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Abstract

The ambition to develop simulation methods making it possible to pre-
dict the integrity or the properties of use (mechanical, diffusive, thermal,
electromagnetic, vibratory, etc.) of structures (industrial or natural),
materials or processes involved in the development of new advanced
technologies is growing consistently. In a global context of permanent
development of advanced technologies (notably in the field of energy) and
a growing need for cost reduction, the development times for new con-
cepts are increasingly reduced and therefore tend to exclude monolithic
design of multiphysic structures. Here, we propose an homogenization
based topology optimization method to design multi-scale and multi-
physic structures experiencing fluid-pressure loads. Its effect is to allow
for micro-perforated composite as admissible designs, where the design
is characterized by the material density and its homogenized Hooke’s
law at each point of the working space, yielding composite designs made
of fine mixture between the solid and void phases. The fluid-pressure
loads is determined using Biot-Darcy’s law and solved using the finite
element method. This approach permits a computationally low cost of
evaluation of of load sensitivities using the Lagrangian method. As no
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assumption is impose on the number of micro-perforation inside the solid
domain, this method can be seen as a topology optimization algorithm.
We seek minimizers of the elastic compliances, fluid-elastic compliances
and of the weight of a solid structure under fluid-pressure loads.

Keywords: Topology optimization, multi-scale, relaxed formulation, theory of
homogenization, porous medium, adjoint methods, fluid-structure interaction.

1 Introduction

Shape and topology optimization (or layout optimization) is a popular com-
putational method in structural design and a well developed field with many
methods, where most have reached a mature state. Moreover, their ability as
design tools to optimize one or more physics continues to grow. Indeed, in all
design of multi-scale and multiphysic systems, one of the main challenges to
make topology optimization applicable in a large number of advanced tech-
nologies is the need to address the inherent multiphysics aspects, such as,
the physical mechanisms underlying the behavior of fluids and solids, namely,
determining the relationship between fluid-pressure loads and design variables,
identifying the boundary to apply the fluid-pressure loads or to effectively
assess computationally the sensitivity of such loads, which must very often be
taken into account simultaneously during the topology optimization. Among
these new advanced technologies, a problem that is currently attracting many
attention lies in the design of the heat exchangers [1–6], for various applications
such as hot and cold fluids loaded and mechanical structures (e.g., combustion
engines, air conditioning, power production or microturbines). Naturally, vari-
ous additional multiphysics design constraints come into play, such as the need
to control the pressure drop induced by the system on the inlet fluid or the
mechanical stiffness of the entire structure under fluid-pressure loads. Thus,
the performance of the optimized structures is related to the coupled volume
forces, induced by the fluid-pressure loads. In the paper, we aim topology opti-
mization by homogenization method to address the announced challenges in
the design of multi-scale and multiphysic systems experiencing fluid-pressure
loads for a given weight of the solid. Its effect is to allow composite period-
ically perforated as admissible designs. A key problem characteristic is that,
one can easily imagine that even better performance could be achieved through
homogenization based topology optimization, since it could make it possible to
seek new innovative designs among sets of much freer forms. The main appli-
cation of our work is the optimization of architectured materials, also known
as lattice materials which are becoming increasingly popular in the context of
additive manufacturing. In the following, brief history of optimization methods
applied to two or more physics problems is introduced.
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1 INTRODUCTION 3

Hammer and Olhoff in [1], employed topology optimization method to design
pressure loaded structure and since been followed by numerous methods to
treat such loads in topology optimization setting, such as: (i) the boundary
variation methods [1, 7–11], (ii) the level set methods [6, 12–14], (iii) and
density based approaches [15–19, 44]. Shape optimization can be divided into
two main families: the boundary variation method (or sizing) and the topol-
ogy optimization (or layout optimization). The boundary variation method is
based on a priori chosen curves or surfaces, which are used to interpolate the
set of admissible boundaries of a given initial design, explicitly captured on a
mesh with a fixed topology. Hammer and Olhoff [1] employed the iso-density
method to determined the pressure loading boundaries, where Bézier spline
curves were used to interpolate the set of admissible boundary shapes. But, Du
and Olhoff [7] demonstrated that, the iso-density approach can provide isolines
and separate isolines. Furthermore, to employed the iso-density method, one
needs to define a starting point and ending points a priori, for the pressure
loading boundary. Thus, Du and Olhoff [1, 7] introduced a modified isolines
method to circumvent these issues. They employed a sensitivity analysis using
an efficient finite difference formulation to treat the pressure loading bound-
aries with respect to design variables. Lee and Martins [9], proposed a novel
isolines approach, where there is no need to provide a starting and ending
points, combine with an analytical method to calculate the load sensitivities.
But, in all the proposed sensitivities evaluation provided by Du and Olhoff,
and Lee and Martins [1, 7, 9] were confined to only the exposed pressure
loading boundaries. The reader is referred to [8, 11], for more methods deal-
ing with pressure loading boundaries. Moreover, the sensitivity analysis (with
respect to design variables) proposed in [1] vanishes or can be disregarded, if
the exposed pressure loading boundary coincides with the edges of the finite
elements. Note that, the above methods to compute sensitivity analysis are
restricted to only boundary motion and do not account for their topology opti-
mization. We emphasize that load sensitivities affect the topology of the result
in the design of multiphysic systems and thus, considering load sensitivities in
fluid-structure interaction problems is a key characteristic to the performance
of an optimal candidate. Therefore, it is necessary to provide a topology opti-
mization algorithm where the sensitivity analysis can be simple to compute,
implement and computationally inexpensive.
In [6], a level-set-based approach is used to treat fluid loaded boundary,
where in contrast to the boundary variation method, the initial design is
implicitly captured on fixed mesh and the topology optimization is performed
using simultaneously a level method and the boundary variation of method of
Hadamard. In addition, Gao et al. [12] employed a level set function to capture
implicitly the structural topology and employed an efficient and robust way
to interpolate the set of admissible pressure loading boundary curves. Xia et
al. [14], proposed two zero-level sets function, to implicitly captured the free
boundary and the pressure loading boundary separately. In [20] (2016), pro-
posed the Distance Regularized Level Set Evolution (DRLSE) (see [13], 2010)
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to determine the structural boundary; zero level contour was employed the
capture implicitly the loading boundary but did not account for load sensitiv-
ities. Recently, Feppon et al. [6] (2018), employed a Level Set Mesh Evolution
(LSME) to locate the structural boundary. They used Hadamard’s method
of shape differentiation to solve a coupled thermal fluid-structure problems.
Moreover, Picelli et al. [21] (2019) employed the Laplace’s equation to deter-
mine hydrostatic fluid pressure fields, in combine with boundary description
based on a flood fill procedure: the sensitivity analysis is performed in com-
bination with ersatz material interpolation method. Unfortunately, the above
methods tend to be more dependent on the initial design, namely, the bound-
ary variation method or the level set methods provides an optimal solution
which is only the best optimum for a given the initial design. Thus, formu-
late the design problems in terms of optimal distribution of material density is
another alternative to performed topology optimization, where there is no need
to describe or track the boundary motions. Chen and Kikuchi [44] (2001) intro-
duced a novel approach, wherein, they employed a fictitious thermal loading to
solve fluid-structure interaction problems. In addition, Sigmund and Clausen
[17] (2007), proposed a mixed displacement-pressure formulation using the
finite element method in conjunction with three-phase material (fluid/void/-
solid). The given design problem is submitted to a volume constraint on the
fluid phase, where, an addition (compressible) void phase is given and also,
the mixed finite element methods have to satisfy the Babuška–Brezzi condi-
tion to ensure the stability of the element formulation. Moreover, Bourdin and
Chambolle [15] (2003), proposed a three-phase material to treat such design
problems. Zheng et al. [11] employed a pseudo electric potential to determine
the evolving structural boundaries; in their proposed method, the pressure
loads were prescribed upon the edges of finite elements, wherein, sensitivity
analysis were not performed. For this latter, extra physical fields or phases are
often proposed to treat the pressure loading. Recently, Kumar et al [23] (2020),
employed similar strategy based on Darcy’s law, to design both structures
and compliant mechanisms loaded by design-dependent pressure loads using
density-based topology optimization. In addition, D. Hübner et al. [24] (2019),
employed similar strategy based on Biot model derived by the homogenization
of two decoupled problems: (i) deformation of a porous solid saturated by a
slightly compressible static fluid and (ii) Stokes flow through the rigid porous
structure. The effective medium properties are given by the drained skeleton
elasticity, the Biot stress coupling, the Biot compressibility coefficients, and
by the hydraulic permeability of the Darcy flow model. This present paper
follows a similar strategy based on Biot-Darcy’s law to optimize a relaxed (or
homogenized) formulation of the original optimization problem to provide a
continuous and consistent treatment of composite designs under fluid-pressure
loads, which has not been reported before. Our motivation originates from the
observation that many industrial applications in the field of energy involve
multi-scale designs. We propose a new computational algorithm for two dimen-
sional shape optimization that takes full advantage of a class of periodically
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2 THE ORIGINAL OPTIMAL DESIGN PROBLEMAND ITS RELAXED FORMULATION 5

