 0 ) p i -p r ≤ 0 (6.25)
directly leads us to (6.23) and (6.24) as well. However, this procedure leaves us with no clue as to whether ∆s i is negative definite or not for s > 0, and therefore does not exclude the possibility, as observed in fig. 5.2, that for some s the number of active infections will start to rise again (even under the same regime of measures). If (6.24) also holds for the regime of social normality then lifting restrictive and protective measures is safe, in the sense that it will not lead to a new wave of infections: the rate at which ṡi decreases may be less than in a regime with measures in place, but the epidemic will continue to fade-out until the last active infections disappear and s i becomes zero. One could therefore say that as soon as (6.17a,b) apply, a form of herd-immunity has been achieved, despite the fact that new infections will continue to emerge until s i = 0, albeit at an increasingly lower rate as s increases. New infections will cease to emerge as soon as s i = 0. That is, when (see (6.10)):

s i = s - ν p r /p i a 2 ( s + -s -) log s -s -s + s + (s -s -) + s i 0 = s -f (s ) + s i0 = 0
and thus when:

s + s i0 = f (s ) (6.26a)
which is equivalent to:

s = f -1 (s + s i0 ) (6.26b)
The solution s = s e of (6.26a) and (6.26b) relates to s e in this via s e = s e -s 0 , and has to be obtained numerically. The value of s e = s 0 + s represents the final cumulative infection rate reached when the epidemic comes to an end. Since at the end of an epidemic all active infections have been removed, it also represents the final rate of removed infections to be reached, i.e. when s = s e = s 0 + s then s r = s e . Now that we have captured the criterion for the end of an epidemic in the mathematical form of (6.26a,b), the relevant question is how "robust" the resulting epidemic state after reaching s = s e is against an influx of new (active) infections from outside of the population, for instance via infected travellers (from outside), or infective population members (re)entering from abroad. In other words: will a new wave of infections start or not, once a (very) small but not insignificant number of new active infections from outside has been introduced into the population?

To answer this question, let ν (1 -ξ e ) be the average number of s-nodes linked to an r-node when the epidemic has come to a halt:

s sr = ν ( 1 -ξ e ) (6.27a)
Using the symmetry relation s x s yx = s y s xy we then get for this case (for which s = s e -s 0 = s e ):

s rs = s e 1 -s e ν (1 -ξ e ) (6.27b)
and via (1.17) and (1.18), which reduce to: s ss + s rs = ν (6.28a)

s rr + s sr = ν (6.28b)
we thus obtain: 29a)

s rr = ν -s sr = ν ξ e (6.
s ss = ν -s rs = ν 1 + s e (ξ e -1)
1 -s e (6.29b) for this case. To distinguish the average coordinations s xy and s xy in the earlier wave(s) from those in the new wave, we write the latter as σ xy and the coefficients of their corresponding series expansions as α k (instead of a k ). Similarly, we write the cumulative infection rate and the rate of active infections in the new wave respectively as σ and σ i . We assume the initial number of new active infections that form the precursor to a possible new wave of infections to be very low (σ 0 = σ i0 << 1, or even σ 0 = σ i0 ≈ 0). Since we also assume the removed infections to have full immunity, a possible new wave of infections will spread exclusively among those members of the population (nodes) that remained uninfected (i.e. susceptible) during the earlier wave(s). Hence, since each newly introduced active infection is considered to replace a susceptible node at random (so that σ si σ=σ 0 = s si s =se-s 0 ) and because σ 0 is considered small enough that to take σ 0 ≈ 0:

σ si = s si s =se-s 0 + ∞ k=1 α k (σ -s e ) k = ν 1 + s e (ξ e -1) 1 -s e + ∞ k=1 α k (σ -s e ) k (6.30)
We consider no changes in social measures taken after the first appearance of the new active infections, so that the typical rate of transmission remains p i , the rate of change of σ i in the new wave therewith becomes:

σi = σ i p i σ si ν -p r = σ i   p i    1 + s e (ξ e -1) 1 -s e + ∞ k=1 α k (σ -s e ) k    -p r   (6.31)
However, a new wave of infections due to a small (almost negligible) number of initial infections σ 0 << 1 will start only if σi > 0 for s = s e (i.e. for σ = σ 0 ≈ 0).

From (6.31) it is easily inferred that a new wave will therefore not emerge when:

p i 1 + s e (ξ e -1) 1 -s e -p r ≤ 0
That is, when:

1 -s e 1 + s e (ξ e -2) • p r p i ≥ 1 (6.32)
which thus provides us with a proper criterion for "true" herd-immunity that is not only rooted in the basic mechanisms and mathematics of epidemic growth but also connects with our intuitive conception of the phenomenon. An important insight that immediately follows from (6.32) is that apparently the structure and topology of the population network do have an influence in the process of achieving herdimmunity, in contrast to what we have seen earlier in connection with the criterion (expressed by (5.1) and (5.23),(5.24)) for an epidemic to develop from a few initial infections in case of a fully susceptible population (s s = 1). Key for this observation is the dependence of s e and ξ e on the structure of the social networks. Network correlations explicitly make their way into the process via ξ e (whereas they affect the value of s e in a more implicite manner). These correlations are a typical artefact of network structure of the population and also the percolative nature of the spread of an infection on a population network. Their influence can be understood as follows. We write, for every s ≤ s e :

s sr (s ) ≡ ν (1 -ξ(s )) (6.33a)
In case of a fully random distribution of the susceptible individuals/nodes over the network s sr (s ) = ν (1 -s). We may therefore write:

s sr (s ) = ν (1 -s ) + ∆ s sr (s ) (6.33b)
where ∆ s sr (s ) accounts for the correlations (i.e. the deviations from the random distribution). Combining (6.33a) and (6.33b) we have:

ξ(s ) = s - ∆ s sr (s ) ν (6.34a) With ∆ ξ(s ) = -∆ s sr (s )
ν that is:

ξ(s ) = s + ∆ ξ(s ) (6.34b)
so that ξ e = ξ(s e ) = s e + ∆ ξ e .

We thus find out that network correlations by themselves always contribute to the achievement of herd-immunity in a positive way: a negative ∆ ξ e increases the value of left-hand side of (6.35) with respect to its value for ∆ ξ e = 0 (i.e. for a random distribution without network correlations). It is emphasized however, that network correlations are a contributing factor, rather than a necessary requirement for herd-immunity. After all, is clear that even in the absence of correlations (∆ ξ e = 0), the sheer increase in the cumulative-infection number s e alone already leads to an increase in the left-hand side of (6.35). However, indicative of the role of correlations, (6.35) and (6.36) indirectly emphasize the role of percolation effects as well in the establishment of herd-immunity, given the close relation between network correlations and percolation.

b) Different types of herd-immunity: a classification

It is worth noticing that a distinction can be made on the basis of (6.24) and (6.32) between different types of herd-immunity, all of which having clear, but different, practical implications. First of all, it is important whether (6.24) and (6.32) only hold in regimes of strict social measures, or in every conceivable regime of social measures (including the regime of social normality). In the first case we can speak of "weak" herd-immunity, as opposed to "strong" herd-immunity in the second case. Weak herd-immunity is a contextual phenomenon, and it occurs only by virtue of the restrictions imposed upon the population by a regime of sufficiently strict social measures. There is no guarantee that the population is safe from a restart of the epidemic as soon as social restrictions are (partially) lifted. Only strong herd-immunity can offer such a guarantee. In fact, weak herd-immunity is not what we intuitively associate with herd-immunity, only strong herd-immunity does. However, for the sake of clarity, making a distinction between the 2 forms has its benefits.

Another relevant distinction can be made on the basis of something that we might call the "degree" of herd-immunity. As soon as (6.24) is met, the epidemic is in a phase of inevitable fade-out under the imposed regime of social measures. However, the generation of new infections has still not come to a halt (which may still put a burden on the health system for instance). Nevertheless, the risk of the epidemic growing out of control has disappeared. We might call this situation a state of "1st degree herd-immunity". Such a situation may precede a state of "2nd degree herd-immunity", which is entered when the number of active infections actually becomes zero and the resulting state is one in accordance with (6.32), i.e. a state where, although (very) small pockets of new infections may (re)appear, the population at large is "immune" against the build-up of a new wave of infections, at least under the imposed regime of restrictive social measures.

It should be clear that states of weak herd-immunity are deceptive, irrespective of their degree. Although the number of infections may be declining (1st degree) or has come to a fade-out (2nd degree), the risk of a renewed increase in the active infection rate after lifting the social measures is real. A state of weak herd-immunity may therefore be the aim of temporary measures to lift the burden on the health system, but its achievement should by no means taken as a motivation to return to normality. Only when the number of active infections is in decline in a case of strong herd-immunity (of 1st degree) such a return is safe. By definition, the end of the battle against an epidemic outbreak is then marked by a state of strong herd-immunity of 2nd degree: not only has the active infection rate fadedout in such a case, but the population is immune, even under a regime of social normality, against new waves of infections arising out of small contingents of initial infections. Telling the difference between states of weak and strong herd-immunity may not be easy in practice however, especially when the pathogen is (relatively) new and its properties (p i for instance) insufficiently known.

c) Herd-immunity and reproduction numbers

In the literature, conditions for herd-immunity and the herd-immunity threshold are often expressed in terms of reproduction numbers. Considering the critical remarks made in chapter 2 and section 5d with respect to the practical use of reproduction numbers, combined with the confusion about the definition of herd-immunity in the literature, a short regression into this subject seems more than appropriate.

Very often, a state of herd-immunity is defined as a state where the number of active infections has reached its peak and is in a state of decline. It may be clear that this is actually what is called a state of 1st-degree herd-immunity according to the classification in the previous section, as opposed to a state of 2nd-degree herd-immunity to be reached when the active infection rate has finally faded-out to zero. The condition for such a state to occur is (when

s i = 0): ṡi = p i s si ν -p r ≤ 0
That is:

s si ν • p i p r ≤ 1 (6.37)
Note that s si = s si (t) . We define:

R = R (t) = s si (t) ν • p i p r (6.38)
which we reexpress as:

R (t) = Q (t) • p i p r (6.39a)
where:

Q (t) = s si (t) ν (6.39b)
so that the requirement for 1st-degree herd-immunity (6.37) can be rewritten as:

R = Q • p i p r ≤ 1 (6.40)
The similarity between (6.39a) and (2.4) is obvious. However, Q = Q in general (see (2.3)), so that R = R. Therefore R is not a reproduction number. Combining (2.3) and (6.39b) we get:

Q(t) = - ∞ ¡ t s si (t ) ν de -pr(t -t) = p r ∞ ¡ t Q (t ) e -pr(t -t) dt (6.41)
We introduce Q m (t):

Q m (t) = p r ∞ ¡ t Q (t) e -pr(t -t) dt = p r • Q (t) ∞ ¡ t e -pr(t -t) dt = Q (t) (6.42) Since Q (t) ≥ Q (t ) for t ≥ t (because s si (t) ≥ s si (t ) for t ≥ t), it is easy to see that Q m (t) ≥ Q(t)
. By combining this result and (6.42) we thus obtain:

Q (t) ≥ Q(t) (6.43) 
Hence (see (2.4) and (6.39a)), for all t > 0 : R ≥ R. So, when the criterion R ≤ 1 for 1st-degree herd-immunity is met, the criterion R ≤ 1 is also met. Vice versa however, R ≤ 1 is not a sufficient condition for R ≤ 1. Therefore, R ≤ 1 is not a valid criterion for 1st-degree herd-immunity.

Vaccination

A key lesson from the previous sections is that the pursuit of herd-immunity by allowing the infection to spread through the population may possibly run into serious difficulties. When the infection is allowed to spread under a (strict) regime of social measures there is a risk that the population ends up in a state of apparent herd-immunity that turns out to be false as soon as social restrictions are lifted and the infection rate starts to rise steeply again. On the other hand, letting the infection spread under a normal social regime does lead to herd-immunity, but only at the cost of a very large number of infections, which is unacceptable especially in those cases where the infection is of a kind that causes serious health issues. Therefore, the only way to achieve herd-immunity in a manner that is safe under all circumstances is vaccination.

To describe the effects of large scale vaccination on the susceptibility of a population to epidemic spreading of an infection, we introduce the effectiveness of a vaccine, being the relative decrease of the transmission probability w i or, equivalently, the relative reduction of the transmission constant p i = 2w i . The constant of transmission p i from an active infection to a vaccinated individual is thereby related to the transmission constant p i from an active infection to an unvaccinated (fully susceptible) individual via:

p i = (1 -) p i (7.1)
The lesser the protection offered by a vaccine, the lower the value of for that particular vaccine: by definition 0 ≤ ≤ 1, where = 1 corresponds to a 100% effective vaccine that gives full protection (immunity), whereas = 0 effectively relates to a case without any vaccination, or to a totally inactive vaccine. Now, let σ si and σ si respectively be the average number of unvaccinated nodes and the number of vaccinated nodes linked to an active infection. The rate of change s i of the active infections in case of a (partially) vaccinated population can then be expressed as:

ṡi = s i p i σ si + p i σ si ν -p r (7.2) = s i p i σ si + (1 -) σ si ν -p r
The vaccinated population is assumed to be free from active and removed infections (s i = s = 0) prior to t = 0, when a very small number (s i 1) of new active infections, randomly distributed over the population, appears.

We write:

σ si = ν (1 -ξ v ) + ∞ k=1 α k s k σ si = ν ξ v + ∞ k=1 α k s k (7.3)
Here ξ v accounts for the reduction of σ si and σ si at t = 0 (s = 0) due to vaccination (compare to ξ 0 , ξ e and ξ(s) in chapter 6). Mathematically, nodes representing a vaccinated individual are equivalent to those representing a removed infection. Substitution of (7.3) into (7.2) yields:

ṡi = s i p i (1 -ξ v ) + 1 ν ∞ k=1 β k ( ) s k -p r (7.4) 
where:

β k ( ) = α k + (1 -)α k (7.5)
The condition ṡi (t)| t=0 > 0 (or equivalently ṡi (s)| s=0 > 0) for an epidemic to develop from a few initial infections then implicitely leads to (compare to sections 5a and 5b):

1 (1 -ξ v ) • p r p i ≥ 1 (7.6)
as a criterion for vaccine-acquired herd-immunity. Possible (network) correlations between vaccinated individuals enter the criterion via ξ v . Such correlations may arise (in theory) when the vaccination is carried out according to a non-random scheme. Such a situation seems quite unusual however. We therefore assume that the members of the population are vaccinated at random so that ξ v = s v , where s v is the vaccination rate (fraction of the population vaccinated). In that case (7.6) becomes:

1 (1 -s v ) • p r p i > 1 (7.7)
The product s v ≡ v can be considered as an effective vaccination rate: vaccinating a fraction s v of the population with a vaccine having an effectiveness of < 1 is equivalent to vaccinating a population-fraction v = s v with a vaccine having an effectiveness = 1. The critical vaccination rate marking the herd-immunity threshold is now straightforwardly obtained from (7.7) as:

s vc = p i -p r p i = 1 1 - Q 0 R 0 (7.8)
where R 0 = Q 0 • p i /p r is the basic reproduction number, with Q 0 accounting for the sdependence of s si (see chapter 2). In the literature, the herd-immunity threshold is often given as s vc = 1 -1/R 0 [see [1] for instance]. This is, strictly speaking, incorrect. Expressions of that form relate to an incorrect/incomplete expression for R 0 or, at best, to an approximation for R 0 (see section 5d), where the s-dependence of s si is ignored or neglected (leading to R 0 = p i /p r ). The result (7.8) can be reexpressed in terms of the critical effective vaccination rate vc as:

vc = p i -p r p i = 1 - Q 0 R 0 (7.9)
Vaccination-acquired herd-immunity is obtained when the vaccination rate is equal to or larger than the critical vaccination rate, which is equivalent to the effective vaccination rate v = s v being equal to or larger than the critical effective vaccination rate vc :

s v ≥ 1 1 - Q 0 R 0 (7.10a) v ≥ 1 - Q 0 R 0 (7.10b) Since 0 ≤ ≤ 1 and 0 ≤ s v ≤ 1 it is easy to see that 0 ≤ v ≤ 1.
The critical effective vaccination rate vc = 1 -Q 0 /R 0 is the lowest value of v for which herd-immunity is obtained for given p i /p r = R 0 /Q 0 . However, from (7.10a) it is evident that its value also equals the lowest value of for which (by vaccinating the entire population so that s v = 1) herd-immunity can be obtained at given p i /p r (lower values of do not allow for herd-immunity to be obtained for the value of p i /p r involved, since they would require s v > 1). We can therefore combine 2 "phase diagrams" into a single figure. Fig. 7.1a. shows the relevant combinations of p i /p r and v , as well as the combinations of p i /p r and , for which vaccine-acquired herd-immunity is or (respectively) can be obtained (and for which not). The combinations of p i /p r and v are represented as points (p i /p r , v ) in the p i /p rv plane (horizontal axis and right vertical axis), whereas the combinations of p i /p r and are represented as points (p i /p r , ) in the p i /p rplane (horizontal axis and left vertical axis). Vaccine-acquired herd-immunity is possible only for points (p i /p r , v ) and (p i /p r , ) in the grey-shaded area of the combined p i /p rv and p i /p r -plane. This area is enclosed by the curves , v = 1, p i /p r = 1 and the graph of the function f : p i /p r → 1 -p i /p r . Points (p i /p r , v ) in this grey-shaded area correspond to a state of (vaccine-induced) herd-immunity by definition. In contrast, for points (p i /p r , ) in the grey-shaded area, herd-immunity is obtained only when an appropriate vaccination rate 0 ≤ s v ≤ 1 consistent with (7.10a) is chosen. It should be noted that the region for p i /p r < 1 is in fact irrelevant in the context of vaccination, since herd-immunity is, so to speak, trivial and inherent to the situation here (an epidemic cannot develop at all when p i < p r , as outlined previously).

