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We use direct numerical simulation (DNS) to explore the effect of tilt on two-dimensional turbulent thermal convection

on a half-soap bubble that is heated at its equator. In the DNS, the bubble is tilted by an angle δ ∈ [0◦,90◦], the Rayleigh

number is varied between Ra ∈ [3× 106,3× 109], and the Prandlt number is fixed at Pr = 7. The DNS reveals two

qualitatively different flow regimes: the dynamic plume regime (DPR) and the stable plume regime (SPR). In the DPR,

small dynamic plumes constantly emerge from random locations on the equator and dissipate on the bubble. In the

SPR, the flow is dominated by a single large and stable plume rising from the lower edge of the bubble. The scaling

behaviour of the Nusselt number Nu and Reynolds number Re are different in these two regimes, with Nu ∝ Ra0.3 for

the DPR and Nu ∝ Ra0.24 for the SPR. Concerning Re, the scaling in the DPR lies between Re ∝ Ra0.48 and Re ∝ Ra0.53

depending on Ra and δ , while in the SPR, the scaling lies between Re ∝ Ra0.44 and Re ∝ Ra0.45 depending on δ . The

turbulent thermal and kinetic energy dissipation rates (εT ′ and εu′ , respectively) are also very different in the DPR and

SPR. The probability density functions (PDF) of the normalized logεT ′ and logεu′ are close to a Gaussian PDF for

small fluctuations, but deviate considerably from a Gaussian at large fluctuations in the DPR. In the SPR, the PDFs of

normalized logεT ′ and logεu′ deviate considerably from a Gaussian PDF even for small values. The globally averaged

thermal energy dissipation rate due to the mean temperature field was shown to exhibit the scaling 〈ε〈T 〉〉B ∝ Ra−0.23

in the DPR, and 〈ε〈T 〉〉B ∝ Ra−0.28 in the SPR. The globally averaged kinetic energy dissipation rate due to the mean

velocity field is shown to exhibit the scaling 〈ε〈u〉〉B ∝ Ra−0.47 in the DPR (the exponent reduces from 0.47 to 0.43

as δ is increased up to 30◦). In the SPR, the behavior changes considerably to 〈ε〈u〉〉B ∝ Ra−0.27. For the turbulent

dissipation rates, the results indicate the scaling 〈εT ′〉B ∝ Ra−0.18 and 〈εu′〉B ∝ Ra−0.29 in the DPR. However, the

dependencies of 〈εT ′〉B and 〈εu′〉B on Ra cannot be described by power-laws in the SPR.

I. INTRODUCTION

Turbulent thermal convection is ubiquitous in nature and

plays a significant role in large scale flows on the Earth, such

as the cyclones in the atmosphere and the circulation of the

deep oceans1. Convective flows are also vital for a great num-

ber of industrial applications, for example cooling systems on

chip-boards2. The fluid motion in turbulent thermal convec-

tion is driven by buoyancy which arises due to temperature

gradients imposed by boundary conditions3. In these flows,

the buoyancy force typically injects energy into the large flow

structures, and this energy is then (on average) transferred to

smaller scales by the energy cascade, and is finally dissipated

at the smallest scales4. The rate of energy dissipation reg-

ulates both the global energy balances and the local fluctua-

tions of flow quantities5–7, and studying its behavior provides

insights into the fundamental properties of turbulent convec-

tive flows8,9.

a)Also at Hubei Key Laboratory of Engineering Structural Analysis and

Safety Assessment, Wuhan 430074, PR China

A. Dissipation in RBC

Rayleigh-Bénard convection (RBC) is the canonical

model system for fundamental studies of turbulent thermal

convection3,10, and the physical mechanisms and flow proper-

ties of RBC have been studied extensively in recent decades8.

For a given flow configuration, the dynamics of RBC is

controlled by two non-dimensional parameters, the Rayleigh

number Ra and the Prandlt number Pr. Ra is defined as the

non-dimensional heating temperature as:

Ra =
gβ TcH3

νκ
, (1)

where Tc is the difference between the temperature at the up-

per and lower boundaries, H is the distance between the upper

and lower boundaries, g denotes the norm of the gravity accel-

eration, β the coefficient of thermal expansion, ν the kinetic

viscosity, and κ the thermal diffusivity. Pr is defined as the

ratio of the momentum diffusivity to the thermal diffusivity

as:

Pr =
ν

κ
. (2)
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The resulting flow properties of RBC in terms of the global

heat flux and nature of the fluid motion are measured by the

Nusselt number Nu and Reynolds number Re, respectively.

Nu is the non-dimensional heat flux defined as:

Nu =
Q

λ Tc
H

, (3)

where λ denotes the thermal conductivity of the fluid and Q

is the heat flux through the fluid. Re is defined as:

Re =
ucH

ν
, (4)

where uc denotes a characteristic velocity of the flow, e.g. the

root-mean-square velocity. A crucial open topic in RBC is

to understand how the control parameters Ra and Pr deter-

mine the response parameters Nu and Re, which are emergent

properties of the RBC flow. Central to understanding this is to

understand the behavior of the thermal and kinetic dissipation

rates which are defined as

εT = κ‖∇T‖2, (5)

and

εu =
1

2
ν‖

(

∇u+∇u
⊤
)

‖2, (6)

where T is the temperature field and u the fluid velocity.

In RBC, the following exact relations can be derived11,12:

〈εT 〉V = κ
(Tc)

2

H2
Nu, (7)

〈εu〉V =
ν3

H4
(Nu− 1)

Ra

Pr2
, (8)

where the operator 〈·〉V denotes a volume average. These

exact relations connect the controlling parameters Ra,Pr to

the response parameters Nu via εT and εu. In addition, they

are also foundational to the famous Grossmann-Lohse(GL)

theory13–16. In the original scenario proposed by the GL the-

ory, 〈εT 〉V and 〈εu〉V are decomposed into the contributions

due to the boundaries and bulk respectively13–15. Later, Gross-

mann and Lohse extend the physical pictures of heat transport

and include the contribution of plumes16. GL theory and its

extensions successfully reveals the mathematical form of Nu

and Re as functions of Ra and Pr which are in good agree-

ment with the numerical and experimental results17,18. How-

ever, understanding the mechanisms of heat transport and flow

dynamics still needs the insights offered by a deep and de-

tailed investigation of εT and εu, not only for Rayleigh-Bénard

convection4,8,19 but also for a wide ranges of flows20–22.

Measuring εu requires the simultaneous measurement of all

5 (for incompressible flow) components of strain-rate tensor,

and εT requires the simultaneous measurements all 3 compo-

nents of ∇T . Therefore, it is very challenging to measure

εu and εT in experiments, and only recently has this been

done. For 1 × 109 ≤ Ra ≤ 1 × 1010, He et al.23 achieved

the first successful experimental measurement of εT using a

local temperature gradient probe in a cylindrical convection

cell. In their results, the spatial and temporal average ther-

mal dissipation rate 〈εT 〉 is decomposed into two components

ε〈T 〉 = κ‖∇〈T 〉‖2 and 〈εT ′〉 = 〈εT 〉− ε〈T 〉 where 〈·〉 denotes

a spatially local temporal average23. Their results showed

that 〈εT ′〉 is dominant in the central region of the flow and

therefore that the plumes makes a crucial contribution to the

total dissipation in this region23. By contrast, the contribu-

tion from ε〈T 〉 is dominant in the thermal boundary layers23.

The probability density function (PDF) of εT ′ measured in the

experiments19,23 are well described by stretched exponential

functions. In the central region of the flow or near the side

walls, the PDFs of normalized logεT ′ are well described by

a Gaussian PDF for relatively small values of the normalized

variable19.