perforated composite to design fluid-pressure loaded structures. The proposed
method uses Biot-Darcy’s law to characterized the pressure loads and the prob-
lem is solved using standard finite elements method. The determined pressure
field is then weakly coupled to poro-linear elasticity problem. Herein, we pro-
pose an alternate minimization algorithm to treat composite designs under
fluid-pressure loads and submitted to volume constraints. The method offers
a straightforward computation of loads sensitivities.
In terms of applications, topology optimization has thus far focused on com-
pliance minimization problems and this work should be approached within
such background. Furthermore, from a fluid point of view, we emphasize that
there exist several homogenized models depending on various scaling regimes
assumed by the microstructure pattern (i.e., Darcy, Brinkman, or Stokes
regimes, etc.), which makes it unclear which effective model should be used
to describe a context featuring all possible regimes simultaneously at differ-
ent locations in the domain. Thus, in our method, we present a preliminary
approach to rigorously treat pressure-loaded microstructures, which suggests
the novel potentiality of the method.

In Section 2, we briefly present the original shape optimization problem and
its assumed relaxed formulation (introduced in [25]). Next, in Section 3, we
present the homogenized fluid-structure models using Biot-Darcy model. Then,
in Section 4, we introduce the topology optimization problem formulation for
fluid-pressure loaded structures and small-strains, and the associated sensitiv-
ity analysis. In Section 5, we present the TO process: it is an alternate direction
algorithm, which successively computes the stress field through the solving of
a coupled fluid-structure problem over the set of composites periodically perfo-
rated by hexagonal cells in 2-d. Finally, in Section 6, we present our numerical
results: 2-d computations are displayed of various benchmark design problems
involving fluid-pressure loaded structures and small deformation.

2 The original optimal design problem and its
relaxed formulation

This section is essentially composed of reminders of existing results in homog-
enization based shape optimization of elastic structures. An adequate class of
admissible designs is introduced which is precisely the concern of the theory of
homogenization. Herein, the aim is to devise the least compliant structure com-
patible with the loads for a given weight of the structure, i.e., to maximize the
rigidity of an elastic structure under a weight constraint. We content ourselves
to recall the main results detailed in [25], by Allaire, Bonnetier, Francfort and
Jouve. These results will be useful for a good understanding of various related
subjects that we will be discuss hereafter. The complete proof sometimes very
technical can be found in [25].

Let Ω ⊂ RN be a bounded domain, submit to ”smooth enough” mechanical
load f , e.g.: f ∈ H−1/2(∂Ω)N , satisfying a Dirichlet boundary condition of
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equilibrium on the boundary ∂Ω. Suppose a part of Ω is filled with an isotropic
linearly elastic material, with elasticity:

A = (κ− 2µ

N
)IN ⊗ IN + 2µI2N , 0 < κ, µ < +∞, (1)

while the other part of Ω is void. Let Ωχ, denote the subdomain of Ω occupied
by the elastic material, where χ is the characteristic function of the solid part
in Ω, i.e.,:

χ =

{
1 if x ∈ Ωχ

0 if x ∈ Ω\Ωχ

(2)

Assume that, Ωχ is smooth enough open subdomain of Ω, such that f is not
zero on ∂Ωχ ∩ ∂Ω, i.e., ∂Ωχ contains the part of ∂Ω where f is not zero, then
the following elasticity problem:

σ = Ae(u) e(u) = 1
2 (∇u+∇tu),

div(σ) = 0 in Ωχ,

σ . n = f on ∂Ωχ ∩ ∂Ω,

σ . n = 0 on ∂Ωχ \ ∂Ω.

(3)

is well-posed in Ωχ and has a unique solution u ∈ H1(Ωχ)
N (up to a con-

stant function). Wherein, u, σ represent the displacement vector and the

associated Cauchy stress tensor (in L2(Ωχ; RN2

s )), respectively. Hence, σ is

uniquely defined in L2(Ω; RN2

s ), for all points xΩ. Thus, σ minimizes the
complementary energy, that is:

c(χ) :=

∫
Ω

A−1σ . σ dx = min
τ∈Σ(χ)

∫
Ω

A−1τ . τ dx, (4)

over all statically admissible stress fields, where the set Σ(χ) is defined as
fellow:

Σ(χ) =
{
τ ∈ L2(Ω; RN2

s ) | div(τ) = 0 in Ω; τ . n = f on ∂Ω;

τ(x) = 0 a.e. where χ(x) = 0
} (5)

The scalar value c(χ), defined by (4), is termed the compliance of the body
and by performing an integration by parts, we get that

c(χ) =

∫
∂Ω

f . u dx,

where u is the solution of the linear elasticity problem (3).
Assume that, χ(x) is the characteristic function of an arbitrary measurable
subset of Ω (not necessarily open), then the existence of solution of system (3)
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2 THE ORIGINAL OPTIMAL DESIGN PROBLEMAND ITS RELAXED FORMULATION 7

is no longer assured, i.e., σ is no longer guaranteed. However, a generalized
compliance can be defined as:

c(χ) := inf
τ∈Σ(χ)

∫
Ω

A−1τ . τ dx, (6)

where the set Σ(χ) is defined by (5) and wherein, the infimum is not necessarily
achieved. Here, the aim is to minimize the compliance of the solid structure
under mechanical loads for a given weight of the structure. Thus, the quantity
c(χ) for all characteristic functions χ such that:∫

Ω

χ(x) dx = Θ, 0 < Θ ≤ |Ω|,

is studied and the minimum compliance reads as:

I := inf
{
c(χ) | χ ∈ L∞(Ω; {0, 1});

∫
Ω

χ(x) dx = Θ
}
. (7)

The minimum compliance problem defined in (7) is difficult to solve since it is
submitted to a volume constraint, that is:∫

Ω

χ(x) dx = Θ. (8)

Such a constraint is usually handled using elementary calculus of variations,
namely, by dichotomy process over a positive Lagrange multiplier. Thus, (7)
is replaced by:

I(ℓ) := inf
χ∈L∞(Ω; {0,1})

{
c(χ) + ℓ

∫
Ω

χ(x) dx
}
, (9)

where, an elementary calculus of variations is performed in hope to find a
positive value ℓ for which the volume constraint (8) is met, which is not so
obvious and should be proved. Unfortunately, we do not a proof as detailed in
[25], so for the remainder of this paper, the original optimization problem is
replaced with the above unconstrained version.

Remark 1 As in [25], we only consider the case where surface loads are applied, for
sake of simplicity. However, the model can easily be modified in order to get volume
forces or the clamping of part of the boundary ∂Ω. The reader is referred to the
numerical examples presented in Sect. 6, which include different types of boundary
conditions. The above optimization problem is commonly known as a ”single load”
problem, i.e., the compliance minimization problem is optimized for a single loading
forces and may not be compatible for other loads. Thus, one needs to investigate
”multiple loads” problem which amounts to an optimization problem for several con-
figurations, i.e., assume that, f1, ..., fp are some given surface loadings and consider
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the following minimization problem:

Ip(ℓ) := inf
χ∈L∞(Ω; {0,1})

{ p∑
i=1

ci(χ) + ℓ

∫
Ω
χ(x)

}
, (10)

where ci(χ) is the generalized compliance defined by (6) for the surface load fi.

