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A B S T R A C T   

Reservoirs are active reactors for the biogeochemical cycling of carbon (C) and nutrients (nitrogen: N, phos
phorus: P, and silica: Si), however, our in-depth understanding of C and nutrient cycling in reservoirs is still 
limited by the fact that it involves a variety of closely linked and coupled biogeochemical and hydrological 
processes. In this study, the updated process-based Barman model was applied to three reservoirs of the Seine 
Basin during 2019–2020, considering the variations of carbon dioxide (CO2) concentrations and key water 
quality variables. The model simulations captured well the observed seasonal variations of water quality vari
ables, although discrepancies remained for some variables. According to the model, we found that: (1) the three 
reservoirs are autotrophic ecosystems and showed high removal efficiency of dissolved inorganic carbon and 
nutrients during 2019-2020; (2) phytoplankton assimilation, benthic denitrification, precipitation and dissolu
tion of calcium carbonate, and gas exchange at the water-air interface are the dominant processes for water 
quality variations in reservoirs; (3) based on scenarios results, trophic state and mean water depth of reservoir 
would impact the biogeochemical processes and the retention efficiency of nitrate and dissolved silicate. Finally, 
we expect that the successful application of Barman model in the reservoirs of the Seine Basin could provide a 
useful tool for simulating reservoir water quality changes and thus evaluating the impacts of reservoirs on 
downstream water quality.   

1. Introduction 

Inland water ecosystems (river, reservoir, lake, and pond) have been 
characterized as active sites for carbon (C) and nutrients (e.g., nitrogen: 
N, phosphorus: P, and silica: Si) biogeochemical cycles (Bastviken et al., 
2011; Cole et al., 2007; Deemer et al., 2016; Maavara et al., 2020a; 
Tranvik et al., 2009; Van Cappellen and Maavara, 2016). Anthropogenic 
activities may affect nutrient biogeochemical cycles in aquatic ecosys
tems in several ways, for example, through the increase of nutrient loads 
to inland waters due to intensive agricultural fertilization and domestic 
wastewater discharge (Bouwman et al., 2013; Garnier et al., 2021; 
Grizzetti et al., 2021), and through disturbances along the aquatic 
continuum (Friedl and Wüest, 2002; Maavara et al., 2020a; Van Cap
pellen and Maavara, 2016). The construction of reservoirs represents a 
significant human disturbance to the integrity of inland water ecosys
tems, and its impact on the C and nutrient biogeochemical cycles has led 
to substantial interest in reservoir biogeochemical research in recent 
years (Chen et al., 2020; Deemer et al., 2016; Harrison et al., 2021; 

Maavara et al., 2020b, 2020a; Wang et al., 2018, 2021; Yan et al., 
2021a). 

Reservoirs are usually built by damming a river, significantly 
altering hydrological conditions, transforming a lotic ecosystem into a 
lentic ecosystem (Schmutz and Moog, 2018), impeding the natural flow 
of water and the associated C and nutrients, and acting as the in-stream 
reactors (Maavara et al., 2020a). Typically, reservoirs increase the water 
residence time and sedimentation rate, and thus decrease turbidity and 
light attenuation in the reservoir water column, providing favorable 
conditions for promoting photosynthesis and enhancing C and nutrient 
biogeochemical cycling (Van Cappellen and Maavara, 2016). Photo
synthesis assimilates dissolved inorganic carbon (DIC) and nutrients into 
organic matter, which is further decomposed by several processes (e.g., 
aerobic respiration, denitrification, dissolution of biogenic silica), and 
thereby impacts the concentrations of carbon dioxide (CO2) and nutri
ents in the water column (Li et al., 2022; Wang et al., 2020a, 2020b; 
Xiao et al., 2021). Therefore, the variations of CO2 and nutrient con
centrations in reservoirs are indeed closely linked through multiple 
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E-mail address: xingcheng.yan@upmc.fr (X. Yan).  

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

https://doi.org/10.1016/j.watres.2022.119135 
Received 18 May 2022; Received in revised form 16 September 2022; Accepted 16 September 2022   

mailto:xingcheng.yan@upmc.fr
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2022.119135
https://doi.org/10.1016/j.watres.2022.119135
https://doi.org/10.1016/j.watres.2022.119135
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2022.119135&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Water Research 225 (2022) 119135

2

biogeochemical processes. However, these processes remain difficult to 
understand through in situ measurements (Kong et al., 2019). 

Process-based biogeochemical models have been well developed to 
simulate the water quality variables (e.g., water temperature and 
nutrient budgets) in inland aquatic ecosystems (Mooij et al., 2010). 
There are a number of well-established aquatic ecosystem models 
simulating water quality that have been applied to reservoirs including 
the CE-QUAL-W2 (e.g., Lindenschmidt et al., 2019; Sadeghian et al., 
2018; Wu et al., 2022), EFDC (e.g., Tong et al., 2021), and Delft3D 
models (e.g., Chen et al., 2019). In addition, some other models were 
specifically designed for stagnant systems and for simulating the dy
namics of water quality variables in reservoirs, such as the PCLake 
(Kong et al., 2019), Barman (Garnier et al., 2000; Thieu et al., 2006), 
DyLEM-1D (Bonnet and Poulin, 2004) and GLM model (Weber et al., 
2017; Winton et al., 2021). To the best of our knowledge, few studies 
have assessed both nutrient fate and CO2 concentrations in reservoirs 
using process-based biogeochemical models. As mentioned previously, 
the variations of CO2 and nutrient concentrations are co-impacted by the 
biogeochemical processes occurring in the reservoirs; therefore, we 
argue that models that take into account both nutrient fate and CO2 
variations could provide new insights into the biogeochemical func
tioning of reservoirs. 