Concerning εu, Ni et al.24 measured its temporal and vol-

ume average in the center of a convection cell using particle

image velocimetry (PIV). Their results validate the crucial as-

sumption made by the GL theory, namely that the flow volume

averaged dissipation is dominated by the contribution from the

the boundary layers24. Recently, Chilla et al.25 utilized cor-

relation image velocimetry (CIV) technology and Fluorinert

FC770 as the working fluid in order to measure εu with Ra

up to 2× 1012. They found that power-law dependence of εu

on Re is εu ∝ Re
5
2 for laminar convection and εu ∝ Re3 for

turbulent convection25.

Verzicco et al.26,27 calculated εT and εu from the three di-

mensional temperature and velocity field obtained from DNS

and also found that the dominant contribution to the globally

average dissipation comes from the boundary layer, confirm-

ing the hypothesis of the GL theory26,27. Shishkina et al.28–30

used εT to develop a method for the extraction of plumes from

the bulk flow in RBC using DNS data. For 107 ≤ Ra ≤ 109

and Pr = 0.7, Emran and Schumacher31 found that the PDF

of normalized logεT deviates from a Gaussian distribution at

large values of the normalized variable. It was also shown

that the PDFs of εT can be fitted by stretched exponential

functions31. Zhang et al.8 systematically studied the statistics

of εT and εu in a two-dimensional square convection cell for

106 ≤ Ra≤ 1010. They obtained PDFs for εT and εu that were

very similar to those of Emran and Schumacher31. However,

they also found deviations from the GL theory with respect to

contributions to the dissipation from the central flow region of

RBC8. Xu et al.4 studied the statistics of εT for RBC with very

low Pr = 0.025 and obtained similar results to those of Zhang

et al.8 and Emran31, suggesting that at least some of the nor-

malized statistical properties of εT are independent of Pr over

the range spanned by these studies. In addition, Shashwat et

al.32 studied the scaling of the thermal dissipation, both aver-

aged only inside the boundary layer 〈εT 〉BL and only inside the

bulk 〈εT 〉BK , as a function of Ra and for a a wide range of Pr.

They again found that 〈εT 〉BL is much larger than 〈εT 〉BK
32,

in line with previous studies and the GL theory26,27. They

also found that a stretched exponential function accurately de-

scribes the PDFs of εT measured in both the boundary layer

and the bulk32.



Accepted to Phys. Fluids 10.1063/5.0118074

3

B. Tilted RBC

Since geopotential lines rarely coincide with the surface of

the earth33, most buoyancy-driven flows in nature are subject

to a non-vertical mean temperature gradient34. Examples of

where this is important are for mantle plumes35–37 and atmo-

spheric circulations38. It can also be of importance in engi-

neering applications39. The impact of this non-vertical mean

temperature gradient can be explored in a canonical setting

by inclining the RBC flow by an angle δ that is varied, so

that the mean temperature gradient is misaligned with gravity

(with δ = 0◦ denoting the non-tilted case).

Ahlers et al.40 showed in experiments that the large scale

circulations (LSC) are accelerated when δ is small but finite,

and in a rectangular cell, the shape of the LSC is modified

due to the increase of δ in DNS41. In the numerical study of

Wang et al42,43, the LSC transform from the double rolls to a

single roll when δ is increased, and increasing δ can also lead

to the reversal of the LSC43. Re and Nu are also influenced

by δ . In DNS, Guo et al.41 found that as δ is increased from

0◦ to 90◦, Re first increases then drops after reaching a max-

imum, while Nu decreases monotonically, with a maximum

decrease of 18%. By means of experiments, Wei et al.44 mea-

sured Re as a function of Ra for 0.5◦ ≤ δ ≤ 3.4◦ and found

the scaling Re ∼ Ra0.43 (or Re ∼ Ra0.55 depending on the def-

inition of Re) independent of δ for these small inclination an-

gles. The experimental study of Ahlers et al.40 showed that

for small δ , Nu ∼ Re
1
3 , with only slight variations with δ . By

means of DNS, Shishkina et al.45 and Zwirner et al.46 consid-

ered a wide range of Ra, Pr and δ . The results demonstrated

that Nu depends on δ in a complicated, non-monotonic way

when δ is varied over a large range45,46. Recently, with help

of both DNS and experiments, Zhang et al.47 studied tilted

RBC systematically and to elucidate how the misalignment

of the mean temperature gradient with gravity influences the

flow. In their study, Ra is decomposed into a vertical Rayleigh

number RaV and a horizontal Rayleigh number RaH , and Nu

is also decomposed into a vertical Nusselt number NuV and a

horizontal Nusselt number NuH . By taking the effect of the

misalignment into consideration, Zhang et al.47 extended the

classical GL theory and predicted NuV as a function of Re, Pr

and δ .

C. Soap bubble

While the classical RBC setup has been the subject of in-

tense investigation, in many naturally occurring contexts the

thermal convection takes place in curved or spherical geome-

tries. Understanding the influence of this curved geometry

on the thermal convection is therefore of great importance for

geophysics and astrophysics48. A canonical setup for explor-

ing this is to consider turbulent thermal convection on a half

soap bubble that is heated at its equator, and this was first

studied experimentally by Kellay48. Since the thickness of the

soap film is negligible compared to the radius of the bubble,

the turbulent flow on the bubble corresponds to quasi two-

dimensional turbulence on a hemispherical surface48,49. The

FIG. 1. Illustration of the half-soap bubble and the Cartesian coordi-

nate system used.

experiments revealed that on the bubble there form large, per-

sistent and isolated vortices50–52 which are similar to typhoons

or cyclones that occur in the atmosphere53,54. Indeed, several

studies revealed important quantitative similarities of the tra-

jectories and intensities of these vorticites on the bubble with

those of cyclones in nature50–54. In fact, the trajectories of the

cyclones are successfully predicted by a method first devel-

oped to describe that of the vortex on the bubble53. DNS of

the half soap bubble were first performed by Xiong et al.55,

and Bruneau et al.56 used the DNS to show that the scaling

behaviour of Re and Nu are very similar to that in standard

RBC, with the DNS yielding Nu ∼ Ra0.30 and Nu ∼ Ra0.49.

He et al.57 further extended the model to investigate the im-

pact of bubble rotation on the convective flow and showed that

Nu is not effected by even strong rotation, while Re decreases

considerably with increasing rotation57.

The heat transport in the thermal convection cells is affected

by the different spatial orientations even with the exact same

geometry58. An important open issue is how the convective

flow on the soap bubble is affected by inclining the bubble,

analogous to the tilted RBC discussed earlier. The impact of

the tilting could be different from that for standard RBC be-

cause the curved surface on the bubble leads to a spatial de-

pendence of the alignment of gravity with the flow direction.

D. Organization of the paper

The aim of our study is to fill this gap by investigating the

effect of tilt on the thermal convection of the soap bubble flow.

Special focus on the thermal and kinetic dissipation fields due

to the key role these play in governing the properties of the

convective flow. In section 2 we introduce the governing equa-

tions and the energy budgets. In section 3, the results of the

DNS are presented and discussed. Conclusions are then drawn

in section 4.

II. METHOD

A. Governing Equations

In our study, a half-soap bubble of radius R is mounted on a

base plane which keeps the equator of the bubble at constant
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temperature T0, as shown in figure 1. A three dimensional

Cartesian coordinate system is used whose origin is located

at the center of the bubble, and is defined by the unit vector

ey that is parallel to the base plane, ez that is orthogonal to

the base plane, and ex is defined such that ez = ex ×ey. In

this system, an arbitrary vector a is represented in terms of its

Cartesian components as a = axex + ayey + azez. The base

plane is tilted by an angle δ ∈ [0,π/2], and since the gravi-

tational acceleration vector g is fixed we have eg ≡ g/‖g‖ =
(ey sinδ −ez cosδ ).