It is proved in [26] that problems of the type (7) or (9) do not in general,
admit solution, namely, solutions do not exist among characteristic functions.
Thus, we must relaxed the problem, i.e., the set of admissible designs must
include micro-perforated composite designs. This is because composite designs
can always outperform black and white designs, namely, genuine designs made
of plain material.
A composite design is described by the local density θ(x) ∈ L∞(Ω; [0, 1])
of material and an homogenized elasticity tensor A∗(x) that depends on
the microstructure at each point x ∈ Ω. The homogenized or macroscopic
displacement u∗ of the structure is then solution of the following set of
equations: 

σ = A∗e(u∗) e(u∗) = 1
2 (∇u∗ +∇tu∗),

div(σ) = 0 in Ω,

σ . n = f on ΓN ,

σ . n = 0 on ∂Ω \ ΓN ,

(11)

such that ΓN contains the part of ∂Ω where f is non zero. Note that, the
problem is now defined on the whole working domain Ω and no longer on a
design Ωχ. Thus, the minimization problem defined by (9) is replaced by:

I∗(ℓ) := min
τ∈Σ(Ω)

{
min

0≤θ≤1

{
c∗(θ) + ℓ

∫
Ω

θ dx
}}

, (12)

where Σ(Ω) is defined by:

Σ(Ω) =
{
τ ∈ L2(Ω; RN2

s ) | div(τ) = 0 in Ω; τ . n = f on ∂Ω
}
. (13)

and c∗(θ) is defined by:

c∗(θ) = min
A∗(x)∈Gθ(x)

∫
Ω

A∗−1τ .τ dx, (14)

where Gθ(x) is the set of effective or homogenized Hooke’s laws for microstruc-
tures of density θ(x). The quantity c∗(θ), defined by (14) is termed the relaxed
or homogenized compliance for a perforated composite material obtained by
mixing the material A with holes in proportions θ(x) and 1 − θ(x). The
main challenges in the homogenized formulation (12) are first, to compute the
relaxed compliance c∗(θ) (which can be different from the original compliance
c(χ)), second and the most important is to give a full and explicit description
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3 THE FLUID-STRUCTURE MODEL USING BIOT-DARCY LAW 9

of the set of admissible Hooke’s laws Gθ. Unfortunately, we are helpless in this
matter, because the set of effective tensors resulting from the mixture in fixed
volume fraction of two elastic materials is unknown for the elasticity case, i.e.,
for the general case of non-defined underlaying microstructure topologies. This
difficulty is bypassed when the objective functional is the compliance func-
tional because its minimum can be computed among a well-known subset of
the full set of effective tensors, i.e., that of a sequential laminates: see [25]
for details. To circumvent these challenges, we follow the same approach in
[27, 28], which is to limit the set of admissible composite designs to microstruc-
tures for which the Hooke’s law can be numerically computed (e.g.: periodic
composites with hexagonal cells).
For the remainder of this paper, we content ourselves with the relaxed version
(12) of the original optimization problem (9). As such, we denote by u, the
homogenized displacement solution of (11) and we seek minimizers for the
optimal composite solution under fluid-pressure loads and with a given weight
of an elastic material.

3 The fluid-structure model using Biot-Darcy
law

As the topology optimization of composite designs progresses, the material
boundary and its topology evolve simultaneously, while the material density is
optimally distributed with respect to an objective function under mechanical
or fluid loads. As such, identifying the boundary to which apply such loads is
not easy task, especially in the initial stage of the optimization. Thus, when
designing composite structures under fluid-pressure loads and small strains,
it becomes essential to establish a design-dependent and continuous pressure
field to help the topology optimization. In addition, using 3-d simulation of
the pore-scale flow, Jobic et al. established in [29], that different regimes can
co-exist within a foam-like composite and that, these regimes depend on the
local Reynolds number. They displayed that, a Darcy regime is established
for Reynolds numbers lower than 0.3, while an inertia regime is established
for a Reynolds greater than 30, preceded by a transition regime. Here, the
complexity of these real flow regimes is not taken into account. We consider in
this first approach a flow of the Darcean type. However, it was established in
[29] that, a Darcy-Forchheimer type approach makes it possible to account for
all possible regimes. Thus, exploring this sophisticated flow law is an obvious
line of research for future work.
Here, we propose a Biot-Darcy’s law to characterize a density-dependent pres-
sure field p. From a fluid point of view, Darcy’s law describes the fluid ability
to flow through a porous media such as soil, sandstone or rock, namely, the
fluid flow through a unit area is said to be directly proportional to the pres-
sure drop per unit length ∇p and that inversely, the resistance of the porous
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medium is proportional to the flow µ ([30]). Mathematically, this is defined by:

q := −κf

µf
∇p = −K∗∇p, (15)

where q, κf , µf , and ∇p characterize the flux (ms−1), permeability (m2), fluid
viscosity (Nm−2s) and pressure gradient (Nm−3), respectively. In addition,
K∗1 (m4N−1s−1) is the flow coefficient, which characterizes the fluid ability
to flow through a porous medium. In order to smoothly and continuously
distribute the pressure drop in fluid domain and differentiate between solid
and void phase in the whole domain, the flow coefficient K∗(θ(x)) is defined
using a smooth function given by:

K∗(θ(x)) := min

(
ϵ0 + (1− ϵ0)(1− θ(x))

θ(x)
,K∞

)
, (16)

where ϵ0, K∞ are given thresholds, i.e., ϵ0 = 10−4, K∞ = 103, respectively.
Furthermore, the density-dependent pressure field p is assumed to satisfy a
Biot’s law defined by:

p := Mm−Mbevol, (17)

where M , m and evol are smooth enough functions related to the material
density θ(x) defined by:

m(θ) := (1− θ)ρ, M(θ) :=
1− θ

κv
− b(θ)− (1− θ)

κs
, evol := ∇ . u, (18)

where ρ, κv, and κs represent the density of the flux2, compressibilty of the
void and solid phase, respectively. The coefficient evol = div(u), denotes a
volume variation of the solid phase at each finite element. The parameters M
and b are the so called Biot modulus and Biot coefficient. The Biot’s law (17)
is assumed to be related to Darcy’s law (15) by:

q := mvf = −K∗∇p, (19)

where vf represents the velocity (ms−1) of the flux. Thus, the above equation
19, allows to renders gradually the pressure drop from the inner pressure
boundary Γf

pin
to the outer boundary pressure Γpout

. This penetrating pres-
sure of Biot-Darcy’s law, is similar to that introduced in [23], which makes
this pressure loading boundary a smeared-out version of an applied pressure
load on a sharp boundary. Thus, by summing up the contributions of penetrat-
ing loads, we obtain the corresponding loads. Therefore, the local differences
in the load application is assumed to bear no significant effect on the global
behaviour of the structure, which is in line with the Saint-Venant principle.

1K∗ =
κf
µ is called ”flow coefficient”, however, it is sometimes used in literature with a different

meaning.
2mass per unit volume of the fluid

10



3 THE FLUID-STRUCTURE MODEL USING BIOT-DARCY LAW 11

In addition to the Biot-Darcy equation (19), we assume that the state equation
satisfies the law of conservation of mass in view of incompressible fluid, that is:

∂m

∂t
:= −div(q) = div(K∗∇p) (20)

Consequently, we derived from the Biot’s law (17), the equation:

∂p

∂t
:= M(θ(x))

∂m

∂t
−M(θ(x))b(θ(x))

∂evol
∂t

, (21)

Further to Biot-Darcy’s law (19), we assume for sake of simplicity that our
fluid model is continuous and stationary and satisfies the law of conservation
of mass (in view of incompressible fluid) defined by:

∂m

∂t
:= −div(q) = div(K∗∇p) = 0 (22)

where in the particular case of a porous isotropic medium, the Biot’s coefficient
b(θ) is explicitly given by:

b(θ(x)) := 1− κs(θ(x))

κ
, (23)

where, κ and κs(θ(x)) represent the bulk moduli of the solid phase A and the
effective (or homogenized) tensor A∗(x). We emphasize that, A∗(x) tends to
A, when θ(x) tends to 1; thus, κs(θ) tends to κ.
This paper should be approached within such background, namely, we assume
that our fluid-structure model is defined in the particular case of a porous
isotropic medium. In order to discuss the precise mathematical settings of our
multiphysic system, we introduce the following spaces of functions defined by:

V (Γs
D) := {v ∈ H1(Ω)N | v = 0, on Γs

D}, V (Γf
D) := {q ∈ H1(Ω) | q = 0, on Γf

D},
(24)

where Γs
D and Γf

D represent the homogeneous Dirichlet boundaries for the solid
and fluid systems, respectively. We consider the subspace:

H1/2(Γs
N ) := {v|Γs

N
| v ∈ V (Γs

D)}, (25)

and its dual spaceH−1/2(Γs
N ). Using the Biot-Darcy’s law (22), our fluid model

is then defined by:

(Biot-Darcy)


−div(K∗∇p) = 0 in Ω,

p = pin on Γf
D,

qΓ . n = ff on Γf
N ,

qΓ . n = 0 on Γf = ∂Ω\(Γf
D ∪ Γf

N ),

(26)

11
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where ff ∈ H−1/2(Γf
N ) (satisfies a compatibility condition of equilibrium) is

the enforcement of flux load on the part of its boundary Γf
N , i.e.: the enforce-

ment of a Neumann boundary condition, and pin is the loading pressure on the
part of its boundary Γf

D, i.e.: the enforcement of a Dirichlet boundary condi-

tion. Thus, by a straightforward integration by parts, p ∈ V (Γf
D) is the unique

solution (up to a constant function) to the variational formulation defined by:

∀q ∈ V (Γf
D) ∫

Ω

K∗(ϕ)∇p . ∇q dx−
∫
Γf
N

ff q ds = 0 (27)

where K∗ is the homogenized permeability. Next, we weakly coupled the
solution p of the fluid model (26) to the linear-elasticity problem defined by:

(Biot-Coussy )



−div(σ) = −b∇p in Ω

σ . n = fs on Γs
N ,

u = 0 on Γs
D,

σ . n = 0 on Γs = ∂Ω\(Γs
N ∪ Γs

D),

σ = A∗e(u) e(u) = 1
2 (∇u+∇tu),

(28)

where u ∈ V (Γs
D) is the unique solution (up to rigid displacement field). Here

u is the homogenized displacement vector and σ is the associated Cauchy
stress field. The vector function fs ∈ H−1/2(Γs

N ) is the body force applied
on its boundary Γs

N , with a clamping of part on its boundary Γs
D. Wherein,

the coupling is weak because the equations are solved consecutively, i.e.:
first, the Biot-Darcy model, then the linear poro-elasticity model. Thus, by a
straightforward integration by parts, u is the unique solution to the variational
formulation defined by: ∀v ∈ V (Γs

D)∫
Ω

A∗e(u) . e(v) dx−
∫
Γs
N

fs v ds+

∫
Ω

b∇p . v dx = 0 (29)

For the remainder of this paper, we weakly solve the variational formulations
of the fluid-structure model equations.

4 Topology optimization problem formulation

Herein, we propose an homogenization method for topology optimization of a
coupled fluid-structures built with periodic composite materials, characterized
by the local density θ of the material and the associated homogenized Hooke’s
law A∗, defined at each point x ∈ Ω of the working space. As in [28], we restrain
our analysis to a simple class of composites in plan setting, i.e., our composite
materials are periodically perforated by hexagonal cell in 2-d: a regular unit
hexagon perforated by smooth hexagon hole, known as smooth honeycomb.
This class of modulated periodic microstructures is known to be isotropic

12



4 TOPOLOGY OPTIMIZATION PROBLEM FORMULATION 13

microstructures (or atleast very close to one); the assumption numerically
displayed on Fig. 3.

4.1 The Homogenized Hooke’s laws

Let Y be the periodic smooth honeycomb cell, i.e., a regular unit hexagon cell
perforated by smooth hexagon hole (see, Fig. 1(a)); it is similar to the classical
honeycomb, except that the corners of its interior interface are rounded. Thus,
when the material density θ tends to one, the smooth hexagon hole tends to
a circle with its diameter going to zero. However, the perforated smooth hon-
eycomb hole can not reach completely void, i.e., θ going to zero is excluded.
In addition, unlike the classical honeycomb, the smooth honeycomb is not
parametrized using the material density, but a parameter h ∈ [0, 1], homoge-
neous to a distance. Furthermore, a h-dependent parametric curve Γh is then
introduced to design the interface solid/void of the perforated smooth honey-
comb. In the following, some notations are introduced before giving its polar
equation.
Let v(t) = (cos(t), sin(t))T and ni, for i ∈ {0, 1, 2} represent the normal vectors
of the three diagonals of Y (h), defined by

n0 =

(
0
1

)
, n1 =

(√
3
2
1
2

)
, n2 =

(√
3
2

− 1
2

)
. (30)

Next, the polar equation of Γh is defined by:

r(t) = h

√
3

2
(

2∑
i=0

|v(t) . ni|k(h))
−1
k(h) with t ∈ [0, 2π], (31)

where k is positive coefficient, depending on h, that here, we set to k(h) =
4+20h2. Note that, h, is homogeneous to a distance, similar to the parameter

m =

√
3

2
(1−

√
1− θ),

which denotes the relative width of bars with respect to the size of the periodic
cell Y (h). Now, let H be a a regular unit hexagon, i.e., the set of all points
such that, the maximal distance of a point in H from the three diagonals is

equal to
√
3
2 . Let M(r, t) be a point, with its polar coordinate denoted by (r, t).

Thus, M is a point in H if and only if, its polar coordinate (r, t) satisfies

rmax
i

|v(t) . ni| =
√
3

2
. (32)

13



14 4.1 The Homogenized Hooke’s laws

Consequently, the polar equation of H verifies

r(t) =

√
3

2
(max

i
|v(t) . ni|)−1. (33)

In addition, we recall that

(

2∑
i=0

|v(t) . ni|k)
−1
k →k→∞ max

i
|v(t) . ni|. (34)

Next, the polar equation of Γh is obtained by combining the polar equation
of H and the above limit. The parameter h is added in order to adjust the
diameter of its inner hole.

Remark 2 It is known in ([31, 32]), that the smooth honeycomb generate lower local
concentration stress compare to the classical one. However, we do not claim that the
smooth honeycomb can reach a particular elastic properties. In addition, the struc-
ture of the periodic smooth honeycomb as well as its Hooke’s law are qualitatively
similar to the celebrated Vigdergauz hexagonal cell [33], which is known to generate
extreme composite microstructures, namely that, they minimize the energy.

(a) Classical honeycomb (b) Smooth honeycomb

Fig. 1 Isotropic design cells (images taken from [28])

For sake of clarity, few important results on the theory of homogenization
are recalled hereafter, the interested reader should refer to textbook [34], for
details and explanations.
Assume that, in a given design domain Ω, there is a periodic distribution of
holes inside an elastic isotropic phase, with constant elastic tensor A. Let ϵ > 0
be the periodicity size and Y (h) be the rescaled periodicity cell Y (h), i.e., the
unit smooth honeycomb. Inside this unit periodic cell, let Y0(h) be solid part
of the subset of Y (h), where its complement being the hole of boundary Γh

(see, Fig.1(b)). In addition, the porous medium is assumed homogeneous, with
an effective tensor A∗(x), whenever ϵ tends to zero.

14



4 TOPOLOGY OPTIMIZATION PROBLEM FORMULATION 15

Now, to compute the homogenized Hooke’s law A∗, one needs to solve the cell
problems, defined for for each pair (i, j) ∈ {1, 2} by:

div(A(eij + e(wij))) = 0 in Y0

A(eij + e(wij)) . n = 0 on Γh

y 7→ wij(y) Y0 periodic,

(35)

where, wij is the so-called correctors wij , corresponding to the local displace-
ments in the periodic cell Y0(h), and eij = 1

2 (ei ⊗ ej + ej ⊗ ei), the basis of
the symmetric tensors of order 2, with normal to the interior boundary Γh

denoted n. Thus, the variational formulation associated to (35) is defined by:
find wij ∈ H1

#(Y0,R2) such that

∀ϕ ∈ H1
#(Y0,R2)

∫
Y0

Ae(wij) : e(ϕ) +

∫
Y0

Aeij : e(ϕ) = 0, (36)

which admits a unique solution (up to a constant displacement). The coeffi-
cients of the homogenized Hooke’s law A∗(x) are defined by:

A∗
ijkl =

1

Y

∫
Y0

A(eij + e(wij)) : (ekl + e(wkl)) dy ∀i, j, k, l ∈ {1, 2} (37)

where, the symbol # denotes the periodicity of the correctors wij , solutions of
(36). Note that, one needs to divide the quantity in (37) by the volume Y(h).
Generally, to bypass this point the volume Y(h) is taken unitary.

