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Abstract

In many applications, design problems involving structures experience
fluidic pressure loads. During topology optimization (TO) of such design
problems, these loads adapt their direction and location with the evo-
lution of the design, which poses various challenges. A novel approach
to optimize a relaxed formulation of such design problems is presented
to provide a continuous and consistent treatment of design-dependent
pressure loads. Its effect is to allow for micro-perforated composite as
admissible designs. The porosity of each finite element is related to its
density variable using a regular function, yielding a smooth transition
between the solid and void phases. A design-dependent pressure field
is established using Biot-Darcy’s law and the associated PDE is solved
using the finite element method. The approach provides a computation-
ally inexpensive evaluation of load sensitivities using the adjoint-variable
method. Since it places no assumption on the number of holes cut within
the domain, it can be seen as a topology optimization algorithm. Numer-
ical results are presented for various two dimensional problems. We seek
minimizers of the sum of the elastic compliance, fluid-elastic compliance
and of the weight of a solid structure under fluidic pressure loads.
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1 Introduction

Shape optimization is a major issue in structural design and one of the most
challenging aspects is what structural engineers refer to as layout or topology
optimization. Its is nowadays well developed field with various methods and
most have meanwhile attained a mature state. Moreover, their popularity as
design tools for achieving solutions to a wide variety of problems involving
single/multi-physics is growing consistently. Among these, design problems
involving fluidic pressure loads pose several unique challenges: (i) identifying
the structural boundary to apply such loads, (i) determining the relationship
between the fluidic pressure loads and the design variables, i.e., defining a
design-dependent and continuous pressure field and (i) efficient calculation
of the fluidic pressure load sensitivities. Such problems can be encountered
in the design of heat-exchangers [1-6], for various applications such as hot
and cold fluids loaded and mechanical structures (e.g., combustion engines, air
conditioning, power production or microturbines). Note that, the topology and
performance of the optimized structures are directly related to the magnitude,
location and direction of the fluidic pressure loads which vary with the design,
for various applications such as hot and cold fluids loaded and mechanical
structures (e.g., combustion engines, air conditioning, power production or
microturbines). Note that, the topology and performance of the optimized
structures are directly related to the magnitude, location and direction of the
fluidic pressure loads which vary with the design.

In this paper, we target topology optimization to address the aforementioned
challenges in the design of solid structures under fluid-pressure loads for a
given weight of the solid. We carefully map the passage from the original opti-
mization to its assumed relaxed formulation: allow a periodic distribution of
holes of any shape and any size within the design region. The recipe is decep-
tive because the issue at stake is truly of a mathematical nature, the collection
of admissible periodic holes should be such that meaningful optimality crite-
ria can be proposed. A key problem characteristic is that the fluidic pressure
loaded surface is not defined a priori but, it can be modified by the opti-
mization process to (for instance) maximize stiffness. The main application of
our work is the optimization of architectured materials, also known as lattice
materials which are becoming increasingly popular in the context of additive
manufacturing. Below, we review the proposed topology optimization methods
that involve pressure-loaded boundaries for structural designs.

In the case of topology optimization, Hammer and Olhoff [1] were first to pro-
pose design problems involving pressure loaded structures. Thereafter, several
approaches have been proposed to apply and provide a proper treatment of
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such loads in TO setting, which can be broadly classified into: (i) methods
using boundary identification schemes [1, 7-11], (i¢) level set method based
approaches [6, 12-14], and (¢iz) approaches involving special methods, which
avoid detecting the loading surface [15-19, 44].

Boundary identification techniques in general, are based on a priori chosen
threshold density pr: i.e., iso-density curves/surfaces are identified. Hammer
and Olhoff [1] used the iso-density approach to identify the pressure loading
facets I',, which they further interpolated via Bézier spline curves to apply
the pressure loading. However, as per Du and Olhoff [7], this iso-density (iso-
lines) method may furnish isoline-islands and/or separated isolines. Hence,
valid loading facets may not be achieved. In addition, this method requires
predefined starting and ending points for the exposed boundary I',, [1]. To
circumvent this issue associated with the isolines method, Du and Olhoff [7]
proposed a modified isolines technique. In [1, 7], the sensitivities of the pres-
sure load are evaluated with respect to design variables using an efficient finite
difference formulation. Lee and Martins [9] presented a method wherein one
does not need to define starting and ending points a priori. In addition, they
provided an analytical approach to calculate load sensitivities. However in
[1, 7, 9], the sensitivities of the pressure loads, were confined to only those ele-
ments which are exposed to the pressure boundary loads I', . One should refer
to [8, 11] for methods evolving pressure loading boundary I',,. The methods
presented in this paragraph do not account for load sensitivities within their
topology optimization setting. Furthermore, as per Hammer and Olhoff [1],
if the evolving pressure loaded boundary I',, coincides with the edges of the
finite elements (FEs) then the load sensitivities with respect to design variables
vanish or can be disregarded. Consequently, I',, no longer remains sensitive to
infinitesimal alterations in the design variables unless the threshold value pr
is passed and thus, I',, jumps directly to the edges of a next set of FEs in the
following topology optimization iteration. We emphasize that load sensitivi-
ties however may critically affect the optimal material layout of a given design
problem, thus, considering load sensitivities in problems involving fluidic pres-
sure loads is highly desirable. In addition, ideally these sensitivities should be
straightforward to compute, implement and computationally inexpensive.