The thickness of the soap film is negligible compared to

the radius of the bubble, and hence the bubble may be ap-

proximated as a two-dimensional hemispherical surface. The

bubble is heated at the equator and cools through contact with

the surrounding colder air. The variation of the mass density

ρ due to the temperature T is assumed under the Boussinesq

approximation to be ρ = ρ0 [1−β (T −T0)], where β is the

thermal expansion coefficient, T0 is the reference temperature

on the equator, ρ0 is the massive density of the fluid when

T = T0. For this model, the governing equations for the flow

are given by the Boussinesq-Navier-Stokes system:

∇ ·u= 0, (9)

∂tu+(u ·∇)u=− 1

ρ0

∇p+ν∇·
(

∇u+∇u
⊤
)

−β (T −T0)g−Fu,

(10)

∂tT +(u ·∇)T = κ∇2T − ST, (11)

where u is the fluid velocity and p is the pressure field that

includes the hydrostatic contribution.

The terms involving S and F are the external cooling and

friction terms, respectively, which model the heat exchange

and friction due to the the cold air surrounding the bubble.

These terms are required in order for the DNS to attain non-

trivial steady-state regimes, and are discussed in details in the

study of Bruneau et al.56 and He et al.57. Analogous terms are

also routinely used when performing DNS of two-dimension

turbulence on flat geometries59.

The equations can be non-dimensonlized using the radius

of the bubble R, the initial temperature difference between

the equator and the North pole ∆T , and the free fall veloc-

ity uc =
√

gβ ∆TR leading to (for notational simplicity, the

non-dimensional independent variables are not indicated by a

“hat” symbol, and all variables are to be understood as non-

dimensional hereafter)

∇ ·u= 0, (12)

∂tu+(u ·∇)u=−∇p+
1

√

Ra/Pr
∇2

u− (T −T0)

T0

eg −Fu,

(13)

∂tT +(u ·∇)T =
1√

RaPr
∇2T − ST, (14)

where the Rayleigh number and Prandlt number are defined

as,

Ra =
gβ ∆TR3

νκ
, (15)

Pr =
ν

κ
. (16)

In our DNS we use S = 0.06 and F = 0.06, which are the

values that have already been shown to be suitable in previous

studies56,57. The boundary conditions used are u= 0 and T0 =
1 on the bubble equator.

B. Tilt leads to stable stratification for the hemispherical
flow

The tilt of the bubble by an angle δ affects the flow dynam-

ics only through its influence on the buoyancy term. To con-

sider this influence, it is convenient to introduce a spherical

coordinate system with coordinates (r,θ ,φ), and basis vectors

er(θ ,φ), eθ (θ ,φ), eφ (θ ,φ). For the hemisphere, the polar

coordinate is restricted to θ ∈ [0,π/2] and is measured from

the ez axis, while the azimuthal coordinate φ ∈ [0,2π) is mea-

sured from the ex axis. For our two-dimensional flow on the

bubble surface, the motion is confined to r = R, and there is no

flow in the radial direction er(θ ,φ). The unit vector eθ (θ ,φ)
depends on the coordinates as

eθ (θ ,φ) = ex cosθ cosφ +ey cosθ sinφ −ez sin θ , (17)

and therefore when the flow equations are projected onto the

direction eθ (θ ,φ), the buoyancy force projected along this

direction (denoted by Bθ ) becomes

Bθ =− (T −T0)

T0

(

sinδ cosθ sinφ + cosδ sinθ
)

. (18)

For the no tilt case δ = 0 we have Bθ =−((T −T0)/T0)sin θ .

Since sinθ ≥ 0 on the interval θ ∈ [0,π/2], then Bθ will act to

accelerate the fluid in the −eθ direction in regions where the

temperature anomaly is positive, (T −T0)/T0 > 0. This means

that fluid particles that are heated near the equator will acceler-

ate towards the North pole, corresponding to convection. For

δ = π/2 then Bθ = −((T − T0)/T0)cosθ sinφ . In this case,

while cosθ ≥ 0 on the interval θ ∈ [0,π/2], sinφ changes

sign on the interval φ ∈ [0,2π). Due to this, on the lower

side of the hemisphere corresponding to y > 0 and φ ∈ [0,π),
Bθ will act to accelerate the fluid in the −eθ direction when

(T − T0)/T0 > 0, but for φ ∈ (π ,2π), Bθ will act to accel-

erate the fluid in the +eθ direction when (T − T0)/T0 > 0.

It means that when (T − T0)/T0 > 0, then for φ ∈ [0,π), Bθ

will lead to convective motion towards the North pole, while

for φ ∈ (π ,2π), Bθ will act to stabilize and stratify the flow.

Therefore, while for δ = 0, heating at the equator generates

buoyancy forces leading to convection and (for sufficiently

large Ra) turbulence over the entire surface of the bubble57,

for δ = π/2, buoyancy forces leading to convection and tur-

bulence can arise for φ ∈ [0,π), whereas for φ ∈ (π ,2π) the

buoyancy forces will quench the turbulence and stratify the

flow. Note also that since Bθ = −((T − T0)/T0)cosθ sinφ ,

then the buoyancy forces that produce convection in the re-

gion φ ∈ [0,π) will be strongest near φ = π/2. Hence, for

δ = π/2, we would expect to see the strongest convection and

turbulence near the lower edge of the bubble.
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TABLE I. The configuration of non-dimensional coefficients for all

the cases considered in this study

Ra Pr δ

3×109 7 0◦ 30◦ 60◦ 90◦

3×108 7 0◦ 30◦ 60◦ 90◦

3×107 7 0◦ 30◦ 60◦ 90◦

3×106 7 0◦ 30◦ 60◦ 90◦

For intermediate δ , the tilt will lead to stratification at

points where the inequality sinδ sinθ sinφ + cosδ cosθ < 0

is satisfied, and this can only be satisfied for φ ∈ (π ,2π) and

in the region θ ∈ [0,− tan−1(tanδ sinφ)).

III. DIRECT NUMERICAL SIMULATIONS

The numerical simulations are conducted by the homebrew

code which is introduced in details in previous studies56,57.

Here we give a brief overview of the numerical methods used

in the DNS. The geometry of the bubble is approximated by

a two-dimensional half spherical surface. The approximation

is made basing on that the effect of the gravity is negligible.

The nondimensional governing equations are solved numeri-

cally in a computational space which is accomplished by the

stereographic projection. In the computational space, the ge-

ometry of the bubble is a plane circle where the stagger grid

is employed for discretization and the penalty method is em-

ployed for the implementation of the boundary conditions.

The temporal derivatives are approached by the second-order

Gear scheme and the non-linear terms are handled by a third-

order Murman-like scheme. The mesh sensitivity are checked

and the resolution of 1024×1024 and 2048×2048 is choosed

for the different Ra.

The table I lists the parameters for all the cases of DNS con-

sidered in this study. F and S are fixed to 0.06 as in previous

studies52,56,57. Pr is fixed to 7 since the soap concentration in

the water is very low. The Rayleigh number is varied in the

range of Ra ∈ [3× 106,3× 109], and the full range of tilting

angles (in degrees) δ ∈ [0◦,90◦] is explored.

IV. RESULTS & DISCUSSION

A. the Phenomenological Observations

We begin by making qualitative observations on the effect

of δ on the behavior of instantaneous flow fields on the bub-

ble. Figure 2 illustrates typical snapshots of the temperature

field T on the surface of the bubble for different Rayleigh

numbers Ra and tilt angles δ . The upper line in figure 2 is for

Ra= 3×106, and the lower line in figure 2 is for Ra= 3×109.

From left to the right, δ increases from 0◦ to 90◦. For the same

time instant, figures 3 and 4 illustrate the corresponding fields

of the logarithmic thermal energy dissipation log10 (εT ) and

the logarithmic kinetic energy dissipation log10 (εu), respec-

tively.

Figure 2 shows that for δ = 0◦, the flow only features

plumes and does not contain large scale circulations which

are usually seen in Rayleigh-Bénard convection. This is be-

cause for the bubble, there is no cold boundary as there is

in in Rayleigh-Bénard convection, but only a hot bound-

ary at the equator. As Ra is increased, the plumes become

more filamented and smaller. These flow patterns appearing

here for δ = 0◦ are qualitatively similar to those observed in

experiments50–54 and DNS52,55–57.