Remark 3 It is known that the set Hooke’s laws of periodic composites is dense in the
set of all possible Hooke’s laws reachable with composites [34], thus, restricting the
analysis to periodic composites is an acceptable limitation. However, restricting the
set of periodic composites to periodically perforated smooth honeycomb is a loss of
generality. Hence, Exploring a larger range of periodic microstructures is an obvious
line of research for future work.

Since, the smooth honeycomb Y (h) is isotropic cell, we only need for instance
two entries of the homogenized tensor A∗ (e.g., A∗

1122 and A∗
1212) to fully

characterize A∗. However, all the entries of the homogenized tensor A∗, were
computed in order to demonstrate that composites periodically perforated by
smooth honeycomb are isotropic materials or at least very close to one. For
this computation, the range of θ is discretized with 50 triangular elements
and A linear material model with Young’s modulus E = 12× 109Nm−2 (i.e.,
12GPa) and Poisson’s ratio ν = 0.35.

Remark 4 Note that, the void (i.e., θ = 0) is fill with a very compliant material,
in order to avoid singularities of the effective tensor when the elasticity problem is
solved.

15



16 4.1 The Homogenized Hooke’s laws

We recall that, the homogenized tensor A∗ is isotropic, thus, it is defined as:

A∗ = 2µ∗I2N + (κ∗ − 2µ∗

N
)IN ⊗ IN ,

where κ∗ and µ∗ are the bulk and shear moduli of the homogenized Hooke’s
law A∗, with its Lamé coefficient defined by λ∗ = κ∗ − 2µ∗

N . In addition, its
coefficients are defined by

µ∗ = A∗
ijij

λ∗ = A∗
iijj ∀i, j ∈ {1, ..., N}

κ∗ = A∗
iijj +

2
NA∗

ijij

(38)

Furthermore, the isotropy of the homogenized Hooke’s law A∗ implies some
equalities between its coefficients, i.e.:

∀i, j, k, l, p ∈ {1, 2}


A∗

iijk = 0

A∗
iiii = A∗

jjjj

A∗
iijj = A∗

kkll

A∗
iiii = A∗

ijij +A∗
llpp

(39)

Numerical results

Fig.2 depicts the relative errors to those equalities in (39), computed for dis-
crete sample of material density θ (see, Fig.4). In addition, the homogenized
bulk κ∗ and shear µ∗ moduli of the homogenized Hooke’s law A∗ were also com-
puted in order to verify that they are bounded by the upper Hashin-Shtrikman
bounds, as it is known that any isotropic two-phase composite material is
bounded by the Hashin-Shtrikman bounds.

Remark 5 We recall that, the upper Hashin-Shtrikman bounds for the homogenized
bulk κHS and shear µHS moduli are defined by:{

κHS = κµθ
κ+µ−κθ , µHS = κµθ

2(κ+µ)−(κ+2µ)θ
in 2-D,

κHS = 4κµθ
3κ+4µ−3κθ , µHS =

(9κ+8µ)µθ
5(3κ+4µ)−6(κ+2µ)θ

in 3-D
(40)

16
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5 ×10−4

θ

A∗
1112

A∗
2212

0 0.2 0.4 0.6 0.8 1
0
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×10−4
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|A∗
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|A∗

1122 +A∗
1212 −A∗
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Fig. 2 Isotropy of the smooth honeycomb, i.e.: the maximum residual errors of equalities
in 39

In each case, the coefficients are smooth increasing functions with respect to
the material density θ, which guarantees that the optimization process will
converge. Note that, κ∗ and µ∗ are closed to the upper Hashin-Shtrikman
bounds (see, Fig.3).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

θ

κ

Hashin-Shtrikman
Smooth Honeycomb

0 0.2 0.4 0.6 0.8 1
0

2

4

6

θ

µ

Hashin-Shtrikman
Smooth Honeycomb

Fig. 3 The bulk κ∗ (left) and shear µ∗ (right) moduli of the smooth honeycomb wrt.
Hashin-Shtrikman bounds
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18 4.2 The homogenized conductivity tensor

(a) θ = 10% (b) θ = 50% (c) θ = 80%

Fig. 4 The Smooth honeycomb cell for different values of to the density θ

4.2 The homogenized conductivity tensor

As in 4.1, starting from a microscopic description of a problem, one seeks a
macroscopic or effective model problem in conductivity K∗, we introduce the
so-called cell problems and since the considered cell Y is specifically chosen in
order to design isotropic composites, only one of its coefficient (e.g., (K∗)11)
could be computed in order to fully characterized K∗, a scalar value. However
to confirm the isotropy, we computed all its coefficients. We denote by (ei)i=1,2

the canonical basis of R2. For each unit vector ei, we consider the following
conductivity problem in the periodic cell Y :{

−div(K(ei +∇wi))) = 0 in Y

y 7→ wi(y) Y periodic,
(41)

where wi(y) is the local variation of pressure created by an averaged (or macro-
scopic) gradient ei. The homogenized conductivity tensor K∗ is then given in
terms of the correctors wi, solutions of (41), defined by

(K∗)ij =
1

Y

∫
Y

K(ei +∇wi) : (ej +∇wj) dy ∀i, j ∈ {1, 2} (42)

The constant tensor K∗ describes the effective or homogenized properties of
the heterogeneous microstructure of periodic size ϵ. Likewise, note that K∗

does not depend on the choice of domain Ω, source term ff , or boundary
condition on ∂Ω.

Numerical results

The constant tensor K∗ has been computed for the hexagonal cells in 2-d, on
the same scheme as the homogenized tensor A∗(θ) for different values of the
density. Figure 5 displays the homogenized flow coefficient K∗ computed for a
discrete values of the density with respect to the hexagonal cell and normalized
smooth function given by (16). As expected, K∗ is a decreasing function with
respect to the density θ. It is noted that the residual |(K∗)11− (K∗)22| ≤ 10−6

18



4 TOPOLOGY OPTIMIZATION PROBLEM FORMULATION 19

and (K∗)12 ≤ 10−3, for the hexagonal cell, which validates the isotropy. We
emphasize that the flow coefficient K∗ can be approximated by the normalized
smooth function, that is defined by (16).

0
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θ

N-sf
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Fig. 5 The homogenized flow coefficient history wrt. the Smooth honeycomb (S-hc) and
normalized smooth function (N-sf) in (16)
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5 Sensitivity analysis

Here, we present the optimization problem formulation associated to fluidic-
pressure loaded structures and discuss the sensitivity analysis for such design
problems. The standard formulation, namely the minimization of compliance
is considered to design pressure loaded stiff structures, where the optimization
problem is given by the constrained formulation:

min
0≤θ≤1

1
|Ω|

∫
Ω
θ dx=Θ

c∗(θ) (43)

where c∗(θ) is the relaxed objective function defined by:

c∗(θ) :=

∫
ΓN

fs . u ds+

∫
Ω

(−b∇p) . u dx = min
τ∈H0

{
min

A∗(x)∈Gθ

∫
Ω

A∗−1τ .τ dx
}
,

(44)
with H0 defined by

H0 =

{
τ ∈ L2(Ω; Ms

2) |


−div(τ − bpI2) = 0 in Ω

τ . n = fs on Γs
N

τ . n = 0 on Γs

}
(45)

wherein, Γs = ∂Ω\Γs
N is the free part of boundary ∂Ω. We recall that, we

only explicitly compute the optimization process on a subset of of all possible
Hooke’s lawsGθ, i.e.: composites periodically perforated by smooth honeycomb
cell. Therefore, the set of effective elasticity tensors {A∗(θ) | θ ∈ L∞(Ω, [0, 1]}
has to be characterized. The proposed strategy consists in computing the mate-
rial properties for a discrete sample of parameter values and using the collected
data to construct a surrogate model for the constitutive law (by a simple linear
interpolation). Next, the optimization problem (43) is recast as follow:

min
θ

c∗(θ) = min
θ

∫
Ω

A∗(θ)e(u) : e(u) dx, (46)

where u is the unique solution to the coupled fluid-elasticity problem given by
(i) − div(K∇p) = 0

(ii) − div(A∗e(u)) = −b∇p

(iii) 1
|Ω|
∫
Ω
θ dx = Θ

(47)

where Θ is the prescribed volume fraction. Note that, all mechanical equilib-
rium equations are satisfied under small strain assumption. The optimization
problem is then solved using the alternate minimization algorithm [34], which
consists in minimizing successively the stress tensor through the solving of the
coupled fluid-elasticity problem and then the density θ through a projected