In contrast to density-based topology optimization, in the level-set-based
approaches, an implicit boundary description is available that can be used to
define the pressure load. On the other hand, being based on boundary motion,
level-set methods tend to be more dependent on the initial design [6]. Gao et
al. [12] (2004), employed a level set function (LSF') to represent the structural
topology and overcame difficulties associated with the description of bound-
ary curves in an efficient and robust way. Xia et al. [14] (2015), employed
two zero-level sets of two LSF's to represent the free boundary and the pres-
sure boundary separately. Wang et al. [20] (2016), employed the Distance
Regularized Level Set Evolution (DRLSE) (see [13], 2010) to locate the struc-
tural boundary. They used the zero level contour of LSF to represent the
loading boundary but did not regard load sensitivities. Recently, Feppon et



al. [6] (2018), employed a Level Set Mesh Evolution (LSME) to locate the
structural boundary. They used Hadamard’s method of shape differentiation
to solve a coupled thermal fluid-structure. Picelli et al. [21] (2019), proposed a
method wherein Laplace’s equation is employed to compute hydrostatic fluid
pressure fields, in combination with interface tracking based on a flood fill pro-
cedure. Shape sensitivities in conjunction with Ersatz material interpolation
approach are used within their method.

Given how difficult is to identify a discrete boundary within density-based
TO and obtain consistent sensitivity information, various researchers have
employed special/alternative methods (without identifying pressure loading
surfaces directly) to design structures experiencing pressure loading. Chen
and Kikuchi [44] (2001), presented an approach based on applying a ficti-
tious thermal loading to solve pressure loaded problems. Sigmund and Clausen
[17] (2007), employed a mixed displacement-pressure formulation based finite
element method in association with three-phase material (fluid/void/solid).
Therein, an extra (compressible) void phase is introduced in the given design
problem while limiting the volume fraction of the fluid phase and also, the
mixed finite element methods have to fulfill the Babuska-Brezzi condition
(BB-condition) which guarantees the stability of the element formulation [22].
Bourdin and Chambolle [15] (2003), also used three-phase material to solve
such problems. Zheng et al. [11], (2009) introduced a pseudo electric poten-
tial to model evolving structural boundaries. In their approach, pressure loads
were directly applied upon the edges of finite elements and thus, they did not
account for load sensitivities. Additional physical fields or phases are typically
introduced in these methods to handle the pressure loading. Recently, Kumar
et al, [23] (2020), employed similar strategy based on Darcy’s law, to design
both structures and compliant mechanisms loaded by design-dependent pres-
sure loads using density-based TO. In addition, D. Hiibner et al. [24] (2019),
employed similar strategy based on Biot model derived by the homogenization
of two decoupled problems: (1) deformation of a porous solid saturated by a
slightly compressible static fluid and (2) Stokes flow through the rigid porous
structure. The effective medium properties are given by the drained skele-
ton elasticity, the Biot stress coupling, the Biot compressibility coefficients,
and by the hydraulic permeability of the Darcy flow model. Our method fol-
lows a similar strategy based on Biot-Darcy’s law to optimize a relaxed (or
homogenized) formulation to provide a continuous and consistent treatment of
design-dependent fluidic pressure loads, which has not been reported before.
On one hand we carefully map the passage from the original shape optimiza-
tion problem to its assumed relaxed formulation. This permits to introduce
micro-perforated composite as admissible designs. Our motivation originates
from the observation that many industrial applications in the field of energy
involve multi-scale designs. For instance, heat exchangers feature periodic pat-
terns visible at a microscopic scale which are geometrically modulated over
larger scales. They are integrated into a suitable macroscopic structure so as
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to maximize the exchange surface between hot and cold phases, while limit-
ing the output pressure loss. We propose a new computational algorithm for
two dimensional shape optimization that takes full advantage of a class of
periodically perforated composite to design fluidic pressure loaded structures.
The presented approach uses Biot-Darcy’s law and standard finite elements,
for modeling and providing a suitable treatment of pressure loads. The Biot-
Darcy’s law is adapted in a manner that the porosity of the FEs can be taken as
design-dependent using a smooth function facilitating smoothness and differen-
tiability. Consequently, prescribed pressure loads are transferred into a design
dependent pressure field using a partial differential equation (PDE), which is
further solved using the finite element method. The determined pressure field
is used to evaluate consistent nodal forces using the finite element method.
This two steps process offers a flexible and tunable method to apply the pres-
sure loads and also, provides distributed load sensitivities, especially in the
early stage of optimization. The latter is expected to enhance the exploratory
characteristics of the TO process.

Regarding applications, most research on topology optimization involving flu-
idic pressure loads has thus far focused on compliance minimization problems
and the present paper should be approached within such background. Sev-
eral homogenized models exist depending on various scaling regimes assumed
by the microstructure pattern (i.e., Darcy, Brinkman, or Stokes regimes, etc.)
which makes it unclear which effective model should be used to describe a
context featuring all possible regimes simultaneously at different locations in
the domain. Thus, using the presented method, we not only design a rigor-
ous pressure-loaded microstructures but also provide a suitable treatment of
pressure loads, which suggests the novel potentiality of the method.