On the other hand, the observed flow patterns go through a

dramatic change as δ is increased from 0◦ to 90◦. When δ is

relatively small, e.g. 30◦, then the flow patterns are very sim-

ilar to those for δ = 0◦, with dynamic plumes detaching from

the boundary layer at random locations on the equator, and

the plumes dissipate as time proceeds. We refer to this regime

as the dynamic plumes regime (DPR). When δ is sufficiently

large, however, the flow is dominated by a stable large plume

that rises from the lower edge of the bubble and is persistent

in time. We refer to this as the stable plume regime(SPR).

It should be noted, however, that the stable plume appears as

soon as δ > 0, however it is relatively weak and blends in with

the dynamic plumes that dominate in the DPR.

The transition of the flow patterns from the DPR to the SPR

as δ is increased can be understood in terms of the analy-

sis in §II B, where we showed that as δ is increased, convec-

tion will be suppressed in the upper half of the bubble where

φ ∈ [π ,2π), and that for the lower half where φ ∈ [0,π), the

convection will be strongest near the lower edge at φ = π/2.

The snapshots of the temperature fields also reveal that the

threshold angle for the flow to transition from the DPR to the

SPR depends on Ra. For Ra = 3× 106, the flow is in the SPR

for δ >∼ 60◦, while for Ra= 3×109, the flow is still in the DPR

for δ = 60◦ but has transitioned to the SPR at δ = 90◦. Figure

5 illustrates how the flow state depends on δ and Ra. The

figure shows that for δ ≤ 30◦, the flow remains in the DPR

for each Ra. For δ = 60◦, the cases with Ra = 3× 106 and

Ra = 3× 107 have transitioned into the SPR while the cases

with higher Ra remain in the DPR. For δ = 90◦, however, all

of the cases are in the SPR.

Comparing figures 3 and 4 with figure 2 shows that the

plumes are closely associated with regions of large thermal

and kinetic energy dissipation field, similar to what is ob-

served in Rayleigh-Bénard convection4,8,29,31. This indicates

that the plumes play a key role in the dissipation of thermal

and kinetic energy on the bubble, and also suggests that the

dissipation rates for these two fields will be coupled. To ex-

plore this, we define the correlation coefficient between εT

and εu as

〈c(x)〉= 〈(εT −〈εT 〉)(εu −〈εu〉)〉
√

〈(εT −〈εT 〉)2〉
√

〈(εu −〈εu〉)2〉
, (19)

where 〈·〉 here donates a time average at a given location x on

the bubble surface.

Figure 6 illustrates how 〈c〉 varies across the surface of the

bubble as δ is varied and the flow transitions between the DPR

and SPR. For the DPR, 〈c〉 is positive over most of the bubble,

and over a considerable part of the surface the correlation is

quite high. For the SPR, significant regions of the bubble have
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FIG. 2. Snapshots of the temperature fields for Ra = 3× 106(the upper line: (a) to (d)) and Ra = 3× 109(the lower line: (e) to (h)) with

δ = 0◦,30◦,60◦,90◦(from left to right).

FIG. 3. Snapshots of the logarithm of the thermal energy dissipation rate log10 (εT ) for Ra = 3× 106(the upper line: (a) to (d)) and Ra =
3×109(the lower line: (e) to (h)) with δ = 0◦,30◦,60◦,90◦(from left to right).

〈c〉 < 0 when Ra = 3× 106, indicating significant regions of

negative correlation between εT and εu. However, for Ra =
3× 109, when δ = 90◦ and the flow is in the SPR, there is

still, however, a significant positive correlation near the lower

edge of the bubble where vigorous turbulence still exists. This

differing behavior is probably due to the fact that while the

SPR for Ra = 3× 109 is still vigorously turbulent near the

lower edge of the bubble, for Ra = 3× 106 the flow is almost

laminar.

It is seen that the SPR are characterized by the filamented

and convoluted patches of high 〈c〉. The patches are more

filamented and convoluted for higher Ra. For the DPR((a),
(b), (e), ( f ) and (g) in figure 6), 〈c〉 decreases in the domain

where the stable plume occupies with δ increasing. For the

SPR((c), (d) and (h) in figure 6), the distribution of 〈c〉 is

more complex. For relative small Ra((c), (d) in figure 6), the

dynamic plume disappears on the bubble and there is only the

stable plume on the bubble. Thus the patches of high or low

〈c〉 have large size and cover the whole surface of the bubble.

But when Ra is enough high((h) in figure 6), the stable and

dynamic plumes coexist on the bubble. 〈c〉 on the higher edge

of the bubble is close to 0. In the region near the stable plume,

the patch of high 〈c〉 become filamented and convoluted as in

the DPR.

Figure 7 shows the globally averaged correlation coefficient

〈c〉B corresponding to all the cases in table I. Here, the global

averaging operator is defined for an arbitrary field variable

a(x, t) as

〈a〉B =

∮

B
a(x, t)ds

2πR2
, (20)

where ds is the elemental area on the bubble surface B.

For the DPR, 〈c〉B is almost independent of Ra and ap-

proximately equal to 0.42. This value validates the observa-
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FIG. 4. Snapshots of the logarithm of the kinetic energy dissipation rate log10 (εu) for Ra = 3× 106(the upper line: (a) to (d)) and Ra =
3×109(the lower line: (e) to (h)) with δ = 0◦,30◦,60◦,90◦(from left to right).

FIG. 5. Schematic to illustrate how the flow state depends on Ra and

δ .

tion based on the instantaneous flow field that the thermal and

kinetic energy dissipation rates should be correlated to each

other since they are both driven by plumes in the flow. It

is also interesting to note that a similar value of 〈c〉B ≈ 0.4
was obtained for Rayleigh-Bénard convection8. Once the flow

transitions from the DPR to SPR, the magnitude of 〈c〉B re-

duces significantly, with |〈c〉B|<∼ 0.2 in the SPR.

B. Nusselt Nu and Reynolds number Re

We now turn to consider the scaling relation of the Nusselt

number Nu and Reynolds number Re versus Ra in the DPR

and SPR. For the bubble flow, Nu is defined differently from

that in RBC. In RBC, thermal energy passes through the layer

of fluid and Nu is defined as the non-dimensional heat flux

through the fluid layer in order to quantify the efficiency of

the heat transport. By contrast, in the bubble flow, heat is

absorbed by the fluid at the equator and the thermal energy

is dissipated entirely within the flow, with no cold bound-

ary through which it can pass. For the bubble flow, we are

therefore interested in the efficiency of the heat transport away

from the equator and so Nu is defined as the non-dimensional

heat flux across the equator57

Nu =
Qturb

Q0
, (21)

where Qturb is the heat flux at the equator for the turbulent flow

and Q0 is the ideal heat flux associated with pure conduction at

the equator. The quantity Qturb is obtained by the temperature

field as

Qturb =−〈∇zT |θ=π/2〉. (22)

The ideal heat flux of pure conduction Q0 is the heat flux in

the hypothesis that the fluid is motionless all over the bubble:

Q0 = ∇zT0|θ=π/2, (23)

where T0 is obtained as the solution to (14) using u= 0,S = 0

and boundary conditions T |θ=π/2 = 1 and T |θ=0 = 0.

For evaluating Re, the root mean square (r.m.s) velocity

urms =
√

〈‖u‖2〉B is usually used as a global measure of the

turbulent velocity scale in studies of RBC8,60, and using this

gives

Re =

√

Ra

Pr
urms. (24)

Figures 8 and 9 show Nu and Re as a function of Ra for dif-

ferent δ , with power-law fits of the data illustrated by solid or

dash lines. For δ = 0◦, the scaling relations of Nu and Re are

Nu ∝ Ra0.30 and Re ∝ Ra0.48 respectively, which match those

reported by previous studies of RBC4,60. As δ is increased, we

observe that the scaling behaviours are strongly influenced by

the flow regime. When the flow is in the DPR, Nu scales with

Ra as a power-law form with scaling exponent close to 0.30.
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FIG. 6. The distribution of 〈c〉 on the bubble for Ra = 3× 106(the upper line: (a) to (d)) and Ra = 3× 109(the lower line: (e) to (h)) with

δ = 0◦,30◦,60◦,90◦(from left to right).