20



5 SENSITIVITY ANALYSIS 21

gradient method: it is an algorithm based on optimality criteria. We empha-
size that, the boundary value problems in (47) are solved in each iteration in
combination with the respective boundary conditions.
In a gradient-based topology optimization, it is essential to determine sensitiv-
ities of the objective functional and the constraints with respect to the design
variable(s). In general, the formulated objective functional depends upon both
the state variable u, solution to the mechanical equilibrium equations and the
design variable(s). In order to discuss the precise mathematical settings, we
introduce the following set of admissible design variables Uad, defined by

Uad :=

{
θ(x) ∈ L∞(Ω) | θ(x) ∈ [0, 1],∀x ∈ Ω

}
(48)

We define the applications θ → u(θ), θ → p(θ), where θ ∈ Uad is associated

to the solution {u(θ), p(θ)} ∈ V (Γs
D) × V (Γf

D) of the state equations (under
volume constraints):

(i) − div(K(θ)∇p) = 0

(ii) − div(A∗(θ)e(u)) = −b∇p

(iii) 1
|Ω|
∫
Ω
θ dx = Θ

(49)

As already known [36], the above maps are continuous and differentiable in
Uad, where the directional derivative at θ of u(θ) and p(θ) with respect to
θ̄ ∈ L∞(Ω) are defined respectively by:〈

p′(θ), θ̄
〉
= p̄,

〈
u′(θ), θ̄

〉
= ū, (50)

where p̄ ∈ H1
0 (Ω) and ū ∈ H1

0 (Ω)
2 are the unique solutions (up to constant

functions) to the system given by:{
(i) − div(K(θ)∇p̄) = div(K̄∇p)

(ii) − div(A∗(θ)e(ū)) = div(Ā∗e(u))− b̄∇p− b∇p̄,
(51)

where

K̄ =< K ′(θ), θ̄ >, Ā∗ =< (A∗)′(θ), θ̄ > and b̄ =< b′(θ), θ̄ > (52)

represent the directional derivatives at θ with respect to θ̄.

Proof Here, we only give the main results, the reader is referred to [36] for a complete
proof. Let (θ, θ̄) ∈ Uad ×L∞(Ω). For all t > 0 small enough, θ̂(t) = θ+ tθ̄ belongs to
Uad. Thus, p̂(t) = p(θ̂(t)) and û(t) = u(θ̂(t)) are solutions to the system given by:{

(i) − div(K̂(t)∇p̂(t)) = 0

(ii) − div(Â∗(t)e(û(t))) = −b̂(t)∇p̂(t)
(53)
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where,
K̂(t) = K(θ̂(t)), Â∗(t) = A∗(θ̂(t))

We then derive the system (53) with respect to the variable t and the resulting
derivatives are evaluated at t = 0 in order to get the obtained system (51). □

As already known [36], the objective functional given by:

c∗(θ) =

∫
ΓN

fs . u ds+

∫
Ω

(−b∇p) . u dx =

∫
ΓN

j1(u) ds+

∫
Ω

j2(u, p) dx (54)

is differentiable and the directional derivative at θ with respect to θ̄ is given by:〈
c∗

′
(θ), θ̄

〉
=

∫
ΓN

j′1(u)ū ds+

∫
Ω

∂j2
∂u

(u, p)ū dx+

∫
Ω

∂j2
∂p

(u, p)p̄ dx (55)

wherein, p̄ ∈ H1
0 (Ω) and ū ∈ H1

0 (Ω)
2 are the unique solutions to the equations

(51), respectively. Unfortunately, equation (55) is unusable in practice,
because we cannot deduce a simple expression of the derivative c∗

′
(θ). Indeed,

ū and p̄ are linear functions with respect to θ̄, which are non-explicit. To cir-
cumvent this issue, the presented Biot-Darcy-based TO method facilitates use
of adjoint-variable method to determine the sensitivities, which is performed
using the Céa method.
We introduced the Lagrange multiplier for the constraints (49), associating
{p(θ), u(θ)} to θ, which is {p, u, ℓ} ∈ H1

0 (Ω) ×H1
0 (Ω)

2 × R∗+, where ℓ is the
Lagrange multiplier designed to respect the volume constraint. In addition, an
augmented performance function known as the Lagrangian L can be defined
using the objective function and the mechanical state equations defined by:

L(θ̂, û, û, p̂, p̂, ℓ) := c∗(θ̂) +

∫
Ω

û(−div(A∗(θ̂)e(û)) + b(θ̂)∇p̂) dx

+

∫
Ω

p̂(−div(K∗(θ̂)∇p̂)) dx+ ℓ(

∫
Ω

θ̂ dx−Θ),

(56)

wherein, (θ̂, û, û, p̂, p̂) ∈ L∞(Ω) × H1
0 (Ω; R2)2 × H1

0 (Ω; R)2 are independent

variables. We emphasize that the compliance c∗(θ̂) depends upon the state
variables u and p. By straightforward integration by parts, we get

L(θ̂, û, û, p̂, p̂, ℓ) := c∗(θ̂) +

∫
Ω

(A∗(θ̂)e(û) : e(û) + b(θ̂)∇p̂ . û) dx

+

∫
Ω

K∗∇p̂ . ∇p̂ dx+ ℓ(

∫
Ω

θ̂ dx−Θ),

(57)
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Next, the sensitivities are evaluated by differentiating (57) with respect to u
and p in directions ϕu ∈ H1(Ω)2 and ϕp ∈ H1(Ω) defined by:〈

∂L
∂u

(θ̂, û, û, p̂, p̂, ℓ), ϕu

〉
= −

∫
Ω

b(θ̂)∇p . ϕu+

∫
Ω

A∗(θ̂)e(ϕu) : e(û) dx (58)

and〈
∂L
∂p

(θ̂, ..., ), ϕp

〉
=

∫
Ω

(−b∇ϕp) . u dx+

∫
Ω

b(θ̂)∇ϕp . û +

∫
Ω

K∗∇ϕp . ∇p̂ dx

(59)
which when it vanishes, is nothing more than the variational formulation asso-
ciated to adjoint-state. Furthermore, the derivatives with respect u and p in

directions ϕu ∈ H1(Ω)2 and ϕp ∈ H1(Ω) are simply the state equations defined
by: 〈

∂L
∂u

(θ̂, û, û, p̂, p̂, ℓ), ϕu

〉
=

∫
Ω

(
A∗e(û) : e(ϕu) dx+ b∇p̂ . ϕu

)
, (60)

and 〈
∂L
∂p

(θ̂, û, û, p̂, p̂, ℓ), ϕp

〉
=

∫
Ω

K∗∇p̂ . ∇ϕp dx, (61)

which when it vanishes, is nothing more than the variational formulation asso-
ciated to state equations (49). Finally, the partial derivative of the Lagrangian
L with respect to θ in direction θ̄ ∈ L∞(Ω; R) at the stationary point
(u, u, p, p) is defined by: 〈

dL
dθ

, θ̄

〉
=

∫
Ω

(
− e(u)T

∂A∗

∂θ
e(u)+(

e(u)T
∂A∗

∂θ
e(u) +

∂K∗

∂θ
∇p . ∇p+

∂b

∂θ
∇p . u+ ℓ

)
︸ ︷︷ ︸

Load sensitivities

)
θ̄ dx

(62)
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6 Topology optimization over composite
materials

6.1 Alternate minimization method

This section presents the proposed numerical algorithm, which is based on
the homogenization method. The key idea is to compute composite designs
for the relaxed formulation rather than ”classical” designs, which are merely
approximately optimal for the original formulation. Our optimization problem
is solved using the alternative minimization algorithm. We seek minimizers of
sum of the elastic compliance, fluid-elastic compliance and of the weight of a
solid structure under fluidic pressure loads.

6.1.1 Minimizing over the stress field.

Minimization over the stress field σ consists in solving the linear elasticity prob-
lem (28) over the effective tensor A∗(x), for given design θ(x) of microstructure
periodically perforated by the smooth honeycomb cell. Consequently, the linear
elasticity problem (28) can be recast as a variational problem defined by:

v ∈ V (Γs
D),

∫
Ω

A∗(θ)e(u) : e(v) dx =

∫
Γs
N

fs .v ds+

∫
Ω

(−b∇p) . v dx (63)

which numerically is solved using P1 finite elements to compute the displace-
ment vector field u.