In Section 2, we carefully state the original shape optimization problem as
well as its relaxed formulation. Next, in Section 3, we present the homoge-
nized fluid-structure models using Biot-Darcy method. Then, in Section 4, we
introduce the topology optimization problem formulation for fluidic pressure
loaded structures and small-strains, and the associated sensitivity analysis. In
Section 5, we present the TO process: it is an alternate direction algorithm,
which successively computes the stress field through the solving of a coupled
fluid-structure problem over the set of composites periodically perforated by
hexagonal cells in 2-d. Finally, in Section 6, we present our numerical results:
2-d computations are displayed of various benchmark design problems involv-
ing fluid-pressure loaded structures and small deformation. As a final note, the
following new aspects are presented:

® Biot-Darcy’s law is used to identify evolving pressure loading boundary
which is performed by solving an associated PDE,

® the approach facilitates computationally inexpensive evaluation of the load
sensitivities using the adjoint-variable method,

® the load sensitivities are derived analytically and consistently considered
within the presented approach while synthesizing structures experiencing
pressure loading,



® the method avoids explicit description of the pressure loading boundary
(which proves cumbersome to extend to 3-d),

® the robustness and efficacy of the approach is demonstrated via various
standard design problems related to structures,

® the method employs standard linear FEs, without the need for special FE
formulations.

2 The original optimal design problem and its
relaxed formulation

This section is essentially composed of reminders of existing results in homog-
enization based shape optimization of elastic structures. An adequate class
of admissible designs is introduced which is precisely the concern of the the-
ory of homogenization. The announced goal is to devise the least compliant
structure compatible with the loads for a given weight of the structure, i.e.: to
maximize the rigidity of an elastic structure under a weight constraint. We con-
tent ourselves to recall the main results detailed in [25], by Allaire, Bonnetier,
Francfort and Jouve. These results will be useful for a good understanding of
various related subjects that we will be discuss hereafter. The complete proof
sometimes very technical can be found in [25].

Consider a bounded domain © C R subject to "smooth enough” surface
loadings f, e.g.: f € H~'/2(0Q)N, satisfying a compatibility condition of equi-
librium on the boundary 0f2. Part of the domain is occupied by an isotropic
linearly elastic material with elasticity:

AZ(K-%)IN®IN+2MIQN7 0< K, pu<+o00, (1)
while the remaining part of  is void. Let x be the characteristic function
of the part §2,, occupied by the elastic material. Whenever €2, is a smooth
enough open subdomain of 2, such that 02, contains the part of Q2 where f
is not zero, the elasticity problem in , is well-posed, i.e., the following set of
equations:

o=Ae(u) e(u) =21(Vu+ Viu),
div(c) =0 in Q,,

o.n=f ondQ, NoLY,
o.n=0 on 00, \ Q.

has a unique solution u € H'(Q,)" (up to a rigid displacement field). Here
u, is the displacement vectorzand o is the associated Cauchy stress field
uniquely defined in L2(,; RY"). As such, o can be extended to an element of

(2)

L2(Q; RY 2), which further realizes the minimum of the complementary energy
over all statically admissible stress fields, i.e.:

e(x) == / A™'o .o dr= min / A~ 7 7 da, (3)
Q TeE(x) Ja
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where the set 3() is defined by:

Y(x) = {7’ c L*(%; Ré\ﬂ) | div(t) =0in Q; 7.n = f on 0%Q;

(4)
7(x) = 0 a.e. where x(x) = 0}

The quantity ¢(x), defined by (3), is called the compliance of the body and a
straightforward integration by parts demonstrates that

c(x) = f.udz,
o0

where wu is the solution of the system (2). When x(z), is the characteristic
function of an arbitrary measurable subset of 2 (not necessarily open), the
existence of ¢ is no longer guaranteed. A generalized compliance may however
be defined as:

e(x) = inf AYr 7 de, (5)

T€X(X) Jq

with X(x) is defined by (4) (note that, the infimum is not necessarily attained).
The goal of the optimal design is devise the least compliant structure com-
patible with the loads for a given weight of the structure. Thus, the range of
compliances c¢(x) for all characteristic functions x such that:

/X(l’)dl'ZG, 0<06 <9
Q
is investigated and the optimal design reads as:

I :=inf {c(x) | x € L€ {0,1}); /

A x(x) de = @}. (6)

The optimal design problem defined in (6) is difficult to handle since it is
constrained by:

/ x(z) de = ©. (7)
Q

Such a constraint is routinely handled in elementary calculus of variations
through the introduction of a positive Lagrange multiplier. Thus, (6) is
replaced by:

10:=__ ot e+ [ x(o) def. (®)
in the hope that there exists a positive value ¢ for which the volume constraint
(7) is met. That it is not so obvious in the case at hand, and as such it should
be justified. We are unfortunately helpless in the matter as detailed in [25].
Thus, we content ourselves with the above unconstrained version of the original
optimization problem.

7



Remark 1 For sake of simplicity, we consider only the case where surface loads are
applied. A straightforward modification of the model would however permit the con-
sideration of volume forces or the clamping of part of the boundary 92, i.e.: the
enforcement of a Dirichlet boundary condition u = 0. The reader is referred to the
numerical examples presented in Sect. 6, which include different types of boundary
conditions. The above optimization problem is usually referred to as a ”single load”
problem. This means that the elastic structure is optimized for a single configura-
tion of loading forces and may well be totally inadequate for other loads. Its quite
often more realistic to investigate ”multiple loads” problem which amounts to an
optimization of the structure for several configurations, i.e., various surface loadings

f1, ..., fp are given and we consider the minimization problem:
P
I,(¢) == inf ¢ + E/ x) ¢, 9
ORI R Do)+t X )} ©)

where ¢;(x) is the generalized compliance defined by (5) for the boundary condition

fi-

It is well-known since the seminar counter-examples of Murat [26] that prob-
lems of the type (6) or (8) do not generally admit solution to the extent that
minimizers do not exist among characteristic functions. The problem must be
relaxed, i.e.: allow for micro-perforated composite as admissible designs and
the optimum is achieved by a composite (or generalized) design. This is due to
the fact that composite designs made of very small microstructures can always
outperform genuine designs made of plain material. A composite design is
described by the local density §(z) € L*>(€; [0, 1]) of material and an homog-
enized elasticity tensor A*(x) that depends on the microstructure at the point
x € €. The homogenized or macroscopic displacement uv* of the structure is
then solution of the following set of equations:

o=A%(u*) e(u*)=3(Vu*+ Viur),
div(c) =0 in Q,

oc.n=f only,

o.n=0 ond\Iy,

(10)

such that 'y contains the part of 92 where f is non zero. We emphasize that
the problem is now defined on the whole working domain €2 and no longer on
a design Q,.. Thus, the minimization problem (8) is replaced by:

() = Tg&){oggl{c (0)—}—6/99dx}}, (11)
where X(Q2) is defined by:

$(Q) = {T e L2(Q RY) | div(r) =0in Q; 7.n= fon aQ}. (12)
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and ¢*(0) is defined by:

c*(#) = min / A 7 da, (13)
A*(z)€Gy(z) JQ

where Gy, is the set of effective or homogenized Hooke’s laws for microstruc-
tures of density 0(x). The quantity ¢*(#), defined by (13) is called the relaxed
or homogenized compliance for a perforated composite material obtained by
mixing the material A with holes in proportions #(x) and 1—6(z). The main dif-
ficulties in the homogenized formulation (11) are first, to compute the relaxed
compliance ¢*(#) (which may be different from the original compliance ¢(x)),
second and the most important is to give a complete and explicit description
of the set of admissible Hooke’s laws Gy. Unfortunately, the set of effective
tensors resulting from the mixture in fixed volume fraction of two elastic mate-
rials is unknown for the general case of non-defined underlaying microstructure
topologies. This obstacle is alleviated in the particular case where the objec-
tive functional is the elastic compliance because its minimum can be computed
among a well-known subset of the full set of effective tensors, namely that of
a sequential laminates: see [25] for details. To circumvent these obstacles, fol-
lowing the lead of [27, 28], we propose to limit the set of admissible composite
designs to microstructures for which the Hooke’s law can be numerically com-
puted (typically, periodic composites with hexagonal cells, e.g.: honeycomb
cells).

For the remainder of this paper, we content ourselves with the relaxed version
(11) of the original optimization problem (8). As such, we denote by u, the
homogenized displacement solution of (10) and we seek minimizers for the
optimal composite solution under fluidic pressure loads and with a given weight
of an elastic material.

3 Fluid-structure model using Biot-Darcy
approach

The material boundary of a given design domain 2, evolves as the topol-
ogy optimization (TO) progresses while forming an optimum material layout.
Therefore, it is challenging especially in the initial stage of the optimiza-
tion to locate an appropriate loading boundary I',, for applying the pressure
loads. In addition, while designing especially fluidic pressure and small strain,
establishing a design-dependent and continuous pressure field would aid to TO.
From a fluid point of view, it was established in [29], that different regimes can
exist within a foam-like composite. These regimes depend on the local Reynolds
number evaluated using 3-d simulation of the pore-scale flow. It is shown that,
a Darcy regime is established for Reynolds numbers lower than 0.3, while an
inertia regime is established for a Reynolds greater than 30, preceded by a
transition regime. The complexity of these real flow regimes is not taken into
account in our present work and we consider in this first approach a flow of the



Darcean type. However, it was established in [29] that, a Darcy-Forchheimer
type approach makes it possible to account for all possible regimes. Thus,
exploring this sophisticated flow law is an obvious line of research for future
work.

Here, Biot-Darcy’s law is employed to establish the pressure field as a function
of material density 0. Darcy’s law defines the ability of a fluid to flow through
porous media such as rock, soil or sandstone. It states that fluid flow through
a unit area is directly proportional to the pressure drop per unit length Vp
and inversely proportional to the resistance of the porous medium to the flow
w ([30]). Mathematically,

q:=—LVp=-K*Vp, (14)
1253

where q, k¢, fif, and Vp represent the flux (ms~!), permeability (m?), fluid
viscosity (Nm~2s) and pressure gradient (Nm~3), respectively. Further, K*!
(m*N~1s71) is termed as flow coefficient which expresses the ability of a fluid
to flow through a porous medium. The flow coefficient is assumed to be related
to the material density 6(z). In order to differentiate between void (6(z) = 0)
and solid (6(z) = 1) phases of a finite element and at the same time ensuring
a smooth and differentiable transition, K*(0(x)) is modeled using a smooth
function given by:

K*(8()) = min (60 Ul I 9@),&0)7 (15)

where ¢y, K, are given thresholds, i.e., g = 1074, K., = 103, respectively.
Our intent is to smoothly and continuously distribute the pressure drop over a
certain penetration depth of the solid facing the pressure source: the validity
of this assumption will be checked later in our numerical results in 4.2. In
addition, the pressure field p is assumed to satisfy a Biot’s law defined by:

p:= Mm — Mbe,,,, (16)

where M, m and e, are smooth enough functions related to the material
density 6(x) given by

m(0(z)) = (1=0(z))p, M(0()) = L0 _WOE@N=A=0@) G

Ry Rs
(17)
where p, k,, and K, represent the density of the flux?, compressibilty of the
void and solid phase, respectively. The coefficient e,, = div(u), denotes a
volume variation of the solid phase of proportion #(x) at each finite element.