FIG. 7. The global correlation coefficients corresponding to different

Ra and δ

FIG. 8. The variation of Nu with Ra and δ

As the flow transitions to the SPR, the scaling exponent for

Nu decreases from 0.30 to 0.24. Moreover, there is a strong

reduction in the actual values of Nu when the flow transitions

from the DPR to the SPR, especially for higher Ra.

FIG. 9. The variation of Re with Ra and δ

Concerning Re, for δ = 30◦ the dependence of Re on Ra is

almost identical to that for the case with δ = 0◦ For δ = 60◦,

the scaling relation turns into Re ∝ Ra0.45 for the DPR and

Re ∝ Ra0.53 for the SPR. The data for δ = 90◦ can be de-

scribed by a single power law Re ∝ Ra0.44 since all cases are

in the SPR. There is also a considerable drop in the magni-

tude of Re when the flow transitions from the DPR to the SPR.

These results show that there is a clear quantitative effect of δ
on both Nu and Re and their dependence on Ra, which corre-

sponds to the transition the flow undergoes when moving from

the DPR to the SPR as δ is increased.

C. Probability density functions (PDFs) of εT ′ and εu′

We now turn to consider the statistical characteristics of the

turbulent thermal energy dissipation rate εT ′ and kinetic en-
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ergy dissipation rate εu′ , which are defined as

εT ′ = εT − ε〈T〉, (25)

εT = κ‖∇T‖2, (26)

ε〈T 〉 = κ‖∇〈T〉‖2, (27)

and

εu′ = εu − ε〈u〉, (28)

εu =
1

2
ν‖∇u+∇u

⊤‖2, (29)

ε〈u〉 =
1

2
ν‖〈∇u+∇u

⊤〉‖2. (30)

Figure 10 show the PDFs of εT ′ and εu′ for different Ra

with δ = 0◦for the whole hemispherical surface of the bub-

ble. As is common in RBC studies4,8,31, εT ′ and εu′ are

normalized by their global root-mean-square (r.m.s) which

are
√

〈εT ′〉
B

and
√

〈εu′〉B , respectively. The global statis-

tics are directly influenced by the macroscopic flow regime

and the scaling behaviour of the global responses, such as

Nu. Furthermore, it is easier to collect the data of enough

large sizes for the convergence of the global statictics. It

should be remarked that the PDFs are calculated with the

data size of 109. The results are verified through the vari-

ance of the data size in order to assure the convergence of

various statistics. We also plot log(εT ′) and log(εu′) with

their local mean values µlogεT ′ = 〈logεT ′〉, µlogεu′ = 〈logεu′〉
subtracted, and normalized by their local standard deviations

σεT ′ =
√

〈(logεT ′ − µlogεT ′ )
2〉, σεu′ =

√

〈(logεu′ − µlogεu′ )
2〉,

in order to consider how close the random variables are to be-

ing log-Normally distributed. In the figures for the logarith-

mic variables, the solid lines show a standardized Gaussian

PDF for the reference.

The results show that the PDFs of εT ′ and εu′ have in-

creasingly wider tails as Ra is increased. This indicates in-

creasing small-scale intermittency in the fields ‖∇T‖2 and

‖〈 1
2

(

∇u+∇u
⊤)〉‖2 that occurs as an increase in Ra leads to

an increase in Re. The presence of intermittency is also clearly

seen in the PDFs of logarithmic variables, which show that

the PDFs of these logarithmic variables clearly depart from a

Gaussian PDF.

For two dimensional turbulent convection with large Pr,

Chertkov et al.61 showed analytically that the PDF for the gra-

dients of a passive scalar field can be described by stretched

exponential functions

PDF(Y ) =
c√
Y

e(−mY α ), (31)

where the sample-space variable Y is conjugate to the random

variable (gradient of scalar) normalized by its modal value, c,

m and α are fitting parameters, and α is deduced to be 1/3

for a passive scalar. Figure 10 shows that with appropriate

choices for c, m and α , the PDFs of εT ′ and εu′ can also be well

described by such stretched exponential functions (illustrated

by the black lines in the figure), with some deviations in the

far tails of the PDFs. The fitting exponent α for εT ′ decreases

from 1.30 to 0.68 as Ra is increased. By contrast, α for εu′

has only a slight dependence on Ra.

These results share much in common with those acquired

from standard RBC4,8,19,23,31, but there are also some differ-

ences. He et al.19,23 measured the local thermal energy dis-

sipation rate in RBC at the cell center and close to the verti-

cal wall by means of experiments. They found that the PDFs

of εT ′ , scaled by its local r.m.s value

√

〈ε2
T ′〉, are well de-

scribed by stretched exponential functions. Moreover, regard-

less of Ra, they found α = 0.35 in the cell center and α = 0.44

close to the vertical wall, values which are smaller than those

we find for the bubble flow. It should also be noted that Ra

in the experiments of He et al.19,23 ranges from 1.7× 109 to

8.2× 109 covering one order. These include larger values of

Ra than our study, and so some of the differences in the mea-

sured α may be due to different Ra, as well as the fundamen-

tal differences between the canonical RBC they considered,

and the convective bubble flow we are considering. Numer-

ous DNS and experimental studies of RBC have also found

that the PDFs of the dissipation rates are well described by

stretched exponential functions4,8,31,62. The values they find

for the fitting parameters do vary somewhat between the stud-

ies, which may be due to differences in the RBC geometry,

the values of Ra,Pr explored, as well as the approach used to

perform the averaging operations when constructing the statis-

tics.

Next, we consider the effect of δ on the PDFs of the dissipa-

tion. The PDFs of εT ′ for different δ are shown in figure 11 for

Ra = 3× 106, Ra = 3× 107, Ra = 3× 108 and Ra = 3× 109.

The results show that increasing δ has a dramatic effect on

the PDFs. For Ra = 3× 106, α decreases monotonically as

δ increases, indicating that the tails of the PDFs are decay-

ing more slowly. This enhanced intermittency is because as

δ is increased, the turbulence becomes localized to the lower

edge of the bubble, and hence while in this region there is tur-

bulence and dissipation, over vast portions of the bubble, the

flow is almost quiescent.

As Ra is increased, the impact of increasing δ on the PDFs

of εT ′ becomes much less dramatic, with α still decreasing

with increasing δ , but the effect of δ on α becoming much

weaker as Ra is increased. Indeed, the effect of tilt on the

PDFs is quite weak for Ra = 3× 109. This reduced effect

of δ as Ra is increased is because with larger Ra, the turbu-

lence produced at the lower edge of the bubble is still vigorous

and dominates the behavior of εT ′ , in contrast to the case of

lower Ra where the turbulence at the lower edge is strongly

suppressed as δ is increased.

Figure 12 shows the PDFs of the logarithm of εT ′ in normal-

ized form, with a Gaussian distribution plotted as a solid black

line for reference. Once again, we see that the deviation of the

logarithmic PDFs from the Gaussian distribution is enhanced

as δ is increased, but this enhancement becomes weaker as

Ra increases. Plotting the PDFs in this form also helps reveal

a significant difference between the DPR and SPR, namely,

that while the logarithmic PDF is approximately Gaussian for

small fluctuations of the dissipation in the DPR, it is far from

a Gaussian in the SPR even for small fluctuations. Moreover,

the results show that for δ = 90◦, the logarithmic PDF has a
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FIG. 10. the PDFs of εT ′ and εu′ with different Ra for δ = 0◦

right tail that is heavier than a Gaussian for the lower Ra cases,

but becomes lighter than a Gaussian as Ra increases. More-

over, for Ra = 3×108 and Ra = 3×109, the PDFs are weakly

dependent on δ for δ ≤ 60◦.