To address the aforementioned question, we focused on investigating 
the applicability of an existing process-based biogeochemical model in 

the main reservoirs of the Seine Basin (France). The nutrient budgets in 
these reservoirs have been explored by in situ measurements, mass bal
ance methods (Garnier et al., 1999; Yan et al., 2022, 2021b), and an 
initial modeling approach (Garnier et al., 2000; Thieu et al., 2006). 
Here, we applied the Barman model, which newly contains an inorganic 
carbon module based on a previous study on the Seine River (Marescaux 
et al., 2020). The specific goals of the present study are as follows: (1) to 
evaluate the performance of the Barman model in simulating the vari
ations of nutrient and CO2 concentrations in the reservoirs; (2) to 
quantify the nutrient fate and related biogeochemical processes; (3) to 
discuss the impact of potential scenarios, including trophic states, hy
drological management strategies, and morphological characteristics, 
on the ecological functions of these reservoirs; and (4) to propose 
science-based options and implications for the downstream targeted 
nutrient management in reservoirs. 

2. Material and methods 

2.1. The Marne, Aube, and Seine reservoirs 

The three main reservoirs (Marne, Aube, and Seine) are located up
stream of the Seine Basin, with a maximum surface area of 48 km2, 23 
km2, and 23 km2, respectively (Fig. 1); they are managed by the public 
institution Seine Grand Lac (SGL, https://www.seinegrandslacs.fr/). 

Fig. 1. a. The Seine Basin and its location in France. b. Diagram of the three diverted reservoirs in the Seine Basin. The blue and red dots indicate the sampled sites in 
the three reservoirs and their upstream rivers, respectively. The Marne Reservoir was taken as an example to present the typical annual hydrological characteristics of 
the three reservoirs from December 2019 to November 2020, including (c) the reservoir’s volume variation and (d) water discharge, flowing in-out. 
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These reservoirs are diverted from their upstream rivers and linked to 
downstream rivers through artificial canals. The Aube Reservoir con
tains two distinct lakes, Lake Amance and Lake Temple. The two main 
hydrological functions of these reservoirs are to prevent downstream 
flooding during winter and spring, and to support downstream low 
water flow in summer and autumn. Therefore, the annual hydrological 
cycle (from December 2019 to November 2020) of these three reservoirs 
is similar (see Fig. 1c and d) and can be characterized by two periods: the 
filling period (water flows into the reservoirs, from December to June of 
the following year) and the emptying period (water flows out of the 
reservoirs, from July to November). The main characteristics of the 
three reservoirs were presented in Table 1. 

2.2. Data collected on the field 

The water quality in the three reservoirs and their upstream rivers 
was acquired through monthly field measurements during 2019 and 
2020. The sampling strategy for each site (see Yan et al., 2022) was to 
take water with a bucket from bridges or pontoons; 5–L high-density 
polyethylene sampling bottles were filled. All samples were condi
tioned (e.g., filtration) and kept at < 10 ◦C in the field. After returning to 
the laboratory, they were stored at 4 ◦C or frozen until the analysis. 

In the field, pH, water temperature (T,◦C), and dissolved oxygen (DO, 
mg L− 1) were measured using a multiparameter instrument (YSI ® 6600 
V2). For CO2 measurements, 30 mL of water was kept in four syringes 
(60 mL) with 30 mL of ambient air, and were shaken for 10 min. A fifth 
syringe was filled with ambient air to measure the atmospheric CO2. The 
partial pressure of CO2 (pCO2) in water was determined through a non- 
dispersive infrared gas analyzer (Licor, LI–820, USA) using the syringe 
headspace equilibrium method (Abril et al., 2015; Marescaux et al., 
2018). 

In the laboratory, dissolved nutrient concentrations, including ni
trate (NO3

–, mg N L–1), nitrite (NO2
–, mg N L–1), ammonium (NH4

+, mg N 
L–1), orthophosphate (PO4

3–, mg P L–1), and dissolved silicate (DSi, mg Si 
L–1) were measured spectrophotometrically according to Slawyk and 
MacIsaac (1972), Rodier (1984), and Jones (1984), respectively. Sus
pended particulate matters (SM, mg L− 1) were determined as the weight 
of material retained on a Whatman GF/F membrane per volume unit 
after drying the filter for 2 h at 120◦C. The total inorganic phosphorus 
(TIP, mg P L–1) was calculated by PO4

3– and SM according to Billen et al. 
(2007) and Némery et al. (2005). For the analysis of dissolved organic 
carbon (DOC, mg C L− 1), water samples were filtered with GF/F 

Whatman grilled filters (GF/F, 0.7 μm, at 500◦C for 4 h), collected in 
grilled glass flasks and acidified (0.1 mL H2SO4, 4 M in 30 mL of water), 
and then analyzed with a TOC analyzer (Aurora 1030 TOC Analyzer, OI 
Analytical). Chlorophyll a concentrations (Chl-a, μg L− 1, algal cells 
retained on GF/C membrane filters) were determined spectrophoto
metrically after extraction using 90% acetone according to Lorenzen 
(1967). TA (mmol L-1) was measured by 20 mL of filtered water (GF/F: 
0.7 μm) using an automatic titrator (Titrando 905) and HCl (hydro
chloric acid, 0.01 M). DIC (mg C L− 1) concentrations were calculated 
from water temperature, pH, and TA using CO2SYS (Pierrot et al., 2006). 

2.3. The Barman model 

The Barman model was applied to the Marne Reservoir during 
1993–1995 with a simplified representation of the hydraulic conditions 
of the reservoir, considered as a perfectly mixed biogeochemical reactor 
(Garnier et al., 2000) and coupled with a detailed process-based 
biogeochemical model (the RIVE model, Billen et al., 1994; Garnier 
et al., 2002). Additional developments have introduced a simplified 
representation of the reservoir’s morphology (as idealized parabolic or 
spherical shapes), and the possibility to simulate the average depth of 
the reservoir according to the management of the water volumes at each 
time step (Thieu et al., 2006). Recently recoded in Python, both the RIVE 
(v3.2, https://gitlab.in2p3.fr/rive/pyrive) and Barman (https://gitlab. 
in2p3.fr/rive/barman) models have been published under the terms of 
the EPL-2.0 Eclipse Public License and the GNU GPL-3.0 General Public 
License. The current version of the Barman model has embedded the 
latest version of the RIVE code (pyRive, v3.2), including the calculations 
of the biogeochemical processes and nutrient exchanges at the water
–sediment interface by a simplified algorithm method (Billen et al., 
2015), and the inorganic carbon module was implemented to simulate 
CO2 concentrations in rivers (Marescaux et al., 2020). Detailed de
scriptions of the Barman, including morphological characteristics 
(Table S1 and Fig. S1), and the RIVE models are presented in the sup
plementary information (SI, Text S1 and Fig. S2). The parameters used 
in the RIVE model are shown in Table S2. 