Lg* = L s termed ”flow coefficient”, noting the fact that this terminology is however
sometimes used in literature with a different meaning.
2mass per unit volume of the fluid

10

u,
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The parameters M and b are the so called Biot modulus and Biot coefficient.
The Biot’s law (16) is assumed to be related to Darcy’s law (14) by:

q:=mvy = —K*Vp, (18)

where v represents the velocity (ms™!) of the flux. Biot-Darcy’s law renders
a gradual pressure drop from the inner pressure boundary I',, to the outer
pressure boundary I'p, : the validity of this assumption will be checked later
in our numerical results in section 6. Consequently, equivalent nodal forces
appear within the material as well as upon the associated boundaries. This
penetrating pressure, originating because of Biot-Darcy’s law, is a smeared-
out version of an applied pressure load on a sharp boundary or interface. We
emphasize that, summing up the contributions of penetrating loads gives the
resultant load. It is assumed that local differences in the load application have
no significant effect on the global behaviour of the structure, in line with the
Saint-Venant principle.

In addition to the Biot-Darcy equation (18), the equation of state using the
law of conservation of mass in view of incompressible fluid is derived by:

%—T = —div(q) = div(K*Vp) (19)

Consequently, we derived from the Biot’s law (16), the equation:

6]) L om 861}0
S = MO() 5 — M(6()b(6(x)) =5 L (20)

Further to Biot-Darcy’s law (18), we assume for sake of simplicity that our
fluid model is continuous and stationary and that, the state equation satisfies
the law of conservation of mass (in view of incompressible fluid) defined by:

0

('TT = —div(q) = div(K*Vp) = 0 (21)
where in the particular case of a porous isotropic medium, the Biot’s coefficient
b(#) is explicitly given by:

b(0(x)) = 1 — "0 (22)

wherein, k and ks(6(z)) represent the bulk moduli of the solid phase A and
the effective (or homogenized) tensor A*(z). We emphasize that, A*(x) tends
to A, when 6(z) tends to 1; thus, ks(0) tends to x. This formulation can
effectively control the location and depth of penetration of the applied pressure.
This paper should be approached within such background, i.e.: we assume
that our fluid-structure model is defined in the particular case of a porous

3used in the approaches based on boundary identification

11



isotropic medium. In order to discuss the precise mathematical settings of our
multiphysic system, we introduce the following spaces of functions defined by:

V([3) :={ve H(QN |v=0,onT%}, V(I}):={ge H(Q)|q=0,0onT%},

(23)
where ', and I’ £ represent the homogeneous Dirichlet boundaries for the solid
and fluid systems, respectively. We consider the subspace:

H'2(Ty) = {vlry, | v € V(IH)}, (24)

and its dual space H~1/2(I'%;). Using the Biot-Darcy’s law (21), our fluid model
is then defined by:

—div(K*Vp) =0 in Q,

_ !
P = DPin on I'p,
(Biot-Darcy) ? (25)
qr . n = f on I'y,
ar.n=0 on I = 90\ (T}, UT%),

where f; € H™Y/ 2(Ff\,) (satisfies a compatibility condition of equilibrium) is
the enforcement of flux load on the part of its boundary I‘{V, i.e.: the enforce-
ment of a Neumann boundary condition, and p;, is the loading pressure on the
part of its boundary I‘fD, i.e.: the enforcement of a Dirichlet boundary condi-
tion. Thus, by a straightforward integration by parts, p € V(FfD) is the unique
solution (up to a constant function) to the variational formulation defined by:
Vg € V(Fg)

K*((JS)Vp.quz—/f frqds=0 (26)
Q s,

where K* is the homogenized permeability. Next, we weakly coupled the
solution p of the fluid model (25) to the linear-elasticity problem defined by:

—div(o) = —bVp in Q

oc.n=fs on I'Y,

(Biot-Coussy ) u =0 onI's) (27)
o.n=0 on I'* = 9O\ (T'3, UTS,),
o= A*e(u) e(u) = 3(Vu+ V'u),

where u € V(I'%,) is the unique solution (up to rigid displacement field). Here
u is the homogenized displacement vector and o is the associated Cauchy
stress field. The vector function f, € H~!/ 2(T%,) is the body force applied
on its boundary I'};, with a clamping of part on its boundary I'},. Wherein,
the coupling is weak because the equations are solved consecutively, i.e.:
first, the Biot-Darcy model, then the linear poro-elasticity model. Thus, by a

12
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straightforward integration by parts, u is the unique solution to the variational
formulation defined by: Vv € V(I'$,)

/ A%e(u) . e(v) do — fsvds —|—/ bVp.vde =0 (28)
Q rs, Q

For the remainder of this paper, we weakly solve the variational formulations
of the fluid-structure model equations.

4 Topology optimization problem formulation

Here, we follow topology optimization of modulated periodic microstructures
using the homogenization method. A composite design is described by the local
density 6(x) of the material and the homogenized tensor A*(z), that depends
on the microstructure at the point x € €2, in the design domain. We restrict
ourselves to 2-d setting and restrain our analysis to a simple class of composites
already used in [28], i.e., composites are periodically perforated by an hexag-
onal cell: a regular unit hexagon perforated by smooth hexagon hole, known
as smooth honeycomb cell. This class of modulated periodic microstructures
is known to be isotropic microstructures (or atleast very close to one): this
assumption is numerically displayed on Fig. 3.