The PDFs of εu′ are plotted in figure 13 for different δ and

fixed Ra. These PDFs are again well described by stretched

exponential functions, as was the case for the PDFs of εT ′ .

The most striking difference compared to the PDFs of εT ′ are

that the PDFs of εu′ are much more sentitive to δ , and remain

sensitive to δ even for the largest Ra considered. This dif-

ference can also be observed by considering the normalized

PDFs of the logarithm of logεu′ which are shown in figure 14.

As with the normalized PDFs of the logarithm of logεT ′ , those

of logεu′ shown in figure 14 show clear differences depending

on whether the flow is in the DPR or the SPR. While the loga-

rithmic PDF is approximately Gaussian for small fluctuations

of the dissipation in the DPR, it is far from a Gaussian in the

SPR even for small fluctuations. Indeed, for Ra = 3×108 and

Ra = 3× 109 the PDF for δ = 90◦ becomes bi-modal. The

results also show that for δ = 90◦, the logarithmic PDF has

a right tail that is heavier than a Gaussian for the lower Ra

cases, but becomes lighter than a Gaussian as Ra increases.

D. The Global Dissipation Scaling Rules

Having considered the PDFs of the dissipation rates, which

quantify the local fluctuations of the dissipation rates in the

flow, we now turn to consider the globally averaged dissipa-

tion rates, both due to the mean-fields and due to the fluctuat-

ing fields.

The globally averaged thermal and kinetic energy dissipa-

tion rates due to the mean-fields are denoted by 〈ε〈T 〉〉B and

〈ε〈u〉〉B . Figures 15 and 16 show 〈ε〈T 〉〉B and 〈ε〈u〉〉B as func-

tion of Ra for different δ , with power-law fits illustrated by

solid or dash lines. It is interesting that while the results show

that 〈ε〈T 〉〉B decreases with increasing δ , 〈ε〈u〉〉B increases

strongly with increasing δ . This is due to the fact that as δ
increases, the stable plume that dominates in the SPR creates

two symmetric vortices, and these enhance the mean-shear in

the flow.

Power-law fits to the data yield a scaling law of 〈ε〈T 〉〉B ∝

Ra−0.23 in the DPR and 〈ε〈T 〉〉B ∝ Ra−0.28 in the SPR. For

〈ε〈u〉〉B , when δ = 0◦ the mean flow field is very weak, and

〈ε〈u〉〉B ∝ Ra−0.47 is found, but the fitting errors are consid-

erable. When δ = 30◦ and the flow is still in the DPR, the

scaling law becomes 〈ε〈u〉〉B ∝ Ra−0.43 with small negligi-
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FIG. 11. The PDFs of εT ′ with different δ and Ra. The first line, from left to right: Ra = 3×106, Ra = 3×107. The second line, from left to

right: Ra = 3×108 , Ra = 3×109 .

ble fitting error. The scaling law turns into 〈ε〈u〉〉B ∝ Ra−0.49

for δ = 60◦ in the DPR. In the SPR, the behavior becomes

〈ε〈u〉〉B ∝ Ra−0.27. The differing scaling behaviour of 〈ε〈T 〉〉B
and 〈ε〈u〉〉B in the DPR and SPR provide further evidence of

the quantitative differences in the flow in these two distinct

regimes.

Finally, we consider the globally averaged turbulent ther-

mal and kinetic energy dissipation rates which are denoted by

〈εT ′〉B and 〈εu′〉B.

Figures 17 and 18 show 〈εT ′〉B and 〈εu′〉B plotted as a

function of Ra for different δ . The data shows an enormous

influence of δ at lower Ra, which gradually reduces as Ra

is increased. More particularly, 〈εT ′〉B and 〈εu′〉B dramati-

cally reduce as δ is increased when Ra is relatively small, e.g.

Ra = 3×106 and Ra = 3×107, due to the strong suppression

of convection and turbulence due to the tilting of the bubble.

For relatively large Ra, e.g. Ra = 3× 108 and Ra = 3× 109,

the reduction of 〈εT ′〉B and 〈εu′〉B due to increasing δ are

smaller, but still considerable. When the flow is in DPR, the

scaling behaviours of 〈εT ′〉B and 〈εu′〉B are 〈εT ′〉B ∝ Ra−0.18

and 〈εu′〉B ∝ Ra−0.29. In contrast, the scaling of 〈εT ′〉B and

〈εu′〉B in the SPR cannot be described by a power-law func-

tion that spans over the range of Ra considered. This is an-

other quantitative difference between the behavior of the flow

in the DPR and SPR.

V. CONCLUSION

In this paper, we have used DNS to explore the effect of tilt

on the turbulent thermal convection taking place on a bubble.

Visualizations of the flow reveal that as the tile angle δ is var-

ied, the flow patterns fall into one of two regimes. When δ
is relatively small, the flow is dominated by dynamic plumes

that detach from the boundary layer at random locations on

the equator. Turbulent thermal convection occurs on the bub-

ble, associated with the continual generation and dissipation

of these plumes. This flow pattern is referred to as the dy-

namic plume regime (DPR). On the other hand, when δ be-

comes sufficiently large, a single, large stable plume prevails

on the bubble, emanating from the lower edge of the bubble.

The stable large plume arises from an essentially fixed loca-

tion on the equator and is persistent in time. This flow pat-

tern is referred to as the stable plume regime (SPR). These

qualitatively different flow regimes arise due to the geometric

effect that tilting the bubble has on the direction of the local



Accepted to Phys. Fluids 10.1063/5.0118074

12

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

FIG. 12. The PDFs of logεT ′ with different δ and Ra The first line, from left to right: Ra = 3×106, Ra = 3×107. The second line, from left

to right: Ra = 3×108 , Ra = 3×109 .

buoyancy force that drives the flow, and the way in which this

depends upon location on the bubble surface.

The first quantitative difference between two regimes ex-

plored concerns the scaling behaviours of Nu and Re. Con-

cerning Nu, our result shows Nu ∝ Ra0.3 in the DPR, with a

weak dependency of the exponent on Ra and δ . In the SPR,

the scaling changes significantly and becomes Nu ∝ Ra0.24.

For Re, the scaling in the DPR lies between Re ∝ Ra0.48 and

Re ∝ Ra0.53 depending on Ra and δ , while in the SPR, the

scaling lies between Re ∝ Ra0.44 and Re ∝ Ra0.45.

We then explored the behavior of the thermal and kinetic

energy dissipation rates in the flow. The standardized PDFs

of logεT ′ and logεu′ have very different shapes in the DPR

and SPR. For logεT ′ and logεu′ , the shape of the PDFs are

close to a Gaussian PDFs for small values, but deviates from

it for large values in the DPR. In the SPR, the PDFs of logεT ′

and logεu′ depart considerably from a Gaussian PDF for both

small and large values, and the PDF of logεu′ has a bi-modal

shape at small values.

The globally averaged thermal energy dissipation rate due

to the mean temperature field was shown to exhibit the scal-

ing 〈ε〈T 〉〉B ∝ Ra−0.23 in the DPR, and 〈ε〈T 〉〉B ∝ Ra−0.28

in the SPR. The globally averaged kinetic energy dissipation

rate due to the mean velocity field was shown to exhibit the

scaling 〈ε〈u〉〉B ∝ Ra−0.47 in the DPR (the exponent reduces

from 0.47 to 0.43 as δ is increased up to 30◦). In the SPR,

the behavior changes considerably to 〈ε〈u〉〉B ∝ Ra−0.27. For

the turbulent dissipation rates, the results indicate the scaling

〈εT ′〉B ∝ Ra−0.18 and 〈εu′〉B ∝ Ra−0.29 in the DPR. However,

the dependencies of 〈εT ′〉B and 〈εu′〉B on Ra cannot be de-

scribed by power-laws in the SPR.