Additionally, we updated the calculations of total alkalinity (TA) and 
DIC based on Marescaux et al. (2020). In these reservoirs, we found that 
precipitation and dissolution of calcium carbonate (CaCO3) are signifi
cant (see Text S2, Fig. S3); therefore, we considered the effect of CaCO3 
precipitation and dissolution on changes in TA and DIC. The equations 
for calculating TA and DIC are as follows: 

Table 1 
Main characteristics in the three studied diverted reservoirs*.  

Reservoir Marne Aube_Amance Aube_Temple Seine 

Maximum surface area (km2) 48 7 17 23 
Volume (Mm3, range) 27–330 13–22 19–140 16–199 
Mean depth at maximum level (m) 7.2 3.5 7.6 8.9 
Lithology Clay 
Agriculture land 38.47% 38.25% 48.24% 
Grassland 17.92% 6.29% 4.81% 
Forest 39.90% 53.72% 45.26% 
Inflow discharge (m3 s–1, range) 0–150 0–40 0–62 
Outflow discharge (m3 s–1, range) 0–50 0–15 0–25 
Discharge of upstream river (m3 s–1, range) 2–256 1–123 2–127 
pH 7.9–8.7 8.0–8.7 7.9–8.7 7.8–8.5 
T (◦C, range) 5.1–24.2 6.8–24.8 6.8–24.8 7.6–24.6 
DO (mg O2 L–1, range) 8.3–12.0 8.6–13.6 8.3–11.8 6.6–12.8 
Chl–a (μg L–1, range) 2.0–38.8 1.0–11.6 1.8–20.9 1.5–71.3 
NO3

– (mg N L–1, range) 0.2–5.5 0.2–4.6 0.3–4.3 0.7–6.3 
PO4

3– (mg P L–1, range) 0–0.08 0–0.05 0–0.04 0–0.02 
DSi (mg Si L–1, range) 0.07–2.0 0.12–2.3 0–2.0 0.03–2.1  

* Annual hydrological data was used to present the hydrological characteristics of these reservoirs; variations of water quality variables were provided based on field 
campaigns during April 2019 and November 2020 (Values from surface waters for water quality variables). 
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TA = TAt− 1 + dt
dTA
dt

(1)   

DIC = DICt− 1 + dt
dDIC

dt
(3)  

dDIC
dt

= (respBact+ respZoo+ respBent) +
denit

14
× 12 ×

5
4
− uptPhyC

+
FCO2

depth
−

CaPrecip
40

× 12 − dilu
(
DICt− 1 − DICinput

)
(4)  

where TAt-1 and DICt-1 are the values of TA and DIC in the previous time 
step (t− 1), and TAinput (μmol L− 1) and DICinput (mg C L− 1) are the TA and 
DIC inputs from upstream rivers, respectively. In the RIVE model, 
respBact, respZoo, and respBent represent the respiration of bacteria, 
zooplankton, and benthic respiration (mg C L− 1 h− 1), respectively; denit 
and nitr[‘AOB’] are, respectively, the denitrification and nitrification 
(by ammonia-oxidizing bacteria [AOB], mg N L− 1 h− 1); uptPhyN is the 
nitrogen uptake by phytoplankton (mg N L− 1 h− 1), consisting of nitrate 
(uptPhyNO3

− , mg N L− 1 h− 1) and ammonium (uptPhyNH4
+, mg N L− 1 

h− 1); uptPhyC is the inorganic carbon uptake by phytoplankton (mg C 
L− 1 h− 1); FCO2 (mg C m− 2 h− 1) is the CO2 flux at the water–air interface 
(refer to Yan et al., 2022); depth is the mean water depth of the reservoir 
(m); dilu represents the mixing effect caused by water entering the 
reservoir (h− 1); CaPrecip is the CaCO3 precipitation/dissolution rate, 
which was reflected by the obvious seasonal dynamics of Ca2+ concen
trations in the three reservoirs (see Text S2). 

Once TA and DIC are calculated, the hydrogen ion concentration 
(H+) can be calculated based on TA and DIC, and CO2 can be derived 
from H+ and TA/DIC (Stumm and Morgan, 1996). The calculation 
procedures of H+ and CO2 are presented in Text S3. 

2.4. Model implementation and evaluation 

The quantity and quality of water flowing into the reservoir are the 
main boundary conditions of the Barman model. The daily dynamics of 
volume and mean depth of the reservoir were calculated according to 
the idealized morphology and the water discharge flowing into and out 
of the reservoir, provided by the SGL. The water quality variables used 
are those collected on the field (see Section 2.2). 

Interpolation methods were applied to derive the input data at the 
daily time step. The WRTDS (weighted regressions on time, discharge, 
and season) method was used for water quality variables, including 
NO3

− , DSi, SM, and PO4
3− (e.g., Hirsch et al., 2010; Zhang and Blomquist, 

2018), which are presented in Fig. S4. A simple linear interpolation 
method was used for other water variables. 

The RMSE (root mean square error) and bias were used to evaluate 
the performance of the Barman model: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(obsi − simi)

2/n

√

(5)  

Bias =
∑n

i=1
(obsi − simi)

/ ∑n

i=1
obsi (6)  

where n is the number of observations and obs and sim are the observed 
and simulated concentrations, respectively. 