In addition, fig. 7.1b shows a contour map of the minimum vaccination rates necessary to obtain herd-immunity (calculated on the basis of (7.10a)) as a function of p i /p r and . Adjacent contours correspond to a difference ∆s v = 0.0625. The contours for s v = 0, 0.25, 0.5, 0.75, 1 have been specially highlighted in black to serve as visual anchors. The progress of the contour lines clearly illustrates how ever higher vaccination rates become necessary to obtain herd-immunity when p i /p r is increased while remains constant. Where the line y = = constant intersects the curve y = 1 -p i /p r (which relates to s v = 1) a critical value r c = r c ( ) of p i /p r is reached: for values of p i /p r > r c ( ) a vaccine with efficiency is unable to provide herd-immunity. Conversely, fig. 7.1b also shows how ever lower values of necessitate ever higher values of s v to obtain herd-immunity when R 0 is kept fixed, until a critical value c = c (p i /p r ) = 1 -p i /p r is reached below which no herd-immunity is possible even for s v = 1. Points (p i /p r , ) in the segment of the p i /p r -plane enclosed by the curve = 1-p i /p r and the horizontal axis ( = 0) therefore relate to a situation where the pathogen involved becomes "endemic". What is meant by this is that for such combinations of p i /p r and the spread of the infection cannot be stopped, despite vaccination. When additionally the individuals that have recovered from an infection only obtain a low (partial) immunity and/or loose most of their immunity after longer periods of time, the pathogen will remain circulating among the members of the population. The only way out of this situation is to develop a vaccine with an effectiveness high enough to ensure herd-immunity for a vaccination rate s v ≤ 1. As long as such a vaccine is not available, the pathogen has to be considered as "endemic".

It may also happen that a vaccination campaign is undertaken using different vaccines of different effectiveness (as in the case of, for instance, many 2021 vaccination campaigns against Covid-19). In such a situation, (7.2) should be replaced by the more general expression:

ṡi = s i p i ν σ si + m (1 -m ) σ si,m -p r (7.11)
where the summation runs over the different vaccines, which are labelled by the integer m. We replace the equation on the right in (7.3) by:

σ si,m = ν ξ m + ∞ k=1 α k,m s k
Correspondingly, the equation on the left in (7.3) is replaced by:

σ si,m = ν 1 - m ξ m + ∞ k=1 α k,m s k
We can now write the generalisation of (7.4) as:

ṡi = s i p i 1 - m m ξ m + 1 ν ∞ k=1 β k ( 1 .. m ) s k -p r (7.12)
In case of at-random vaccinations that is:

ṡi = s i p i 1 - m m s m + 1 ν ∞ k=1 β k ( 1 .. m ) s k -p r (7.13)
where s m is the (partial) rate of vaccination with vaccine m (that is, the fraction of the population vaccinated with vaccine m). In analogy with (7.7), the criterion for herd-immunity now becomes:

1

(1 - m m s m ) • p r p i ≥ 1 (7.14)
Let the vaccine-averaged efficiency be defined as:

= m m s m m s m (7.15)
where m s m = s v can be identified as the total (cumulative) vaccination rate (i.e. the sum of all the partial vaccination rates). The criterion (7.14) can then be reexpressed as:

1 (1 -m s v ) • p r p i ≥ 1 (7.16)
from which the critical vaccination rate follows as:

s vc = p i -p r p i (7.17)
This result is of the same form as (7.8), except that the (single-vaccine) effectiveness has been replaced by the vaccine-averaged effectiveness . An effective vaccination rate v can be defined in the same way as previously, giving v = s v , the critical effective vaccination rate vc being given by (7.9). It should be noted that the obtained critical vaccination rates do not depend on the structure of the social network: as long as the vaccinations are carried out at random, critical vaccination rates are the same for all populations irrespective of their social (network) structure.

However, when a vaccination campaign is undertaken during an ongoing epidemic the situation is different, and the structure of the population network does have an influence on the threshold for vaccine-acquired herd-immunity, even in case of at-random vaccination. Suppose that the infection has been spreading from t = 0 onwards until at t = t 0 a vaccination campaign is started, and that only one type of vaccine is used in this campaign. As a result of the vaccinations, the susceptible part of the population is divided into a vaccinated and an unvaccinated part from t = t 0 onwards, where the "bare" transmission constant p i applies to the unvaccinated part and the reduced transmission constant p i = (1 -) p i to the vaccinated part. With time, the epidemic comes to a halt under the combined influence of infectionremoval and the vaccine-related reduction of p i . This situation differs from the case without a vaccination campaign during the epidemic, since in that case the epidemic comes to a halt due to infection removal only (and it's effects on infection percolation).

In general, especially when vaccinations are randomly distributed across the population, the vaccination rates among the susceptibles and the removed infections differ after the end of the epidemic. These rates are represented respectively by s s v and s r v . Due to the lower transmission probability that vaccinated susceptibles are subject to compared with non-vaccinated ones (p i < p i ), eventually (with time) the inequality s s v ≥ s r v will apply. Vaccinated susceptibles will get infected (if at all) in lower numbers than the non-vaccinated ones so that they will become overrepresented among the non-infected individuals and underrepresented among the infected (the opposite being the case for the non-vaccinated susceptibles). The partial vaccination rates s r v and s s v are related to the total vaccination rate s v for the entire population via:

s s s s v + s r s r v = s v (7.18)
Hence, the inequality s s v ≥ s r v implies that s s v ≥ s v : the total vaccination rate s v is in fact a lower bound for the partial vaccination rate s s v of the non-infected (s) part of the population after a (1st) wave of infections has passed.

since infection removal is considered to leave an individual with full immunity, a potential next wave (due to new pockets of active infections after the fade-out of the preceding wave) will spread exclusively among the members of the non-infected (and therefore still susceptible) part of the population. To describe the dynamics of this next (2nd) wave we introduce, in addition to s s v , the fraction s n s of non-vaccinated (n) individuals among the susceptible part of the population after the 1st wave (nb: s s v + s s n = 1). We also introduce s s xy , representing the average number of nodes of type x linked to a node of type y on the network formed by the nodes still uninfected (susceptible) after the 1st wave (i.e. before the 2nd wave starts due to newly introduced active infections). After the emergence of new active infections, the node-types can be: vaccinated (v), non-vaccinated (n), active infection (i) and removed infection (r). Now, let s e be the final value of s and s sr = ν(1 -ξ e ) when the 1st wave has come to a halt and just before the start of the 2nd wave (compare to (6.27a)). As shown in the previous chapter, the value of s ss is then given by (compare to (6.29b)): The left-hand parts of (7.20a,b) can be interpreted, respectively, as the average number of v-nodes linked to an s-node (7.20a) and the average number of n-nodes linked to an snode (7.20b). Since we assume that the small number of new active infections is distributed randomly among the members of the susceptible part of the population, these new active infections will therefore be linked, on average, to ν s s v vaccinated susceptibles and to ν s s n non-vaccinated susceptibles. Hence:

s ss = ν -s rs = ν 1 + s e (ξ e -
s s vi = νs s v 1 + s e (ξ e -1) 1 -s e + ∞ k=1 α v k (s -s e ) k (7.22a) s s ni = νs s n 1 + s e (ξ e -1) 1 -s e + ∞ k=1 α n k (s -s e ) k (7.22b)
with s representing the cumulative infection rate over both the 1st and 2nd wave combined. The rate of change of the active infections is given by:

ṡi = s i p i ν s s ni + (1 -) s s vi -p r (7.23)
Substitution of (7.22a), (7.22b) and s s n = 1 -s s v into (7.23) yields, after some rearrangements:

ṡi = s i p i (1 -s s v ) 1 + s e (ξ e -1) 1 -s e + 1 ν ∞ k=1 β s k ( ) (s -s e ) k -p r (7.24)
where

β s k ( ) = α n k + (1 -)α v k .
Demanding ṡi < 0 for s = s e , the criterion for herd-immunity is straightforwardly obtained from (7.24) as:

(1 -s s v )(1 + s e (ξ e -2)) 1 -s e • p i p r < 1 (7.25)
That is, we will have herd-immunity when:

s s v > 1 1 -s e 1 + s e (ξ e -2) • p r p i -1 (7.26)
A generalisation of this result to the case of multiple vaccines with different is rather straightforward. Since s s v > s v , the right-hand part of this inequality can be considered as a critical value of the global vaccination rate s v beyond which herd-immunity is assured.

The network structure manifests itself in this case through the values of s e and ξ e , and is therewith a decisive factor in the achievement of herd-immunity, with a direct influence on the herd-immunity threshold. As a consequence, problems may thus arise similar to those outlined in the previous chapter in connection with the achievement of spontaneous herd-immunity. A fade-out of the number of active infections under a regime of restrictive measures, even when combined with a vaccination campaign, is not a guarantee that herd-immunity is being achieved. Lifting the restrictive measures to regain a regime of social normality may be accompanied by a new rise in the active-infection numbers to such an extent that even a new wave of infections cannot be ruled out in advance. Everything will depend on the values of ξ e and p i that replace ξ e and p i in the new regime entered after lifting the restrictions. If (7.26) is not met for ξ e and p i then a new wave of infections is inevitable upon lifting restrictions, despite the vaccinations administered so far (which will simply be too low in number for the establishment of herd-immunity in such a case). This has important consequences for efforts to prevent epidemic outbreaks by means of vaccination. A prophylactic vaccination campaign will provide the herd-immunity it is aiming at only when the resulting vaccination rate exceeds the herd-immunity threshold for a situation of social normality. If the latter is not the case, a transition from a regime of social restrictions to social normality (or a milder regime) may be followed by (significant) increases in the infection numbers, despite the vaccination campaign and an apparent fade-out of the infection rates prior to the moment of rolling back the restrictions.

Percolation a) The percolation transition and its relevance in the context of vaccination

So far, herd-immunity has been presented purely as a consequence (or, merely, a sideeffect) of infection removal, even when network effects are involved. However, an additional independent mechanism for herd-immunity is brought about in the form of percolation by the network structure and topology typical of populations. Percolation on a lattice or network can be understood as the formation of paths along nodes of a particular type, or as the formation of (isolated) clusters of nodes of a certain type (either enclosed by nodes of a different type, or cut-off from the rest of the network). The formation of paths or clusters can be the result either of (random) removal/replacement of nodes or the (random) removal of links/bonds. The first case is referred to as site-percolation whereas the second case is called bond-percolation (see [1] for a basic but detailed outline of concepts and theory). Percolation phenomena play a role in many branches of the natural sciences and technology, ranging from solid-state physics (magnetic dilution) and chemistry (polymerisation) to electrical engineering (random electrical networks). It is by the very nature of the problem that the relevance of percolation appears almost self-evident in the context of epidemic infection-growth as well. Surprising it is therefore that the subject has been given fairly little attention in the epidemiological literature, despite the fact that it has been demonstrated that the percolation paradigm has its (potential) merit for the field (for example through the analysis by Davis et. al [2] of the spread of yersinia pestis (plague) among populations of great gerbils). However, a conceptually simple phenomenon at first glance, percolation is a notoriously difficult subject for mathematical analysis. Despite the fact that seminal results have been achieved during the 1950s and onwards (see [3] for an in-depth review), specific problems often defy solution by analytical means and can only be dealt with through the use of computational methods (in particular (statistical) simulations). Therefore, the emphasis of this chapter will, out of necessity, for a significant part be on computational results.

Percolation seems a particularly relevant concept in relation to (random) vaccination, especially when, as from now on, an "ideal" vaccine is considered with 100% efficiency (that is, = 1 (see previous chapter)). Nodes in the population network are randomly immunized and are no longer susceptible to infection. They can no longer become infected and, equally important, they can no longer pass on the infection to other (susceptible) nodes. They are, so to say, "inert" nodes in the network, in contrast to the "active" nodes which are either already infected or still susceptible to infection. It is easy to see that this situations corresponds, in fact, to nothing less than a genuine case of site-percolation.

An essential phenomenon to be considered now is the so-called percolation transition. A general feature of both bond-and site-percolation on a lattice or network, the percolation transition marks a sharp change, upon increasing the number of inert nodes, between a regime where a majority of the active nodes forms a "macroscopic" cluster of proportions comparable to those of the entire network, to a regime where the active nodes are split up in clusters of much smaller dimensions (of, for instance, no more than a few nodes). The critical value x c of the fraction of inert nodes in the network at which the transition takes place is commonly referred to a the percolation threshold. A phase-transition in the true physical and thermodynamic sense, the percolation transition comes with all the typical characteristics of a thermodynamic phase transition, such as universality and scaling invariance (see [1] chapter 7). Its relevance to the problem of epidemic infection growth and herd-immunity is evident. Below the percolation threshold the infection is easily passed on throughout the entire population network. Even when the initial number of active infections is low, a vast number of nodes may eventually be reached by the infection. However, for values of x c above the percolation threshold, the infection chains sooner or later run into an inert node that blocks any further propagation of the infection along that particular chain. Especially when the number of initial infections is very low, only a (very) minor fraction of the nodes will be reached by the infection and the number of accumulative infections will remain low.

The role of percolation in an epidemiological setting and its relation to herd-immunity can be demonstrated quite well via carefully thought out simulations of the evolution of an epidemic on a simplified network. A convenient choice for such a network is the 2D square lattice already introduced in chapter 4, with the nodes representing the individual members of the network. Links between nodes, representing the possibility of contact and, inherently, a route of infection transmission, can be chosen in any arbitrary way in order to simulate the effects of differences in the size and structure of the social networks of the individual members of the population. A particular benefit of such simulations is that different mechanisms can be "turned on and of" at will by an appropriate choice of their corresponding parameters, thus enabling a targeted investigation of their particular role and influence (or those of other mechanisms).

To separate the influence of infection-removal from that of percolation phenomena, the evolution of 4 epidemics was simulated for different values of the rate of (random) vaccination x v on a 2D square lattice of 2001x2001 nodes while putting p r = 0 (i.e. no infection removal). Periodic boundary conditions were again applied. The initial states of the population t = 0 at the start of each epidemic was constructed by randomly labelling nodes as vaccinated until the desired vaccination rate was reached, followed by a random selection of non-vaccinated nodes to be labelled as active infections, thus providing the "seeds" for the epidemic.

Figs. 8.1a/d show the end-status of the nodes in the population after each epidemic has come to a halt. In these simulations, nodes were considered to be linked only to their direct nearest neighbours, a situation resembling the conditions under a (very) strict lock-down. Nodes are labelled red when infected, black when vaccinated and white when still uninfected. In cases like these, where there is no infection removal, the infection spreads through the entire cluster of susceptible nodes surrounding each initial (seed) infection until the boundary of the cluster (formed by vaccinated nodes) is reached (that is, when there actually is such a boundary instead of a continuous cluster). The fragmentation of the bulk cluster of infected (red) nodes into clusters of ever smaller size upon increasing x v is clearly visible. The results shown are consistent with the value of the site-percolation threshold of a 2D square lattice of x c ≈ 0.41 as reported in the literature for the case of random blocking of sites [4]. To allow for a more detailed impression of the effect of vaccination at the level of the individual nodes, enlarged smaller sections of the respective network end-states shown in figs. 8.1a/d are represented in figs. 8.2a/d. It is clearly recognisable how, with increasing x v , more and more paths along susceptible nodes become interrupted by vaccinated nodes, even to the level that susceptible nodes and actually entire clusters of susceptible nodes become fenced-in by a closed "ring" or even a cluster of vaccinated nodes, thus shielding the susceptible nodes involved from active infections outside the cluster. Only infections from inside such enclosed clusters of susceptibles may lead to a spread of the infection to other members of the cluster. When p r = 0, eventually all the nodes in a susceptible cluster will become infected in the end. But, whereas below the percolation threshold x c this implies that a majority if the non-vaccinated part of the population (if not the entire part) will become infected, only a small (possibly negligible) minority of the non-vaccinated individuals will become infected when x v > x c , provided that the number of initial infections is (sufficiently) low. In a partially vaccinated population, each initial infection will "land" in one of the remaining clusters of (non-vaccinated) susceptibles. There it will start transmitting the infection via its social contacts, thus initiating the spread of infection through the cluster. However, once an entire cluster of susceptibles has become infected, further propagation of the infection will stop at the cluster boundaries formed by the closed ring of vaccinated nodes. Below the percolation threshold (x v < x c ) cluster sizes (from here onwards defined as the number of nodes in each cluster) are quite large (of the same order of magnitude as the size of the population) so that the final (cumulative) number of infections will be large too. Beyond the percolation threshold however (x v > x c ), cluster sizes are modest or even very small. Since the infection will be limited only to those clusters embracing one or more initial infections, the final number of infections will remain low when the number of initial infections is low.