Taken together, these results show that the two-dimensional

flow on the half-soap bubble undergoes dramatic changes,

both qualitative and quantitative, as the bubble is tilted rela-

tive to the direction of gravity. This has significant impacts for

understanding convective flows in natural and engineered con-

texts where mean temperature gradients in the flow are often

not aligned with gravity, and where the flow may take place

on (or in) curved geometries.

VI. ACKNOWLEDGEMENT

This work was funded by the National Natural Science

Foundation of China grant number 11872187, 12072125.



Accepted to Phys. Fluids 10.1063/5.0118074

13

0 20 40 60 80 100
10-12

10-8

10-4

100

102

0 20 40 60 80 100
10-12

10-8

10-4

100

102

0 20 40 60 80 100
10-12

10-8

10-4

100

102

0 20 40 60 80 100
10-12

10-8

10-4

100

102

FIG. 13. The PDFs of εu′ with different δ and Ra. The first line, from left to right: Ra = 3×106, Ra = 3×107. The second line, from left to

right: Ra = 3×108 , Ra = 3×109 .

1D. Lohse and K.-Q. Xia, “Small-scale properties of turbulent rayleigh-

bénard convection,” Annual Review of Fluid Mechanics 42, 335–364

(2010).
2X.-Q. Guo, B.-F. Wang, J.-Z. Wu, K. L. Chong, and Q. Zhou, “Turbulent

vertical convection under vertical vibration,” Physics of Fluids 34, 055106

(2022), 10.1063/5.0090250.
3G. Ahlers, S. Grossmann, and D. Lohse, “Heat transfer and large scale

dynamics in turbulent rayleigh-bénard convection,” Reviews of Modern

Physics 81, 503–537 (2009).
4A. Xu, L. Shi, and H.-D. Xi, “Statistics of temperature and thermal en-

ergy dissipation rate in low-prandtl number turbulent thermal convection,”

Physics of Fluids 31, 125101 (2019), 10.1063/1.5129818.
5X. He, E. S. C. Ching, and P. Tong, “Locally averaged thermal dissipa-

tion rate in turbulent thermal convection: A decomposition into contribu-

tions from different temperature gradient components,” Physics of Fluids

23, 025106 (2011), 10.1063/1.3555637.
6K. Petschel, S. Stellmach, M. Wilczek, J. Lülff, and U. Hansen, “Kinetic

energy transport in rayleigh–bénard convection,” Journal of Fluid Mechan-

ics 773, 395–417 (2015).
7K. Petschel, S. Stellmach, M. Wilczek, J. Lülff, and U. Hansen, “Dissi-

pation layers in rayleigh-bénard convection: A unifying view,” Phys. Rev.

Lett. 110, 114502 (2013).
8Y. Zhang, Q. Zhou, and C. Sun, “Statistics of kinetic and thermal energy

dissipation rates in two-dimensional turbulent rayleigh–bénard convection,”

Journal of Fluid Mechanics 814, 165–184 (2017).
9A. Hertlein and R. du Puits, “Direct measurements of the thermal dissi-

pation rate in turbulent rayleigh–bénard convection,” Physics of Fluids 33,

035139 (2021), 10.1063/5.0033746.

10R. J. Stevens, H. J. Clercx, and D. Lohse, “Heat transport and flow struc-

ture in rotating rayleigh–bénard convection,” European Journal of Mechan-

ics - B/Fluids 40, 41–49 (2013), fascinating Fluid Mechanics: 100-Year

Anniversary of the Institute of Aerodynamics, RWTH Aachen University.
11B. I. Shraiman and E. D. Siggia, “Heat transport in high-rayleigh-number

convection,” Phys. Rev. A 42, 3650–3653 (1990).
12E. D. Siggia, “High rayleigh number convection,” Annual Review of Fluid

Mechanics 26, 137–168 (1994), 10.1146/annurev.fl.26.010194.001033.
13S. Grossmann and D. Lohse, “Scaling in thermal convection: a unifying

theory,” Journal of Fluid Mechanics 407, 27–56 (2000).
14S. Grossmann and D. Lohse, “Thermal convection for large prandtl num-

bers,” Phys. Rev. Lett. 86, 3316–3319 (2001).
15S. Grossmann and D. Lohse, “Prandtl and rayleigh number dependence of

the reynolds number in turbulent thermal convection,” Phys. Rev. E 66,

016305 (2002).
16S. Grossmann and D. Lohse, “Fluctuations in turbulent rayleigh–bénard

convection: The role of plumes,” Physics of Fluids 16, 4462–4472 (2004),

https://doi.org/10.1063/1.1807751.
17R. J. A. M. Stevens, E. P. van der Poel, S. Grossmann, and D. Lohse, “The

unifying theory of scaling in thermal convection: the updated prefactors,”

Journal of Fluid Mechanics 730, 295–308 (2013).
18S. Bhattacharya, M. K. Verma, and R. Samtaney, “Revisiting reynolds

and nusselt numbers in turbulent thermal convection,” Physics of Fluids

33, 015113 (2021), https://doi.org/10.1063/5.0032498.
19X. He and P. Tong, “Measurements of the thermal dissipation field in tur-

bulent rayleigh-bénard convection,” Phys. Rev. E 79, 026306 (2009).
20Q. Zhou and L.-F. Jiang, “Kinetic and thermal energy dissipation rates in

two-dimensional rayleigh-taylor turbulence,” Physics of Fluids 28, 045109



Accepted to Phys. Fluids 10.1063/5.0118074

14

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-9

10-6

10-3

100

FIG. 14. The PDFs of logεu′ with different δ and Ra. The first line, from left to right: Ra = 3×106 , Ra = 3×107 . The second line, from left

to right: Ra = 3×108 , Ra = 3×109 .

FIG. 15. The variation of 〈ε〈T〉〉B with Ra and δ

(2016), https://doi.org/10.1063/1.4946799.
21S. F. H. Alhamdi and S. C. C. Bailey, “Universality of local dis-

sipation scales in turbulent boundary layer flows with and with-

out free-stream turbulence,” Physics of Fluids 29, 115103 (2017),

https://doi.org/10.1063/1.4996200.
22N. Chakraborty, C. Kasten, U. Ahmed, and M. Klein, “Evolutions of strain

rate and dissipation rate of kinetic energy in turbulent premixed flames,”

FIG. 16. The variation of 〈ε〈u〉〉B with Ra and δ

Physics of Fluids 33, 125132 (2021), https://doi.org/10.1063/5.0076373.
23X. He, P. Tong, and K.-Q. Xia, “Measured thermal dissipation field in

turbulent rayleigh-bénard convection,” Phys. Rev. Lett. 98, 144501 (2007).
24R. Ni, S.-D. Huang, and K.-Q. Xia, “Local energy dissipation rate balances

local heat flux in the center of turbulent thermal convection,” Phys. Rev.

Lett. 107, 174503 (2011).



