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The ambition to develop simulation methods making it possible to predict the integrity or the properties of use (mechanical, diffusive, thermal, electromagnetic, vibratory, etc.) of structures (industrial or natural), materials or processes involved in the development of new advanced technologies is growing consistently. In a global context of permanent development of advanced technologies (notably in the field of energy) and a growing need for cost reduction, the development times for new concepts are increasingly reduced and therefore tend to exclude monolithic design of multiphysic structures. Here, we propose an homogenization based topology optimization method to design multi-scale and multiphysic structures experiencing fluid-pressure loads. Its effect is to allow for micro-perforated composite as admissible designs, where the design is characterized by the material density and its homogenized Hooke's law at each point of the working space, yielding composite designs made of fine mixture between the solid and void phases. The fluid-pressure loads is determined using Biot-Darcy's law and solved using the finite element method. This approach permits a computationally low cost of evaluation of of load sensitivities using the Lagrangian method. As no assumption is impose on the number of micro-perforation inside the solid domain, this method can be seen as a topology optimization algorithm. We seek minimizers of the elastic compliances, fluid-elastic compliances and of the weight of a solid structure under fluid-pressure loads.

Introduction

Shape and topology optimization (or layout optimization) is a popular computational method in structural design and a well developed field with many methods, where most have reached a mature state. Moreover, their ability as design tools to optimize one or more physics continues to grow. Indeed, in all design of multi-scale and multiphysic systems, one of the main challenges to make topology optimization applicable in a large number of advanced technologies is the need to address the inherent multiphysics aspects, such as, the physical mechanisms underlying the behavior of fluids and solids, namely, determining the relationship between fluid-pressure loads and design variables, identifying the boundary to apply the fluid-pressure loads or to effectively assess computationally the sensitivity of such loads, which must very often be taken into account simultaneously during the topology optimization. Among these new advanced technologies, a problem that is currently attracting many attention lies in the design of the heat exchangers [START_REF] Hammer | Topology optimization of continuum structures subjected to pressure loading[END_REF][START_REF] Papazoglou | Topology optimization of heat exchangers[END_REF][START_REF] Pietropaoli | Three-dimensional fluid topology optimization for heat transfer[END_REF][START_REF] Saltzman | Design and evaluation of an additively manufactured aircraft heat exchanger[END_REF][START_REF] Saviers | Design and validation of topology optimized heat exchangers[END_REF][START_REF] Feppon | Shape Optimization of a Coupled Thermal Fluid-Structure Problem in a Level Set Mesh Evolution Framework[END_REF], for various applications such as hot and cold fluids loaded and mechanical structures (e.g., combustion engines, air conditioning, power production or microturbines). Naturally, various additional multiphysics design constraints come into play, such as the need to control the pressure drop induced by the system on the inlet fluid or the mechanical stiffness of the entire structure under fluid-pressure loads. Thus, the performance of the optimized structures is related to the coupled volume forces, induced by the fluid-pressure loads. In the paper, we aim topology optimization by homogenization method to address the announced challenges in the design of multi-scale and multiphysic systems experiencing fluid-pressure loads for a given weight of the solid. Its effect is to allow composite periodically perforated as admissible designs. A key problem characteristic is that, one can easily imagine that even better performance could be achieved through homogenization based topology optimization, since it could make it possible to seek new innovative designs among sets of much freer forms. The main application of our work is the optimization of architectured materials, also known as lattice materials which are becoming increasingly popular in the context of additive manufacturing. In the following, brief history of optimization methods applied to two or more physics problems is introduced.