4.1 The Homogenized Hooke’s laws

We denote by Y, the periodic smooth honeycomb cell. It is similar to the
classical honeycomb cell, except that its interiors corners of its regular hexagon
hole are rounded: see, Fig. 1(a). Consequently, when the density 6 € [0, 1] tends
to one, its central smooth hexagon hole tends to a circle with a diameter going
to zero. However, because of its rounded corners, the smooth honeycomb cell
can not reach completely void, i.e.: # going to zero is excluded. In addition, this
smooth honeycomb is not parametrized using its density 6, for practical reason,
but another parameter h € [0, 1], homogeneous to a distance. Indeed, in order
to design this kind of cell, a parametric curve I'j, depending on h is introduced
and represents the boundary of its smooth central hole. We introduce some
notations before giving its polar equation. Let v(t) = (cos(t),sin(¢))? and n;,
with i € {0,1,2} represent the normal vectors of the three diagonals of Y (h),

defined by
0 V3 V3
ng = s, o= 3], ne=| 2 J. (29)
1 2 -2

Next, the polar equation of I'y, is defined by:

r(t) = h\f(; lu(t) . ni|k'(h>)k?i> with ¢ € [0, 27], (30)

where k is positive coefficient, which depends on h. In this work, we took
k(h) = 4+ 20h?. We emphasize that h, is homogeneous to a distance and it is

13



similar to the parameter

mz?(l—\/m)7

which denotes the relative width of bars with respect to the size of the periodic
cell Y(h).

Now, the polar equation of I'y relies on the following remarks and can be
extended to other polygons. Let H be a a regular unit hexagon. By definition,
‘H is the set of all points such that, the maximal distance of a point in H
from the three diagonals is equal to @ Let M (r,t) be a point, with its polar
coordinate denoted by (r,t). Thus, M is a point in H if and only if, its polar
coordinate (r,t) satisfies

rm?x|v(t) AES ? (31)

Consequently, the polar equation of H verifies

r(t) = ?(mlax lu(t) . ni]) 7L (32)

In addition, we recall that

2

O @) nil*) T —hsee max [v(t) . - (33)
=0

The polar equation of I';, comes from combining the polar equation of H and
the above limit. The parameter h is added in order to adjust the diameter
of its inner hole. The interest of the smooth honeycomb relies on its smooth
rounded corners, known to generate lower local concentration stress ([31, 32]),
compare to the classical honeycomb.

The structure of the periodic cell Y as well as its Hooke’s law are qualitatively
similar to the celebrated Vigdergauz hexagonal cell [33], which is known to
generate extreme composite microstructures, in the sense that they minimize
the energy. Moreover, we do not claim that the smooth honeycomb can reach a
particular elastic properties. The announced goal consists in reducing the stress
concentration localized around the sharp corners of the classical honeycomb.

14



4 TOPOLOGY OPTIMIZATION PROBLEM FORMULATION 15

) Classical honeycomb ) Smooth honeycomb

Fig. 1 Isotropic design cells (images taken from [28])

For sake of clarity, few important results on the theory of homogenization are
recalled hereafter, the interested reader should refer to textbook [34], for details
and explanations. Assume that, in a given macroscopic domain 2, there is a
periodic distribution of holes inside an elastic isotropic phase, with constant
elastic tensor A. The periodicity size is denoted by € > 0, wherein the rescaled
periodicity cell Y(h) is the unit smooth honeycomb. Inside this unit periodic
cell, the solid phase is the subset Yy(h), where its complement being the hole
with boundary T'p,: see, Fig.1(b). Whenever e tends to zero, the porous medium
can be considered homogeneous, with an effective tensor A*(x). To compute
the homogenized tensor A*, one needs the so-called correctors w;;, correspond-
ing to the local displacements in the periodic cell Yy(h), defined for each pair
(i,7) € {1,2} as the solutions to the following set of equations defined by:

div(A(eij + e(ww))) =0 in Y()
Ale;j+e(w;;)) . n=0 only (34)
Y — w;;(y) Y, periodic,

where e;; = %(ei ®e; +e; ®e;) is the basis of the symmetric tensors of order
2 and n is the normal vector to the interior boundary I'j, of Yy(h). Thus, the
variational formulation associated to (34) is defined by: find w;; € Hj (Yo, R?)
such that

Vo € Hy (Yo, R?) Ae(wgj) @ e(¢) + [ Aeyy : e(d) =0, (35)
Yo Yo

which admits a unique solution (up to a rigid displacement field). The entries
of the homogenized tensor A*(z) is then given in terms of the correctors w;;,
solutions of (35), defined by:

1 .
ikl = V/y Aleij +e(wig)) = (em +e(wr)) dy Vi, j, k1€ {1,2}  (36)

15



where the symbol # denotes the periodicity of the solutions w;;. We empha-
size that in (36), the coefficient is divided by the volume Y(h). Generally, the
volume Y(h) is taken unitary in order to bypass this point. Restricting the
analysis to periodic composites is an acceptable limitation, as the set Hooke’s
laws of periodic composites is dense in the set of all possible Hooke’s laws
reachable with composites [34]. However, restricting the set of periodic com-
posites to regular hexagon cells with perforated smooth regular hexagon holes,
i.e., smooth honeycomb, is clearly a loss of generality. Exploring a larger range
of periodic microstructures is an obvious line of research for future work.
Since the considered cell Y'(h) is specifically chosen in order to design an
isotropic composites, only two coefficients of the homogenized tensor A* (e.g.,
Af99 and A%yq5) could be computed in order to fully characterize A*. However,
to confirm the isotropy of A*, we computed all the its coefficients. Moreover,
to demonstrate that the honeycomb cell Y'(h), is isotropic or at least very close
to one, the range of # is regularly discretized with 50 triangular elements. A
linear material model with Young’s modulus E = 12 x 10°Nm~2 (i.e., 12GPa)
and Poisson’s ratio ¥ = 0.35 were considered.