6.1.2 Minimizing over the density field.

Minimization over the density field θ for a given stress tensor σ is performed
using the projected gradient algorithm. The minimum compliance problem
defined by (44) is not a self-adjoint, hence one needs to define the associated
adjoint problem, which we define herein using the Céa method presented in
sect.(5). The descend direction h = dθ is given by solving the bilinear equation:〈

∂L
∂θ

, h

〉
= −

∫
Ω

(
e(u)T

∂A∗

∂θ
e(u)−

(
e(u)T

∂A∗

∂θ
e(u) +

∂K∗

∂θ
∇p . ∇p+

∂b

∂θ
(θ)∇p . u+ ℓ

)
︸ ︷︷ ︸

Load sensitivities

)
h dx,

(64)

where the descend direction h = dθ, has to satisfy the inequality given by:〈
∂L
∂θ

(θ, u, u, p, p, ℓ), dθ

〉
< 0 (65)
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which is achieved by choosing:

dθ =

(
− e(u)T

∂A∗

∂θ
e(u) +

(
e(u)T

∂A∗

∂θ
e(u) +

∂K∗

∂θ
∇p . ∇p+

∂b

∂θ
(θ)∇p . u+ ℓ

)
︸ ︷︷ ︸

Load sensitivities

)
(66)

At iteration n, the optimal density θ is then updated by performing the
projected gradient:

θn+1 = P[0,1](θ
n + δdθ), (67)

where δ > 0 is the step size and P[0,1] is the projection operator on the interval
[0, 1]. The value of the Lagrange multiplier ℓ is computed at each iteration by
a dichotomy process designed to respect the volume constraint. We emphasize
that the exact value of ℓ can not be analytically given because of the projection
operator: numerically, the partial derivative of the Lagrangian ∂L

∂θ is regularized
using an equivalent H1-norm by solving the following variational formulation:

∫
Ω

(
∂L
∂θ

h+ η2∇∂L
∂θ

. ∇h) dx = −
∫
Ω

(
∂A∗

∂θ
e(u) : e(u)− ∂A∗

∂θ
e(u) : e(u)

−∂K∗

∂θ
∇p . ∇p− ∂b

∂θ
∇p . u− ℓ)

)
h dx,

(68)

where η is a small coefficient, which typically depends on the size of the
elements of the mesh: thanks to this coefficient, we are able to numerically
regularize the partial derivative on a length scale of order η and to limit the
checkerboard effect on the density θ, similar to those reported in [37–39]. In
practice, we use an adaptive step size δ, which consists in increasing δ by 20%, if
the newly computed homogenized structure is accepted: if current compliance
is lower than the previous one, else δ is divided by 2.

6.1.3 Volume constraint.

As explained in sect. 2, we do not known how to determine ℓ beforehand.
As such, an alternative computations were performed, where the Lagrange
multiplier ℓ is adjusted at each iteration, so that the corresponding value of
the optimal density satisfies the volume constraint. In other words, once the
stress σn is computed through (63), we determine θn through (67) and then
ℓn is determined through a simple iterative procedure, namely by dichotomy.

6.2 Implementation

This section presents our complete optimization process to perform topol-
ogy optimization of structures under fluidic pressure loads and some general
difficulties related to the homogenization method.
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6.2.1 Complete optimization algorithm.

The Alternate direction algorithm is an iterative method, structured as follows:

Algorithm 1

1. Initialization of the design variable θ such that :

∀x ∈ Ω θ0(x) =
Θ∫

Ω
1 dx

2. Iteration until convergence, for n ≥ 0 :
(a) Computation of the state variable pn through the Biot-Darcy problem

(26), with design variable (θn(x), A∗(x))
(b) Computation of the stress tensor σn through the linear elasticity problem

(28), with design shape (θn(x), A∗(x))
(c) Computation of the descend direction dθn for the stress tensor σn using

formulas (65-68)
(d) Updating the design variable θn+1 using formulas (66) for the descend

direction dθn and then updating the effective tensor (θn+1(x), A∗(x)),
by linear interpolation.

Note that, the alternate direction algorithm is apparented to the two known
methods in [40–42].

6.2.2 Convergence criterion.

The procedure is iterated until the quantity

max

(
(max

i
(|θn+1

i − θni |), 1−
∫
Ω
A∗−1(θn+1)σn+1 : σn+1 dx+ ℓ

∫
Ω
θn+1 dx∫

Ω
A∗−1(θn)σn : σn dx+ ℓ

∫
Ω
θn dx

)
becomes smaller than a preset threshold. About 100 iterations are required to
reach a criterion of order 10−5. Other convergence criteria could be used, for
instance the L2 norm of σn+1 − σn.

7 Numerical results and discussion

In the following, we treat a variety of (benchmark) test cases to demon-
strate that, our alternate minimization algorithm for topology optimization
of coupled fluid-structure problems produces physically correct results, while
minimizing the sum of the elastic compliance, fluid-elastic compliance and of
the weight of a solid structure. Any change in the value of considered param-
eters is reported within the definition of the problem formulation. The above
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7 NUMERICAL RESULTS AND DISCUSSION 27

algorithm has been implemented in FreeFem++[43], where all the unknowns
are discretized using P1 finite elements. For all our computations, a linear
material model with Young’s modulus E = 12×109Nm−2 and Poisson’s ratio
ν = 0.35 are considered. The void (i.e., θ = 0) is replaced with a very compli-
ant material: namely, the smallest admissible value of θ is fixed at 1.e− 3, in
order to avoid singularities of the effective tensor when the elasticity problem
is solved.

7.1 Pressurized arch

This example was originally introduced and solved in [11, 23]. The structure
to be found is rectangle of dimensions 0.2m × 0.1m, fixed at the edges of its
left and right bottom on a zone of width 1

8 , while submitted to a pressure
load p = 1 bar (i.e., 1 × 105Nm−2) and vanishes on the boundary Γf

p0
(i.e.,

p|Γf
p0

= 0): see Fig.6 for a schematic of this test case. The workspace Ω is

discretized with 44492 triangular elements.
On Fig.7, we plot the objective function history for this calculation: smooth
and relatively fast convergence is observed; while Fig.8 displays the output of
the alternate minimization algorithm for a volume fraction set to Θ = 20%,
with the resulting pressure field, deformed mesh, and von Mises stress at the
final state. The density θ is represented with a gray scale: areas where θ = 1
are black (pure material), whereas white regions correspond to voids.
The topology of the result is similar to that obtained in previous literature [23],
for similar problems with different design and optimization settings. Although
one can guess a ”shape” on the edges of the structure, its center contains a
large composite zone.

Γs
D Γs

D

x

y

Ly

8

Ly = 0.1 m

Lx = 0.2 m

Γf
p

Γf
p0

Γf
p0

Γf
p0

pin = 1 bar

Fig. 6 Setting for fluid-elastic compliance minimization problem of 7.1 issued from [11, 23]
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28 7.1 Pressurized arch
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Fig. 7 Convergence history for fluid-elastic compliance minimization problem of Section 7.1

(a) Density (b) Pressure

(c) Deformed mesh (d) von Mises

Fig. 8 (a) The optimal density, (b) pressure field, (c) deformed mesh, and (d) von Mises
stress for test case 7.1
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7.2 Pressurized piston

This second test case was originally introduced and solved in [15, 23]. The
workspace is a 0.12m × 0.04m rectangle, fixed on the boundary Γs

D, while
submitted to pressure load p = 1 bar on the upper boundary Γf

p and vanishes

on boundary Γf
p0
: see Fig.9 for a schematic of this test case. The volume fraction

is set to Θ = 30%. It is desired to find a stiffest optimum design ”shape” which
can convey the applied pressure loads on the upper boundary to the lower
fixed support readily.

x

y

Γf
p0

Γf
p0Γs

D

Γs
D Γs

D

Γf
p

Ly = 0.04 m

Lx = 0.12 m

pin = 1 bar

Fig. 9 Setting for fluid-elastic compliance minimization problem of test case 7.1 issued from
[15, 23]

On Fig.10, we plot the convergence history for this calculation: smooth and
relatively rapid convergence is observed; while Fig.11 depicts the optimal den-
sity and the pressure field, deformed mesh, and von Mises stress at final state.
The topology of the result is similar to that obtained in previous literature
[9, 20, 21, 23], for similar problems with different design and optimization set-
tings. Although one can guess a ”shape” on the edges of the structure, its
center contains a large composite zone.
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Fig. 10 Convergence history for the fluid-elastic compliance minimization problem of
Section 7.2

(a) Density (b) Pressure

(c) Deformed mesh (d) von Mises

Fig. 11 (a) The optimal density, (b) pressure field, (c) deformed mesh, and (d) von Mises
stress for test case 7.2
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7.3 Pressurized MBB

In this test case, the structure to be found is submitted to pressure load pin = 1
bar on the boundary Γf

p , while its boundary Γs
D is clamped. The workspace

Ω is sketched on Fig.12: a rectangle of dimensions 0.3m × 0.1m. The domain
is discretized with 43440 triangular elements, where the volume fraction is set
to Θ = 30%. Note that, this example has already been investigated by several
authors in the case of structural design under mechanical loading.