Hammer and Olhoff in [START_REF] Hammer | Topology optimization of continuum structures subjected to pressure loading[END_REF], employed topology optimization method to design pressure loaded structure and since been followed by numerous methods to treat such loads in topology optimization setting, such as: (i) the boundary variation methods [START_REF] Hammer | Topology optimization of continuum structures subjected to pressure loading[END_REF][START_REF] Du | Topological optimization of continuum structures with design-dependent surface loading -Part I: New computational approach for 2D problems[END_REF][START_REF] Fuchs | Density-based topological design of structures subjected to water pressure using a parametric loading surface[END_REF][START_REF] Lee | Structural topology optimization with designdependent pressure loads[END_REF][START_REF] Li | Topology optimization of pressure structures based on regional contour tracking technology[END_REF][START_REF] Zheng | Topology optimization with design-dependent pressure loading[END_REF], (ii) the level set methods [START_REF] Feppon | Shape Optimization of a Coupled Thermal Fluid-Structure Problem in a Level Set Mesh Evolution Framework[END_REF][START_REF] Gao | Topology optimization with designdependent loads by level set approach[END_REF][START_REF] Li | Distance regularized level set evolution and its application to image segmentation[END_REF][START_REF] Xia | Topology optimization with pressure load through a level set method[END_REF], (iii) and density based approaches [START_REF] Bourdin | Design-dependent loads in topology optimization[END_REF][START_REF] Panganiban | Topology optimization of pressure-actuated compliant mechanisms[END_REF][START_REF] Sigmund | Topology optimization using a mixed formulation: An alternative way to solve pressure load problems[END_REF][START_REF] Vasista | Design and testing of pressurized cellular planar morphing structures[END_REF][START_REF] Zhang | A new boundary search scheme for topology optimization of continuum structures with design-dependent loads[END_REF][START_REF] Chen | Topology optimization with designdependent loads. Finite elements in analysis and design[END_REF]. Shape optimization can be divided into two main families: the boundary variation method (or sizing) and the topology optimization (or layout optimization). The boundary variation method is based on a priori chosen curves or surfaces, which are used to interpolate the set of admissible boundaries of a given initial design, explicitly captured on a mesh with a fixed topology. Hammer and Olhoff [START_REF] Hammer | Topology optimization of continuum structures subjected to pressure loading[END_REF] employed the iso-density method to determined the pressure loading boundaries, where Bézier spline curves were used to interpolate the set of admissible boundary shapes. But, Du and Olhoff [START_REF] Du | Topological optimization of continuum structures with design-dependent surface loading -Part I: New computational approach for 2D problems[END_REF] demonstrated that, the iso-density approach can provide isolines and separate isolines. Furthermore, to employed the iso-density method, one needs to define a starting point and ending points a priori, for the pressure loading boundary. Thus, Du and Olhoff [START_REF] Hammer | Topology optimization of continuum structures subjected to pressure loading[END_REF][START_REF] Du | Topological optimization of continuum structures with design-dependent surface loading -Part I: New computational approach for 2D problems[END_REF] introduced a modified isolines method to circumvent these issues. They employed a sensitivity analysis using an efficient finite difference formulation to treat the pressure loading boundaries with respect to design variables. Lee and Martins [START_REF] Lee | Structural topology optimization with designdependent pressure loads[END_REF], proposed a novel isolines approach, where there is no need to provide a starting and ending points, combine with an analytical method to calculate the load sensitivities. But, in all the proposed sensitivities evaluation provided by Du and Olhoff, and Lee and Martins [START_REF] Hammer | Topology optimization of continuum structures subjected to pressure loading[END_REF][START_REF] Du | Topological optimization of continuum structures with design-dependent surface loading -Part I: New computational approach for 2D problems[END_REF][START_REF] Lee | Structural topology optimization with designdependent pressure loads[END_REF] were confined to only the exposed pressure loading boundaries. The reader is referred to [START_REF] Fuchs | Density-based topological design of structures subjected to water pressure using a parametric loading surface[END_REF][START_REF] Zheng | Topology optimization with design-dependent pressure loading[END_REF], for more methods dealing with pressure loading boundaries. Moreover, the sensitivity analysis (with respect to design variables) proposed in [START_REF] Hammer | Topology optimization of continuum structures subjected to pressure loading[END_REF] vanishes or can be disregarded, if the exposed pressure loading boundary coincides with the edges of the finite elements. Note that, the above methods to compute sensitivity analysis are restricted to only boundary motion and do not account for their topology optimization. We emphasize that load sensitivities affect the topology of the result in the design of multiphysic systems and thus, considering load sensitivities in fluid-structure interaction problems is a key characteristic to the performance of an optimal candidate. Therefore, it is necessary to provide a topology optimization algorithm where the sensitivity analysis can be simple to compute, implement and computationally inexpensive. In [START_REF] Feppon | Shape Optimization of a Coupled Thermal Fluid-Structure Problem in a Level Set Mesh Evolution Framework[END_REF], a level-set-based approach is used to treat fluid loaded boundary, where in contrast to the boundary variation method, the initial design is implicitly captured on fixed mesh and the topology optimization is performed using simultaneously a level method and the boundary variation of method of Hadamard. In addition, Gao et al. [START_REF] Gao | Topology optimization with designdependent loads by level set approach[END_REF] employed a level set function to capture implicitly the structural topology and employed an efficient and robust way to interpolate the set of admissible pressure loading boundary curves. Xia et al. [START_REF] Xia | Topology optimization with pressure load through a level set method[END_REF], proposed two zero-level sets function, to implicitly captured the free boundary and the pressure loading boundary separately. In [START_REF] Wang | Structural topology optimization with design-dependent pressure loads[END_REF] (2016), proposed the Distance Regularized Level Set Evolution (DRLSE) (see [START_REF] Li | Distance regularized level set evolution and its application to image segmentation[END_REF], 2010) to determine the structural boundary; zero level contour was employed the capture implicitly the loading boundary but did not account for load sensitivities. Recently, Feppon et al. [START_REF] Feppon | Shape Optimization of a Coupled Thermal Fluid-Structure Problem in a Level Set Mesh Evolution Framework[END_REF] (2018), employed a Level Set Mesh Evolution (LSME) to locate the structural boundary. They used Hadamard's method of shape differentiation to solve a coupled thermal fluid-structure problems. Moreover, Picelli et al. [START_REF] Picelli | Topology optimization for design-dependent hydrostatic pressure loading via the level-set method[END_REF] (2019) employed the Laplace's equation to determine hydrostatic fluid pressure fields, in combine with boundary description based on a flood fill procedure: the sensitivity analysis is performed in combination with ersatz material interpolation method. Unfortunately, the above methods tend to be more dependent on the initial design, namely, the boundary variation method or the level set methods provides an optimal solution which is only the best optimum for a given the initial design. Thus, formulate the design problems in terms of optimal distribution of material density is another alternative to performed topology optimization, where there is no need to describe or track the boundary motions. Chen and Kikuchi [START_REF] Chen | Topology optimization with designdependent loads. Finite elements in analysis and design[END_REF] (2001) introduced a novel approach, wherein, they employed a fictitious thermal loading to solve fluid-structure interaction problems. In addition, Sigmund and Clausen [START_REF] Sigmund | Topology optimization using a mixed formulation: An alternative way to solve pressure load problems[END_REF] (2007), proposed a mixed displacement-pressure formulation using the finite element method in conjunction with three-phase material (fluid/void/solid). The given design problem is submitted to a volume constraint on the fluid phase, where, an addition (compressible) void phase is given and also, the mixed finite element methods have to satisfy the Babuška-Brezzi condition to ensure the stability of the element formulation. Moreover, Bourdin and Chambolle [START_REF] Bourdin | Design-dependent loads in topology optimization[END_REF] (2003), proposed a three-phase material to treat such design problems. Zheng et al. [START_REF] Zheng | Topology optimization with design-dependent pressure loading[END_REF] employed a pseudo electric potential to determine the evolving structural boundaries; in their proposed method, the pressure loads were prescribed upon the edges of finite elements, wherein, sensitivity analysis were not performed. For this latter, extra physical fields or phases are often proposed to treat the pressure loading. Recently, Kumar et al [START_REF] Kumar | Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method[END_REF] (2020), employed similar strategy based on Darcy's law, to design both structures and compliant mechanisms loaded by design-dependent pressure loads using density-based topology optimization. In addition, D. Hübner et al. [START_REF] Hübner | Optimization of the porous material described by the Biot model[END_REF] (2019), employed similar strategy based on Biot model derived by the homogenization of two decoupled problems: (i) deformation of a porous solid saturated by a slightly compressible static fluid and (ii) Stokes flow through the rigid porous structure. The effective medium properties are given by the drained skeleton elasticity, the Biot stress coupling, the Biot compressibility coefficients, and by the hydraulic permeability of the Darcy flow model. This present paper follows a similar strategy based on Biot-Darcy's law to optimize a relaxed (or homogenized) formulation of the original optimization problem to provide a continuous and consistent treatment of composite designs under fluid-pressure loads, which has not been reported before. Our motivation originates from the observation that many industrial applications in the field of energy involve multi-scale designs. We propose a new computational algorithm for two dimensional shape optimization that takes full advantage of a class of periodically perforated composite to design fluid-pressure loaded structures. The proposed method uses Biot-Darcy's law to characterized the pressure loads and the problem is solved using standard finite elements method. The determined pressure field is then weakly coupled to poro-linear elasticity problem. Herein, we propose an alternate minimization algorithm to treat composite designs under fluid-pressure loads and submitted to volume constraints. The method offers a straightforward computation of loads sensitivities. In terms of applications, topology optimization has thus far focused on compliance minimization problems and this work should be approached within such background. Furthermore, from a fluid point of view, we emphasize that there exist several homogenized models depending on various scaling regimes assumed by the microstructure pattern (i.e., Darcy, Brinkman, or Stokes regimes, etc.), which makes it unclear which effective model should be used to describe a context featuring all possible regimes simultaneously at different locations in the domain. Thus, in our method, we present a preliminary approach to rigorously treat pressure-loaded microstructures, which suggests the novel potentiality of the method.

In Section 2, we briefly present the original shape optimization problem and its assumed relaxed formulation (introduced in [START_REF] Allaire | Shape optimization by homogenization method[END_REF]). Next, in Section 3, we present the homogenized fluid-structure models using Biot-Darcy model. Then, in Section 4, we introduce the topology optimization problem formulation for fluid-pressure loaded structures and small-strains, and the associated sensitivity analysis. In Section 5, we present the TO process: it is an alternate direction algorithm, which successively computes the stress field through the solving of a coupled fluid-structure problem over the set of composites periodically perforated by hexagonal cells in 2-d. Finally, in Section 6, we present our numerical results: 2-d computations are displayed of various benchmark design problems involving fluid-pressure loaded structures and small deformation.

The original optimal design problem and its relaxed formulation

This section is essentially composed of reminders of existing results in homogenization based shape optimization of elastic structures. An adequate class of admissible designs is introduced which is precisely the concern of the theory of homogenization. Herein, the aim is to devise the least compliant structure compatible with the loads for a given weight of the structure, i.e., to maximize the rigidity of an elastic structure under a weight constraint. We content ourselves to recall the main results detailed in [START_REF] Allaire | Shape optimization by homogenization method[END_REF], by Allaire, Bonnetier, Francfort and Jouve. These results will be useful for a good understanding of various related subjects that we will be discuss hereafter. The complete proof sometimes very technical can be found in [START_REF] Allaire | Shape optimization by homogenization method[END_REF].

Let Ω ⊂ R N be a bounded domain, submit to "smooth enough" mechanical load f , e.g.: f ∈ H -1/2 (∂Ω) N , satisfying a Dirichlet boundary condition of equilibrium on the boundary ∂Ω. Suppose a part of Ω is filled with an isotropic linearly elastic material, with elasticity:

A = (κ - 2µ N )I N ⊗ I N + 2µI 2N , 0 < κ, µ < +∞, (1) 
while the other part of Ω is void. Let Ω χ , denote the subdomain of Ω occupied by the elastic material, where χ is the characteristic function of the solid part in Ω, i.e.,:

χ = 1 if x ∈ Ω χ 0 if x ∈ Ω\Ω χ (2) 
Assume that, Ω χ is smooth enough open subdomain of Ω, such that f is not zero on ∂Ω χ ∩ ∂Ω, i.e., ∂Ω χ contains the part of ∂Ω where f is not zero, then the following elasticity problem:

         σ = Ae(u) e(u) = 1 2 (∇u + ∇ t u), div(σ) = 0 in Ω χ , σ . n = f on ∂Ω χ ∩ ∂Ω, σ . n = 0 on ∂Ω χ \ ∂Ω. ( 3 
)
is well-posed in Ω χ and has a unique solution u ∈ H 1 (Ω χ ) N (up to a constant function). Wherein, u, σ represent the displacement vector and the associated Cauchy stress tensor (in L 2 (Ω χ ; R N 2 s )), respectively. Hence, σ is uniquely defined in L 2 (Ω; R N 2 s ), for all points xΩ. Thus, σ minimizes the complementary energy, that is:

c(χ) := Ω A -1 σ . σ dx = min τ ∈Σ(χ) Ω A -1 τ . τ dx, (4) 
over all statically admissible stress fields, where the set Σ(χ) is defined as fellow:

Σ(χ) = τ ∈ L 2 (Ω; R N 2 s ) | div(τ ) = 0 in Ω; τ . n = f on ∂Ω; τ (x) = 0 a.e. where χ(x) = 0 (5) 
The scalar value c(χ), defined by (4), is termed the compliance of the body and by performing an integration by parts, we get that

c(χ) = ∂Ω f . u dx,
where u is the solution of the linear elasticity problem [START_REF] Pietropaoli | Three-dimensional fluid topology optimization for heat transfer[END_REF]. Assume that, χ(x) is the characteristic function of an arbitrary measurable subset of Ω (not necessarily open), then the existence of solution of system (3) is no longer assured, i.e., σ is no longer guaranteed. However, a generalized compliance can be defined as:

c(χ) := inf τ ∈Σ(χ) Ω A -1 τ . τ dx, (6) 
where the set Σ(χ) is defined by [START_REF] Saviers | Design and validation of topology optimized heat exchangers[END_REF] and wherein, the infimum is not necessarily achieved. Here, the aim is to minimize the compliance of the solid structure under mechanical loads for a given weight of the structure. Thus, the quantity c(χ) for all characteristic functions χ such that:

Ω χ(x) dx = Θ, 0 < Θ ≤ |Ω|,
is studied and the minimum compliance reads as:

I := inf c(χ) | χ ∈ L ∞ (Ω; {0, 1}); Ω χ(x) dx = Θ . (7) 
The minimum compliance problem defined in ( 7) is difficult to solve since it is submitted to a volume constraint, that is:

Ω χ(x) dx = Θ. (8) 
Such a constraint is usually handled using elementary calculus of variations, namely, by dichotomy process over a positive Lagrange multiplier. Thus, [START_REF] Du | Topological optimization of continuum structures with design-dependent surface loading -Part I: New computational approach for 2D problems[END_REF] is replaced by:

I(ℓ) := inf χ∈L ∞ (Ω; {0,1}) c(χ) + ℓ Ω χ(x) dx , (9) 
where, an elementary calculus of variations is performed in hope to find a positive value ℓ for which the volume constraint (8) is met, which is not so obvious and should be proved. Unfortunately, we do not a proof as detailed in [START_REF] Allaire | Shape optimization by homogenization method[END_REF], so for the remainder of this paper, the original optimization problem is replaced with the above unconstrained version.

Remark 1 As in [START_REF] Allaire | Shape optimization by homogenization method[END_REF], we only consider the case where surface loads are applied, for sake of simplicity. However, the model can easily be modified in order to get volume forces or the clamping of part of the boundary ∂Ω. The reader is referred to the numerical examples presented in Sect. 6, which include different types of boundary conditions. The above optimization problem is commonly known as a "single load" problem, i.e., the compliance minimization problem is optimized for a single loading forces and may not be compatible for other loads. Thus, one needs to investigate "multiple loads" problem which amounts to an optimization problem for several configurations, i.e., assume that, f 1 , ..., fp are some given surface loadings and consider the following minimization problem:

Ip(ℓ) := inf χ∈L ∞ (Ω; {0,1}) p i=1 c i (χ) + ℓ Ω χ(x) , (10) 
where c i (χ) is the generalized compliance defined by ( 6) for the surface load f i .

It is proved in [START_REF] Murat | Contre-exemples pour divers problèmes où le controle intervient dans les coefficients[END_REF] that problems of the type ( 7) or ( 9) do not in general, admit solution, namely, solutions do not exist among characteristic functions. Thus, we must relaxed the problem, i.e., the set of admissible designs must include micro-perforated composite designs. This is because composite designs can always outperform black and white designs, namely, genuine designs made of plain material. A composite design is described by the local density θ(x) ∈ L ∞ (Ω; [0, 1]) of material and an homogenized elasticity tensor A * (x) that depends on the microstructure at each point x ∈ Ω. The homogenized or macroscopic displacement u * of the structure is then solution of the following set of equations:

         σ = A * e(u * ) e(u * ) = 1 2 (∇u * + ∇ t u * ), div(σ) = 0 in Ω, σ . n = f on Γ N , σ . n = 0 on ∂Ω \ Γ N , (11) 
such that Γ N contains the part of ∂Ω where f is non zero. Note that, the problem is now defined on the whole working domain Ω and no longer on a design Ω χ . Thus, the minimization problem defined by ( 9) is replaced by:

I * (ℓ) := min τ ∈Σ(Ω) min 0≤θ≤1 c * (θ) + ℓ Ω θ dx , (12) 
where Σ(Ω) is defined by:

Σ(Ω) = τ ∈ L 2 (Ω; R N 2 s ) | div(τ ) = 0 in Ω; τ . n = f on ∂Ω . (13) 
and c * (θ) is defined by:

c * (θ) = min A * (x)∈G θ(x) Ω A * -1 τ .τ dx, (14) 
where G θ(x) is the set of effective or homogenized Hooke's laws for microstructures of density θ(x). The quantity c * (θ), defined by ( 14) is termed the relaxed or homogenized compliance for a perforated composite material obtained by mixing the material A with holes in proportions θ(x) and 1 -θ(x). The main challenges in the homogenized formulation [START_REF] Gao | Topology optimization with designdependent loads by level set approach[END_REF] are first, to compute the relaxed compliance c * (θ) (which can be different from the original compliance c(χ)), second and the most important is to give a full and explicit description of the set of admissible Hooke's laws G θ . Unfortunately, we are helpless in this matter, because the set of effective tensors resulting from the mixture in fixed volume fraction of two elastic materials is unknown for the elasticity case, i.e., for the general case of non-defined underlaying microstructure topologies. This difficulty is bypassed when the objective functional is the compliance functional because its minimum can be computed among a well-known subset of the full set of effective tensors, i.e., that of a sequential laminates: see [START_REF] Allaire | Shape optimization by homogenization method[END_REF] for details. To circumvent these challenges, we follow the same approach in [START_REF] Pantz | A post-treatment of the homogenization method for shape optimization[END_REF][START_REF] Geoffrey-Donders | Homogenization method for topology optimization of structures built with lattice materials[END_REF], which is to limit the set of admissible composite designs to microstructures for which the Hooke's law can be numerically computed (e.g.: periodic composites with hexagonal cells).

For the remainder of this paper, we content ourselves with the relaxed version [START_REF] Gao | Topology optimization with designdependent loads by level set approach[END_REF] of the original optimization problem [START_REF] Lee | Structural topology optimization with designdependent pressure loads[END_REF]. As such, we denote by u, the homogenized displacement solution of ( 11) and we seek minimizers for the optimal composite solution under fluid-pressure loads and with a given weight of an elastic material.

medium is proportional to the flow µ ( [START_REF] Batchelor | An introduction to fluid dynamics[END_REF]). Mathematically, this is defined by:

q := - κ f µ f ∇p = -K * ∇p, (15) 
where q, κ f , µ f , and ∇p characterize the flux (ms -1 ), permeability (m 2 ), fluid viscosity (N m -2 s) and pressure gradient (N m -3 ), respectively. In addition,

K * 1 (m 4 N -1 s -1
) is the flow coefficient, which characterizes the fluid ability to flow through a porous medium. In order to smoothly and continuously distribute the pressure drop in fluid domain and differentiate between solid and void phase in the whole domain, the flow coefficient K * (θ(x)) is defined using a smooth function given by:

K * (θ(x)) := min ϵ 0 + (1 -ϵ 0 )(1 -θ(x)) θ(x) , K ∞ , (16) 
where ϵ 0 , K ∞ are given thresholds, i.e., ϵ 0 = 10 -4 , K ∞ = 10 3 , respectively. Furthermore, the density-dependent pressure field p is assumed to satisfy a Biot's law defined by:

p := M m -M be vol , (17) 
where M , m and e vol are smooth enough functions related to the material density θ(x) defined by:

m(θ) := (1 -θ)ρ, M (θ) := 1 -θ κ v - b(θ) -(1 -θ) κ s , e vol := ∇ . u, (18) 
where ρ, κ v , and κ s represent the density of the flux 2 , compressibilty of the void and solid phase, respectively. The coefficient e vol = div(u), denotes a volume variation of the solid phase at each finite element. The parameters M and b are the so called Biot modulus and Biot coefficient. The Biot's law ( 17) is assumed to be related to Darcy's law (15) by:

q := mv f = -K * ∇p, (19) 
where v f represents the velocity (ms -1 ) of the flux. Thus, the above equation 19, allows to renders gradually the pressure drop from the inner pressure boundary Γ f pin to the outer boundary pressure Γ pout . This penetrating pressure of Biot-Darcy's law, is similar to that introduced in [START_REF] Kumar | Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method[END_REF], which makes this pressure loading boundary a smeared-out version of an applied pressure load on a sharp boundary. Thus, by summing up the contributions of penetrating loads, we obtain the corresponding loads. Therefore, the local differences in the load application is assumed to bear no significant effect on the global behaviour of the structure, which is in line with the Saint-Venant principle.