2.5. Scenario setup 

In order to deepen our understanding of the factors influencing 
reservoir biogeochemical processes and functions, an analysis of three 
possible scenarios were conducted using the Marne Reservoir as an 
example, including (1) trophic state: different TIP concentration in the 
incoming river flow; (2) hydrological management alterations: delaying 
and advancing the emptying period for one month; (3) morphological 
characteristic: theoretical reservoir shape was created on the basis of the 
initial calibration of the reservoir morphology (Text S1) and using 
maximum depth (Dmax) and surface area (Smax) parameters to estimate 
the daily variation in the mean depth and volume of the Marne Reser
voir. The detailed scenario setup is presented in Table 2. 

Table 2 
Details of scenario setup and analysis in Marne Reservoir, as an example.  

Scenarios Setup Analysis 

Trophic state Different TIP 
concentrations in 
upstream river 
Ref.: ~ 20 μg P L–1 

TIP gradients: 1, 5, 10, 
12, 15, 20, 25, 50, 100 μg 
P L–1 

The impact of each scenario on 
the ecosystem metabolism 
(primary production and 
respiration) and on nutrient 
retentions (NO3

– and DSi) were 
explored. 
For each scenario analysis, no 
change was made to other 
boundary conditions and 
morphological changes 
preserved the initial 
semi–spherical shape and the 
maximum volume capacity of 
reservoir (see Text S1). 

Hydrological 
management 
alteration 

Different emptying 
period 
Ref.: from July to 
November 
Advance: from June to 
November 
Delay: from August to 
November 

Morphological 
characteristics 

Different maximum 
depth (Dmax) and surface 
area (Smax) 
Ref.: Dmax = 17.28 m, 
Smax = 49.78 km2 

High Dmax and small 
Smax (small and deep 
reservoir): 
Dmax = 25 m, Smax = 33 
km2 

Low Dmax and large Smax 

(large and shallow 
reservoir): 
Dmax = 9 m, Smax = 100 
km2  

dTA
dt

=

[(
14
106

×
(respBact + respZoo + respBent)

12

)

+
(denit − 2⋅nitr[AOB

′

])

14
+

(
17
106

×
uptPhyNO−

3

uptPhyN
−

15
106

uptPhyNH+
4

uptPhyN

)

×
uptPhyC

12
−

(
CaPrecip

40
× 2

)]

×1000 − dilu
(
TAt− 1 − TAinput

)

(2)   

X. Yan et al.                                                                                                                                                                                                                                     



Water Research 225 (2022) 119135

5

3. Results 

3.1. Model performance 

3.1.1. Validation of the dynamics in water quality variables 
Because the dynamics of the water quality variables were similar in 

the three reservoirs, we present here the Marne Reservoir as an example 
(Fig. 2) and the results of the other two reservoirs are presented in SI 
(Figs. S5–S7). Overall, despite some discrepancies between observations 
and simulations, the simulation well results reproduce the observations 
of key water variables in the three reservoirs during 2019–2020. The 
RMSE and bias, which indicate the deviation and the over-/un
derestimations between observations and simulations in the three res
ervoirs, respectively, show values well in the range, except for the high 
values of PO4

3− and NH4
+ concentrations (Table 3). The model success

fully simulated phytoplankton development (Fig. 2a) during Decem
ber–March and April–August, respectively; however, the model led to a 
lag in simulating the gradual increase of Chl-a during September–De
cember and did not capture the peak value of Chl-a in December. The 
model showed a good simulation of NO3

− dynamics during Decem
ber–July, but it slightly overestimated the low NO3

− concentrations 
during September–November (at the end of the emptying period). For 
DO, the model successfully captured the general trend in the reservoirs, 
with high and low values during December–March and 

August–September, respectively. Moreover, the seasonal variations of 
DSi concentrations in the three reservoirs were successfully simulated by 
the model during 2019–2020, including the gradual decrease during 
December–August (of the following year) and the increase during Sep
tember–November (Fig. 2). In addition, the model also captured most 
observations of PO4

3− and NH4
+, except for some high values (e.g., PO4

3−

in May and July of 2020, and NH4
+ in November of 2019 and 2020 in the 

Marne Reservoir). 

3.1.2. Validation of the CO2 simulation 
In the carbonate systems, the model successfully simulated the dy

namics of TA and DIC in the three reservoirs during 2019–2020 (Figs. 3 
and S5-S7). In addition, we also found that the precipitation and 
dissolution of CaCO3 play a significant role in regulating the dynamics of 
TA and DIC in the three reservoirs compared with the effect of the 
biogeochemical processes (Text S4 and Fig. S8). Although the observed 
values of pH in the reservoirs fluctuated, the model still captured the 
general level of pH; however, discrepancies between simulations and 
observations still exist during March–July 2020, not adhering well to the 
trend and with some underestimations of the pH. Nevertheless, the 
simulations of CO2 were generally consistent with the observations, i.e., 
the relatively high and low values, and the decrease in CO2 was 
captured. 

Fig. 2. Simulations and observations of the water variables in the Marne Reservoir (2019–2020). (a) Chl-a, (b) NO3
− , (c) PO4

3− , (d) DO, (e) DSi, (f) NH4
+. The blue line 

represents the simulation results, and the black dots are the observations. 

Table 3 
Root mean square error (RMSE) and bias for chlorophyll a (Chl–a, mg C L–1), nitrate (NO3

–, mg N L–1), orthophosphate (PO4
3–, mg P L–1), dissolved oxygen (DO, mg O2 

L–1), dissolved silicate (DSi, mg Si L–1), ammonium (NH4
+, mg N L–1), total alkalinity (TA, μmol L–1), pH (–), dissolved inorganic carbon (DIC, mg C L–1), and carbon 

dioxide (CO2, mg C L–1). n = number of data for the calculations.  