In view of these considerations, we expect the cumulative number of infections at the end of an epidemic to scale with a properly weighted average S c of the size S c of the clusters of susceptibles directly after vaccination (before the start of the epidemic). An appropriate and meaningful choice for such an average is obtained by taking the average over the fractions of the susceptible part of the population accounted for by the individual clusters:

S c = c S c n s • S c = 1 n s ns Sc=1 m(S c ) • S 2 c (8.1a)
where the first summation runs over all susceptible clusters (c), with n s representing the total number of susceptible nodes in the population, whereas the second summation runs over all cluster sizes, with m(S c ) ∈ N representing the actual number of clusters of size S c present in the population network (so that m(S c ) • S c is the total number of nodes belonging to clusters of size S c ). A quantity of even more significance is obtained when the cluster sizes S c and their average S c are themselves considered relative to the total number n s = n(1 -x v ) of susceptible nodes at a given x v . That is, when we introduce the relative cluster size S c /n s and its average S c /n s . Being equal to 1 in case of only one single macroscopic cluster of a size comparable to the size of the population, but approaching zero in cases where there are only very small clusters of a few nodes embedded in a very large population, the relative clusters size S c /n s can be seen as an order parameter (r p ) for percolation on a lattice or network. From (8.1a) we immediately get:

r p = S c n s = c S c n s 2 (8.1b)
Fig. 8.3a shows S c /n s as a function of x v for a 2D square lattice with nearest-neighbour contacts. Numerical data were obtained by generating a randomly vaccinated population for a series of x v throughout the entire interval 0 < x v < 1 and subsequent application of a computational algorithm for cluster-identification to each population, thus providing the necessary input for calculating S c and S c /n s . The result is typical of a system showing a percolation transition. Below x v = x c ≈ 0.41 the average relative cluster size is close to unity. When x v approaches x v = 0.41 a gradual decrease in S c /n s sets in that culminates in a sharp drop at x v = x c ≈ 0.41 marking a transition to a regime marked by small clusters (of even negligible relative size) at higher values of x v . (S c -S c ) 2 /n s being a measure for the (average) size of the "fluctuations" in S c /n s , its behaviour as a function of x v is typical of physical systems undergoing a phase transition of so-called second order, as reflected in the distinctive lambda-shape of the curve in fig. 8.3b, with a clear peak at x v = x c that also marks a discontinuity in the derivative.

b) The correlation length

In the (modern) theory of phase transitions, the size of the fluctuations is intimately related to the correlation length [5], as such that the increase and divergence of the fluctuations (and other quantities) upon approaching the percolation transition is directly connected to a divergence of the correlation length.

For percolation phenomena, the correlation length ξ is defined (see [1] p. 64) as an appropriate average of a typical measure of length R c of the isolated finite clusters (the large infinite "bulkcluster" being excluded from the average):

ξ 2 = c S c n s • R 2 c (8.2a)
where the index c runs over the finite clusters and n s represents the total number of susceptible nodes contained in the finite clusters. Assuming only one single bulk cluster and representing its size by S 0 , we can write n s = n s -S 0 . With R c ∼ S c we can thus rewrite (8.2a) as:

ξ 2 ∼ c S c n s -S 0 • S c (8.2b)
Calculation of the correlation length from computer simulations of lattices (or networks) randomly filled with susceptible and vaccinated nodes comes with a conceptual problem however. The culprit in this is the bulk cluster. In an infinite lattice, the bulk cluster is infinitely large too. In contrast, lattices simulated on a computer can never be infinite. The amount of available memory imposes an (absolute) upper bound upon their size, and even for sizes significantly lower than the largest size allowed for by the available memory computation times may become impractically long. Hence, computationally simulated lattices and networks are of finite and considerably limited size, and so are the clusters on them to be identified as simulated bulk clusters. The actual core of the problem here resides in the identification of these bulk clusters. Simply taking the largest cluster size for the size of the bulk cluster will not work, since there is always a largest cluster size below as well as above the percolation threshold. A constraint that the largest cluster must be "very large" in order to qualify as bulk clusters will simply replace one problem for another, since "very large" is a highly arbitrary qualification and therewith a complication in itself. Calculation of the average of the (squared) fluctuation size does not come with such difficulties however, as it involves a summation over all clusters, including the bulk cluster (hence the index c instead of c ):

(S c -S c ) 2 = c S c n s • (S c -S c ) 2 (8.3)
It would therefore be highly significant if we could indeed (and generally) relate every peak in (S c -S c ) 2 to a sharp increase (or divergence) in the correlation length, no matter the context or case in which such a peak emerges. Using somewhat pragmatic arguments it can be shown that this is actually the case.

First of all, note that (S c -S c ) 2 = S 2 c -S c 2 . Via its definition, S 2 c can be expressed as:

S 2 c = c S c n s • S 2 c = 1 n s c S 3 c (8.4)
whereas S c follows directly from (8.1a). We fairly assume that there is only one single bulk cluster. We can then reexpress (8.1a) and (8.4) as:

S c = S 2 0 n s + 1 n s c S 2 c (8.5a) S 2 c = S 3 0 n s + 1 n s c S 3 c (8.5b)
with c running over all non-bulk clusters. Based on considerations similar to those that led us to a scaling relation between S c and ξ (as expressed by (8.2b)) we expect that S 2 c ∼ ξ 4 . After all S c (S c ) can be considered as the square of a characteristic length of a cluster c (c ), and ξ by definition as the average of such a length. Hence, the following scaling relationship applies to the sum in (8.5b):

1 n s c S 3 c = n s -S 0 n s c S c n s -S 0 • S 2 c = n s -S 0 n s • S 2 c ∼ ξ 4 (8.6)
Note that 0 ≤ (n s -S 0 )/n s ≤ 1. Restating the scaling relationships (8.2b) and (8.6) as:

1 n s c S 2 c = a ξ 2 1 n s c S 3 c = b ξ 4 (8.7)
(with a and b in the order of unity) we can eventually rewrite (8.5a) and (8.5b) as:

S c = S 2 0 n s + a ξ 2 (8.8a) S 2 c = S 3 0 n s + b ξ 4 (8.8b)
from which we obtain, via direct substitution and some minor rearrangements:

S 2 c -S c 2 = n 2 s S 0 n s 3 1 - S 0 n s - 2aS 2 0 ξ 2 n s + (b -a 2 ) ξ 4 (8.9)
The ratio r = S 0 /n s in (8.9) is generally referred to as the percolation order parameter in the literature (see [1] p. 151). It equals 1 for complete percolation (S 0 = n s ) and vanishes when the bulk cluster collapses at the percolation transition. It is closely related to the order parameter r p defined via (8.1b)). The 1st term on the right-hand side of (8.9) can be expressed as n 2 s f (r), with f (r) a function of r given by f (r) = r 3 (1 -r). This function has 2 roots, respectively at r = 0 and r = 1, and a local maximum at r = 3/4. Upon approaching the percolation transition, S 0 decreases more and more towards zero, and with it also r and f (r). As a result, the 1st term on the right-hand side of (8.9) decreases towards zero upon approaching the percolation transition (instead of increasing or even diverging). That we can also neglect the 2nd-order term against the 4th-order term is nearly self-evident (since the correlation length ξ diverges at the percolation transition). Sufficiently close to the percolation transition we can therefore write:

S 2 c -S c 2 ≈ (b -a 2 ) ξ 4
thus obtaining:

1 /n s (S c -S c ) 2 ∼ ξ 2 (8.10)
for the average size of the fluctuations represented by the standard deviation of the cluster size. Hence, a sharp increase or divergence in (S c -S c ) 2 /n s upon approaching the percolation threshold indeed relates to an increase or divergence in the correlation length ξ (and vice versa). A divergence in the correlation length is considered to be the quintessential feature of the critical phenomena that go with 2nd-order phase transitions. Therefore the lambda-shaped peak in fig. 8.3b can be considered as a direct manifestation of the very nature of the percolation transition, which is that of a 2nd order phase transition. It is emphasized however that (8.10) is quite a general result and therefore its use is not limited to phenomena entirely driven by percolation (as we will see in the next section).

c) The vaccination-induced herd-immunity threshold as the critical point of a 2nd-order phase transition

As mentioned earlier, the benefit of numerical simulations is that mechanisms can be switched on and off, so that their role and influence can be investigated separately. By taking p r = 0 in the simulations, the influence of vaccination and the role of vaccination-related percolation phenomena in the evolution of an epidemic can be isolated and illustrated (as shown by figs 8.1a-d and 8.2a-d in the previous section). Now, let n e represent the final number of cumulative infections after an epidemic has come to a halt and n s = n p (1 -x v ) the number of susceptible nodes left after vaccination. Fig. 8.4a shows, for p r = 0, the relative rate n e /n s = s e /(1 -x v ) of cumulative infections at the end of an epidemic as a function of the rate of random vaccination x v for the 2D square lattice with nearest neighbour interactions under consideration 7 . Data were obtained by (again) generating a randomly vaccinated population for given x v followed by a random labelling of a fixed number of sites as active infections to serve as seeds for the epidemic, and then letting the epidemic spread until it has faded out and come to a halt. We thereby assume that vaccinated nodes are fully immune to infection. The propagation of the infection itself is simulated in the same way as in the simulations presented in chapter 4, namely by repetitive random selection of nodes, checking whether a selected node is infected, randomly selecting one of its nearest neighbours, check its status (s, i or v) and turn it into an active infection as well when it is found to be susceptible and a generator of pseudo random numbers outputs a number lower than the given transmission probability w i . The number used in the simulations of the initial infections (seeds) was taken to be n 0 = 10 3 . Fig. 8.4b shows the data on s e /(1 -x v ) vs x v shown in fig. 8.4a together with the relative size S c /n s of the susceptible clusters after vaccination and prior to the epidemic. The obvious similarity between the curves in fig. 8.4b in both a qualitative and quantitative sense cannot be overlooked and is in agreement with the conjecture that n e /n s scales with S c /n s . This conjecture can also be made plausible through simple though somewhat crude arguments. Consider the population of susceptible nodes to be split-up into N c clusters of different sizes (S i ) according to a cluster-size distribution of some kind (i.e. prior to the introduction of the initial infections). The number of initial infections n 0 is small but large enough for the initial infections to "sample" the cluster-size distribution when they are randomly distributed over the susceptible nodes. The total size S of all clusters together is equal number of susceptible nodes n s :

S = n s = Nc i=1 S i (8.11a)
where the summation runs over all clusters (and N c represents the total number of clusters). The total number of initial infections is equal to the sum of all the occupation numbers8 n 0,i of the individual clusters at t = 0 (note that, by definition, 0 ≤ n 0,i ≤ S i ):

n 0 = Nc i=1 n 0,i (8.11b) 
We introduce {n 0,i } = {n 0,1 , n 0,2 , n 0,3 ...n 0,N } as the set of occupation numbers of the clusters. For a given set of occupation numbers (i.e. for a given distribution of initial infections) the cumulative number of infections at the end of an epidemic n e ≡ n {n 0,i } can be written as (remember that all clusters containing one or more initial infections will become infected):

n {n 0,i } = Nc i=1 n e,i = Nc i=1
(1 -δ 0, n 0,i ) S i (8.12) Here the n e,i represent the number of cumulative infections in the ith cluster at the end of the epidemic, and δ 0, n 0,i the Kronecker-delta:

δ 0, n 0,i =    1 n 0,i = 0 0 n 0,i = 0 (8.13)
We now introduce S i {n 0,i } as the average, for given {n 0,i }, of the size of the cumulatively infected clusters over the number of cumulatively infected nodes at the end of the epidemic:

S i {n 0,i } = Nc i=1 (1 -δ 0, n 0,i ) S i n {n 0,i } • S i (8.14a)
which can be reexpressed, by substitution of (8.12) for n {n 0,i } , as:

S i {n 0,i } = Nc i=1 (1 -δ 0, n 0,i ) S 2 i Nc i=1 (1 -δ 0, n 0,i ) S i (8.14b)
Since the initial infections sample the cluster-size distribution (when sufficiently large in number), the average S i {n 0,i } can be considered as a fair approximation of the previously introduced average S c of the size of the susceptible clusters after vaccination and prior to the epidemic. Hence, an approximation for the ratio s e /(n -1 s S c ) of the normalised infection rate s e = n e /n s = n {n 0,i } /n s and the normalised average cluster size S c /n s easily follows. Combining (8.12) and (8.14b) yields:

s e n -1 s S c = n {n 0,i } S i {n 0,i } = Nc i=1 (1 -δ 0, n 0,i ) S i 2 Nc i=1 (1 -δ 0, n 0,i ) S 2
i so that, via some algebraic rearrangements, we get:

s e n -1 s S c ≈ 1 + Nc i=1 Nc j=1 j =i (1 -δ 0, n 0,i )(1 -δ 0, n 0,j ) S i S j Nc i=1 (1 -δ 0, n 0,i ) S 2 i (8.15)
At low vaccination rates, a (vast) majority of the susceptible nodes forms a large (bulk) cluster of a size comparable to the size of the population network. With increasing vaccination rates, more and more clusters separate from the bulk cluster and become isolated. However, the size of these "secondary" clusters is much smaller (up to orders of magnitude even) than that of the bulk cluster. Note that the bulk cluster does not contribute to the numerator of (8.15) but does contribute to the nominator of (8.15). As such, the products S i S j in the terms these smaller clusters contribute to the numerator in (8.15) will lose against the S 2 i term contributed by the bulk cluster to the nominator in (8.15). In addition, due to their small size only a (small) minority of the the separated clusters will include an initial infection, especially when xv approaches the critical region near the percolation transition where the number (but not the typical size) of the separated clusters increases significantly. Moreover, the probability that 2 specific secondary clusters (to be identified by their indices i, j) both include an initial infection is (very) low. Hence, many of the product terms (1 -δ 0, n 0,i )(1 -δ 0, n 0,j ) in the numerator of (8.15) will be zero over the entire range of xv-values up to the critical region and beyond. Altogether, it strongly looks as though (8.15) can be reduced to se/ Sc ≈ 1 and that se scales indeed with the average cluster size Sc .

The divergence, as a function of xv, in the average of the fluctuation in the size Sc of the susceptible clusters shown in fig. 8.3b is also reflected in the average fluctuation size for the infected clusters present in vaccinated populations after an epidemic has faded out. 

f (xv) =    c |xv -xc| -ν xv < xc c |xv -xc| -ν xv > xc (8.16)
to the datapoints. The function f (xv) represents a scaling law of the type typically associated with the critical phenomena complementing a 2nd-order phase transition, with ν representing a (so-called) critical exponent. The dotted lines fit the datapoints quite well, and √ (Sc -S ) 2 /ns shows therewith the appropriate scaling behaviour expected in connection with a 2nd-order phase transition. As such, the onset of vaccination-induced herd immunity can be perceived in itself as a phase transition of 2nd order (especially since we previously saw that the divergence in √ (Sc -S ) 2 /ns) relates to a divergence in the correlation length). Fig. 8.5 provides insufficient data though to obtain an accurate estimate for xp and ν. 

(d) Vaccination-induced percolation transitions in the framework of the SIR model

The effects of percolation in vaccinated populations can also be dealt with in the context of the SIR model, provided we modify the standard SIR model a little further beyond the modifications already presented in chapter 1.

Percolation phenomena directly affect the (average) number of susceptible contacts s si of an active infection, and they can be counted for as such via the coefficients of the expansion of s si in s. Close to the percolation threshold (i.e. to the critical vaccination rate), s si decreases sharply with any further increase in s when s → se, since the active infections will then approach the cluster boundaries formed by the vaccinated nodes. When s = se, the active infections will actually reach the cluster boundaries so that s si vanishes. For the SIR model to be consistent with this, constraints must be imposed upon the coefficients of the truncated series expansions of s si to be used, such that the following condition applies:

s si = ∞ n=1
ans n e = 0 (8.17)

However, to properly deal with percolation phenomena and describe them correctly in terms of a modified SIR model, some further adjustments of the model seem to be inevitable.

The reason is that we have to deal with 2 qualitatively different regimes, respectively below the percolation transition (xv < xp) and above the percolation transition (xv > xp). Below the percolation transition the bulk cluster dominates, whereas, in the absence of a bulk cluster, the secondary clusters take over in the regime above the transition. It seems appropriate therefore, to split the clusters into a subset consisting of the cluster(s) of (equal) maximum size (which consists of a single bulk cluster for sufficiently low xv), and a subset comprised of all other (secondary) clusters. The contributions to s (and se) from both respective subsets are then treated separately. For purpose of the latter we introduce:

s si b = ∞ n=0 a (b) n s n b (8.18a) s si c = ∞ n=0 a (c ) n s n c (8.18b)
where s si b , s si c represent the average number of s nodes in contact with an i node on respectively the bulk (maximum-sized) cluster(s) (labelled b), and the secondary clusters (labelled c ). The variables s b and s c represent, the respective occupation rates, relative to ns, of the susceptible nodes in the bulk (maximum-sized) cluster(s), and those in the secondary clusters. Note that, by definition, a node in one cluster/subset has no contact with nodes in the other clusters/subsets, so that we can expand s si b , s si c in a single variable only (s b and s c respectively). Now, let S b represent the combined sizes of the clusters of maximum size (that is, the size of the single bulk cluster when existent, or the sum of the nodes contained in the multiple of maximum-sized clusters) and S c the average size of the secondary clusters:

S c = c S c n s,c • S c (8.19)
where c runs over the secondary clusters, and n s,c represents the total number of susceptible nodes in the secondary clusters before the infection spreads. Note that S c is therewith an average over the susceptible nodes in the secondary clusters only. Both S b and S c are functions of xv. The number of nodes in the bulk (maximum-sized) cluster(s) is of course equal to S b . Following section 8a, we also introduce the relative cluster sizes:

S b = S b ns S c = S c ns (8.20)
The total number of susceptible nodes in the network is given by: It is at this point where constraints of a kind similar to (8.17) come into play. First of all, we note that in case of vaccination at random:

ns = n s,b + n s,c ( 
a (b) 0 = a (c ) 0 = ν(1 -xv) (8.23)
The series expansion for s si b can then be written as:

s si b = ν(1 -xv) + ∞ n=1 a (b) n s n b (8.24)
When the bulk cluster is entirely infected s b = n s,b /ns = n b (compare with (8.17)):

s si b = ν(1 -xv) + ∞ n=1 a (b) n n n b = 0 (8.25)
which, by introducing a function an = an(n b ), such that:

a (b) n = an • ν (1 -xv) (8.26)
can be reexpressed as:

s si b = ν(1 -xv) 1 + ∞ n=1 ann n b = 0 (8.27)
For this condition to be met, a power-series expansion of the function an(n b ) in n b cannot have the form of a Taylor series, since s si b should vanish when n n b = 0 (which will be the case upon reaching the percolation threshold xv = xc). A Laurent series is to be used instead:

an(n b ) = ∞ m=-∞ α m,n n m b = ∞ m=1 α -m,n n m b + ∞ m=0 α m,n n m b (8.28)
which also includes negative powers of n b . Substitution of (8.28) into (8.27) then yields for xv = 1, and with i = n and j = n + m:

1 + ∞ n=1 ∞ m=-∞ α m,n n n+m b = 1 + ∞ i=1 ∞ j=-∞ α j-i,i n j b = 0 (8.29)
Collecting terms with equal powers of n b we get, for j = n + m = 0:

1 + ∞ i=1 α -i,i = 0 (8.30a)
and for j = n + m = 0:

∞ i=1 α j-i,i = 0 (8.30b) 
Following the approach in section 3c, by assuming that we can neglect terms of 3rd and higher order in the series expansion of s si b , only a 1 (n b ) and a 2 (n b ) will be relevant. For n = 1 and n = 2 (8.28) then yields, respectively:

a 1 = α -1,1 n b + ∞ m=0 α m,1 n m b (8.31a) a 2 = α -1,2 n b + α -2,2 n 2 b + ∞ m=0 α m,2 n m b (8.31b)
Note that αm,n = 0 for m < -1 when n = 1, and αm,n = 0 for m < -2 when n = 2 since otherwise s si b would diverge for n b → 0. For the 2nd-order polynomial approximations of s si b considered here, the following constraint must apply when s b = n b (see (8.25)):

s si b ≈ a (b) 0 + a (b) 1 n b + a (b) 2 n 2 b ≡ 0 (8.32)
so that in combination with (8.26) we get:

1 + a 1 n b + a 2 n 2 b ≡ 0 (8.33a)
That is:

a 2 = - 1 + a 1 n b n 2 b (8.33b)
Substitution of (8.31a) then yields:

a 2 = - 1 + α -1,1 + n b ∞ j=0 α j,1 n j b n 2 b = - (1 + α -1,1
)

n 2 b - α 0,1 n b - ∞ j=0 α j+1,1 n j b (8.34)
from which, by comparison with (8.31b), α -1,2 and α -2,2 can be identified as:

α -1,2 = -α 0,1 α -2,2 = -(1 + α -1,1 ) (8.35a) 
a result in agreement with (8.30a,b). Also by comparison of 8.34 and 8.31b, the α j,2 for j ≥ 0 follow as: 1 can thus be written as:

α j,2 = -α j+1,1 (8.35b 
a (b) 1 = ν(1 -xv) α -1,1 n b + ∞ j=0 α j,1 n j b (8.36a) a (b) 2 = ν(xv -1) α 0,1 n b + (1 + α -1,1 ) n 2 b + ∞ j=0 α j+1,1 n j b (8.36b)
Series expansions for the a c n in (8.18b) follow along similar lines. There is an issue to be considered however. To obtain the counterpart of (8.25) for the secondary clusters, we must be able to specify the total number of nodes in the subset of secondary clusters that will become infected in the absence of infection removal. We will therefore deal with this issue first.

Consider a fairly large number n 0 >> 1 of initial infections randomly distributed among the unvaccinated nodes. The most likely distribution of these infections over the unvaccinated clusters that follows is one in which a (sufficiently large) cluster of size Sc will, on average, contain a number of n 0,c = n 0 • (Sc/ns) initial infections. When there is a bulk cluster of unvaccinated nodes present (xv < xp) it will therefore almost certainly contain more than a single initial infection, since S b is of the same order of magnitude as ns (or even (almost) equal ns), and n 0 >> 1. Without infection removal, a contribution of a total of n s,b = S b cumulative infections due to infection of the entire bulk cluster is certain therewith.

Estimating the contribution to the cumulative infection rate from secondary clusters is a different matter however. Since secondary clusters can be very small, the equation n 0,c = n 0 • (Sc/ns) for the most likely number of initial infections in a cluster does not necessarily apply to them. For instance, although n 0 • (Sc/ns) = 0, it is highly conceivable that a significant part of the smaller secondary clusters will in fact remain without any (initial) infections (especially when n 0 << ns). And although, provided the distribution of cluster sizes is known, the combinatorics of the problem is tractable,9 it does not provide us with concise algebraic results.

A useful alternative can be based though on the fact that S c is a state variable: the cluster distribution is unique for each xv, and so is the average (relative) cluster size. The importance of this is that the average cluster size directly affects the expectation value S c of the relative total size of the secondary clusters that contain at least 1 single initial infection. The value of S c is crucial, since it represents the number, relative against ns, of all the nodes that will get infected upon the spread of the infection (when pr = 0). That is, it represents the end-value s c ,e of the cumulative relative infection rate s c of the secondary clusters after the epidemic has come to a halt (0 ≤ s c ≤ s c ,e with s c ,e = S c ). In addition, S c is also determined by n 0,c , the number of initial infections distributed among the nodes of the secondary clusters. We can therefore consider S c to be a function of both S c and s 0,c = n 0,c /ns. That is: S c = S c (s 0,c , S c ). As such, we will express the coefficients a c n of the series expansion of s si c in (8.18b) as series in terms of S c , and therewith in terms of both S c and s 0,c . For purpose of the latter we will first express S c in terms of S c and s 0,c .

We reasonably assume S c (s 0,c , S c ) to be a continuous function on the relevant part 0 ≤ s 0,c ≤ n s,c ∧ 0 ≤ S c ≤ 1 of its domain, and that the Taylor series of S c (s 0,c , S c ) in S c and s 0,c exists on this domain part, so that:

S c (n 0,c , S c ) = ∞ n=0 n m=0 c n,m s n-m 0,c S c m (8.37) Since S c = 0 for s 0,c = 0: ∞ n=0 c n,n S c n = 0 (8.38a)
Furthermore, since S c (s 0,c , S c ) is a continuous function on the relevant part of its domain, and since S c = 0 for S c = 0 , it is not difficult to see that for all s 0,c :

lim S c →0 S c (s 0,c , S c ) = 0 Hence: ∞ n=0 c n,0 s n 0,c = 0 (8.38b)
Based on (8.38a) and (8.38b), the series expansion in (8.37) can be reduced to:

S c (n 0,c , S c ) = ∞ n=2 n-1 m=1 c n,m s n-m 0,c S c m (8.39)
leaving (with i = n -m and j = m) a summation over terms c i+j,j s i 0,c S c j with i, j > 0 (as required by (8.38a) and (8.38b)). We assume that a sufficient part of the secondary clusters, and also the number of initial infections n 0,c = nss 0,c are small enough to neglect all terms with i > 1 and j > 2. We can therefore put:

S c ≡ c 2,1 s 0,c Sc + c 3,2 s 0,c S 2 c = c 2,1 s 0,c Sc 1 + (c 3,2 /c 2, 1 ) S 2 c (8.40) 
The derivation of the coefficients a c n as a function of S c is somewhat tedious but similar in line to the derivation of the coefficients a b n as a function of n b . It basically comes down to replacing a b n by a c n , n b by S c and the coefficients αn by the coefficients α n related to the series expansion of the a c n in S c . A detailed outline is presented in the Appendix 2. The result for a c 1 and a c 2 reads:

a (c ) 1 = ν(1 -xv) α -1,1 S c + ∞ j=0 α j,1 S j c (8.41a) a (c ) 2 = ν(xv -1) α 0,1 S c + (1 + α -1,1 ) S 2 c + ∞ j=0 α j+1,1 S j c (8.41b) With c = (1 + (c 3,2 /c 2,1 ) S 2 c
), substitution of (8.40) here for S c finally yields a in terms of s 0,c and S c :

a (c ) 1 = ν(1 -xv)   c -1 α -1,1 s 0,c S c + ∞ j=0 c j α j,1 • (s 0,c S c ) j   (8.42a) 
and:

a (c ) 2 = ν(xv -1)   c -1 α 0,1 s 0,c S c + c -2 (1 + α -1,1 ) (s 0,c S c ) 2 + ∞ j=0 c j α j+1,1 • (s 0,c S c ) j   (8.42b)
When we neglect terms in the summations over j with j > 1 (which implies that we assume S c ≈ c s 0,c S c ), eqs. (8.42a) and (8.42b) reduce to:

a (c ) 1 = ν(1 -xv)   c -1 α -1,1 s 0,c S c + α 0,1 + c α 1,1 • s 0,c S c   (8.43a) a (c ) 2 = ν(xv -1)   c -1 α 0,1 s 0,c S c + c -2 (1 + α -1,1 ) (s 0,c S c ) 2 + α 1,1 + c α 2,1 • s 0,c S c   (8.43b) 
Furthermore we can also neglect/drop the terms linear in s 0,c S c here, since s c is positive, and s c ≤ S c ≈ c s 0,c S c . As a result of that (8.43a) and (8.43b) then reduce to:

a (c ) 1 = ν(1 -xv)   c -1 α -1,1 s 0,c S c + α 0,1   (8.44a) a (c ) 2 = ν(xv -1)   c -1 α 0,1 s 0,c S c + c -2 (1 + α -1,1 ) (s 0,c S c ) 2 + α 1,1   (8.44b) 
The approximative/truncated series expansions for s si b and s si c can now readily be obtained. Combining (8.25) and (8.36a,b) we get:

s si b = ν(1 -xv) 1 + α -1,1 n b + ∞ j=0 α j,1 n j b • s b - α 0,1 n b + (1 + α -1,1 ) n 2 b + ∞ j=0 α j+1,1 n j b • s 2 b (8.45)
And, consistent with the condition (see Appendix 2) that for s c = S c ≡ c s 0,c S c :

s si c = ν(1 -xv) + ∞ n=1 a (c ) n S n c = 0 (8.46)
combining (8.18b) and (8.44a,b) yields for s si c , up to 2nd-order in s c :

s si c = ν(1 -xv)   1 +   c -1 α -1,1 s 0,c S c + α 0,1   • s c -   c -1 α 0,1 s 0,c S c + c -2 (1 + α -1,1 ) (s 0,c S c ) 2 + α 1,1   • s 2 c   (8.47)
With s si b and s si c given by (8.45) and (8.47) respectively, the sets of differential equations describing the temporal evolution of the respective infection rates of the bulk cluster (s b ) and the secondary clusters (s c ) can be written as:

ṡi,b = p i s i,b • s si b ν -pr s i,b (8.48a) 
ṡb = p i s i,b • s si b ν (8.48b) 
where s i,b represents the contribution to the active infection rate composed of active infections in the bulk cluster, and:

ṡi,c = p i s i,c • s si c ν -pr s i,c (8.49a) ṡc 
= p i s i,c • s si c ν (8.49b) 
with s i,c representing the contribution to the active infection rate composed of active infections in the secondary clusters. The solutions if these differential equations are controlled by the total number of initial infections s 0 , and by the ratio according to which these infections are (randomly) distributed among the sites of the bulk and the secondary clusters. Consider s 0 being split-up into a part s 0,b , accounting for the initial infections that "land" in the bulk cluster, and a part s 0,c that accounts for those initial infections in the secondary clusters: s 0 = s 0,b + s 0,c . Since the bulk cluster is (very) large relative to s 0 , we can write:

s 0,b = s 0 • n b (8.50a)
which immediately leads us also to:

s 0,c = 1 -s 0,b = s 0 • (1 -n b ) (8.50b)
For any choice of parameters, and with (8.50a,b) serving as initial conditions, the pairs of differential equations (8.48a,b) and (8.49a,b) can be solved independently for respectively s b , s i,b and s c , s i,c via a numerical procedure, provided that n b and n c = S c = ns S c are known as a function of xv. The latter requirement can be fulfilled by determining the bulk-cluster size for a very large number of xv-values between 0 and 1, thus resulting in a dataset to be used as input from which, for any value of xv, proper estimates for n b and s si c can be obtained via interpolation (note that n c = ns -n b ). 8.7a shows the end-value se of the cumulative infection rate s = s b + s c as a function of xv for the case pr = 0, as obtained from (numerical) solutions of (8.48b) and (8.49b) (remember that s i = s when pr = 0, so that solving (8.48a) and (8.49a) for s i,b and s i,c is not necessary in this case). The relevant parameters αn,m , α n,m and c were adjusted such that the solutions of the ODE's fit well to the se values directly obtained from the simulations (indicated by markers): it is obvious that the agreement is very acceptable indeed. To illustrate the influence of the bulk cluster size and the total size of the secondary clusters on se, ). This is perfectly in accordance with our expectations. As such, the results presented in figs. 8.6a-d and figs. 8.7a-c clearly illustrate that with the extension presented in the present section, the theoretical framework outlined in chapter 1 is also able to account for percolation phenomena in general, and even allows for decribing the effects of percolation transitions. x v 0 0,2
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e) Percolation phenomena in unvaccinated populations

The occurrence of percolation phenomena is not restricted to (partially) vaccinated populations. Depending on the circumstances, manifestations of percolation are possible in unvaccinated populations as well. Especially in cases were the the social bubble of the individuals is (strongly) reduced (reduced number of links per node if the network), percolation phenomena may play a crucial role for the patterns in which the infection spreads throughout the population, as well as for the extend to which the infection spreads. The role of percolation is expected to increase when the number of links per node decreases. As such we have on one end of the spectrum the Ising-like networks with nearest-neighbour contacts only, where the effects of percolation are the strongest, whereas on the other end we have the extreme limit where the social bubble of an individual (node) consists of the entire population. The latter case is in fact "percolation free" (showing no typical percolation effects that is), since an infected node can reach any susceptible node and transmit its infection to it, no matter where this susceptible node is located within the population. One might even say that there is actually no population network in that case, and that therewith the necessary physical prerequisite for percolation phenomena (a network with only a limited number of links/contacts per node) is in fact missing. That this represents a special case indeed is reflected in the fact that, for instance, when pr = 0 the entire population will get infected in the end in such a case.

Due to the tendency to become more important when the number of the contact-links of the nodes decreases, it may be obvious that percolation is particularly an issue in connection with lock-downs. The stronger the lock-down conditions become, and therewith the limitation of the social bubbles of individuals, the stronger the influence of percolation phenomena on the spread of the infection will be. For policy makers it is important to be aware of this, since we will see that percolation effects may cause the infection rates to behave in ways that can be quite confusing, thereby posing a risk of misinterpretation in connection with critical issues like, for instance, herd-immunity.

An important manifestation of percolation effects consists of an additional reduction, with increasing cumulative infection rate s, of the (average) number s si of susceptible nodes that can be contacted by an active infection in the earliest stages of the epidemic (i.e. for (very) low s values). Typical examples of this phenomenon obtained from simulations are shown in figs. 8.8a-d, where s si is shown as a function of s for 4 social bubbles different in size. The social bubbles of a node thereby consist of all the other nodes in a (2N + 1) × (2N + 1) square surrounding the node (the node itself being at the center of the square). The dashed lines represent s si in the percolation free case (N = ∞) for which the standard SIR-model is exact. Figs 8.8a-d respectively correspond to N = 12, N = 8, N = 4 and N = 2. The parameters p i and pr gave been chosen such that pr/p i = 0.75. The effects of N on s si in fig. 8.8a-d are obvious, especially in the low-s regime: with decreasing N the reduction of s si in the lower s-regime becomes increasingly stronger. This behaviour can be understood as follows.