1 K * = κ f
µ is called "flow coefficient", however, it is sometimes used in literature with a different meaning.

2 mass per unit volume of the fluid

In addition to the Biot-Darcy equation ( 19), we assume that the state equation satisfies the law of conservation of mass in view of incompressible fluid, that is:

∂m ∂t := -div(q) = div(K * ∇p) (20) 
Consequently, we derived from the Biot's law [START_REF] Sigmund | Topology optimization using a mixed formulation: An alternative way to solve pressure load problems[END_REF], the equation:

∂p ∂t := M (θ(x)) ∂m ∂t -M (θ(x))b(θ(x)) ∂e vol ∂t , (21) 
Further to Biot-Darcy's law [START_REF] Zhang | A new boundary search scheme for topology optimization of continuum structures with design-dependent loads[END_REF], we assume for sake of simplicity that our fluid model is continuous and stationary and satisfies the law of conservation of mass (in view of incompressible fluid) defined by:

∂m ∂t := -div(q) = div(K * ∇p) = 0 ( 22 
)
where in the particular case of a porous isotropic medium, the Biot's coefficient b(θ) is explicitly given by:

b(θ(x)) := 1 - κ s (θ(x)) κ , (23) 
where, κ and κ s (θ(x)) represent the bulk moduli of the solid phase A and the effective (or homogenized) tensor A * (x). We emphasize that, A * (x) tends to A, when θ(x) tends to 1; thus, κ s (θ) tends to κ. This paper should be approached within such background, namely, we assume that our fluid-structure model is defined in the particular case of a porous isotropic medium. In order to discuss the precise mathematical settings of our multiphysic system, we introduce the following spaces of functions defined by:

V (Γ s D ) := {v ∈ H 1 (Ω) N | v = 0, on Γ s D }, V (Γ f D ) := {q ∈ H 1 (Ω) | q = 0, on Γ f D }, (24) 
where Γ s D and Γ f D represent the homogeneous Dirichlet boundaries for the solid and fluid systems, respectively. We consider the subspace:

H 1/2 (Γ s N ) := {v| Γ s N | v ∈ V (Γ s D )}, (25) 
and its dual space H -1/2 (Γ s N ). Using the Biot-Darcy's law [START_REF] Zienkiewicz | The Finite Element Method for Solid and Structural Mechanics[END_REF], our fluid model is then defined by:

(Biot-Darcy)            -div(K * ∇p) = 0 in Ω, p = p in on Γ f D , q Γ . n = f f on Γ f N , q Γ . n = 0 on Γ f = ∂Ω\(Γ f D ∪ Γ f N ), (26) 
where f f ∈ H -1/2 (Γ f N ) (satisfies a compatibility condition of equilibrium) is the enforcement of flux load on the part of its boundary Γ f N , i.e.: the enforcement of a Neumann boundary condition, and p in is the loading pressure on the part of its boundary Γ f D , i.e.: the enforcement of a Dirichlet boundary condition. Thus, by a straightforward integration by parts, p ∈ V (Γ f D ) is the unique solution (up to a constant function) to the variational formulation defined by:

∀q ∈ V (Γ f D ) Ω K * (ϕ)∇p . ∇q dx - Γ f N f f q ds = 0 ( 27 
)
where K * is the homogenized permeability. Next, we weakly coupled the solution p of the fluid model ( 26) to the linear-elasticity problem defined by:

(Biot-Coussy )                -div(σ) = -b∇p in Ω σ . n = f s on Γ s N , u = 0 on Γ s D , σ . n = 0 on Γ s = ∂Ω\(Γ s N ∪ Γ s D ), σ = A * e(u) e(u) = 1 2 (∇u + ∇ t u), (28) 
where u ∈ V (Γ s D ) is the unique solution (up to rigid displacement field). Here u is the homogenized displacement vector and σ is the associated Cauchy stress field. The vector function f s ∈ H -1/2 (Γ s N ) is the body force applied on its boundary Γ s N , with a clamping of part on its boundary Γ s D . Wherein, the coupling is weak because the equations are solved consecutively, i.e.: first, the Biot-Darcy model, then the linear poro-elasticity model. Thus, by a straightforward integration by parts, u is the unique solution to the variational formulation defined by: ∀v ∈ V (Γ s D )

Ω

A * e(u) . e(v) dx -

Γ s N f s v ds + Ω b∇p . v dx = 0 (29) 
For the remainder of this paper, we weakly solve the variational formulations of the fluid-structure model equations.

Topology optimization problem formulation

Herein, we propose an homogenization method for topology optimization of a coupled fluid-structures built with periodic composite materials, characterized by the local density θ of the material and the associated homogenized Hooke's law A * , defined at each point x ∈ Ω of the working space. As in [START_REF] Geoffrey-Donders | Homogenization method for topology optimization of structures built with lattice materials[END_REF], we restrain our analysis to a simple class of composites in plan setting, i.e., our composite materials are periodically perforated by hexagonal cell in 2-d: a regular unit hexagon perforated by smooth hexagon hole, known as smooth honeycomb. This class of modulated periodic microstructures is known to be isotropic microstructures (or atleast very close to one); the assumption numerically displayed on Fig. 3.

The Homogenized Hooke's laws

Let Y be the periodic smooth honeycomb cell, i.e., a regular unit hexagon cell perforated by smooth hexagon hole (see, Fig. 1(a)); it is similar to the classical honeycomb, except that the corners of its interior interface are rounded. Thus, when the material density θ tends to one, the smooth hexagon hole tends to a circle with its diameter going to zero. However, the perforated smooth honeycomb hole can not reach completely void, i.e., θ going to zero is excluded.

In addition, unlike the classical honeycomb, the smooth honeycomb is not parametrized using the material density, but a parameter h ∈ [0, 1], homogeneous to a distance. Furthermore, a h-dependent parametric curve Γ h is then introduced to design the interface solid/void of the perforated smooth honeycomb. In the following, some notations are introduced before giving its polar equation.

Let v(t) = (cos(t), sin(t)) T and n i , for i ∈ {0, 1, 2} represent the normal vectors of the three diagonals of Y (h), defined by

n 0 = 0 1 , n 1 = √ 3 2 1 2 , n 2 = √ 3 2 -1 2 . (30) 
Next, the polar equation of Γ h is defined by:

r(t) = h √ 3 2 ( 2 i=0 |v(t) . n i | k(h) ) -1 k(h) with t ∈ [0, 2π], ( 31 
)
where k is positive coefficient, depending on h, that here, we set to k(h) = 4 + 20h 2 . Note that, h, is homogeneous to a distance, similar to the parameter

m = √ 3 2 (1 - √ 1 -θ),
which denotes the relative width of bars with respect to the size of the periodic cell Y (h). Now, let H be a a regular unit hexagon, i.e., the set of all points such that, the maximal distance of a point in H from the three diagonals is equal to

√ 3
2 . Let M (r, t) be a point, with its polar coordinate denoted by (r, t). Thus, M is a point in H if and only if, its polar coordinate (r, t) satisfies

r max i |v(t) . n i | = √ 3 2 . ( 32 
)
Consequently, the polar equation of H verifies

r(t) = √ 3 2 (max i |v(t) . n i |) -1 . (33) 
In addition, we recall that

( 2 i=0 |v(t) . n i | k ) -1 k → k→∞ max i |v(t) . n i |. (34) 
Next, the polar equation of Γ h is obtained by combining the polar equation of H and the above limit. The parameter h is added in order to adjust the diameter of its inner hole.