Reservoirs n Chl–a NO3
– PO4

3– DO DSi NH4
+ TA pH DIC CO2 

Marne R. RMSE 19 0.50 0.76 0.02 1.09 0.52 0.11 348.69 0.28 4.13 0.24 
Bias 19 0.03 –0.10 0.34 0.01 0.06 0.63 –0.03 0.003 –0.03 –0.15 

Seine R. RMSE 18 0.66 0.63 0.01 1.78 0.48 0.23 486.09 0.31 5.63 0.43 
Bias 18 0.03 0.07 –0.47 0.06 –0.63 0.79 –0.09 –0.01 –0.09 0.03 

Aube R. Amance RMSE 13 0.18 0.8 0.01 1.29 0.46 0.03 891.3 0.48 10.28 0.25 
Bias 13 0.03 –0.12 0.37 0.02 0.38 0.37 –0.23 –0.03 –0.21 –0.18 

Aube R. Temple RMSE 19 0.30 0.66 0.01 0.72 0.56 0.03 901.10 0.28 10.78 0.22 
Bias 19 0.03 0.07 0.13 0.0002 –0.18 0.25 0.31 0.01 0.31 –0.28  
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3.2. The biogeochemical processes and nutrient fate in the three reservoirs 

3.2.1. The ecosystem metabolism 
Primary production and respiration rates showed synchronized 

variations in the three reservoirs, gradually increasing from January to 
July, while decreasing from July to December (Fig. 4 for the Marne 
Reservoir; the others refer to Fig. S9). The highest rates of primary 
production (i.e., phytoplankton uptake) were found during June–July, 
from 23 tons C d− 1 in Aube–Amance to 115 tons C d− 1 in Marne, which is 
the largest reservoir with twice the surface area of the former reservoirs. 
The highest respiration rates were very close to the phytoplankton 

uptake rates. In terms of net ecosystem primary production (NEP, i.e., 
photosynthesis minus respiration), the three reservoirs were generally 
autotrophic ecosystems, with average NEP values from 0.16 to 0.79 tons 
C d− 1 (ranging from 57 [Aube–Temple] to 288 [Marne] tons C yr− 1 

during one annual hydrological cycle). In the model, respiration repre
sents the sum of bacteria (respBact), zooplankton (respZoo), and benthic 
respiration (respBent). The results revealed that respBact and respBent 
were the dominant components of total respiration, while respZoo made 
only a small contribution to this total in the three reservoirs. Indeed, 
respBact represented more than 75% of the total respiration during 
March–October, which corresponded to the period with high primary 

Fig. 3. Simulations and observations of the CO2 systems in the Marne Reservoir (2019–2020). (a) TA, (b) pH, (c) DIC, and (d) CO2. The blue line represents the 
simulation results, and the black dots are the observations. 

Fig. 4. Daily ecosystem metabolism in the Marne Reservoir from 2019 to 2020, including (a) primary production (phytoplankton uptake), respiration, and NEP (net 
ecosystem production = photosynthesis − respiration), the black dashed line indicates the balanced metabolism (primary production equal to respiration); (b) the 
contribution of bacterial respiration (respBact), zooplankton respiration (respZoo), and benthic respiration (respBent) to total respiration. 
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production, and a high respBent rate was found during Novem
ber–February (of the following hydrological year) in the three 
reservoirs. 

3.2.2. Nutrient fate and corresponding biogeochemical processes 
The input and output fluxes of NO3

− , TIP, DSi, and DIC and the main 
biogeochemical processes related to their transformations were quan
tified during 2019 and 2020 (Fig. 5 for Marne; for the others, refer to 
Figs. S10–12). In terms of the fate of nutrients, the results revealed that 
phytoplankton uptake was one of the most significant processes 
affecting the transformations of NO3

− , TIP, DSi, and DIC in the three 
reservoirs. Benthic denitrification, especially, and nitrification in the 
water column were also two important processes affecting NO3

− dy
namics in the three reservoirs. Internal cycling of P was enhanced by 
phytoplankton uptake, respiration, and benthic release, while the sedi
mentation of TIP had a marginal impact on TIP in the water column 
compared with the other processes. For DSi, diatom uptake played an 

important role in DSi concentrations in the water column, and benthic 
flux released by biogenic silica dissolution (BSi) did not compensate for 
this. In terms of the DIC transformation, phytoplankton uptake and 
respiration were two dominant processes regulating the internal cycling 
of DIC, while the precipitation of CaCO3 and CO2 emissions was the 
dominant process driving the net change of DIC concentrations in the 
water column. 

3.2.3. Nutrient budgets during one hydrological cycle 
In the three reservoirs, the N budgets (including NO3

− and NH4
+), P 

(TIP), Si (DSi and BSi), and C (including total organic carbon and 
inorganic carbon) during one annual hydrological cycle were calculated 
according to the multiple processes considered by the Barman model. 
Here, we show schematic diagrams of nutrient transformation and 
transport in the example of the Marne Reservoir (Fig. 6); details on the 
nutrient fate of the three reservoirs are provided in Table S3. All three 
reservoirs affected a high NO3

− retention, ranging from 36% 

Fig. 5. Budgets of NO3
− (a), TIP (c), DSi (e), and DIC (g) based on interpolated upstream concentrations (input fluxes, red lines) and the Barman model simulation 

(output fluxes, blue lines). Associated simulated biogeochemical processes, with positive and negative values indicating respectively an increase or decrease of 
NO3

− (b, NitrNOB is nitrite oxidation in the water column), TIP(d), DSi (f) and DIC (h) concentrations in the water column, respectively. The dashed red line represents 
the net change of nutrient concentrations in the water column. 
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(Aube–Amance) to 51% (Marne). The intensity of phytoplankton uptake 
(71–312 tons N yr− 1) and benthic denitrification (178–1102 tons N 
yr− 1), i.e., NO3

− removal is clearly illustrated in Fig. 5 and Table S3. 
Ammonification (459–1789 tons N yr− 1) and phytoplankton uptake 
(520–2048 tons N yr− 1) were the main processes driving NH4

+ trans
formations compared with NH4

+ oxidation (48–213 tons N yr− 1) and 
benthic flux (80–349 tons N yr− 1). The three reservoirs showed high 

retention of DSi ranging from 49% (Aube–Temple) to 69% (Marne), and 
phytoplankton uptake (172–940 tons Si yr− 1) was the dominant process 
responsible for the DSi removal, sinking as BSi with diatom biomass, the 
three reservoirs also showed high BSi retention rates ranging from 38% 
(Aube–Temple) to 89% (Marne). In addition, 64%–79% of TIP was 
retained in the three reservoirs, with phytoplankton uptake of PO4

3−

being the dominant process retaining TIP in these reservoirs: from 98 

Fig. 6. Schematic diagram of the nutrients (a, b, c) and carbon (d) fate during one annual hydrological cycle (from December 2019 to November 2020) in the Marne 
Reservoir (detailed values for the three reservoirs are provided in Table S3). The imbalance between inputs and output is linked to retention/elimination and the 
initial/final state of the system (e.g., denitrification for NO3

− ). 