Ly = 0.1 m

Lx = 0.3 m

Γf
p0

Γf
p

pin

Γs
D

Fig. 12 Setting for fluid-elastic compliance minimization problem of Section 7.3

on Fig.13, we plot the convergence history for this calculation: smooth and
relatively fast convergence is observed, while Fig.14 displays the topology of
the final design and the resulting von Mises stress, pressure field and deformed
mesh under pressure loads at the final state. Very interestingly, we retrieve the
fact that the topology of the result is similar to that obtained in the case of
mechanical load.
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Fig. 13 Convergence history for the fluid-elastic compliance minimization problem of
Section 7.3
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32 7.4 Two dimensional counter-flow exchanger

(a) Density (b) von Mises

(c) Pressure (d) Deformed mesh

Fig. 14 (a) The optimal density, (b) von Mises stress, (c) pressure field, and (d) deformed
mesh for test case 7.3

7.4 Two dimensional counter-flow exchanger

In this example, the structure to be found is a two-dimensional counter-flow
exchanger of dimensions 2 × 2.2. The setup is seen in Fig.15 and consists of
a fluid inlet of density q0,1, in the lower-left part of the domain, with the
corresponding outlet pressure on the opposite lower-right side; also, another
fluid inlet of density q0,2 is located at the upper-right side of the domain,
with the corresponding outlet pressure at the opposite upper-left side. All the
other boundaries in this device are insulated from the outside: zero Neumann
boundary conditions hold for the pressure (i.e., ∂p

∂n = 0), while homogeneous
Dirichlet boundary conditions are applied on the boundary of a small non
optimizable rectangle ω of dimensions 2 × 0.2. The numerical values of the
parameters involved are displayed on Fig.16.
Our aim is to achieve a trade-off between the minimization of the compliance
imposed by the fluid and the maximization of the hydraulic strain energy,
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subject to the volume constraint (or not), that is:

J∗(θ, u(θ)) = α

(∫
Ω

A∗e(u) : e(u) dx

)
︸ ︷︷ ︸

Elastic strain energy

+(1− α)

(
−
∫
Ω

K∗∇p . ∇p dx

)
︸ ︷︷ ︸

Hydraulic strain energy

,

s.t.
{

1
|Ω|
∫
Ω
θ dx = Θ

(69)

where α ∈ [0, 1] is termed as a weighting factor: it measures the relative weight
given to each term in (69). The objective functional J∗(θ, u(θ)) corresponds
to the internal energy stored inside the structure. Here, we consider to two
configurations, i.e.: (i) a test case with volume constraint set to Θ = 20%, first
and (ii) test case without volume constraint, second, for several values of α.

Γs
D : u = 0

ω

Γf
D : p = p0

Γf
D : p = p0

Γf
N : ∂p

∂n = q0,1

Γf
N : ∂p

∂n = q0,2

ly = 0.4

ly = 0.4

Fig. 15 Setting of the 2-d counter-flow exchanger 7.4. The brown layers at the walls stand
for zero Neumann boundary conditions for the pressure (i.e., ∂p

∂n
= 0); homogeneous Dirichlet

boundary conditions hold on ∂ω.

p0 q0,1 q0,2

1.5 3 5

Fig. 16 Numerical values of the physical parameters in the 2-d counter-flow exchanger test
case in Section 7.4

Fig. 17 to Fig. 18 display the optimal densities for a sweep of α for the two
configurations, i.e.: with or without volume constraint. Very interestingly, we
retrieve the fact that the topology of the results contains a large composite
zone, where the force contribution induced by the fluid appears in all directions,
which evidently, prior to the analysis is expected. For this latter, the corre-
sponding objective history for the two configurations are depicted on Fig. 19
to Fig. 20. On Fig. 21, we plot the final volume with respect to α for the sec-
ond configuration (i.e.,with volume unconstrained), while on Fig. 22 to Fig. 23,
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34 7.4 Two dimensional counter-flow exchanger

we show the convergence history for α = 1/2 for the both configurations. On
Fig. 24, we display the corresponding pressure field for both configurations,
with α = 1/2.

(a) α = 0.25 (b) α = 0.40 (c) α = 0.50 (d) α = 0.77

(e) α = 0.80 (f) α = 0.85 (g) α = 0.90 (h) α = 0.95

Fig. 17 The Optimal densities for a sweep of α, with volume fraction Θ = 20%

(a) α = 0.25 (b) α = 0.40 (c) α = 0.50 (d) α = 0.77

(e) α = 0.80 (f) α = 0.85 (g) α = 0.90 (h) α = 0.95

Fig. 18 The Optimal densities for a sweep of α, without volume constraint
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α 0.25 0.40 0.50 0.77 0.85 0.90 0.93 0.95

J∗(α) −4.51 −0.06 0.962 5.055 5.025 6.533 10.17 0.163

Fig. 19 The converged objective function wrt. α, with volume fraction Θ = 20%

α 0.25 0.40 0.50 0.77 0.85 0.90 0.93 0.95

J∗(α) −4.51 −2.54 −1.83 −0.57 −0.55 −1.47 0.026 0.286

Fig. 20 The converged objective function wrt. α, without volume constraint

0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

α

Θ

Fig. 21 The final volume history wrt. α, in the second configuration, i.e., without volume
constraint.

We note that, in both configurations, namely when the optimization is sub-
jected to a volume constraint or not, the topology of the optimal design is
α dependent, namely, for all α ∈ (0, 0.40), the topology tends to maximize
the hydraulic strain energy, which in process minimize the output pressure,
whereas for all α ∈ [0.40, 1), the topology of the result tends to achieve a trade-
off between the minimization of the compliance induced by the fluid and the
maximization of the hydraulic strain energy, which evidently is what we intent
to achieve for this optimization problem. However, in the second configuration
(i.e.,without volume constraint), we emphasize a gain of volume fraction but
not necessarily a gain in performance, see Fig. 20.
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Fig. 22 The convergence history wrt. α = 1/2, for volume constraint Θ = 20%
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Fig. 23 The convergence history wrt. α = 1/2, and with no volume constraint

(a) with volume constraint (b) without volume constraint

Fig. 24 The pressure field at final state for both configuration: with and without volume
constraint, for α = 1/2
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8 Conclusion and perspectives

In this paper, we intent to provide a contribution to the understanding and
modeling of the physical mechanisms underlying the behavior of fluids and
solids (materials and structures) and to deploy a multiphysic and multi-scale
analysis of these behaviors. Here, homogenization method is used to perform
topology optimization of fluid-pressure loaded structures using Biot-Darcy
model, where a standard finite element formulation is employed and does
not need explicit description of the pressure loaded boundary. We weakly
coupled the fluid-pressure loads inside composite designs periodically perfo-
rated by smooth honeycomb cell, yielding isotropic periodic composite designs.
As the weakly coupled fluid-pressure loads is density-dependent, it becomes
essential to determine the load sensitivities, where herein, a projected gradi-
ent method is used. The method facilitates analytical calculation of the load
sensitivities with respect to the design variables using the computationally
inexpensive adjoint-variable method. This availability of load sensitivities is a
key characteristic over many other methods to treat pressure loads in topol-
ogy optimization. Furthermore, the consideration of load sensitivities within
the homogenization approach does affect the topology of the results, thus, the
load sensitivities terms are essential to the topology optimization of the multi-
scale and multiphysic structures. The proposed projected gradient algorithm
offers relatively easy extension to 3D problems. The potentiality and robust-
ness of the proposed method is verified by minimizing the sum of the elastic
and fluid-elastic compliance, and of the weight of a solid structure under pres-
sure loads. For future work, extension to 3D structures and to liquid-liquid
heat exchangers problems are prime directions.
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