Remark 2 It is known in ( [START_REF] Neuber | Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material[END_REF][START_REF] Abad | Fatigue design of lattice materials via computational mechanics: Application to lattices with smooth transitions in cell geometry[END_REF]), that the smooth honeycomb generate lower local concentration stress compare to the classical one. However, we do not claim that the smooth honeycomb can reach a particular elastic properties. In addition, the structure of the periodic smooth honeycomb as well as its Hooke's law are qualitatively similar to the celebrated Vigdergauz hexagonal cell [START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF], which is known to generate extreme composite microstructures, namely that, they minimize the energy. For sake of clarity, few important results on the theory of homogenization are recalled hereafter, the interested reader should refer to textbook [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF], for details and explanations. Assume that, in a given design domain Ω, there is a periodic distribution of holes inside an elastic isotropic phase, with constant elastic tensor A. Let ϵ > 0 be the periodicity size and Y (h) be the rescaled periodicity cell Y (h), i.e., the unit smooth honeycomb. Inside this unit periodic cell, let Y 0 (h) be solid part of the subset of Y (h), where its complement being the hole of boundary Γ h (see, Fig. 1(b)). In addition, the porous medium is assumed homogeneous, with an effective tensor A * (x), whenever ϵ tends to zero. Now, to compute the homogenized Hooke's law A * , one needs to solve the cell problems, defined for for each pair (i, j) ∈ {1, 2} by:

     div(A(e ij + e(w ij ))) = 0 in Y 0 A(e ij + e(w ij )) . n = 0 on Γ h y → w ij (y) Y 0 periodic, (35) 
where, w ij is the so-called correctors w ij , corresponding to the local displacements in the periodic cell Y 0 (h), and e ij = 1 2 (e i ⊗ e j + e j ⊗ e i ), the basis of the symmetric tensors of order 2, with normal to the interior boundary Γ h denoted n. Thus, the variational formulation associated to [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF] is defined by: find

w ij ∈ H 1 # (Y 0 , R 2 ) such that ∀ϕ ∈ H 1 # (Y 0 , R 2 ) Y0 Ae(w ij ) : e(ϕ) + Y0 Ae ij : e(ϕ) = 0, (36) 
which admits a unique solution (up to a constant displacement). The coefficients of the homogenized Hooke's law A * (x) are defined by:

A * ijkl = 1 Y Y0 A(e ij + e(w ij )) : (e kl + e(w kl )) dy ∀i, j, k, l ∈ {1, 2} (37) 
where, the symbol # denotes the periodicity of the correctors w ij , solutions of [START_REF] Allaire | Conception optimale de structures[END_REF]. Note that, one needs to divide the quantity in [START_REF] Bendsoe | Topology and generalized layout optimization of structures[END_REF] by the volume Y(h).

Generally, to bypass this point the volume Y(h) is taken unitary.

Remark 3 It is known that the set Hooke's laws of periodic composites is dense in the set of all possible Hooke's laws reachable with composites [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF], thus, restricting the analysis to periodic composites is an acceptable limitation. However, restricting the set of periodic composites to periodically perforated smooth honeycomb is a loss of generality. Hence, Exploring a larger range of periodic microstructures is an obvious line of research for future work.

Since, the smooth honeycomb Y (h) is isotropic cell, we only need for instance two entries of the homogenized tensor A * (e.g., A * 1122 and A * 1212 ) to fully characterize A * . However, all the entries of the homogenized tensor A * , were computed in order to demonstrate that composites periodically perforated by smooth honeycomb are isotropic materials or at least very close to one. For this computation, the range of θ is discretized with 50 triangular elements and A linear material model with Young's modulus E = 12 × 10 9 N m -2 (i.e., 12GPa) and Poisson's ratio ν = 0.35.

Remark 4 Note that, the void (i.e., θ = 0) is fill with a very compliant material, in order to avoid singularities of the effective tensor when the elasticity problem is solved.

We recall that, the homogenized tensor A * is isotropic, thus, it is defined as:

A * = 2µ * I 2N + (κ * - 2µ * N )I N ⊗ I N ,
where κ * and µ * are the bulk and shear moduli of the homogenized Hooke's law A * , with its Lamé coefficient defined by λ * = κ * -2µ * N . In addition, its coefficients are defined by

     µ * = A * ijij λ * = A * iijj ∀i, j ∈ {1, ..., N } κ * = A * iijj + 2 N A * ijij (38)
Furthermore, the isotropy of the homogenized Hooke's law A * implies some equalities between its coefficients, i.e.:

∀i, j, k, l, p ∈ {1, 2}          A * iijk = 0 A * iiii = A * jjjj A * iijj = A * kkll A * iiii = A * ijij + A * llpp (39)

Numerical results

Fig. 2 depicts the relative errors to those equalities in [START_REF] Jog | Topology design with optimized, self-adaptative materials[END_REF], computed for discrete sample of material density θ (see, Fig. 4). In addition, the homogenized bulk κ * and shear µ * moduli of the homogenized Hooke's law A * were also computed in order to verify that they are bounded by the upper Hashin-Shtrikman bounds, as it is known that any isotropic two-phase composite material is bounded by the Hashin-Shtrikman bounds.

Remark 5 We recall that, the upper Hashin-Shtrikman bounds for the homogenized bulk κ HS and shear µ HS moduli are defined by: In each case, the coefficients are smooth increasing functions with respect to the material density θ, which guarantees that the optimization process will converge. Note that, κ * and µ * are closed to the upper Hashin-Shtrikman bounds (see, Fig. 3). 

κ HS = κµθ κ+µ-κθ , µ HS = κµθ 2(κ+µ)-(κ+2µ)θ in 2-D, κ HS = 4κµθ 3κ+4µ-3κθ , µ HS = (9κ+8µ)µθ 5(3κ+4µ)-6(κ+2µ)θ

The homogenized conductivity tensor

As in 4.1, starting from a microscopic description of a problem, one seeks a macroscopic or effective model problem in conductivity K * , we introduce the so-called cell problems and since the considered cell Y is specifically chosen in order to design isotropic composites, only one of its coefficient (e.g., (K * ) 11 ) could be computed in order to fully characterized K * , a scalar value. However to confirm the isotropy, we computed all its coefficients. We denote by (e i ) i=1,2 the canonical basis of R 2 . For each unit vector e i , we consider the following conductivity problem in the periodic cell Y :

-div(K(e i + ∇w i ))) = 0 in Y y → w i (y) Y periodic, (41) 
where w i (y) is the local variation of pressure created by an averaged (or macroscopic) gradient e i . The homogenized conductivity tensor K * is then given in terms of the correctors w i , solutions of (41), defined by

(K * ) ij = 1 Y Y K(e i + ∇w i ) : (e j + ∇w j ) dy ∀i, j ∈ {1, 2} (42) 
The constant tensor K * describes the effective or homogenized properties of the heterogeneous microstructure of periodic size ϵ. Likewise, note that K * does not depend on the choice of domain Ω, source term f f , or boundary condition on ∂Ω.

Numerical results

The constant tensor K * has been computed for the hexagonal cells in 2-d, on the same scheme as the homogenized tensor A * (θ) for different values of the density. Figure 5 displays the homogenized flow coefficient K * computed for a discrete values of the density with respect to the hexagonal cell and normalized smooth function given by ( 16). As expected, K * is a decreasing function with respect to the density θ. It is noted that the residual

|(K * ) 11 -(K * ) 22 | ≤ 10 -6
and (K * ) 12 ≤ 10 -3 , for the hexagonal cell, which validates the isotropy. We emphasize that the flow coefficient K * can be approximated by the normalized smooth function, that is defined by ( 16). 