Fig. 7. Impact of the trophic state (increasing TIP concentrations) on the annual ecosystem metabolism, including (a) primary production and respiration, net 
ecosystem primary production (NEP = primary production – respiration) being shown on a 2nd Y-axis; and (b) retention rate of NO3

− and DSi in the Marne Reservoir. 
All other boundary conditions are those of the annual hydrological cycle from December 2019 to November 2020. Note that the average TIP concentration flow into 
the reservoirs was approximately 20 μg P L− 1 during 2019–2020. 
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(Aube–Temple) to 391 (Marne) tons P yr− 1. In terms of DIC, the three 
reservoirs showed retention rates ranging from 25% (Aube–Amance) to 
65% (Aube–Temple). The CaCO3 precipitation (913–4875 tons C yr− 1) 
and CO2 emission (859–5773 tons C yr− 1) were the most significant 
processes for DIC removal in the water column. Additionally, the annual 
net burial of TOC (total organic carbon) in sediments of the three res
ervoirs ranged from 61 (Aube–Temple) to 458 (Marne) tons C yr− 1. 

3.3. Scenario analysis in the Marne reservoir 

3.3.1. Assessing the impact of different trophic states 
Primary production, respiration, and NEP all increased with TIP 

concentration in the inflowing river water, and their increasing rates 
were higher according to the range of TIP concentrations of 1–50 μg P 
L− 1. The gradual increases of NEP also indicated an increased 

Fig. 8. Impact of three hydrological scenarios on (a) reservoir volume changes, (b) primary production, (c) respiration, (d) NO3
− retention rate, and (e) DSi retention 

during during one hydrological cycle (from December 2019 to November 2020). 
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autotrophy with increasing TIP concentrations (Fig. 7a). In addition, the 
trophic state of the reservoir significantly impacted the retention of NO3

−

and DSi. The retention rate of NO3
− showed an increase from 38% (1 μg P 

L− 1) to 63% (100 μg P L− 1), but this increase of the NO3
− retention rate 

was the highest (from 38% to 51%) in the lower range of the TIP con
centrations explored (1–-25 μg P L− 1) (Fig. 7b). The retention rate of DSi 
was greater in response to the increasing TIP concentrations of 1–25 μg P 
L− 1 (from 29% to 68%), with a slight decrease from 70% to 54% as the 
TIP loads continued to increase from 50 to 100 μg P L− 1 (Fig. 7b). 

3.3.2. Changes in hydrological management strategies 
Without significantly affecting the primary function of the Marne 

Reservoir (i.e., to prevent flooding and support water flow), the changes 
in hydrological management strategies involve advancing or delaying 
for 1 month the start of the emptying period in the reservoir (Fig. 8). 
Compared with the reference scenario, primary production and respi
ration showed similar patterns with values, respectively, of only 1.6% 
and 1.7% higher in the delayed hydrological scenario and of − 3.8% and 
− 3.9%, i.e., lower, in the advanced scenario (Fig. 8b, c). Regarding 

Fig. 9. Impacts of different morphologic parameters (a) Dmax and Smax (see Text S1) of the Marne Reservoir on (b) calculated water column mean depth, (c) primary 
production, (d) respiration, (e) NO3

− retention rate, and (f) DSi retention rate during one hydrological cycle (from December 2019 to November 2020). 
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retention rates, those of NO3
− decreased only slightly by 2% (Advanced) 

and increased by 1% (Delayed) (Fig. 8d). Similarly, the DSi retention did 
not change (Delayed) or did so by only − 2% (Advanced) (Fig. 8e). 
Overall, the ecosystem metabolism and nutrient retention did not 
change significantly under these possible modifications of the hydro
logical management strategies for the Marne Reservoir. 

3.3.3. Different morphological characteristics in the Marne Reservoir 
Changes in morphological parameters (maximum depth and 

maximum surface) that were used to define the idealized spherical shape 
of the reservoir logically had strong impacts on the mean depths of the 
water column calculated daily according to hydrological conditions 
(Fig. 9). The ecosystem metabolism changed only slightly. Compared 
with the reference situation, primary production and respiration 
decreased, respectively, by 5.8% and 5.6% for the large–shallow sce
nario; similarly, lower percentages of both primary production and 
respiration were obtained for the small–deep scenario (− 8% and − 8.3%, 
respectively) relative to the reference (Fig. 9b, c). For the nutrient 
retention rates, the large–shallow reservoir showed a slight increased 
NO3

− retention rate (from 51% -Ref.- to 53%) and a small decreased rate 
(from 51% -Ref.- to 47%) for the small–deep scenario (Fig. 9d). How
ever, the low DSi retention rate was significantly lowered in the large
–shallow reservoir (from 69% -Ref.- to 38%), while it only increased 
marginally (from 69% -Ref.- to 73%) for the small–deep reservoir 
(Fig. 9e). In addition, we further found that the benthic denitrification 
(1140 tons N yr− 1) and benthic flux of DSi (390 tons Si yr− 1) in the 
large–shallow reservoir were 1.1 and 1.6 times higher than the small
–deep reservoir, respectively (Fig. S13). Although primary production in 
the large–shallow scenario was slightly higher than in the small–deep 
scenario, the DSi assimilation was, nevertheless, 1.2 times lower than in 
the latter. 