Let s 0 be the initial infection rate at t = 0 so that for t > 0 we can write s = s 0 + s (s 0 , s 1). We consider both s 0 , t (and consequently s ) to be so small that we can neglect the probability that more than 1 infection can be found within the social bubble of each node. We implicitly assume as well therewith that N is small enough to rule out any overlap between the social bubbles of the initial infections. At t = 0 each initial infection has ν susceptible nodes in its social bubble. Upon infecting one of its contacts that number reduces by 1 to ν -1. It is easy to see that the newly infected node has a similar number of susceptibles in its own social network (the node via which the infection was transmitted being the only non-susceptible one in that network). Writing the number of initial infections that has not passed on its infection at given s as n 0 = n(s 0 -s ) (with n 0 = ns 0 being the number of intial (active) infections), so that the number of initial infections that has actually infected another node can then be written as n 0 -n 0 = ns , the change in s si upon a the change s in s can be written as:

∆ s si = n 0 ν + 2(n 0 -n 0 )(ν -1) n(s 0 + s ) -ν = (s 0 -s )ν + 2s (ν -1) (s 0 + s ) -ν = -2s s 0 + s (8.51) Hence: 
∂ s si ∂s

s=s 0 = lim s →0 ∆ s si s = - 2 s 0 (8.52a) ∂ 2 s si ∂s 2 s=s 0 = lim s →0 ∂ ∂s ∆ s si s = 2 s 2 0 (8.52b) 
so that:

s is ≈ 1 - 2s s 0 + s 2 s 2 0 (8.53)
This is quite a remarkable result, which shows that the s-dependence (s -dependence) of s is for sufficiently small s 0 and s directly depends on the number of initial infections s 0 , the derivative of s is with respect to s for s = 0 being given by ∂ s is /∂s = -2/s 0 . Even more striking is the fact that according to (8.53) s is should not depend on N (that is, not on the size of the social bubble). To verify the correctness of (8.53) in general, fig. 8.9 shows the variation of s is with s in the low-s regime for N = 2 at 8 different values of s 0 , varying between s 0 = 10 -4 and 8•10 -4 . The curves show a qualitative behaviour consistent with (8.53). Moreover, the inset shows the estimated values of -∂ s is /∂s obtained from the slope (at very low s ) of the curves in the main figure (triangles), and the variation of -∂ s is /∂s | s =s 0 with s 0 to be expected on the basis of (8.53) ( -∂ s is /∂s |s=s 0 = -2/s 0 ), as represented by the solid curve. It is obvious that the agreement is excellent, so that we conclude that (8.53) is indeed a correct representation of s is at low s . Hence, -∂ s is /∂s | s =s 0 is the same for all N. However, ν depends on N (ν = 4N (N + 1) ), so that the relative differential variation of s is with s near s = 0 varies significantly with N : 

1 ν ∂ s si ∂s s =0 = - 1 2s 0 N (N + 1) (8.54) 
ṡi = p i s i s si ν -pr s i = p i s i 1 + 1 ν s 2 s 2 0 - 2s s 0 -pr s i (8.55) 
An extremum in s i will occur when ṡi = 0. That is, when:

p i νs 2 0 s 2 - 2p i νs 0 s + (p i -pr) = 0 (8.56)
Solving for s is nearly trivial and yields:

s ± = s 0 1 ± 1 + ν(pr -p i ) p i (8.57)
which relates to real solutions for s when:

pr p i ≥ ν -1 ν (8.58)
However, s + is an improper solution since s + > s 0 , and any s > s 0 is in conflict with the requirement that there is not more that 1 active infection per social bubble for (8.53) to apply (bear in mind here that s = s 0 corresponds to a situation where each initial infection has infected exactly 1 contact in its bubble). We are thus left with s -as the only solution that may apply, which requires not only (8.58) to be met, but also that 0 ≤ s -≤ s 0 . It is easy to show that the latter is the case when pr/p i ≤ 1. So s -corresponds to an extremum in s i when10 :

ν -1 ν ≤ pr p i ≤ 1 (8.59)
It is rather straightforward to show that this extremum is actually a maximum. We have:

si = ṡi p i s si ν -pr + s i ∂ ∂t p i s si ν -pr = s i ∂ ∂t p i s si ν -pr
Note that both ṡi and the term in brackets here must be zero for an extremum in s i (see (8.55)). We thus obtain:

si = s i • ṡ ∂ ∂s p i s si ν -pr
Substitution of (8.53) for s si then yields:

si = 2 p i s i ṡ νs 0 s s 0 -1 (8.60)
which is negative since s -< s 0 (be aware that ṡ > 0). As such the extremum in s i can be identified indeed as a maximum. This is a crucial observation indeed, since it implies that the number of active infections will reach its maximum shortly after the onset of the spread of the infection, when s = s -the increase s in the cumulative number of infections is even less than the number of the initial infections therewith (since s -≤ s 0 ). After reaching that maximum, s i will then drop (sharply) again, so that the total number of cumulative infections will eventually come to a halt at a value of s = s 0 + s which will be of the order of a few times s 0 but not more. One could therefore say that under those circumstances the epidemic comes to an early stop by percolation effects alone, which smother the epidemic well before it gained any noticeable strength. However, a scenario like this is possible only for values of pr/p i within the range given by (8.59), and is therefore limited to cases of very small social bubbles (i.e low values of ν). As such, the scenario may only apply to (very) tight lockdown conditions. For instance, on a square lattice with 4 nearest-neighbour contacts only (8.59) becomes 3/4 ≤ pr/p i ≤ 1, representing a fairly narrow window of pr/p i -values. For ν > 4, that window is even smaller and its lower bound even closer to 1. Hence, an active implementation of the scenario, in order to prevent an outbreak from developing into a fullblown epidemic, may not only require a strong reduction of the social-bubble size (a necessary requirement) but, depending on the infecting pathogen and its typical pr-value involved, also necessitate bringing pr/p i within the appropriate range (closer to 1) by additional protective measures specifically aimed at reducing p i (note that pr, as an intrinsic property of the involved pathogen, cannot be "engineered").

Even in those cases where percolation phenomena do not prevent an epidemic from passing the initial start-up hurdles, their presence may have a (significant) moderating influence on the evolution of the epidemic. The reason for this is (again) the steep decrease, as shown in fig. 8.8a-d, in the variation of s si with s that occurs for lower values of N . The effect of such a decrease is a significant reduction, at low s-values already, of the rate at which the infection is transmitted for given p i . As a result, the maximum for given p i and pr in the active-infection rate s i is pushed towards lower values of s so that the epidemic will fade-out earlier and at a lower number of accumulative infections. This can be demonstrated as follows. With:

ṡi = p i s i s si ν -prs i (8.61) 
the condition ṡi = 0 for a local extremum in s i can be expressed straightforwardly as:

s si ν = pr p i (8.62)
(note that ṡi also vanishes when s i = 0 but that case relates to t → ∞, i.e. to the fade-out of the epidemic (see section 5b)). It is easily shown that the local extrema are in fact maxima by using:

si = ṡi p i s si ν -pr - p i s i ν ∂ s si ∂t = p i s i ν ṡ ∂ s si ∂s
Since ṡ > 0 for all t , and ∂ s si /∂s < 0 for all s , we get si < 0 for all t. The condition (8.62) therefore relates to a maximum, and the active infection rate s i will grow as long as s si /ν > pr/p i . However, as soon as (8.62) is met and s i reaches its maximum therewith, the epidemic will go into remission and gradually fades out. The steeper the decrease of s si with s, the lower the value of s at which (8.62) is met for given p i and pr will be. Consequently, it is easy to see that reducing the social-bubble size (i.e. reducing N or, generally, ν) will lead to a suppression of the epidemic itself. The root cause of this phenomenon is, at a deeper level, a percolation-related suppression of the average number of susceptible contacts s si . It may be obvious from (8.61) and (8.62) that also in the cases under consideration here, where the evolution of an epidemic is dominated by percolation phenomena, the ratio rp = pr/p i plays a crucial role in that evolution. All the cases that relate to the same value of rp but to different magnitudes of pr and p i = pr/rp are in fact equivalent. For given rp, the only effect of variations in the magnitudes of pr and p i consists of a rescaling of the time-axis. For different rp-values however, both qualitative and quantitative differences in the evolution of the epidemic are to be expected. To illustrate this, fig. 8.10 shows the variation of the end-value se of the accumulative rate of infections as a function of rp = pr/p i , as well as the average cluster size Sc normalised to the number of nodes in the population n. The data were obtained from simulations based on a population represented by a rectangular 2D square lattice of 1501 × 1501 nodes with nearest-neighbour contacts only (Ising-like case). Not entirely unexpected, both the value of se and the average cluster size show a continuous decrease with increasing pr/p i . An interesting feature thereby is that the average cluster size steeply declines at relatively low values of pr/p i already, and then collapses at the (relatively low) value rp = pr/p i ≈ 0.235. The value of se follows this tendency and bends down sharply with Sc , until it reaches a point of inflection at basically the same value of rp that marks the collapse of Sc . It then begins a gradual fade-out towards zero, which is almost complete at rp = 0.5. The low value of rp at which se reaches the inflection point and Sc collapses is particularly noteworthy. In the percolation-free case without vaccination (ν, N = ∞ and xv = 0), the critical point at which se becomes zero (so that an epidemic spread of the infection is no longer possible) is given by rp = 1 (see sections 5a, 5c). Furthermore, in case of vaccination, the percolation-free case requires a vaccination rate of xv ≈ 0.75 for the critical value of rp to drop to rp,c ≈ 0.235 (the required vaccination rate follows from pr/p i = 1 -xv (see chapter 7)). In the Ising-like case however, such a reduction of the critical value of rp is observed without any vaccinations whatsoever. Hence, in cases of small social bubbles, percolation and infection removal apparently team-up and combine their moderating effects on the spread of an infection.

It may be obvious that the inflection point in the se vs rp curve and the collapse of Sc at the same value of rp are related and, in fact, symptoms of the same underlying phenomenon. This is further corroborated by the rp dependence of the standard deviation of the cluster size. Fig. 8.11 shows the rp-dependence of √ (Sc -Sc ) 2 corresponding to the data in fig. 8.10. A divergence emerges precisely at the critical value of rp marking the collapse of Sc and the point of inflection in the se vs rp curve. The drawn curves in fig. 8.11 thereby represent a scaling law of the type (8.16) and serve as a guide to the eye. Such observations unambiguously point towards a (2nd-order) phase transition taking place at rp ≈ 0.235, since we have seen in section 8b that a divergence in the standard deviation of the cluster size (i.e. a divergence in the fluctuation size) directly relates to a divergence in the correlation length (the quintessential feature of a 2nd-order phase transition). Both the collapse of Sc and the inflection point in the se vs rp curve are essential features of this phase transition as well. As to the very nature of the phase transition at rp ≈ 0.235, and the mechanism driving it, it turns out that we are dealing in fact with a percolation transition in its own right. An indication for this is obtained by plotting Sc /n se against se for a range of different rpvalues. The advantage of the division of Sc /n by se is that the cluster size is related to the internal spatial arrangement of the contingent of cumulative infections (for instance, when Sc /n se = 1 the cumulative infections form a single bulk cluster) and that more subtle details of the rp-dependence of Sc are enhanced. Fig. 8.12 shows the result of such a plot for the data represented in fig. 8.10. We see that Sc /n se remains almost zero for low values of se and then increases quite steeply over a narrow range of se-values towards a value Sc /n se = 1 , at which it then remains when se increases further. The curve seems to have an inflection point at approximately se = 0.4 (dotted line), which corresponds more or less to the middle of the narrow window of se-values in which Sc /n se increases from almost zero to 1. The value se ≈ 0.4 that marks the inflection point is not without meaning. First of all it agrees with the value of se at the inflection point of the se vs rp = pr/p i curve in fig. 8.10. It also agrees (within a very narrow margin) with the site-percolation threshold xc for a 2D square lattice with only nearest-neighbour contacts, in the case where we begin with a completely filled lattice and then randomly remove/block a fraction of sites x (for x > xc the remaining or unblocked sites no longer percolate in that case). As a logical consequence of the latter, if what we are dealing with here is truly a percolation transition, it has to be a transition in the subpopulation complementary to the subpopulation of cumulative infections, i.e. a percolation transition in the subpopulation of susceptibles. This may seem awkward at first, since at lower values of se the cumulative infections will come in dense isolated clusters of neighbouring nodes surrounding the (single) initial infection (the one that provided the seed of the cluster), whereas the majority of susceptible nodes still forms a large bulk cluster. However, it can be shown that the phase transition indeed consists of a collapse of this very same bulk cluster of susceptibles. For the ease of visualisation, we represent the 2D square lattice of nodes by a 2D lattice of square tiles (the size of a tile being that of a lattice/unit cell of the node lattice) in such a way that each node corresponds to the center of a single tile (see fig. Now, as soon as the spread of the infection starts at t = 0, clusters of isolated (cumulative) infections begin to grow around each of the initial infections (see fig. 8.13a for a pictorial impression). The number of clusters thereby equals the number of initial infections ns 0 . It is also important to be aware of the fact that the distribution of initial infections is assumed to be random, and that consequently also the distribution of the clusters over the (population) lattice will be random.

A suitable definition of the lattice position of an isolated cluster is thereby given by the cluster's "center of mass" rc:

rc = 1 nc i r i (8.63)
since it not only matches our intuitive notion of the concept of cluster position closely, but also makes sense from a more mathematical standpoint. The r i thereby represent the positions of the individual nodes (or tile centres) in a cluster, and nc the number of nodes/tiles in a cluster (i.e. the size of a cluster). The index i runs over the individual nodes in the cluster. Note that the center of mass of a cluster is independent of the representation of the population lattice: a lattice of nodes will give the same rc as the corresponding lattice of tiles, since the position of the nodes is coincident with the centres of the corresponding tiles. In practice, rc for a particular cluster of larger size is expected not to differ too much from the position r 0,c of the initial infection from which the cluster has grown (since the differences r 0,c -r i will tend to cancel out for larger cluster sizes). Once the clusters of cumulative infections have grown somewhat larger, we expect their individual sizes to differ only marginally (since all clusters grow under the same stochastic conditions), and the statistical spread in the cluster sizes low enough to consider all clusters to be of the same size as the average cluster size. Now let us imagine that each isolated cluster of cumulative infections is being replaced by a square block of tiles (see fig. 8.13b), the number of tiles in a block being (within as close a margin as possible) equal to the average number of tiles in a cluster. The center of each square block is taken in accordance with the center of mass rc of the cluster it replaces. Next, we consider a new 2D square lattice, made-up of tiles the size of the aforementioned (cluster-replacing) square blocks. We will refer to these tiles as "block tiles" (by analogy with a conceptually similar construct called "block spins", introduced by L. Kadanoff in his approach to order-disorder transitions in Ising spin systems [5]). A block tile is considered to be corresponding to a single node type only (susceptible or (cumulative) infection).

The purpose of the lattice of block tiles is to obtain a simplified representation of the original (i.e. the real) population lattice of nodes/tiles while maintaining the essential features of the actual lattice, but with less tiles (i.e. with less degrees of freedom). The positions of the block tiles related to the cumulative infections are therefore taken to be as closely as possible to the position of the square blocks of tiles introduced to replace the clusters of cumulative infections in the original lattice. The result is a 2D square lattice of block tiles with a random distribution of tiles representing clusters of cumulative infections in the original lattice (see fig. 8.13c).

By definition, the size of a block tile is given by the average cluster size Sc . The number n of block tiles in the new lattice and the number n of nodes/tiles in the original lattice are related via n Sc = n, so that the ration between n and n is given by:

n n = 1 Sc (8.64a)
The number n /n = 1/ Sc can be considered thereby as a scaling factor relating the typical length scales of both lattices (length of a tile edge, resp. block tile edge). Therefore, the block-tile concept de facto corresponds to a renormalisation transformation of the original 2D square lattice. Furthermore, it is obvious that the fraction s = s 0 n/n of block tiles representing a cluster of cumulative infections in the renormalised lattice is (and must be) equal to the cumulative infection rate s of the population: s = s. An explicit expression for s obtained by using (8.64a) reflects this:

s = s 0 n n = s 0 Sc (8.64b)
since s = s 0 Sc in the case of isolated infected clusters. Together, (8.64a) and (8.64b) are the mathematical expression of a pivotal insight. With increasing cluster size (i.e increasing s) the total number n of (block) tiles in the renormalised lattice decreases (as expressed by 8.64a)). The number of infected tiles remains the same however, since the number of the clusters they represent is independent of s and equal to the number of initial infections s 0 n. The decrease of the total number of tiles is therewith entirely due to a decrease of the number of susceptible tiles. Hence, the fraction s of infected (block) tiles in the renormalised lattice increases with increasing cluster size and s, whereas the fraction of susceptible tiles decreases. This is expressed by (8.64b), showing that the fraction of infected (block) tiles in the renormalised lattice is in fact equal to the fraction s of infected nodes (tiles) in the real population lattice, the fraction of susceptible tiles being 1 -s.

A legitimate question now is: will block tiles of a certain type percolate at some critical value of s? Since the block tiles are randomly distributed over the renormalised lattice, the answer is yes. Starting as a single bulk cluster, consisting of the entire population (except for the initial infections) when s = s 0 , the susceptible tiles (randomly distributed like their infected counterparts) reach their percolation threshold xc,s ≈ 0.5927 on the original 2D square lattice with nearest neighbour contacts when the fraction of infected tiles reaches the critical value x c,i = 1 -xc,s ≈ 0.4073. The result is a percolation transition of the susceptible tiles: for s < 1 -xc,s = x c,i , a large bulk cluster of susceptible tiles exists (which collapses when s = x c,i ), whereas for s > 1-xc,s = x c,i the contingent of susceptible tiles is split-up into clusters of smaller size (i.e. significantly smaller than the size of the lattice). However, the crossing of the aforementioned percolation threshold by the susceptible tiles also has important implications for the infected tiles, since the renormalised lattice is a bit odd. Its size is not constant when expressed in the lattice's very own "natural" units of area and length (given by a single block tile and the length of the edge of a block tile respectively) but varies with s. This is (of course) closely intertwined with the fact that the total number n/ Sc of block tiles in the renormalised lattice decreases a function of s. As a result, the lattice shrinks with increasing s when measured in its natural units of size. Since the number of infected tiles is constant, their average separation (measured in natural length units) must therefore decrease with increasing s. Therefore, when a s reaches a critical value when s = x c,i , a majority of the infected block tiles comes in touch with other infected block tiles, thus forming (percolating) paths of infected block tiles. This is in fact how the percolation of the susceptible tiles is broken. We see therewith that the critical value s = x c,i = 1 -xc,s ≈ 0.4073 marks in fact 2 percolation transitions, one in the sublattice of (cumulative) infections and one (in the opposite direction) in the sublattice of susceptibles. This can be clearly seen when we consider what happens at cluster level in the original lattice when s reaches x c,i = 1 -xc,s. It is not difficult to recognise that percolation of block tiles corresponds to percolation of clusters in the original lattice. We thus can say that block-tile renormalisation transforms cluster percolation in the original lattice into tile percolation in the renormalised lattice. At s = x c,i ≈ 0.4073 the majority of infected clusters merges into a single cluster, splitting-up the remaining susceptibles into smaller clusters enclosed by cumulative infections. This can be illustrated when we compare the average size of the cluster(s) of cumulative (removed) infections Scr to that of the cluster(s) of susceptibles Scs as a function of se (the end-value of s) and 1 -se. Fig. 8.14 shows Scr and Scs as a function of se and 1 -se, normalised respectively against 1 -se and se (compare to fig. 8.12). The data were obtained from similar simulations (same parameters) as the data represented in figs. 8.10, 8.11 and 8.12. Fig. 8.14 clearly shows the symmetry involved: when se approaches x c,i ≈ 0.4073 (lower horizontal scale) then Scr /se (right scale) starts to undergo a rather steep transition, from Scr /se ≈ 0 in the low se regime, to an almost "saturated" value Scr /se = 1 for higher values of se (see also fig. 8.12). Parallel to this, Scs /(1 -se) undergoes a similar steep transition in the opposite direction: when se crosses the threshold x c,i ≈ 0.4073, its complement 1 -se (upper horizontal scale) crosses the percolation threshold xc,s = 1 -x c,i ≈ 0.5927 of the susceptible nodes and Scs /(1 -se) (left scale) changes from Scs /(1 -se) = 1 to Scs /(1 -se) ≈ 0.