N-sf S-hc

Fig. 5 The homogenized flow coefficient history wrt. the Smooth honeycomb (S-hc) and normalized smooth function (N-sf) in ( 16)

Sensitivity analysis

Here, we present the optimization problem formulation associated to fluidicpressure loaded structures and discuss the sensitivity analysis for such design problems. The standard formulation, namely the minimization of compliance is considered to design pressure loaded stiff structures, where the optimization problem is given by the constrained formulation:

min 0≤θ≤1 1 |Ω| Ω θ dx=Θ c * (θ) ( 43 
)
where c * (θ) is the relaxed objective function defined by:

c * (θ) := Γ N f s . u ds + Ω (-b∇p) . u dx = min τ ∈H0 min A * (x)∈G θ Ω A * -1 τ .τ dx , (44) 
with H 0 defined by

H 0 = τ ∈ L 2 (Ω; M s 2 ) |      -div(τ -bpI 2 ) = 0 in Ω τ . n = f s on Γ s N τ . n = 0 on Γ s (45) 
wherein, Γ s = ∂Ω\Γ s N is the free part of boundary ∂Ω. We recall that, we only explicitly compute the optimization process on a subset of of all possible Hooke's laws G θ , i.e.: composites periodically perforated by smooth honeycomb cell. Therefore, the set of effective elasticity tensors {A * (θ) | θ ∈ L ∞ (Ω, [0, 1]} has to be characterized. The proposed strategy consists in computing the material properties for a discrete sample of parameter values and using the collected data to construct a surrogate model for the constitutive law (by a simple linear interpolation). Next, the optimization problem ( 43) is recast as follow:

min θ c * (θ) = min θ Ω A * (θ)e(u) : e(u) dx, ( 46 
)
where u is the unique solution to the coupled fluid-elasticity problem given by

     (i) -div(K∇p) = 0 (ii) -div(A * e(u)) = -b∇p (iii) 1 |Ω| Ω θ dx = Θ ( 47 
)
where Θ is the prescribed volume fraction. Note that, all mechanical equilibrium equations are satisfied under small strain assumption. The optimization problem is then solved using the alternate minimization algorithm [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF], which consists in minimizing successively the stress tensor through the solving of the coupled fluid-elasticity problem and then the density θ through a projected gradient method: it is an algorithm based on optimality criteria. We emphasize that, the boundary value problems in (47) are solved in each iteration in combination with the respective boundary conditions. In a gradient-based topology optimization, it is essential to determine sensitivities of the objective functional and the constraints with respect to the design variable(s). In general, the formulated objective functional depends upon both the state variable u, solution to the mechanical equilibrium equations and the design variable(s). In order to discuss the precise mathematical settings, we introduce the following set of admissible design variables U ad , defined by

U ad := θ(x) ∈ L ∞ (Ω) | θ(x) ∈ [0, 1], ∀x ∈ Ω (48)
We define the applications θ → u(θ), θ → p(θ), where θ ∈ U ad is associated to the solution {u(θ), p(θ

)} ∈ V (Γ s D ) × V (Γ f D ) of the state equations (under volume constraints):      (i) -div(K(θ)∇p) = 0 (ii) -div(A * (θ)e(u)) = -b∇p (iii) 1 |Ω| Ω θ dx = Θ (49) 
As already known [START_REF] Allaire | Conception optimale de structures[END_REF], the above maps are continuous and differentiable in U ad , where the directional derivative at θ of u(θ) and p(θ) with respect to θ ∈ L ∞ (Ω) are defined respectively by:

p ′ (θ), θ = p, u ′ (θ), θ = ū, ( 50 
)
where p ∈ H 1 0 (Ω) and ū ∈ H 1 0 (Ω) 2 are the unique solutions (up to constant functions) to the system given by:

(i) -div(K(θ)∇p) = div( K∇p) (ii) -div(A * (θ)e(ū)) = div( Ā * e(u)) -b∇p -b∇p, (51) 
where

K =< K ′ (θ), θ >, Ā * =< (A * ) ′ (θ), θ > and b =< b ′ (θ), θ > (52)
represent the directional derivatives at θ with respect to θ.

Proof Here, we only give the main results, the reader is referred to [START_REF] Allaire | Conception optimale de structures[END_REF] for a complete proof. Let (θ, θ) ∈ U ad × L ∞ (Ω). For all t > 0 small enough, θ(t) = θ + t θ belongs to U ad . Thus, p(t) = p( θ(t)) and û(t) = u( θ(t)) are solutions to the system given by:

(i) -div( K(t)∇p(t)) = 0 (ii) -div( Â * (t)e(û(t))) = -b(t)∇p(t) (53) 
where,

K(t) = K( θ(t)), Â * (t) = A * ( θ(t))
We then derive the system (53) with respect to the variable t and the resulting derivatives are evaluated at t = 0 in order to get the obtained system (51). □

As already known [START_REF] Allaire | Conception optimale de structures[END_REF], the objective functional given by:

c * (θ) = Γ N f s . u ds + Ω (-b∇p) . u dx = Γ N j 1 (u) ds + Ω j 2 (u, p) dx (54)
is differentiable and the directional derivative at θ with respect to θ is given by:

c * ′ (θ), θ = Γ N j ′ 1 (u)ū ds + Ω ∂j 2 ∂u (u, p)ū dx + Ω ∂j 2 ∂p (u, p)p dx (55) 
wherein, p ∈ H 1 0 (Ω) and ū ∈ H 1 0 (Ω) 2 are the unique solutions to the equations (51), respectively. Unfortunately, equation ( 55) is unusable in practice, because we cannot deduce a simple expression of the derivative c * ′ (θ). Indeed, ū and p are linear functions with respect to θ, which are non-explicit. To circumvent this issue, the presented Biot-Darcy-based TO method facilitates use of adjoint-variable method to determine the sensitivities, which is performed using the Céa method. We introduced the Lagrange multiplier for the constraints (49), associating

{p(θ), u(θ)} to θ, which is {p, u, ℓ} ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 × R * +
, where ℓ is the Lagrange multiplier designed to respect the volume constraint. In addition, an augmented performance function known as the Lagrangian L can be defined using the objective function and the mechanical state equations defined by:

L( θ, û, û, p, p, ℓ) := c * ( θ) + Ω û(-div(A * ( θ)e(û)) + b( θ)∇p) dx + Ω p(-div(K * ( θ)∇p)) dx + ℓ( Ω θ dx -Θ), (56) wherein, ( θ, û, û, p, p) ∈ L ∞ (Ω) × H 1 0 (Ω; R 2 ) 2 × H 1 0
(Ω; R) 2 are independent variables. We emphasize that the compliance c * ( θ) depends upon the state variables u and p. By straightforward integration by parts, we get

L( θ, û, û, p, p, ℓ) := c * ( θ) + Ω (A * ( θ)e(û) : e(û) + b( θ)∇p . û) dx + Ω K * ∇p . ∇p dx + ℓ( Ω θ dx -Θ), (57) 
Next, the sensitivities are evaluated by differentiating (57) with respect to u and p in directions ϕ u ∈ H 1 (Ω) 2 and ϕ p ∈ H 1 (Ω) defined by:

∂L ∂u ( θ, û, û, p, p, ℓ), ϕ u = - Ω b( θ)∇p . ϕ u + Ω A * ( θ)e(ϕ u ) : e(û) dx (58)
and

∂L ∂p ( θ, ..., ), ϕ p = Ω (-b∇ϕ p ) . u dx + Ω b( θ)∇ϕ p . û + Ω K * ∇ϕ p . ∇p dx (59 
) which when it vanishes, is nothing more than the variational formulation associated to adjoint-state. Furthermore, the derivatives with respect u and p in directions ϕ u ∈ H 1 (Ω) 2 and ϕ p ∈ H 1 (Ω) are simply the state equations defined by:

∂L ∂u ( θ, û, û, p, p, ℓ), ϕ u = Ω A * e(û) : e(ϕ u ) dx + b∇p . ϕ u , (60) and ∂L ∂p ( θ, û, û, p, p, ℓ), ϕ p = 
Ω K * ∇p . ∇ϕ p dx, (61) 
which when it vanishes, is nothing more than the variational formulation associated to state equations (49). Finally, the partial derivative of the Lagrangian L with respect to θ in direction θ ∈ L ∞ (Ω; R) at the stationary point (u, u, p, p) is defined by: 6 Topology optimization over composite materials

dL dθ , θ = Ω -e(u)

Alternate minimization method

This section presents the proposed numerical algorithm, which is based on the homogenization method. The key idea is to compute composite designs for the relaxed formulation rather than "classical" designs, which are merely approximately optimal for the original formulation. Our optimization problem is solved using the alternative minimization algorithm. We seek minimizers of sum of the elastic compliance, fluid-elastic compliance and of the weight of a solid structure under fluidic pressure loads.

6.1.1 Minimizing over the stress field.

Minimization over the stress field σ consists in solving the linear elasticity problem (28) over the effective tensor A * (x), for given design θ(x) of microstructure periodically perforated by the smooth honeycomb cell. Consequently, the linear elasticity problem (28) can be recast as a variational problem defined by:

v ∈ V (Γ s D ), Ω A * (θ)e(u) : e(v) dx = Γ s N f s .v ds + Ω (-b∇p) . v dx (63)
which numerically is solved using P 1 finite elements to compute the displacement vector field u.

Minimizing over the density field.