4. Discussion 

4.1. Evaluation of the model: performance and limitations 

Overall, the Barman model showed satisfactory simulation results for 
the key water quality variables and CO2 dynamics during 2019–2020 in 
the three reservoirs of the Seine Basin, despite some discrepancies 
(Figs. 2 and S5–S7). In the three reservoirs, the peak value of Chl-a was 
generally observed during the end of the emptying period when water 
levels are relatively low, which may enhance the nutrient exchanges 
from the sediment to the water column, increase light availability, and 
thereby stimulate the development of phytoplankton in reservoirs (see 
Yan et al., 2022). For NO3

− concentrations, the lowest values were also 
observed with low water depth, which were not fully captured by the 
model. A possible explanation is that the resuspension process that in
creases SM concentrations in the water column when water levels are 
low was not considered in the model, while the concentration of SM has 
been shown to significantly influence the denitrification process in 
aquatic ecosystems (e.g., Jia et al., 2016; Xia et al., 2017). Moreover, 
although stratification could occasionally occur during summer when 
temperature and water level were high in these reservoirs (see Garnier 
et al., 2000), the zero-dimension Barman model in fact does not consider 
such stratification but assumes that the three reservoirs are well-mixed 
systems. The Barman model, which needs fewer input data and lesser 
running time than multi-dimension models (e.g., the Delft3D and 
CE-QUAL-W2 models) (Lindenschmidt et al., 2019; Wu et al., 2022), 
fails to reproduce possible low oxygen concentrations in bottom waters, 
suitable for denitrification processes. Nevertheless, the model captured 
fairly well the dynamics of NO3

− and other variables (e.g., nutrients) in 
the water column, which shows its usefulness in simulating biogeo
chemical processes in these reservoirs. 

For the simulation of the variations in CO2 concentrations, the gas 
transfer coefficient (k600) plays an important role in simulating CO2 in 
the three reservoirs (e.g., in the Marne Reservoir, Fig. S14). In this study, 

the daily wind speed was not available, and we used monthly average 
wind speed in a single location and selected a k600 constant value of 0.08 
m h− 1 (median value calculated from six different methods, see Text S5). 
Given the importance of gas transfer velocity (k) for modeling the CO2 
dynamics, we believe that the high-resolution measurement of k is 
needed in future studies. Additionally, we have only estimated the 
precipitation and dissolution rates of CaCO3 (see Text S4) based on 
seven dates in the three reservoirs during 2020. Despite the satisfactory 
simulation results of TA and DIC found in the Marne, Seine, and Aube 
(Lake Temple) reservoirs, specific research efforts are still required 
focusing on the precipitation and dissolution rates of CaCO3 in these 
reservoirs with generic kinetics equations in a future version of Barman 
model. 

4.2. Nutrients in reservoirs: budgets and transformations 

Nutrient budgets in the three reservoirs were estimated using a mass 
balance method based on the uneven temporal frequency measurements 
(bimonthly, monthly, and seasonal) during 1993–1995 (Garnier et al., 
1999) and 1998–2018 (Yan et al., 2021b), which indicated that reser
voirs play an important role in nutrient retention, whatever the mea
surement strategy. In this study, the biogeochemical processes 
responsible for the nutrient transformations were analyzed with the 
Barman model, and the nutrient retention rates were thus calculated 
based on simulations at a daily time step. Our results are consistent with 
previous findings, demonstrating that reservoirs exhibit a strong ca
pacity for retention of DIC and nutrients (N, P, Si) (Akbarzadeh et al., 
2019; Maavara et al., 2017, 2015b, 2014; Mendonça et al., 2017), and 
they are also close to our previous long-term assessments using monthly 
or seasonal measurements during 1998–2018 (Yan et al., 2021b). Un
even and low-frequency measurements may not capture the seasonal 
patterns of nutrient concentrations in water, and thereby lead to un
certainty in evaluating their budgets (see Kong et al., 2019 for NO3

− ). 
However, the different data series gathered from these reservoirs 
showed similar retention rates according to our previous study (Yan 
et al., 2021b), which would support our simulation results. 
High-frequency measurements are well adapted for NEP determination, 
but probe availability for establishing the nutrient budgets of interest is 
still limited, and the maintenance of probes for frequent or continuous 
measurements is costly. Although several statistical models have been 
used for nutrient retention rates in lakes and reservoirs, including N 
(Alexander et al., 2002; Harrison et al., 2009; Seitzinger et al., 2002) and 
Si (Maavara et al., 2014), the underlying biological processes could not 
be fully described. Based on the mechanistic Barman model (i.e., 
process-based), which describes the major processes involved in the 
biogeochemical transformations of C and nutrients (see SI TextS1, 
Fig. S2), we could explicitly unravel both the fate of carbon and nutri
ents and the importance of physical processes in the three reservoirs (see 
3.2.3). Therefore, our results would provide a deep understanding of 
seasonal variations in water quality variables in these reservoirs, and 
also a potential utility to minimize the impact of the reservoirs on their 
downstream water quality. 

4.3. Effects of external phosphorus management on reservoir ecological 
function 

Taking the Marne Reservoir as an example, the response of the 
ecosystem metabolism to the external P loads clearly revealed the 
importance of P concentrations in the primary production, respiration, 
and NEP. It is well known that primary production combines the 
biogeochemical cycles of C and nutrients in aquatic ecosystems (Bern
hardt, 2013). Interestingly, our results indicated that the retention ef
ficiency of NO3

− and DSi varied with the external P loads. For NO3
−

retention, denitrification (dominantly in the sediment) was shown to be 
the main process responsible for NO3

− elimination in the three reservoirs 
(see 3.2.2). In addition to the levels of DO and NO3

− , the availability of 
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biodegradable organic matter is one of the factors controlling denitri
fication rates (Seitzinger et al., 2006). Therefore, at low P concentration, 
low phytoplankton biomass was supported and less organic matter fell to 
the sediment, thus ultimately limiting the denitrification rate and 
thereby lowering the NO3

− retention rate in the reservoirs (Bernhardt, 
2013; Finlay et al., 2013). 