Accepted to Phys. Fluids 10.1063/5.0118074

15

FIG. 17. The variation of 〈εT ′〉B with Ra and δ

FIG. 18. The variation of 〈εu′〉B with Ra and δ

25L. Méthivier, R. Braun, F. Chillà, and J. Salort, “Turbulent transition

in rayleigh-bénard convection with fluorocarbon (a),” Europhysics Letters

136, 10003 (2022).
26R. Verzicco and R. Camussi, “Numerical experiments on strongly turbulent

thermal convection in a slender cylindrical cell,” Journal of Fluid Mechan-

ics 477, 19–49 (2003).
27R. Verzicco, “Turbulent thermal convection in a closed domain: viscous

boundary layer and mean flow effects,” The European Physical Journal B-

Condensed Matter and Complex Systems 35, 133–141 (2003).
28O. Shishkina and C. Wagner, “Analysis of thermal dissipation rates in turbu-

lent rayleigh–bénard convection,” Journal of Fluid Mechanics 546, 51–60

(2006).
29O. Shishkina and C. Wagner, “Local heat fluxes in turbulent rayleigh-bénard

convection,” Physics of Fluids 19, 085107 (2007).
30O. Shishkina and C. Wagner, “Analysis of sheet-like thermal plumes in

turbulent rayleigh–bénard convection,” Journal of Fluid Mechanics 599,

383–404 (2008).
31M. S. Emran and J. Schumacher, “Fine-scale statistics of temperature and

its derivatives in convective turbulence,” Journal of Fluid Mechanics 611,

13–34 (2008).
32S. Bhattacharya, R. Samtaney, and M. K. Verma, “Scaling and spatial inter-

mittency of thermal dissipation in turbulent convection,” Physics of Fluids

31, 075104 (2019), 10.1063/1.5098073.
33I. Hideo, “Experimental study of natural convection in an inclined air layer,”

International Journal of Heat and Mass Transfer 27, 1127–1139 (1984).
34A. Bejan, Convection heat transfer (John wiley & sons, 2013).
35S. R. Taylor and S. M. McLennan, “The geochemical evolution of the con-

tinental crust,” Reviews of Geophysics 33 (1995), 10.1029/95rg00262.
36M. J. Wortel and W. Spakman, “Subduction and slab detachment in the

mediterranean-carpathian region,” Science 290, 1910–7 (2000).

37K. C. Condie, “Mantle plumes: A multidisciplinary approach,” Eos, Trans-

actions American Geophysical Union 89 (2008), 10.1029/2008eo110011.
38K. A. Emanuel, J. David Neelin, and C. S. Bretherton, “On large-scale cir-

culations in convecting atmospheres,” Quarterly Journal of the Royal Me-

teorological Society 120, 1111–1143 (1994).
39U. Madanan and R. J. Goldstein, “Experimental investigation on very-high-

rayleigh-number thermal convection in tilted rectangular enclosures,” Inter-

national Journal of Heat and Mass Transfer 139, 121–129 (2019).
40G. Ahlers, E. Brown, and A. Nikolaenko, “The search for slow

transients, and the effect of imperfect vertical alignment, in turbulent

rayleigh–bénard convection,” Journal of Fluid Mechanics 557 (2006),

10.1017/s0022112006009888.
41S.-X. Guo, S.-Q. Zhou, X.-R. Cen, L. Qu, Y.-Z. Lu, L. Sun, and X.-D.

Shang, “The effect of cell tilting on turbulent thermal convection in a rect-

angular cell,” Journal of Fluid Mechanics 762, 273–287 (2015).
42Q. Wang, Z.-H. Wan, R. Yan, and D.-J. Sun, “Multiple states and heat trans-

fer in two-dimensional tilted convection with large aspect ratios,” Physical

Review Fluids 3 (2018), 10.1103/PhysRevFluids.3.113503.
43Q. Wang, S.-N. Xia, B.-F. Wang, D.-J. Sun, Q. Zhou, and Z.-H. Wan, “Flow

reversals in two-dimensional thermal convection in tilted cells,” Journal of

Fluid Mechanics 849, 355–372 (2018).
44P. Wei and K.-Q. Xia, “Viscous boundary layer properties in turbulent ther-

mal convection in a cylindrical cell: the effect of cell tilting,” Journal of

Fluid Mechanics 720, 140–168 (2013).
45O. Shishkina and S. Horn, “Thermal convection in inclined cylindrical con-

tainers,” Journal of Fluid Mechanics 790 (2016), 10.1017/jfm.2016.55.
46L. Zwirner and O. Shishkina, “Confined inclined thermal convection in low-

prandtl-number fluids,” Journal of Fluid Mechanics 850, 984–1008 (2018).
47L. Zhang, G.-Y. Ding, and K.-Q. Xia, “On the effective horizontal buoy-

ancy in turbulent thermal convection generated by cell tilting,” Journal of

Fluid Mechanics 914 (2021), 10.1017/jfm.2020.825.
48H. Kellay, “Hydrodynamics experiments with soap films and soap bubbles:

A short review of recent experiments,” Physics of fluids 29, 111113 (2017).
49H. Kellay and W. I. Goldburg, “Two-dimensional turbulence: a review of

some recent experiments,” Reports on Progress in Physics 65, 845–894

(2002).
50F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal con-

vection and emergence of isolated vortices in soap bubbles,” Physical re-

view letters 100, 144501 (2008).
51F. Seychelles, F. Ingremeau, C. Pradere, and H. Kellay, “From intermittent

to nonintermittent behavior in two dimensional thermal convection in a soap

bubble,” Physical review letters 105, 264502 (2010).
52T. Meuel, M. Coudert, P. Fischer, C. H. Bruneau, and H. Kellay, “Effects

of rotation on temperature fluctuations in turbulent thermal convection on a

hemisphere,” Scientific Reports 8 (2018), 10.1038/s41598-018-34782-0.
53T. Meuel, G. Prado, F. Seychelles, M. Bessafi, and H. Kellay, “Hurricane

track forecast cones from fluctuations,” Scientific reports 2, 1–8 (2012).
54T. Meuel, Y. L. Xiong, P. Fischer, C. H. Bruneau, M. Bessafi, and H. Kellay,

“Intensity of vortices: from soap bubbles to hurricanes,” Scientific Reports

3 (2013), 10.1038/srep03455.
55Y. L. Xiong, P. Fischer, and C.-H. Bruneau, “Numerical simulations of two-

dimensional turbulent thermal convection on the surface of a soap bubble,”

Proc ICCFD 7, 3703 (2012).
56C. H. Bruneau, P. Fischer, Y. L. Xiong, and H. Kellay, “Numerical simu-

lations of thermal convection on a hemisphere,” Physical Review Fluids 3

(2018), 10.1103/PhysRevFluids.3.043502.
57X. He, A. Bragg, Y. Xiong, and P. Fischer, “Turbulence and heat transfer

on a rotating, heated half soap bubble,” Journal of Fluid Mechanics 924,

A19 (2021).
58J. Duan, Y. Xiong, and D. Yang, “Melting behavior of phase change mate-

rial in honeycomb structures with different geometrical cores,” Energies 12

(2019), 10.3390/en12152920.
59G. Boffetta and R. E. Ecke, “Two-dimensional turbulence,” Annual Review

of Fluid Mechanics 44, 427–451 (2012), 10.1146/annurev-fluid-120710-

101240.
60C. Sun and K.-Q. Xia, “Scaling of the reynolds number in turbulent ther-

mal convection,” Physical review. E, Statistical, nonlinear, and soft matter

physics 72, 067302 (2005).
61M. Chertkov, G. Falkovich, and I. Kolokolov, “Intermittent dissipation of

a passive scalar in turbulence,” Phys. Rev. Lett. 80, 2121–2124 (1998).



Accepted to Phys. Fluids 10.1063/5.0118074

16

62M. Kaczorowski and C. Wagner, “Analysis of the thermal plumes in turbu-

lent rayleigh–bénard convection based on well-resolved numerical simula-

tions,” Journal of Fluid Mechanics 618, 89–112 (2009).



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

0 20 40 60 80 100
10

-12

10
-8

10
-4

10
0

10
2



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074

-10 -8 -6 -4 -2 0 2 4 6 8 10

10
-9

10
-6

10
-3

10
0



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074



Accepted to Phys. Fluids 10.1063/5.0118074


	Manuscript File
	1
	2a
	2b
	2c
	2d
	2e
	2f
	2g
	2h
	3a
	3b
	3c
	3d
	3e
	3f
	3g
	3h
	4a
	4b
	4c
	4d
	4e
	4f
	4g
	4h
	5
	6a
	6b
	6c
	6d
	6e
	6f
	6g
	6h
	7
	8
	9
	10a
	10b
	10c
	10d
	11a
	11b
	11c
	11d
	12a
	12b
	12c
	12d
	13a
	13b
	13c
	13d
	14a
	14b
	14c
	14d
	15
	16
	17
	18