Minimization over the density field θ for a given stress tensor σ is performed using the projected gradient algorithm. The minimum compliance problem defined by ( 44) is not a self-adjoint, hence one needs to define the associated adjoint problem, which we define herein using the Céa method presented in sect. [START_REF] Saviers | Design and validation of topology optimized heat exchangers[END_REF]. The descend direction h = dθ is given by solving the bilinear equation:

∂L ∂θ , h = - Ω e(u) T ∂A * ∂θ e(u)- e(u) T ∂A * ∂θ e(u) + ∂K * ∂θ ∇p . ∇p + ∂b ∂θ (θ)∇p . u + ℓ Load sensitivities h dx, (64) 
where the descend direction h = dθ, has to satisfy the inequality given by: ∂L ∂θ (θ, u, u, p, p, ℓ), dθ < 0 (65) which is achieved by choosing: 

dθ = -e(u)
At iteration n, the optimal density θ is then updated by performing the projected gradient:

θ n+1 = P [0,1] (θ n + δdθ), (67) 
where δ > 0 is the step size and P [0,1] is the projection operator on the interval [0, 1]. The value of the Lagrange multiplier ℓ is computed at each iteration by a dichotomy process designed to respect the volume constraint. We emphasize that the exact value of ℓ can not be analytically given because of the projection operator: numerically, the partial derivative of the Lagrangian ∂L ∂θ is regularized using an equivalent H 1 -norm by solving the following variational formulation:

Ω ( ∂L ∂θ h + η 2 ∇ ∂L ∂θ . ∇h) dx = - Ω ∂A * ∂θ e(u) : e(u) - ∂A * ∂θ e(u) : e(u) - ∂K * ∂θ ∇p . ∇p - ∂b ∂θ ∇p . u -ℓ) h dx, (68) 
where η is a small coefficient, which typically depends on the size of the elements of the mesh: thanks to this coefficient, we are able to numerically regularize the partial derivative on a length scale of order η and to limit the checkerboard effect on the density θ, similar to those reported in [START_REF] Bendsoe | Topology and generalized layout optimization of structures[END_REF][START_REF] Jog | A displacement-based topology design method with self-adaptive layered materials[END_REF][START_REF] Jog | Topology design with optimized, self-adaptative materials[END_REF]. In practice, we use an adaptive step size δ, which consists in increasing δ by 20%, if the newly computed homogenized structure is accepted: if current compliance is lower than the previous one, else δ is divided by 2.

Volume constraint.

As explained in sect. 2, we do not known how to determine ℓ beforehand. As such, an alternative computations were performed, where the Lagrange multiplier ℓ is adjusted at each iteration, so that the corresponding value of the optimal density satisfies the volume constraint. In other words, once the stress σ n is computed through (63), we determine θ n through (67) and then ℓ n is determined through a simple iterative procedure, namely by dichotomy.

Implementation

This section presents our complete optimization process to perform topology optimization of structures under fluidic pressure loads and some general difficulties related to the homogenization method.

Complete optimization algorithm.

The Alternate direction algorithm is an iterative method, structured as follows:

Algorithm 1

1. Initialization of the design variable θ such that :

∀x ∈ Ω θ 0 (x) = Θ Ω 1 dx 2.
Iteration until convergence, for n ≥ 0 : (a) Computation of the state variable p n through the Biot-Darcy problem [START_REF] Murat | Contre-exemples pour divers problèmes où le controle intervient dans les coefficients[END_REF], with design variable (θ n (x), A * (x)) (b) Computation of the stress tensor σ n through the linear elasticity problem [START_REF] Geoffrey-Donders | Homogenization method for topology optimization of structures built with lattice materials[END_REF], with design shape (θ n (x), A * (x)) (c) Computation of the descend direction dθ n for the stress tensor σ n using formulas (65-68) (d) Updating the design variable θ n+1 using formulas (66) for the descend direction dθ n and then updating the effective tensor (θ n+1 (x), A * (x)), by linear interpolation.

Note that, the alternate direction algorithm is apparented to the two known methods in [START_REF] Bendsoe | Generating optimal topologies in structural design using a homogenization method[END_REF][START_REF] Allaire | Optimal design for minimum weight and compliance in plane stress using extremal microstructures[END_REF][START_REF] Suzuki | A homogenization method for shape and topology optimization[END_REF].

Convergence criterion.

The procedure is iterated until the quantity

max (max i (|θ n+1 i -θ n i |), 1 -Ω A * -1 (θ n+1 )σ n+1 : σ n+1 dx + ℓ Ω θ n+1 dx Ω A * -1 (θ n )σ n : σ n dx + ℓ Ω θ n dx
becomes smaller than a preset threshold. About 100 iterations are required to reach a criterion of order 10 -5 . Other convergence criteria could be used, for instance the L 2 norm of σ n+1 -σ n .

Numerical results and discussion

In the following, we treat a variety of (benchmark) test cases to demonstrate that, our alternate minimization algorithm for topology optimization of coupled fluid-structure problems produces physically correct results, while minimizing the sum of the elastic compliance, fluid-elastic compliance and of the weight of a solid structure. Any change in the value of considered parameters is reported within the definition of the problem formulation. The above algorithm has been implemented in FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF], where all the unknowns are discretized using P 1 finite elements. For all our computations, a linear material model with Young's modulus E = 12 × 10 9 N m -2 and Poisson's ratio ν = 0.35 are considered. The void (i.e., θ = 0) is replaced with a very compliant material: namely, the smallest admissible value of θ is fixed at 1.e -3, in order to avoid singularities of the effective tensor when the elasticity problem is solved.

Pressurized arch

This example was originally introduced and solved in [START_REF] Zheng | Topology optimization with design-dependent pressure loading[END_REF][START_REF] Kumar | Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method[END_REF]. The structure to be found is rectangle of dimensions 0.2m × 0.1m, fixed at the edges of its left and right bottom on a zone of width 1 8 , while submitted to a pressure load p = 1 bar (i.e., 1 × 10 5 N m -2 ) and vanishes on the boundary Γ f p0 (i.e., p| Γ f p 0 = 0): see Fig. 6 for a schematic of this test case. The workspace Ω is discretized with 44492 triangular elements. On Fig. 7, we plot the objective function history for this calculation: smooth and relatively fast convergence is observed; while Fig. 8 displays the output of the alternate minimization algorithm for a volume fraction set to Θ = 20%, with the resulting pressure field, deformed mesh, and von Mises stress at the final state. The density θ is represented with a gray scale: areas where θ = 1 are black (pure material), whereas white regions correspond to voids. The topology of the result is similar to that obtained in previous literature [START_REF] Kumar | Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method[END_REF], for similar problems with different design and optimization settings. Although one can guess a "shape" on the edges of the structure, its center contains a large composite zone. 

L x = 0.2 m Γ f p Γ f p0 Γ f p0 Γ f p0 p in = 1 bar

Pressurized piston

This second test case was originally introduced and solved in [START_REF] Bourdin | Design-dependent loads in topology optimization[END_REF][START_REF] Kumar | Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method[END_REF]. The workspace is a 0.12m × 0.04m rectangle, fixed on the boundary Γ s D , while submitted to pressure load p = 1 bar on the upper boundary Γ f p and vanishes on boundary Γ f p0 : see Fig. 9 for a schematic of this test case. The volume fraction is set to Θ = 30%. It is desired to find a stiffest optimum design "shape" which can convey the applied pressure loads on the upper boundary to the lower fixed support readily.

x y

Γ f p0 Γ f p0 Γ s D Γ s D Γ s D Γ f p L y = 0.04 m L x = 0.12 m p in = 1 bar
Fig. 9 Setting for fluid-elastic compliance minimization problem of test case 7.1 issued from [START_REF] Bourdin | Design-dependent loads in topology optimization[END_REF][START_REF] Kumar | Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method[END_REF] On Fig. 10, we plot the convergence history for this calculation: smooth and relatively rapid convergence is observed; while Fig. 11 depicts the optimal density and the pressure field, deformed mesh, and von Mises stress at final state. The topology of the result is similar to that obtained in previous literature [START_REF] Lee | Structural topology optimization with designdependent pressure loads[END_REF][START_REF] Wang | Structural topology optimization with design-dependent pressure loads[END_REF][START_REF] Picelli | Topology optimization for design-dependent hydrostatic pressure loading via the level-set method[END_REF][START_REF] Kumar | Topology Optimization of Fluidic Pressure Loaded Structures and Compliant Mechanisms using the Darcy Method[END_REF], for similar problems with different design and optimization settings. Although one can guess a "shape" on the edges of the structure, its center contains a large composite zone. 