Remark 2 We emphasize that, the void (i.e., § = 0) is fill with a very compliant
material, like in the SIMP method in order to avoid singularities of the effective
tensor when the elasticity problem is solved; its elastic phase A,,;, is equal to €A,
where herein, we took € = 1074

We recall that, the homogenized tensor A* is isotropic, thus, it is defined as:

2

where x* and p* are the bulk and shear moduli of the homogenized Hooke’s
law A*, with its Lamé coefficient defined by \* = k* — 2% Moreover, its
entries are given by

wr = A’?jij
A= AL vi,j €{1,..,N} (37)
* 2
K =A%+ 5 AL
The isotropy of the homogenized Hooke’s law A* implies some equalities
between its coefficients, i.e.:

Z‘jk =0
A*. = A*.
Vi, 3, k,l,p € {1,2} Ai’“ B A{f” (38)
iiji — “Ykkll

A = A+ A

1148 ij17 lpp
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4 TOPOLOGY OPTIMIZATION PROBLEM FORMULATION 17

Numerical results

Fig.2 depicts the relative errors to those equalities in (38), computed for dis-
crete sample of material density 6: see, Fig.4. Furthermore, as it is known in
[35] that any isotropic two-phase composite material is bounded by the Hashin-
Shtrikman bounds, thus the homogenized bulk x* and shear p* moduli of A*
were also computed in order to confirm this assertion.

Remark 8 We recall that, the upper Hashin-Shtrikman bounds for the homogenized
bulk kg and shear g moduli are given by

— _rpd —_ ru ‘ol
kHS = K+p—r6? HHS = 2(k+p)—(k+2u)0 in 2-D, (39)
Kig = it = (On+8u)ub in 3-D
HS = 3k+4u—3r0° HHS = 5(3k+4p)—6(k+2u)0

T T T T T T
1.5 %10~ —— A%, || 15| x107* | —— Hashin-Shtrikman
—— Ao —— Smooth Honeycomb
1) 11 3
05 1 05F 3
0 [ | 0 | [ I |
0 02 04 06 08 1 0 02 04 06 08 1
0 0

Fig. 2 Isotropy of the smooth honeycomb, i.e.: the maximum residual errors of equalities
in 38

In each case, the coefficients are smooth increasing functions of the mate-
rial density 6, which ensures that the optimization process will converge. We
emphasize that, k* and p* are closed to the upper Hashin-Shtrikman bounds:
see, Fig.3.
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K H

2 0 I I

—— Hashin-Shtrikman —— Hashin-Shtrikman
—— Smooth Honeycomb —— Smooth Honeycomb

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 3 The bulk x* (left) and shear p* (right) moduli of the smooth honeycomb wrt.
Hashin-Shtrikman bounds

(a) 6 = 10% (b) 6 = 50% (c) 6 = 80%
Fig. 4 The Smooth honeycomb cell for different values of to the density 6

4.2 The homogenized conductivity tensor

As in 4.1, starting from a microscopic description of a problem, one seeks a
macroscopic or effective model problem in conductivity K*, we introduce the
so-called cell problems and since the considered cell Y is specifically chosen in
order to design isotropic composites, only one of its coefficient (e.g., (K*)11)
could be computed in order to fully characterized K*, a scalar value. However
to confirm the isotropy, we computed all its coefficients. We denote by (e;);=1,2
the canonical basis of R2. For each unit vector e;, we consider the following
conductivity problem in the periodic cell Y:
—div(K(e; + Vw;))) =0 inY (40)
y — w;(y) Y periodic,

18



4 TOPOLOGY OPTIMIZATION PROBLEM FORMULATION 19

where w; (y) is the local variation of pressure created by an averaged (or macro-
scopic) gradient e;. The homogenized conductivity tensor K* is then given in
terms of the correctors w;, solutions of (40), defined by

(K*)ijzé/yK(eiJrVwi) ey + V) dy Vije{1,2)  (41)

The constant tensor K* describes the effective or homogenized properties of
the heterogeneous microstructure of periodic size e. Likewise, note that K*
does not depend on the choice of domain (2, source term ff, or boundary
condition on 0f2.

Numerical results

The constant tensor K* has been computed for the hexagonal cells in 2-d, on
the same scheme as the homogenized tensor A*(0) for different values of the
density. Figure 5 displays the homogenized flow coefficient K* computed for a
discrete values of the density with respect to the hexagonal cell and normalized
smooth function given by (15). As expected, K* is a decreasing function with
respect to the density . It is noted that the residual |(K*)11 — (K*)a2| < 1076
and (K*)12 < 1073, for the hexagonal cell, which validates the isotropy. We
emphasize that the flow coefficient K* can be approximated by the normalized
smooth function, that is defined by (15).

1

0.9 She -]
0.8

0.7
0.6 |
0.5
0.4 F
0.3
0.2
0.1 5
0 I e s S Y AR IS EN PPN
0 0.1 0203040506 070809 1
0

Fig. 5 The homogenized flow coefficient history wrt. the Smooth honeycomb (S-hc) and
normalized smooth function (N-sf) in (15)

| | |
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5 Sensitivity analysis