Similarly, the elimination of DSi was mainly induced by diatom 
uptake, which was significantly affected by DIP concentrations in the 
reservoirs (Maavara et al., 2015a; Xiao et al., 2019). Increasing P con
centrations in the range of 1–25 μg P L− 1 stimulates the development of 
diatoms in the Marne Reservoir, and thus DSi uptake. Without other 
limitations, the growth of diatoms would increase with P concentrations; 
however, other groups of phytoplankton (non-diatoms) show a greater 
competitive advantage than diatoms in freshwaters with high P con
centrations (Burson et al., 2018), which may further impact the uptake 
and retention rate of DSi in reservoirs. For instance, the biomass of di
atoms, as calculated by the model, was essentially constant for P loads 
ranging from 25 to 50 μg P L− 1 and levelled off or decreased instead 
when P loads exceeded 50 μg P L− 1 (see Text S6, Fig. S15), which 
resulted in a reduced DSi retention efficiency when the TIP concentra
tion exceeded 50 μg P L− 1. 

This result confirms that changes in DIP concentrations clearly affect 
biogeochemical processes. On the one hand, denitrification (and NO3

−

retention) may be reduced at low P concentrations, without playing a 
positive role in removing NO3

− for downstream rivers. On the other 
hand, increasing DIP may lead to an undesirable change in phyto
plankton composition from diatoms to non-diatoms, the latter being 
often unpalatable for zooplankton or is even toxic. Overall, the response 
of the biogeochemical processes (e.g., metabolism) and ecological 
functions (e.g., nutrient retention) to external P loads explored here 
provided new insight into the impact of the reservoir on downstream 
nutrient concentrations, a topic of great interest, especially for the Seine 
River water quality, which is mainly used to produce drinking water for 
the 12 M inhabitants of the Paris conurbation (Flipo et al., 2021). 

4.4. Implications of hydrological management strategies and 
morphological characteristics for reservoir water quality 

The fluctuation in water levels induced by the hydrological man
agement strategies is one of the typical features of reservoirs, and has 
been recognized to impact biogeochemical processes (Geraldes and 
Boavida, 2005). In this study, advancing the emptying period by 1 
month (i.e., in June) could support downstream low water flows earlier 
at the end of spring, whereas delaying the water release would maintain 
high water levels in the reservoirs for recreational activities in summer. 
We found that changing hydrological management strategies only 
slightly impacts the ecosystem metabolism and the retention of NO3

− and 
DSi in the Marne Reservoir, due to the fact that the concentrations of 
NO3

− and DSi were already low in June. Several studies have explored 
the impact of hydrological management strategies on downstream water 
quality, such as water temperature, DO, and nutrient concentrations, 
which, however, mainly focused on optimizing the withdrawal depth of 
the dam (e.g., Calamita et al., 2021; Sadeghian et al., 2015). In contrast 
to most large reservoirs in the world, the three reservoirs of the Seine 
River system are diverted from their related rivers and connected with 
them by artificial canals, rather than being constructed by damming a 
river. Thanks to a few SGL’ measurements in the canals and in the res
ervoirs, we assumed the impact of the canals to be low so that down
stream changes in the rivers is due to changes in the reservoirs. 

Interestingly, we found that modifying the mean depth of a reservoir 
without modifying the hydrological management strategy can play a 
role in the nutrient retention efficiency. Indeed, a shallower reservoir 
showed a 6% higher NO3

− retention rate than a deeper reservoir, but a 
significantly lower (35%) DSi retention rate (Fig. 9). With the same 
volume, the shallow reservoir has a higher area of sediment interacting 
with the overlying thinner water column, which has been considered as 

the critical attribute regulating in-lake nutrient biogeochemical cycles 
(Qin et al., 2020). Denitrification is the dominant process resulting in 
NO3

− elimination in the reservoirs, which is determined by the avail
ability of NO3

− , biodegradable organic matter, and anaerobic/aerobic 
conditions (Seitzinger et al., 2006). In this study, although primary 
production in the shallow scenario was 5.8% lower than the reference 
scenario, benthic denitrification was higher than the latter (Fig. S13). 
DSi retention in the reservoir is the net result of the interactions between 
several biogeochemical processes, including external input of Si, 
in-reservoir formation of BSi, and dissolution and burial of BSi (Lauer
wald et al., 2013; Maavara et al., 2015a; Teodoru et al., 2006). Here, we 
found that a shallower-shaped reservoir favored a high DSi flux from 
benthic release to the water column and relatively lower uptake in the 
water column (Fig. S13), which led to a low DSi retention efficiency. 
Thus, when combining the benthic fluxes of NO3

− and DSi, the reservoir 
with lower mean depth potentially enhances nutrient exchanges at the 
water and sediment interface, and further impacts the nutrient retention 
efficiencies. 

5. Conclusions 

The Barman model was successfully applied to the three diverted 
reservoirs of the Seine Basin, demonstrating its ability to reproduce the 
seasonal variations both of the nutrients and the CO2 concentrations. 
The biogeochemical processes and nutrient fate were systematically 
analyzed and quantified for each of the three reservoirs, we found that:  

1 the three reservoirs are autotrophic ecosystems and showed high 
removal efficiency of C and nutrient during 2019-2020.  

2 benthic denitrification is the most significant process accounting for 
NO3

− elimination; diatom uptake is the key process for DSi elimina
tion; precipitation and dissolution of CaCO3 and CO2 emissions are 
dominant drivers for the decrease in DIC; and the assimilation of 
PO4

3− by phytoplankton uptake represents the main source of 
retention of TIP.  

3 trophic state and mean water depth of reservoirs impact the 
biogeochemical processes and the retention efficiency of NO3

− and 
DSi based on scenarios analysis results. 

Overall, this study unravels the fate of C and nutrients in the three 
reservoirs based on the Barman model, and scenario results provide 
useful references for the management of water quality in reservoirs and 
the potential impact on downstream rivers. 
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