Pressurized MBB

In this test case, the structure to be found is submitted to pressure load p in = 1 bar on the boundary Γ f p , while its boundary Γ s D is clamped. The workspace Ω is sketched on Fig. 12: a rectangle of dimensions 0.3m × 0.1m. The domain is discretized with 43440 triangular elements, where the volume fraction is set to Θ = 30%. Note that, this example has already been investigated by several authors in the case of structural design under mechanical loading. 12 Setting for fluid-elastic compliance minimization problem of Section 7.3 on Fig. 13, we plot the convergence history for this calculation: smooth and relatively fast convergence is observed, while Fig. 14 displays the topology of the final design and the resulting von Mises stress, pressure field and deformed mesh under pressure loads at the final state. Very interestingly, we retrieve the fact that the topology of the result is similar to that obtained in the case of mechanical load. 

L y = 0.1 m L x = 0.3 m Γ f p0 Γ f p p in Γ s D Fig.

Two dimensional counter-flow exchanger

In this example, the structure to be found is a two-dimensional counter-flow exchanger of dimensions 2 × 2.2. The setup is seen in Fig. 15 and consists of a fluid inlet of density q 0,1 , in the lower-left part of the domain, with the corresponding outlet pressure on the opposite lower-right side; also, another fluid inlet of density q 0,2 is located at the upper-right side of the domain, with the corresponding outlet pressure at the opposite upper-left side. All the other boundaries in this device are insulated from the outside: zero Neumann boundary conditions hold for the pressure (i.e., ∂p ∂n = 0), while homogeneous Dirichlet boundary conditions are applied on the boundary of a small non optimizable rectangle ω of dimensions 2 × 0.2. The numerical values of the parameters involved are displayed on Fig. 16. Our aim is to achieve a trade-off between the minimization of the compliance imposed by the fluid and the maximization of the hydraulic strain energy, subject to the volume constraint (or not), that is:

J * (θ, u(θ)) = α Ω A * e(u) : e(u) dx Elastic strain energy +(1 -α) - Ω K * ∇p . ∇p dx Hydraulic strain energy , s.t. 1 |Ω| Ω θ dx = Θ (69) 
where α ∈ [0, 1] is termed as a weighting factor: it measures the relative weight given to each term in (69). The objective functional J * (θ, u(θ)) corresponds to the internal energy stored inside the structure. Here, we consider to two configurations, i.e.: (i) a test case with volume constraint set to Θ = 20%, first and (ii) test case without volume constraint, second, for several values of α. p 0 q 0,1 q 0,2 1.5 3 5 Fig. 17 to Fig. 18 display the optimal densities for a sweep of α for the two configurations, i.e.: with or without volume constraint. Very interestingly, we retrieve the fact that the topology of the results contains a large composite zone, where the force contribution induced by the fluid appears in all directions, which evidently, prior to the analysis is expected. For this latter, the corresponding objective history for the two configurations are depicted on Fig. 19 to Fig. 20. On Fig. 21, we plot the final volume with respect to α for the second configuration (i.e.,with volume unconstrained), while on Fig. 22 to Fig. 23, we show the convergence history for α = 1/2 for the both configurations. On Fig. 24, we display the corresponding pressure field for both configurations, with α = 1/2. We note that, in both configurations, namely when the optimization is subjected to a volume constraint or not, the topology of the optimal design is α dependent, namely, for all α ∈ (0, 0.40), the topology tends to maximize the hydraulic strain energy, which in process minimize the output pressure, whereas for all α ∈ [0.40, 1), the topology of the result tends to achieve a tradeoff between the minimization of the compliance induced by the fluid and the maximization of the hydraulic strain energy, which evidently is what we intent to achieve for this optimization problem. However, in the second configuration (i.e.,without volume constraint), we emphasize a gain of volume fraction but not necessarily a gain in performance, see Fig. 
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Conclusion and perspectives

In this paper, we intent to provide a contribution to the understanding and modeling of the physical mechanisms underlying the behavior of fluids and solids (materials and structures) and to deploy a multiphysic and multi-scale analysis of these behaviors. Here, homogenization method is used to perform topology optimization of fluid-pressure loaded structures using Biot-Darcy model, where a standard finite element formulation is employed and does not need explicit description of the pressure loaded boundary. We weakly coupled the fluid-pressure loads inside composite designs periodically perforated by smooth honeycomb cell, yielding isotropic periodic composite designs.

As the weakly coupled fluid-pressure loads is density-dependent, it becomes essential to determine the load sensitivities, where herein, a projected gradient method is used. The method facilitates analytical calculation of the load sensitivities with respect to the design variables using the computationally inexpensive adjoint-variable method. This availability of load sensitivities is a key characteristic over many other methods to treat pressure loads in topology optimization. Furthermore, the consideration of load sensitivities within the homogenization approach does affect the topology of the results, thus, the load sensitivities terms are essential to the topology optimization of the multiscale and multiphysic structures. The proposed projected gradient algorithm offers relatively easy extension to 3D problems. The potentiality and robustness of the proposed method is verified by minimizing the sum of the elastic and fluid-elastic compliance, and of the weight of a solid structure under pressure loads. For future work, extension to 3D structures and to liquid-liquid heat exchangers problems are prime directions.
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 10 Fig. 10 Convergence history for the fluid-elastic compliance minimization problem of Section 7.2
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 11 Fig. 11 (a) The optimal density, (b) pressure field, (c) deformed mesh, and (d) von Mises stress for test case 7.2
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 14 Fig. 14 (a) The optimal density, (b) von Mises stress, (c) pressure field, and (d) deformed mesh for test case 7.3
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 15 Fig. 15 Setting of the 2-d counter-flow exchanger 7.4. The brown layers at the walls stand for zero Neumann boundary conditions for the pressure (i.e., ∂p ∂n = 0); homogeneous Dirichlet boundary conditions hold on ∂ω.
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 16 Fig. 16 Numerical values of the physical parameters in the 2-d counter-flow exchanger test case in Section 7.4
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 22 Fig.22The convergence history wrt. α = 1/2, for volume constraint Θ = 20%
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 23 Fig. 23 The convergence history wrt. α = 1/2, and with no volume constraint

Fig. 24

 24 Fig.[START_REF] Hübner | Optimization of the porous material described by the Biot model[END_REF] The pressure field at final state for both configuration: with and without volume constraint, for α = 1/2

  Fig.19The converged objective function wrt. α, with volume fraction Θ = 20%

			.40	0.50	0.77	0.85	0.90	0.93	0.95
	J * (α) -4.51 -0.06	0.962	5.055	5.025	6.533	10.17	0.163
	α	0.25	0.40	0.50	0.77	0.85	0.90	0.93	0.95
	J * (α) -4.51	-2.54 -1.83 -0.57 -0.55 -1.47	0.026	0.286

The fluid-structure model using Biot-Darcy lawAs the topology optimization of composite designs progresses, the material boundary and its topology evolve simultaneously, while the material density is optimally distributed with respect to an objective function under mechanical or fluid loads. As such, identifying the boundary to which apply such loads is not easy task, especially in the initial stage of the optimization. Thus, when designing composite structures under fluid-pressure loads and small strains, it becomes essential to establish a design-dependent and continuous pressure field to help the topology optimization. In addition, using 3-d simulation of the pore-scale flow, Jobic et al. established in[START_REF] Jobic | Transport properties of solid foams having circular strut cross section using pore scale numerical simulations[END_REF], that different regimes can co-exist within a foam-like composite and that, these regimes depend on the local Reynolds number. They displayed that, a Darcy regime is established for Reynolds numbers lower than 0.3, while an inertia regime is established for a Reynolds greater than 30, preceded by a transition regime. Here, the complexity of these real flow regimes is not taken into account. We consider in this first approach a flow of the Darcean type. However, it was established in[START_REF] Jobic | Transport properties of solid foams having circular strut cross section using pore scale numerical simulations[END_REF] that, a Darcy-Forchheimer type approach makes it possible to account for all possible regimes. Thus, exploring this sophisticated flow law is an obvious line of research for future work. Here, we propose a Biot-Darcy's law to characterize a density-dependent pressure field p. From a fluid point of view, Darcy's law describes the fluid ability to flow through a porous media such as soil, sandstone or rock, namely, the fluid flow through a unit area is said to be directly proportional to the pressure drop per unit length ∇p and that inversely, the resistance of the porous
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