Furthermore, in a series of pictures, fig. 8.15 shows the actual process of coalescence of the cumulative infections into a large bulk cluster (accompanied by a split-up of the bulk cluster of susceptibles into isolated smaller clusters) as it happens in reality (i.e. on the real, non-renormalised, population lattice). We see that for pr/p i = 0.4, (fig. 8.15a) the epidemic is largely suppressed by the decay of active infections, and se does not exceed any further than a value of se = 0.0184. As a result, the clusters of cumulative infections remain very small and isolated. With decreasing rp = pr/p i , the influence of infection removal diminishes, the value of se increases and the average size of the clusters of cumulative infections grows. Nevertheless, when pr/p i decreases from pr/p i = 0.4 to pr/p i = 0.3 the corresponding increases in the infected-cluster size and se are still modest (a difference of ∆rp = -0.1 in rp results in an increase of only ∆se = 0.053 in se). There is also still a bulk cluster of susceptibles in this case. However, when pr/p i is further reduced, the effects of increased percolation take over. The size of the infected clusters and se increase more and more over ever smaller intervals of pr/p i . Ever more infected clusters merge into larger clusters, while the bulk cluster of susceptibles is gradually split-up into smaller clusters, until at pr/p i ≈ 0.235 (fig. 8.15f) the percolation threshold has been reached and the cumulative infections form a large bulk cluster, whereas the susceptible nodes are confined to smaller (secondary) clusters. The differences between fig. 8.15e and fig. 8.15f are particularly noteworthy in this respect, since they illustrate the sharpness of the actual transition: a very minor difference in rp = pr/p i of only ∆rp = -0.025 makes the difference between predominantly isolated clusters of cumulative infections, accompanied by a bulk cluster of susceptibles, and the opposite situation. The remaining question now is how, also at intermediate values of s, percolation phenomena can have such a significant effect on the production of new infections that they can compete with (and even compensate) infection removal. The answer here is in the effect of percolation on s si or, equivalently, on s is . This is illustrated best by considering s is as a function of s. Fig. 8.16 shows s is vs s for pr = 0 (so that rp = 0) as its main figure. We clearly see that s is has a point of inflection of such a kind that ∂ s is /∂s increases with s for higher values of s. Below the point of inflection ∂ s is /∂s decreases with s. Numerical evaluation of ∂ s is /∂s (inset in fig. 8.16) shows that the inflection point occurs at s ≈ 0.4, and corresponds therewith to the percolation transition described at the foregoing pages. Apparently, the formation of secondary clusters of susceptible nodes, and their enclosure by closed "fronts" of active infections from the bulk cluster of cumulative infections, has a positive effect on s is . This seems quite logical, since the infection now closes in on the susceptible nodes from all directions so to say. The resulting boost in s is directly relates to a boost in the growth rate of the rate of infections given by ṡ = p i (1 -s) s is (see chapter 1). When pr is large enough to keep s below x p,i , the epidemic will be unable to take advantage of this mechanism. However, as soon as s breaks through the percolation threshold (s ≥ x c,i ) the number of (cumulative) infections will get the aforementioned boost, and so will the value of se in the end. The Ising case with only nearest-neighbour contacts represents a rather extreme example of contact limitation, as applied in only the strictest of lock-downs. Percolation shapes the evolution of the epidemic on par with infection removal in this case. However, the effects of percolation seem to be important under less strict lock-down conditions too, although their magnitude decreases significantly when the number of close contacts (ν) of the population members increases (especially in the lower range of ν-values). Some essential characteristics of the results for the Ising case seem to remain however, irrespective of the value of ν.

To give an mathematical description for what (approximately) happens in non-Ising cases we introduce the area Ac of a cluster, i.e. the area within the 2D population lattice that can be attributed in a meaningful way to a particular cluster. Although a concept that is easily to grasp on an intuitive basis, a precise definition of Ac is subject to quite some arbitrariness. A possible definition that also resonates with intuition could be that Ac stands for the largest area that can be fenced-in by a closed circuit of straight lines connecting nodes of a certain type in the cluster, thereby enclosing all other nodes of that type in the cluster (see fig. 8.17). It is obvious that a cluster area defined in this way generally contains nodes of both types (cumulative infections and susceptibles). We therefore introduce the filling factor φc of a cluster, which is the fraction of the nodes/tiles contained by Ac that relate to the node-type of interest. As such, the cluster size Sc is related to the cluster area via Sc = φcAc.

A c

Fig. 8.17: Definition of cluster area Ac as the largest area that can be fenced-in by straight lines (dotted) connecting elements of the cluster We express the area Ac in the number of tiles in the original population lattice covered by it. Let Ac be the average of Ac defined as (compare with (8.1a)):

Ac = c Sc nt • Ac = 1 nt c S 2 c φc (8.65a)
which represents an average over the size Sc of the clusters normalised against the total number nt of nodes of the type of interest in the network, with c running over all clusters of the node-type of interest.

The average cluster size is given by:

Sc = c Sc nt • Sc (8.65b)
Assuming that φc is a constant (written simply as φ) for all clusters, combining (8.65a) and (8.65b) yields a relation between the average cluster area and the average cluster size:

Ac = Sc φ (8.66)
The nodes of our interest here are those related to the cumulative infections. An issue to be dealt with in this context is the distribution of the cumulative infections over the clusters that they concentrate in at low values of s. Those clusters start at an initial infection and then grow outwards. With time (moderate s) there will be a fairly high density of (cumulative) infections close to the center of mass rc of the cluster, forming a dense nucleus of infections around rc.

Moving further away, the density decreases however, and near the cluster boundaries only a few (cumulative) infections are present per unit of area. This is clearly shown in fig. 8.18, which pictures the simulated node-status in a population section of 700 × 700 nodes at s ≈ 0.24 in the absence of infection removal (i.e. pr = 0) for a case where the contact bubble of a particular node consists of the nodes in a 11 × 11 square centred around that node. Black tiles/dots represent the infections, the white areas the susceptibles. The individual clusters are easily recognisable, as well as their tendency to merge. However, the problem is how to define and identify the confluence of 2 clusters. That is, when can we say that 2 clusters have merged? As with the definition of the cluster area, there is a degree of arbitrariness also in this matter. We cope with the issue in a somewhat pragmatic way by introducing an effective area Ae:

Ae = θ Ac (8.67)
where θ represents a parameter between 0 and 1 (0 ≤ θ ≤ 1). The purpose/effect of θ is to lower the area that actually represents a cluster. Its value is such that 2 clusters become indistinguishable roughly when the distance between their respective centres of mass r c,1 and r c,2 relates to Ae = θ Ac as:

| r c,2 -r c,1 | = O( √ Ae)
where √ Ae should be considered as a typical measure of the (effective) length/diameter of a cluster. Combining (8.66) and (8.67) we thus obtain for Ae: 

Ae = θ φ • Sc (8.68)
n n = φ θ • 1 Sc (8.69a)
as a generalisation of (8.64a). A generalisation of (8.64b) is also obtained straightforwardly:

s = s 0 n n = φ θ • s 0 Sc (8.69b)
so that (with s = s 0 Sc ):

s = s • θ φ (8.70)
The block tiles related to the clusters of cumulative infections break the percolation of the susceptible block tiles when 1 -s = xc,s ≈ 0.5927 (s = x c,i ≈ 0.4073), which (as seen previously) corresponds to a collapse of the bulk cluster of susceptibles and the formation of a bulk cluster of cumulative infections. Note that by the very definition of a cluster, the existence of a bulk cluster also implies that its members are in a state of percolation.

To illustrate the influence of the size of the social bubble (value of ν), fig. 8.19 shows both the normalised average cluster size Sc /n and se as a function of pr/p i for the case where the contact environment (social bubble) of a node consists of its nearest and next-nearest neighbours (i.e. the nodes in the (2N + 1) × (2N + 1) square with N = 1 surrounding the node, which itself is at the center of the square). We see that Sc /n and se behave as a function of the critical value of pr/p i = rp in a similar way as in the Ising case (see fig. 8.10).

However, compared to the Ising case, the critical value pr/p i ≈ 0.32 that marks both the collapse of the bulk cluster of cumulative infections and the inflection point in the se vs. pr/p i curve is higher than in the Ising case. Apparently, the effects of percolation phenomena have become less strong as a result of the changes in lattice topology and coordination number (the number of contacts per node ν is 8 in this case vs. 4 in the Ising case).

The qualitative behaviour of the curves in fig. 8.19 suggests that there may be a secondorder phase transition involved in this case as well. This is confirmed by fig. 8.20, which shows (Sc -Sc ) 2 vs. pr/p i . The critical value of pr/p i ≈ 0.32 observed in the data in fig. 8.20 appears to be related to a divergence of (Sc -Sc ) 2 /n, which indeed provides us with conclusive evidence for a second-order phase transition taking place at pr/p i ≈ 0.32. Furthermore, it looks like the inflection point in the se vs. pr/p i curve in fig. 8.19 is due to the same mechanism as the one responsible for the inflection point of a similar kind in fig. 8.10. To demonstrate this, fig. 8.21 shows s is vs s for this case. The resemblance to fig. 8.16 is obvious: like the curve in fig. 8.16, the curve in the main figure of fig. 8.21 also has a point of inflection (at approximately s = 0.37), and behaves similarly to the curve in fig. 8.16, both below and above s = 0.37. The inflection point is again to be considered as a result of the type of percolation transition that we described in the above via block-tile renormalisation of the population lattice: at s ≈ 0.37 the cumulative infections reach percolation while the percolation of the susceptibles is broken. As a consequence, like in the Ising case, percolationinduced boosting of the infection rate will also occur here for s > 0.37. Hence the inflection point in the se vs. pr/p i curve in fig. 8.19. It is worth mentioning that apparently θ/φ ≈ 1 for this case, since the value s ≈ 0.37 differs only marginally from the critical value s ≈ 0.4073 that marks the percolation threshold of the block tiles representing the clusters of cumulative infections (see (8.70)). By comparison of the data in fig. 8.10 and fig. 8.19, it is obvious (and not entirely unexpected) that the influence of percolation effects becomes smaller when the social bubbles of the members of the population increase: an increase of ν from 4 to 8 leads to a significant increase in the critical value of rp = pr/p i from rp ≈ 0.235 to rp ≈ 0.32. It is easy to see that when the social bubbles are increased ever further, this trend will remain and take the form of an asymptotic approach of the percolation-free case (ν, N = ∞) for which rp = 1 (see section 5). In this connection it is also obvious that for all social bubbles of finite size the critical values of rp will relate to a phase transition of 2nd order involving (and partially driven by) a collapse/formation (depending on whether rp is resp. increased or decreased) of a bulk cluster of cumulative infections.

Being the limit for ν, N → ∞, the percolation-free case stands out against the latter. The cluster-concept has no relevance in this case, since all cumulative infections are part of one single (bulk) cluster by definition (irrespective of Sc). Consequently, there is neither a percolation threshold in this case, nor a divergence of a correlation length (which can be considered as infinite for all s in fact). A parallel to thermodynamic systems with cooperative long-range interactions presents itself here. Mean-field methods give an exact description of the thermodynamic behaviour (including phase transitions) of these systems when the interaction range becomes infinite. The individual entities that make-up the system (like spins, molecules etc.) thereby interact with an effective interaction (mean field), which is described in terms of the average state of each entity in the system. As such, there is no meaningful notion of a correlation length (except that it is infinite), and fluctuations on finite length scales are averaged out without any loss of relevant information. Mean-field methods can be exact in situations with long-or infinite-range interactions between the entities in a thermodynamic system are infinite [6].

It is not difficult to see that the percolation-free case shows a strong resemblance to this picture, and that the standard SIR model represents the equivalent of an exact mean-field approach in this. The standard SIR model sets s si and s si equal to, respectively, the probability p = 1 -s that a node is still in a susceptible state and the probability p = s that a node has already been infected: s si = (1 -s), s si = s. It is easy to recognise that these substitutions are the conceptual analogue of the introduction of a mean-field. Like the mean-field methods, in most cases the standard SIR model is an approximation. However, when the social bubbles of the nodes extend to the entire population (so that the "range of social interactions" becomes infinite) these identities become exact and the SIR model gives an exact description of the evolution of the epidemic, thus accentuating the analogy between the model and mean-field methods for systems with cooperative interactions. It is evident that the similarities in concept and role between the standard SIR model and the meanfield methods for phase transitions in physical systems with cooperative interactions are in accordance with the viewpoint that the onset/disappearance of herd immunity corresponds to a (2nd order) phase transition.

f ) The SIR model and percolation in unvaccinated populations

On the basis of the previous section, the standard SIR model seems (and actually is, as we will see in this section) inadequate for describing percolation phenomena of the kind that we encountered in the previous section. However, the more general SIR model outlined in chapter 1 is in fact able to account for the effects of percolation in both vaccinated (see section 8d)) and unvaccinated populations. The latter can be illustrated best by using an approximation of s is in the form of the truncated series expansion:

s is ≡ a is 1 s + a is 2 s 2 + a is 3 s 3 (8.71)
where the coefficients are fitted to the s is vs. s data represented in fig. 8.21, yielding a is 3 = 2.365, a is 2 = -3.02, a is 1 = 1.77. With these values taken for a is 1 , a is 2 , a is 3 , the approximation (8.71) reproduces the data in fig. 8.21 fairly well (see fig. 8.22a). The reason why an approach based on an expansion of s is (instead of s si ) is suited best here is twofold. First of all we have seen in the previous section that the behaviour of s is as a function of s provides a very clear indicator for the influence of percolation in both a qualitative and quantitative sense (inflection point). Secondly, the variation of s is with s can be approximated/described well in terms of a truncated series expansion with far less terms than the variation of s si with s. The fit of the data presented in fig. 8.21 already demonstrated that a 3rd-order polynomial in s provides a good approximation for s is in this respect. This allows for the (semi) algebraic solution of the differential equations involved, as outlined in section 3b. In principle, the parameters t and s as they occur in eq. (3.16) can thereby be chosen in an arbitrary way. However, making this choice can be somewhat tricky. As we see from fig. 8.22a, the relative difference between the actual value of s is obtained from simulation and the best fitting approximation based on (8.71) is quite substantial at very low values of s (near s = 0). Calculations based on (3.16) have shown that these fairly large (relative) variations in s is considerably compromise the calculated s-t relation and its agreement with the simulated data. We must therefore choose the point (t , s ) at not too low a value of t (that is, well within the regime where the fitted 3rd-order polynomial (8.71) does provide a good approximation (with only minor relative differences) for s is ). (3.16) under substitution of the values for a 1 , a 2 , a 3 obtained from the fit to the s is vs. s data presented in fig. 8.22a. Time is measured in "cycle units", each of which corresponds to a full "cycle" of n simulated contacts 11 , so that in one single cycle unit each member of the population makes, on the average, one single contact. The value of t chosen is t = 7.5 (in cycle units). The agreement between the solution of the modified SIR model (with fitted parameters) and the simulated data is splendid. This example emphasises therewith not only the ability of the modified SIR model to account for percolation effects rooted in lattice correlations, but also its necessity as a replacement for the standard SIR model in those cases where a strong influence of percolation phenomena is to be expected. The inadequacy of the standard SIR model is illustrated thereby by the dashed curve in fig. 8.22b, which shows s vs. t calculated on the basis of the standard SIR model for the same p i as used in the simulation. The discrepancy with the simulated data and the modified SIR model cannot be missed and reveals, in fact, a complete failure of the standard SIR model for this case.

g) Combined effects of vaccination and social-network restrictions

We now focus on situations where vaccination and percolation effects due to limitations of the social-bubble size combine, so that their effects may add-up or even strengthen one another. Fig. 8.23 shows the values of se for various vaccination rates xv as a function of pr/p i for a simulated epidemic on a 2D square lattice with nearest and next-nearest neighbour contacts (N = 1) and vaccine efficiency = 1 (full immunity when vaccinated). All curves show a continuous transition as a function of pr/p i , from a regime of high se values to a regime of low and even negligible se values. The transitions are quite sharp (especially for low values of xv) and as such they display the phase-transition behaviour that we have seen in the previous sections. The data for xv = 0 have already been presented in fig. 8.19, together with the variation of the average size of the clusters of cumulative infections indicative of a percolation transition. The transition points rc (that is, the critical rp = pr/p i ) are identified as the inflection points of the curves. Note that also the maximum values of se (at pr/p i = 0) show an expected decrease with xv (which appears to be (almost) linear).

Although way below the critical value pr/p i = 1 for removal-related herd-immunity already for xv = 0 (see chapters 5 and 6), the values of rc become even significantly lower than that with increasing xv, and even approach zero when xv approaches xv = 0.593 ≡ xp, which corresponds to the percolation threshold xc,s = 1 -xp = 0.407 for the susceptible nodes at the onset of the epidemic in case of nearest and next-nearest neighbour contacts [4]. We clearly see vaccination and the effects of size reduction of the social bubbles team-up in bringing rc down and suppressing the spread of an infection. This "bundling of forces" can be understood as follows. Vaccination acts in a twofold manner by reducing the number of new infections possible per unit of time, and by blocking/reducing paths along which the infection can propagate through the population. The latter mechanism is a true percolation effect and, as such, enhanced by reductions of the social-network size. This result implies the following criterion for (vaccine-acquired) herd-immunity:

rp 1 -xv/xp = 1 1 -xv/xp • pr p i ≥ r 0 (8.73)
At least from a phenomenological point of view, we may consider this relation as a generalisation (for percolation effects) of the results on herd-immunity presented in chapters 5, 6 and 7 (see formula (5.1), (6.24) and, with = 1, (7.7)). It seems that a herd-immunity threshold generally exists, and takes the mathematical form of a critical value rc of the ratio between pr and p i , if we think of herd-immunity as a situation where a bulk cluster of cumulative infections is no longer possible and only a minor part of the population will get infected (both in case of strong herd-immunity under a regime of social normality and in case of weak herd-immunity under a regime of social measures (see chapter 6)). When pr/p i > rc there can be no large scale propagation of infections throughout the population. The herd-immunity threshold for xv = 0 is given by (written as) r 0 . In general 0 ≤ r 0 ≤ 1. The exact value of r 0 results from the specific percolation phenomena involved, and is therefore typical of the specific (finite) size and structure of the social bubbles of the population members. As a result of vaccination, the herd-immunity threshold decreases in accordance with (8.72). Comparison of (7.7) and (8.73) suggests that the ratio xv = xv/xp thereby acts as an effective vaccination rate (conceptually comparable to v = xv in (7.7)) and may therefore be considered as just that. As such (at least when = 1) the result (7.7) may be regarded as merely a special case for r 0 = 1 and xp = 1 (so that xv = xv) of a more general result given by (8.73).

Instead of a rigorous mathematical treatment of the observed (linear) functional relationship between rc and xv, a simple qualitative analysis that makes the specific form of (8.72) at least plausible can be given as follows. The curves in fig. 8.8 show that, even when xv = 0, a reduction of the size of the social bubbles the nodes may lead to a very strong decrease of s si with s at (very) low s-values. Upon increasing s for (very) low N and starting form s ≈ 0, a kind of plateau in the s si vs s curves is reached already at s-values only marginally higher than s = 0. Let s be a typical value for s in this respect. For s > s the change in the active-infection rate per unit of time can be written as: ṡi = p i s i s si -pr ṡi = p i s i • ∞ n=0 a n(s -s ) n -pr ṡi For xv = 0, the coefficient a 0 is identified as the parameter r 0 , so that for s = s and xv = 0: ṡi /s i = p i r 0 -pr In general, a 0 will depend on xv, and we write:

a 0 (xv) = r 0 1 -E(xv) • xv
The terms E(xv) • xv represents an effective vaccination rate (compare with v = sv in chapter 7), where the function E(xv) accounts for an additional decrease (due to percolation effects) of the average number of susceptibles (linked to a single active infection) that may become part of a bulk cluster of cumulative infections. In the absence of percolation effects E(xv) = 1 so that the effective vaccination rate is equal to the actual vaccination rate xv, whereas in cases where percolation effects are present E(xv) > 1, and the effective vaccination rate will be larger than the actual vaccination rate in those cases. Obtaining the exact mathematical form of the function E(xv) is a difficult problem. However, xv = xp marks the threshold beyond which there will no longer be a bulk cluster of cumulative infections. in order to account for xv-dependence of E(xv) explicitly. However, fig. 8.24 suggests that, apparently, the contribution to E(xv) due to terms of the order n ≥ 1 is very modest and even negligible for all xv , and that only the 0th-order term 1/xp of the series expansion prevails. This then leads us straight to the empirical relation (8.72).

h) Herd-immunity and percolation

It may be clear from the previous sections in this chapter that percolation phenomena are a contributing factor to the achievement of herd-immunity. Even in unvaccinated populations the critical value of rp = pr/p i (beyond which the cumulative infection rate will stick at a very low value) is significantly lowered when the social bubble size is reduced. This is clearly illustrated by the data presented in fig. 8.10 and fig 8.19 in section 8e. These show, for the both cases ν = 4 and ν = 8, a critical value of rp much lower than the value rp = 1 expected in the percolation free case (ν → ∞), even when xv = 0. It is emphasised that this reduction is caused by percolation effects alone, that is, by the increased reduction of the number of susceptibles in the social bubble of an active infection for given s arising from the reduction of the size of the social bubbles ν and the increased influence of lattice correlations that goes with such a reduction, as well as by cluster-percolation effects discussed in section 8e.

Furthermore, the reduction of the critical rp-value becomes even (much) stronger in vaccinated populations, as shown by the data presented in fig. 8.23 and 8.24, and percolation effects are responsible for this observation. The increased influence of percolation effects in these cases may be inferred from section 8c, where it is shown that an epidemic becomes actually impossible when the percolation threshold of population lattice is passed, even without infection removal. When pr = 0, the effects of infection removal and percolation apparently team-up to reduce the critical value of rp significantly more than the reduction resulting from each of these mechanisms separately (that is, when only one of these mechanisms would apply while the other does not, like in the case of infection removal in a percolation-free case with ν → ∞ or the case of percolation effects in the absence of infection removal (pr = 0).

Finally, it seems that the onset of herd-immunity is in fact related to a 2nd-order phase transition, in which the average cluster-size drops to (almost) zero, whereas the fluctuation size, reflected by (Sc -Sc ) 2 , and the correlation length ξ diverge. It seems therefore that the herd-immunity transition is accompanied by a genuine percolation transition, and that percolation effects are therewith an integral part of the road towards herd-immunity. They are at least a "side-effect", but in many cases, especially when the social bubbles are small, also a contributing cause. The entwining of the herd-immunity transition with a percolation transition to the extend that one may even argue that the herd-immunity transition is in fact a percolation transition epitomises the essential role played by percolation phenomena in the achievement of herd-immunity, even in those cases where the primary mechanism driving the transition is infection removal. It may be clear that percolation effects contribute to the achievement of all types of herd-immunity that can be identified on the basis of the classification scheme presented in section 6b.

Epilogue Summary, conclusions and suggestions for further research

The foregoing chapters not only confirm previously known results and phenomena while putting them on more solid mathematical grounds (like the criterion for epidemic spread of an infection), but they also present a number entirely new results and viewpoints.

First of all, the inadequacy of the standard SIR-model, especially under certain conditions (strict lock-downs and the strong limitations of social contacts inherent to them), is revealed. Under very strict lock-down conditions, the failure of the standard SIR model becomes quite dramatic, as demonstrated by the results of simulations presented in chapter 4 and their comparison to predictions by the standard SIR-model for the same sets of parameters as those used in the statistical simulations. As such, the need becomes clear for a new paradigm that allows for either an extension or a correction of the standard SIR-model to address these issues. In Chapter 1 such a change of approach is actually presented by considering the population as a network, and through a particular focus on the parameters s si and s is and their expression as series expansions in the cumulative infection rate s (which itself acts as the analogue of a state parameter in thermodynamic systems). In contrast to the standard SIR-model, this new approach enables an appropriate reproduction of the data obtained from simulations in both a qualitative and quantitative way, even when strict social measures are in place that significantly reduce the number of contacts of each member of the population. However, modelling the spread of infectious diseases through a set of appropriately constructed differential equations is still surrounded by fundamental difficulties. The problem in this respect mainly lies with the influence of the network details on the actual spread of the infection. The complexity of network phenomena is notoriously difficult to describe in terms of an exact algebraic approach. The approach presented in this paper bypasses this issue by the use of series expansions. However, the coefficients in these series expansions cannot be calculated via an ab-initio scheme but their values have to be derived from already existing data (either from simulations or field-data) in such a way that they provide a proper agreement between the solutions of the differential equations and the (actual) data already available from other sources (see chapter 4). Nevertheless, even the insight that the standard SIR-model has serious shortcomings caused by the network structures of populations, and the awareness of the serious fundamental issues that these network structures bring about in relation to the modelling of infection spread in general, has its owns merits. It comes therefore as a bit of a surprise that it can be shown (as in chapter 5) that the criterion for an epidemic to develop from a limited number of initial active infections is actually independent of the structure of the population network (which, at first glance, seems to defy intuition).

Understanding the vital role of the network structure on the quantitative aspects of the spread of an infection also leads us to valuable insights regarding the unexpected and undesired effects of changing (scaling down) the regime of social restrictions, even when (or, better stated: especially when) the number of cumulative infections seems to stabilise or saturate (see section 5c). The fade-out of an epidemic is contextual, in the sense that the social-network structure has a direct influence on the total number of cumulative infections reached during a wave of infections that takes place under a specific regime of social restrictions. A change towards a regime of less social restrictions (larger social bubbles) when the cumulative number of infections seems to stabilise while there are still some residual active infections present, may in some cases directly lead to a restart of the epidemic, and to a renewed increase of the number of active and cumulative infections (of potentially dramatic proportions). The relevance of these insights to policy makers is evident. Viewpoints as these are therefore among the key results presented in this paper, as they also provide an illustration of the epistemic difficulties that exist in relation to the concept of herd-immunity and its understanding, and of how an inappropriate conception of herd-immunity may lead to the wrong social policies under the circumstances given.

One of the most urgent scientific issues with regard to herd-immunity is its definition: herd-immunity is still somewhat ill defined. To meet the need for a definition that is not only of practical use but also rooted in the fundamental mechanisms that govern the spread of infections, a classification (based on the results in chapters 4 and 5) is presented in section 6b. A distinction is made between weak and strong herd-immunity of either 1st or 2nd degree. Weak herd-immunity corresponds to a situation as described in the above, where there is a saturation of the cumulative infection rate under a regime of social restrictions, but with the prospect of a new wave of infections once the restrictions are (partially) lifted. In contrast, strong herd-immunity relates to a stable situation where even a return to a situation of social normality will not lead to a new spark in the number of active infections and a new wave of infections. The distinction between 1st and 2nd degree applies to both weak and strong herd-immunity. In a case of 1st degree herd-immunity (weak or strong) the number of active infections is over its peak and in decline: the epidemic is (under the circumstances given) in an inevitable state of fading-out. The complementary case where an epidemic (again under the circumstances given) has actually reached its end (so that the number of active infections is (close to) zero and the cumulative infection rate has reached saturation) is referred to a state of 2nd-degree herd-immunity. It may be clear that the best (i.e. safest) policy, at least from an epidemiological point of view, should aim at achieving strong herd-immunity of (preferably) 2nd degree.

The herd-immunity classification scheme was primarily conceived with a picture in mind of waves of infections that gradually come to a halt (mainly due to infection removal), thus resulting in a state of weak or strong herd-immunity. A less troublesome way to obtain a state of herd-immunity is vaccination. By vaccinating a sufficiently large proportion of the population with a vaccine of sufficiently high effectiveness , states of weak or even strong herd-immunity can be obtained. In a vaccine-induced state of weak herd-immunity, the vaccination campaign has to be complemented with social measures to prevent further spreading of an infection. In vaccine-induced cases of strong herd-immunity, the population is safe against an epidemic even without any social measures in place. It is evident that a vaccination campaign should aim at the latter. Chapter 7 deals extensively with the effects of vaccination. A criterion was obtained for a critical vaccination rate that represents the minimal vaccination rate for which immunity for the population at large (without social measures) against the outbreak of an epidemic is guaranteed (and therewith a state of strong herd-immunity is obtained). The line of thought to obtain such a criterion was similar to the one followed in section 5a and, as a consequence, the critical vaccination rate thus obtained is independent of the structure of the social network. The effectiveness of the vaccine is an important parameter here and it explicitly enters the expression derived for the critical vaccination rate. In relation to this it appeared useful to introduce an effective vaccination rate vc = sv. A crucial observation (see fig. 7.1) is that for each p i /pr a minimum effectiveness and a minimum effective vaccination rate exist below which a state of strong herd-immunity cannot be obtained, so that the pathogen involved has to be considered as endemic: unless vaccines of higher efficiency can be developed, vaccination is unable to provide (strong) herd-immunity and the pathogen will spread through the entire population unless appropriate social measures aimed at reducing p i /pr are taken. The possibility of such a scenario may also become of relevance when new variants of a pathogen emerge: a vaccine that provides (strong) herd-immunity against one variant may not do so against a newer variant, the result being a new wave of infections.

A link exists between the criterion for an epidemic to evolve from a modest number of initial infections (and correspondingly also the criteria for herd-immunity) and the value of the (basic) reproduction number R (R 0 ). However, the relation between the two is less straightforward than often assumed (see chapter 2 and sections 5d and 6c). Starting from its definition, the reproduction number R can be expressed as R = Q • p i /pr, where Q accounts for the depletion of the reservoir of susceptibles (the basic reproduction number follows as R 0 = Q 0 • p i /pr, where Q 0 is the value of Q at the beginning of an outbreak (t 0 = 0)). The criterion p i /pr > 1 for an epidemic to evolve is therefore not equivalent to R > 1 or R 0 > 0 (which as often assumed however). Only when Q = 1 (Q 0 = 1) both criteria are equivalent. The issue can only be resolved by changing the definition of the reproduction number (by simply putting R, R 0 ≡ p i /pr), or by relating the criterion p i /pr > 1 to the reproduction number by writing it as R/Q > 1 (R 0 /Q 0 > 1). The often cited criterion R, R 0 > 1 is therefore to be considered only as a crude approximation obtained under neglect of the depletion of the reservoir of susceptibles during the course of an outbreak (see section 5d).

The role of the network structure is already a central theme in chapters 1 to 7. After all, since the population is considered as a lattice or network, and since it is not difficult to imagine that the structure of such a population network will have at least some influence on the evolution of an epidemic, the effects of the details of the network have to be explicitly considered and accounted for, in order to obtain a realistic analysis. The results in the aforementioned chapters clearly demonstrate this. However, there is barely another phenomenon where network effects manifest themselves in such an all-important way as in the percolation transition, the relevance of which to vaccination scenarios is almost self-evident by its very nature. Chapter 8 deals extensively with the phenomenon therefore. Via cluster-identification algorithms applied to data from simulations, a clear link is shown between vaccination-induced percolation transitions and the propagation of an infection through a population. It is shown that the fluctuations in the size of the final clusters of cumulative infections diverges when the percolation threshold is reached. It is also shown that such a divergence in the size-fluctuation can be related in general to a divergence in the correlation length (see section 8b). A divergence in the correlation length is a defining signature of a second-order phase transition in physical/thermodynamic systems. As such, the vaccine-induced herd-immunity threshold can be identified as the critical point of such a 2nd-order phase transition. This represents an entirely new fundamental viewpoint on herd-immunity as a phenomenon. With some extensions, the framework outlined in chapter 1 is able to cope with the observed percolation phenomena, including the percolation transition itself. That is, the variation as a function of the vaccination rate of the end-value of the number of cumulative infections, as well as its collapse at the percolation threshold can be adequately described. However, the variation in (average) cluster size and the divergence of the correlation length are beyond the scope of the presented framework. It should be realised however that these are difficult topics that cannot be caught easily (if at all) in a tractable set of formulas and require a numerical approach almost by nature. In section 8e it is shown that the occurrence of percolation phenomena is not restricted to vaccinated populations alone. Including even percolation transitions, they also occur in unvaccinated populations, where they manifest themselves through a collapse of the end-value of the cumulative infection rate at a critical value of rc = pr/p i accompanied by a divergence in the size fluctuation of the clusters of cumulative infections, which is indicative of a 2nd-order phase transition also in these cases. Cluster percolation plays a decisive role here (see figs. 8.12 and 8.14 and the related discussion in section 8e). As such we arrive at a new fundamental viewpoint on herd-immunity in general: the herd-immunity threshold marks a 2nd-order phase transition related to an underlying percolation transition, no matter whether vaccinations are involved or not. Also in case of the unvaccinated populations, the modified SIR-model of chapter 1 gives an adequate description of the evolution of an epidemic, even when there is a percolation/herd-immunity transition.

The results in this paper were predominantly obtained under the assumption that both infection removal and vaccination provide full immunity. Only in chapter 7 on vaccination, the possibility of vaccines with an effectiveness less than 1 (i.e. less then 100%) was considered and also part of the analysis. In practice, both infection removal and vaccination may not result in full immunity of each population member involved however, especially when new variants of a pathogen with (slightly) different properties emerge to which the immune system does not have a fully effective response (like in the case of Covid-19 for instance). It is therefore a legitimate question whether the results and conclusions presented in this paper would be different when infection removal and/or vaccination would only result in "partial" immunity, that is when the population members that were vaccinated or the ones that have overcome 134 an infection are not fully immune but may instead be susceptible to re-infection, albeit with a lesser transmission probability than the one that applies to the unvaccinated and also still uninfected (thus fully susceptible) population members. The analyses in the previous chapters offer enough insights to allow for some expectations to be mentioned regarding this issue. For this purpose it is important to notice that although the transmission probability that applies in relation to vaccinated population members and removed infections may be nonzero, a certain "stopping power" is provided by a reduction of the transmission probability: a route of infection along members of the the population may still pass a particular vaccinated node or removed infection, but with much greater difficulty (i.e. much less a probability) than when the node in question was still fully susceptible. Percolation effects are therefore still a very real possibility, and the growth-rate of the number of active infections is (substantially) reduced when the vaccination rate and/or the fraction of removed infections are/is high. The effects of partial immunity are therefore expected to be quantitative rather than qualitative. To corroborate these expectations, an extension of the framework presented in this paper to account also for cases of partial immunity would make an excellent suggestion for further research therewith. The lines along which such an extension may be conceived seem clear and could take the form of the introduction of a second transmission parameter p i next to p i (such that p i < p i ) which specifically applies to contacts between an active infection and a vaccinated population member or a removed infection. The spirit of such an approach was actually advanced already in chapter 7 when we dealt with cases where < 1 (eq. ( 7.2) ff). It is rather straightforward to take this approach one step further and to apply it to cases of partial immunity in general. It should be mentioned however, that those results presented in this paper that were obtained on the basis of the assumption of full vaccineor removal-acquired immunity represent fair and meaningful approximations for those cases where a substantial (near full) immunity can be obtained.

All together we may conclude that the results in this paper provide quite some new insights in the spread of infectious diseases and the evolution of an epidemic. As stated earlier, it is at these insights that this paper aims particularly, thus leading to new methods to forecast the evolution of ongoing epidemics. In fact, the paper more than once points out that the goal of making such forecasts is quite ambitious and is met with serious fundamental issues. However, the author believes that the incorporation of the methods and viewpoints outlined in the previous chapters could lead to valuable improvements of the models and methods presently in use for modelling the spread of infectious diseases. The subject of the paper is also quite timeless indeed. At the very moment that this text is written, the Covid-19 pandemic seems to be in remission, but it is too early to tell what the near future will bring. In addition, it would be dangerously naive to assume that Covid-19 will be the last of the great pandemics, and that the SARS-CoV-2 family of viruses will be the last pathogens with the potential of causing pandemic outbreaks. Finally, it should also be realised that the viewpoints in this paper equally apply to outbreaks of plant diseases in, for instance, densely packed mono-cultures and may therefore be of relevance in an agricultural context as well.
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 11 Fig. 1.1: Schematic representation of a population network. There are 3 types of nodes: susceptibles (•), active infections (•), removed infections (⊗). The dashed square symbolises the social network of the node in the center (central grey dot).
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 41 Fig. 4.1: Number of cumulative infections n c as a function of time (main figure) and ṡ(s) (inset) obtained from a simulation with node-contacts selected throughout the entire population network (2D square lattice). Dashed/dotted curves: standard SIR-model. Parameters: population size n = 2001 2 , transmission probability w i = p i /2 = 0.5, decay/removal constant p r = 0, number of initial infections n 0 = 999.

Figs. 4 .

 4 2a/b show the results of simulations for the same (initial) conditions as the results shown in fig. 4.1, except that p r = 0.5 instead of p r = 0. Figs. 4.2a shows the simulated number of cumulative infections n c , and fig. 4.2b the number of active infections n i = ns i , in both cases as a function of time. The dotted curves represent the corresponding numerical solutions of the system of differential equations (1.6) and (1.7) for respectively n c and n i (n.b. remind that n c = ns n i = ns i ).
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 42 Fig. 4.2: Data obtained from a simulation with p r = 0 and node-contacts selected throughout the entire population network (2D square lattice) for a): number of cumulative infections n c as a function of time, and b): number of active infections as a function of time. Dotted curves: standard SIR-model. Parameters: population size N p = 2001 2 , transmission probability w i = p i /2 = 0.5, decay/removal constant p r = 0.5, number of initial infections n 0 = 999.
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 43 Fig. 4.3: Simulated data for ṡ/s i (left vertical axis) and ṡi /s i (right vertical axis), obtained from the same simulations as the data in fig. 4.2. Dotted lines: standard SIR-model (i.e. ṡ/s i = p i (1 -s) and ṡi /s i = p i (1 -s) = p r (extrapolated to s = 1)). Dashed vertical line s = s e : maximum s reached during the epidemic. Parameters: the same as for fig. 4.2.
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 44 Fig. 4.4: s si (a) and s is (b) as a function of s, for a series of simulations with social bubbles consisting of (2N + 1) × (2N + 1) squares with N = 16 (•), N = 12 ( ), N = 10 ( ), N = 8 ( ), N = 6 ( ), N = 4 (♦), N = 2 (+). Parameters: population size n = 2001 2 , transmission probability w i = p i /2 = 0.5, decay/removal constant p r = 0, number of initial infections n 0 = 999.
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 45 Fig. 4.5: 3rd-order polynomial fits (dashed curves) of data (solid curves) for s is vs s from simulations with p r = 0 and N = 6, ν = 168 (a) and N = 10, ν = 440 (b). Other parameters: the same as for fig. 4.2. Best-fitting values for a is 1 , a is 2 and a is 3 indicated in each figure.
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 4647 Fig. 4.6: Variation of a is 1 with ν

Fig. 4 .Fig. 4 .

 44 Fig. 4.9: s i vs t for p r = 0.25 and N = 8, 10, 12. Left column: simulated data (markers) and standard SIR model (solid curve). Right column: simulated data (markers) and model based on series expansion of s si . Other parameters: same as in fig. 4.2.
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 52 Fig. 5.2: Simulated sequence of infection waves under 2 different regimes of social measures (see main text). a) Number of active infections n i as a function of time (time measured in simulation cycles, i.e. the time in which (on average) each member of the population (node) makes exactly 1 contact). b) cumulative infection rate s as a function of time. Dotted lines represent the cross-over of social regimes. Parameters: p i = 0.5, p r = 0.325, N 0 = 500 , population size N = 1501 2 .
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 71 Fig. 7.1: (a) Combined p i /p r -and p i /p r -"phase-diagrams". Points (p i /p r , ) (right vertical axis) in the grey-shaded area correspond to vaccine-acquired herd-immunity, points (p i /p r , ) (left vertical axis) to the possibility of vaccine-acquired herd-immunity (via a sufficiently high vaccination rate, the minimum value of which can be read from the diagram in fig 7.1b below). b) Contour lines of the vaccination rates necessary for vaccine-acquired herd immunity as a function of p i /p r and .
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 81 Fig. 8.1: End-status (after fade-out of the epidemic) of the nodes in a model-population consisting of a 2D square lattice with nearest-neighbour contacts for different rates (x v ) of random vaccination. The different nodes types are distinguished by the colour of the square unit cell that surrounds them (red: infected nodes, black: vaccinated nodes, white: susceptible nodes)

  Fig. 8.2: Close-up of the model-populations shown in figs. 8.1a/d (red: infected nodes, black: vaccinated nodes, white: susceptible nodes)
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 83 Fig. 8.3: Average relative cluster size (a) and its standard deviation (b) vs x v for a 2D square lattice with nearest-neighbour contacts

  Fig. 8.4: (a) Relative rate of cumulative infections n e /n s = s e /(1 -x) vs x v and (b) relative rate of cumulative infections n e /n s = s e /(1 -x) vs x v (black triangles/solid line) compared to the relative average cluster size S c /n s vs x v (open circles/dashed line)

  Fig. 8.5 shows √ (Sc -S ) 2 /ns for these infected clusters vs xv. The divergence clearly stands out, and the behaviour of √ (Sc -S ) 2 /Ns as a function of xv is typical therewith of a phase transition. The dotted lines in fig. 8.5 further substantiate this viewpoint. They mainly serve as guides to the eye, but have been calculated by adjusting the parameters c , c , ν and xc of the function:

6 Fig. 8 . 5 :

 685 Fig. 8.5: Average of the fluctuations in the size of the clusters of cumulative infections after fade-out of the epidemic vs vaccination rate xv. Dotted curves are guides to the eye.

  8.21) where n s,b represents the number of susceptibles in the bulk cluster(s) prior to the start of the epidemic (note that n s,b = S b actually). We can rewrite this relation in terms of the relative total sizes n b = n s,b /ns = S b and n c = n s,c /ns of respectively the bulk (maximum-sized) cluster(s) and the secondary clusters as:n b + n c = 1 (8.22) It is easy to see that in each separate regime (below or above the percolation threshold) the values n b , S b and S c will be unique for each value of xv. Stated differently: n b , S b and S c are bijective functions of xv on the intervals 0 ≤ xv ≤ xp and xp < xv ≤ 1. They can therefore be considered as state variables for the subsets of clusters to which they relate. As a corollary, the coefficients a (b) n in the series for s si b in (8.18a) can be expanded themselves in either n b or S b , just like the coefficients a (c ) n in the series for s si c in (8.18b) can be expanded in S c . The variable n c does it qualify as a proper state variable however, since the secondary clusters prevail above the percolation threshold (xv > xp) and contain all susceptible nodes, making n c /ns = 1 for all xv in the interval xp < xv ≤ xp. Furthermore, it should be kept in mind that, since we deal with 2 qualitatively different xv-regimes, each regime may require its own series expansion of the a n in terms of, respectively, n b and S c seem to be the most elegant and convenient path to follow.

)

  By combining (8.26), (8.31a,b) and (8.34), the Laurent series in n b for a

Figs 8 .

 8 6a,b respectively show, as a function of xv, the absolute size of the bulk cluster n b and the absolute size of the combined secondary clusters n c as obtained from simulations for a population network consisting of 2D square lattice of 751 × 751 nodes with nearestneighbour contacts (in which case the percolation threshold is approximately xc = 0.41). The variation of n b and n c with xv clearly reflects the existence of a percolation threshold. The size of the bulk cluster decreases linearly with xv at low vaccination rates. Upon approaching the percolation threshold xv = xc ≈ 0.41, the decrease of n b with xv becomes increasingly nonlinear until, as a typical feature of a percolation transition, the size of the bulk cluster vanishes completely at xv = xc. The variation of n c with xv is complemetary to this. At low values of xv the combined size of the secondary clusters is almost zero. Upon approaching the percolation threshold, n c starts to increase, and at xv = xc there is a steep jump as a corrolary of the percolation threshold, which is then followed by a transition towards a regime of linear decrease at higher values that persists up to xv = 1. Figs 8.6c,d respectively show the relative variations n b = n b /ns and n c = n c /ns of the bulk and the combined secondary cluster sizes. The figures are quite illustrative, since they show that below the percolation threshold the vast majority of the susceptibles is in the bulk cluster, whereas for xv > xc the susceptibles are predominantly (if not entirely) in the secondary clusters. The simulations not only provide us with the required relation between n b and xv necessary as input for solving the differential equations (8.48a,b) and (8.49a,b), but also with the relation between S c = n c /ns and xv required in that respect (since n c = ns -n b ). The dashed curve in fig.

  figs 8.7b shows the dashed curve in fig. 8.7a (obtained from the ODEs) compared to the n b vs xv curve in fig 8.6c. Similarly, fig. 8.7c shows the comparison of the dashed curve in fig. 8.7a to the average size of the secondary clusters obtained from the simulations. It is obvious that for lower values of xv up to the percolation threshold, se follows the size of the bulk cluster (fig. 8.7b). At the percolation threshold the secondary clusters take over and se very accurately follows the average size of the secondary clusters (fig. 8.7c
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 86 Fig. 8.6: Variation of n b (a) and n c (b) with xv as obtained from simulations for a 751 × 751 square lattice with nearest neighbour interactions. Dotted lines represent the total number of susceptibles. Figs c) and d): resulting variations of n b (c) and n c (d) with xv obtained from the data represented in a) and b) respectively.
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 87 Fig. 8.7: (a) End-value se of cumulative infection rate obtained from ODE vs xv (solid curve) compared to data from simulations (markers) for pr = 0 and n 0 = 125. (b) End-value se represented by solid curve in (a) (left vertical axis) compared to n b from simulations (dotted curve with markers, right vertical axis). (c) End-value se represented by solid curve in (a) (left vertical axis) compared to n c from simulations (dotted curve with markers, right vertical axis) 101
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 288 Fig. 8.8: s si for different social-bubble sizes ((2N + 1) × (2N + 1) square), dashed lines represent the percolation free case N = ∞ which is covered by the standard SIR model.

Fig. 8 .

 8 Fig. 8.9: s si as a function of s for different s 0 (main figure) and the corresponding values of -∂ s is /∂s vs s 0 (inset)

Fig. 8 .

 8 Fig. 8.10: End-value se of the accumulative infection rate (open circles/right axis) and normalised average cluster size Sc /n (dashed curve/left axis) versus pr/p i .

Fig. 8 .

 8 Fig. 8.11: Main figure: normalised standard deviation (Sc -Sc ) 2 /n of the cluster size as a function of pr/p i . Inset: close-up of the critical region.

Fig. 8 .

 8 Fig. 8.12: Plot of Sc /n se vs se (dotted line marks the inflection point)

  8.13a).

Fig. 8 .

 8 Fig. 8.13: Construction of block-tiles and renormalisation of the 2D square population lattice: (a) actual clusters (cumulative infections) on the original (2D square) lattice, (b) block-tiles effectively replacing the clusters on the original lattice, (c) block-tiles on the renormalised (2D square) lattice

Fig. 8 .

 8 Fig. 8.14: Plots of Scs /n 1-se (left axis (see arrow)) and Scr /n se (right axis (see arrow)) vs se (bottom axis) and 1 -se (top axis)

  Fig. 8.15: Status of the population after fade-out of the epidemic for the rp = pr/p i values and the corresponding se values indicated. Black: (cumulative) infections, white: susceptibles. The gradual confluence of the clusters of infections with decreasing rp (increasing se) is obvious. Case (f) represents the crossing of the percolation threshold(s).116
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 88 Fig. 8.16: s is vs. s for pr = 0 (main figure) and ∂ s is /∂s vs. s (inset). Dot and dashed line mark the point of inflection.

Fig. 8 .

 8 Fig. 8.18: Status of nodes in a 700×700 section of a population (black: cumulative infections, white: susceptibles)

Fig. 8 .

 8 Fig. 8.19: End-value se of the accumulative infection rate (open circles/right axis) and normalised average cluster size Sc /n (dashed curve/left axis) versus pr/p i for a case with nearest-and next-nearest neighbour contacts.

Fig. 8 .

 8 Fig. 8.20: Main figure: normalised standard deviation (Sc -Sc ) 2 /n of the cluster size as a function of pr/p i for a case with nearest-and next-nearest neighbour contacts.

Fig. 8 .

 8 Fig. 8.21: s is vs. s for pr = 0 (main figure) and ∂ s is /∂s vs. s (inset) for the case with nearest-and next-nearest neighbour contacts. Dot and dashed line mark the point of inflection.
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 88 Fig. 8.22: a) Result of a fit of the coefficients a 1 , a 2 , a 3 in (8.71) to the simulated data for s is vs. s represented in fig. 8.21. Solid curve: simulated data. Dashed curve: approximation on the basis of (8.71) with best fitting a 1 , a 2 , a 3 (values indicated). b) s vs t. Open circles: simulation, Solid curve: modified SIR model (based on eq. 3.16 under substitution of the results for a 1 , a 2 , a 3 from the fit presented under a)), Dashed curve: standard SIR model
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 888 Fig. 8.23: Variation of se for xv = 0 (•), xv = 0.0625 ( ), xv = 0.125 (♦), xv = 0.1875 ( ), xv = 0.25 ( ), xv = 0.3125 ( ), xv = 0.375 ( ), xv = 0.4375 (+) xv = 0.5 (×)

  Hence 1 -E(xp) • xp = 0, so that we obtain E(xp) = 1/xp. Consequently, when we consider E(xv) to be a differentiable function of xv for 0 < xv < xp, we can express E(xv) as a series expansion in xv -xp of the form:E(xv) = 1 xp + ∞ n=1 En • (xv -xp) n

A variation on the famous sentence by Richard Hamming: "The purpose of scientific computing is insight, not numbers".

Taking an arbitrary moment in time instead of t = 0 as a reference for the calculation of the constant of integration will be of use in chapter 7.

This phenomenon will be addressed extensively inChapter 6 

Be aware that when a si 1 = -ν and a si n = 0 for n > 1, eqs. (1.42a) and (1.42b) respectively reduce to eqs. (1.6) and (1.7) of the standard SIR-model

Note that n e /n s relates to the final cumulative infection-rate s e = n e /n and the vaccination rate x v via n e /n s = s e /s s = s e /(1 -x v )

(i.e. the number of initial infections in a cluster)

systematic numerical evaluation is possible

Note that s -< 0 for p r /p i > 1, consistent with the results in chapter 5 demonstrating the impossibility of an epidemic when p r /p i > 1.

n being the total number of nodes/individuals in the population lattice

We thus obtain: We see that the network correlations explicitly enter this (in)equality on the left-hand side via ∆ξ e . The sign of ∆ξ e is indicative of whether such correlations support (∆ξ e < 0) or counteract (∆ξ e > 0) the achievement of herd-immunity. A qualitative argument for the sign of ∆ξ e in general can be given by considering the influence of correlations on the number of s-r pairs and s sr .

In the absence of correlations (fully random distribution of r-nodes) the number of s-r pairs for s = s e -s 0 is (see (1.14)): n sr = ns e s sr = nν s e (1 -s e ), so that s sr = ν (1 -s e ). However, due to the percolative nature of the spread of the infection, the r-nodes along its paths are not randomly distributed but form dendritic structures ("trees"). With s r = s e , the following inequality then applies to the number of r-r pairs for s = s e -s 0 :

where the equal sign relates to a random distribution of removed infections (each removed infection having s e ν other removed infections in its social network), and the inequality applies in case of the (correlated) dendritic structures (the division by 2 corrects for double counting removed infections). With n rr = ns r s rr /2 (see (1.15)) we thus obtain (remember s r = s e ):

and with s sr = ν -s rr (see (6.28b):

ν and (6.33b) this (in)equality can be transformed into:

in the presence of correlations (i.e. in cases where ∆ ξ e = 0). That is:

∆ ξ e < 0 (6.36)
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which is essentially an eigenvalue equation with the number of links per node ν as the eigenvalue. When the number of nodes of a certain type, say c, is zero (i.e. sc = 0 so that sxc = scx = 0 for x = a, b, c) we get the simplified eigenvalue equation:

Appendix 2

Derivation of the coefficients a c n Analogous to (8.24) we write s si c as:

When s c = S c = cs 0,c S c the following condition must then be met:

Introducing the function a n = a n (S c ) as the analogue of the previously introduced function an = an(n b ):

we reexpress (A2.2) as:

The Laurent series of a n in S c is written as:

Substitution of (A2.5) into (A2.4) then yields, with i = n and j = n + m:

Collecting terms with equal powers of S c we get, for j = n + m = 0:

and for j = n + m = 0:

Neglecting terms of 3rd and higher order in S c in the series expansion of s si c , only a 1 (S c ) and a 2 (S c ) remain relevant. For n = 1 and n = 2 we get from (A2.5):

Analogous to (8.32), for the 2nd-order polynomial approximations of s si c , the following constraint must apply with s c = S (see (A2.2)):

so that in combination with (A2.3) we get, for xv = 1:

That is:

Substitution of (A2.8a) then yields:

(A2.11) 139 from which α -1,2 and α -2,2 can be identified as:

respectively in agreement with (A2.7a) and (A2.7b). For the α m,2 when m ≥ 0 we get from comparison of (A2.11) and (A2.