Here, we present the optimization problem formulation associated to fluidic-
pressure loaded structures and discuss the sensitivity analysis for such design
problems. The standard formulation, namely the minimization of compliance
is considered to design pressure loaded stiff structures, where the optimization
problem is given by the constrained formulation:

min  ¢*(0) (42)
0<6<1
&7 Jo 0 do=0

where ¢*(0) is the relaxed objective function defined by:

c*(9) := - fs - uds+ /Q(—pr) Ludr = rHelgt { A*gglel(;e/QA*ilT T dw},
(43)

with Hy defined by

—div(r — bpls) =0 in Q
Hy = {TGLQ(Q; M) | S 7.n=fs on I'§; } (44)
7.n=0 on I'®

wherein, I'* = 9Q\I'%; is the free part of boundary 9. We recall that, we
only explicitly compute the optimization process on a subset of of all possible
Hooke’s laws Gy, i.e.: composites periodically perforated by smooth honeycomb
cell. Therefore, the set of effective elasticity tensors {A*(0) | 6 € L>(£, [0, 1]}
has to be characterized. The proposed strategy consists in computing the mate-
rial properties for a discrete sample of parameter values and using the collected
data to construct a surrogate model for the constitutive law (by a simple linear
interpolation). Next, the optimization problem (42) is recast as follow:

mginc*(ﬂ) :ngn/ﬂA*(G)e(u) :e(u) dx, (45)

where u is the unique solution to the coupled fluid-elasticity problem given by

(1) —div(KVp)=0
(1) —div(A*e(u)) = —bVp (46)
(ii7) ﬁ Jo0dz =0

where © is the prescribed volume fraction. Note that, all mechanical equilib-
rium equations are satisfied under small strain assumption. The optimization
problem is then solved using the alternate minimization algorithm [34], which
consists in minimizing successively the stress tensor through the solving of the
coupled fluid-elasticity problem and then the density 6 through a projected

20



5 SENSITIVITY ANALYSIS 21

gradient method: it is an algorithm based on optimality criteria. We empha-
size that, the boundary value problems in (46) are solved in each iteration in
combination with the respective boundary conditions.

In a gradient-based topology optimization, it is essential to determine sensitiv-
ities of the objective functional and the constraints with respect to the design
variable(s). In general, the formulated objective functional depends upon both
the state variable u, solution to the mechanical equilibrium equations and the
design variable(s). In order to discuss the precise mathematical settings, we
introduce the following set of admissible design variables U, 4, defined by

Upg = {9(1‘) € L*(Q) | 6(x) € ]0,1],Vz € Q} (47)

We define the applications § — u(f), 8 — p(0), where 8 € U,q is associated
to the solution {u(f),p(8)} € V(I's)) x V(I‘Jg) of the state equations (under
volume constraints):

(i) —div(K(0)Vp)=0
(1) — div(A*(0)e(u)) = —bVp (48)
(ii7) ﬁ Jo0dz=0

As already known [36], the above maps are continuous and differentiable in

Uad, where the directional derivative at 6 of u(f) and p(¢) with respect to
0 € L>=(Q) are defined respectively by:

<p'(e),§> =5, <u'(9),§> — g, (49)

where p € H}(Q) and @ € Hi(Q)? are the unique solutions (up to constant
functions) to the system given by:

{(i) — div(K(0)Vp) = div(KVp) (50)

(ii) — div(A*(0)e(n)) = div(A*e(u)) — bVp — bVp,

K=<K'(0),0>, A*=<(A")(0),0> and b=<¥b(0),0> (51)

represent the directional derivatives at  with respect to 6.

Proof Here, we only give the main results, the reader is referred to [36] for a complete
proof. Let (0,0) € Uyg x L>(S2). For all t > 0 small enough, 6(t) = 6 + tf belongs to
Uyq. Thus, p(t) = p(6(t)) and a(t) = u(6(t)) are solutions to the system given by:

{(z’) — div(R(t)VP(H) =0 52)
(i) = div(A*(©)e(a(t))) = ~b(t) VA(t)



where, R A . .

K(t) = K(0(t), A*(t)=A"(0(1)
We then derive the system (52) with respect to the variable ¢ and the resulting
derivatives are evaluated at ¢ = 0 in order to get the obtained system (50). O

As already known [36], the objective functional given by:
c*(0) = fs.u ds—l—/ (=bVp) . udx = / J1(uw) ds+/ Jo(u,p) dzx (53)
I'n Q I'n Q

is differentiable and the directional derivative at 6 with respect to 6 is given by:

(c"(0),0) = /F

wherein, p € H}(Q) and @ € H}()? are the unique solutions to the equations
(50), respectively. Unfortunately, equation (54) is unusable in practice,
because we cannot deduce a simple expression of the derivative e (0). Indeed,
@ and p are linear functions with respect to 6, which are non-explicit. To cir-
cumvent this issue, the presented Biot-Darcy-based TO method facilitates use
of adjoint-variable method to determine the sensitivities, which is performed
using the Céa method.

We introduced the Lagrange multiplier for the constraints (48), associating
{p(0),u(0)} to 0, which is {p,u,l} € H}(Q) x H}(Q)? x R**, where £ is the
Lagrange multiplier designed to respect the volume constraint. In addition, an
augmented performance function known as the Lagrangian £ can be defined
using the objective function and the mechanical state equations defined by:

PN P _ 0jo _
’uuds—l—/fu, udx—|—/fu, dz 54
NJ1() Qau( p) ) ap( p)p (54)

L0, 2.5,5,0) =" (0) + / i(~div(A*(0)e(@)) + b() V) da
- A (55)
+ /QB(*dlv(K (0)Vp)) dz + é(/Q 0 dz — ©),

wherein, (6,1, 4, p,p) € L>®() x H} (€ R2)2 x HL(Q; R)? are independent

variables. We emphasize that the compliance ¢*(#) depends upon the state
variables u and p. By straightforward integration by parts, we get

L0500 = O+ [ (A Deli) = e(@) + 405 ) da
A (56)
Jr/QK VP.VBd$+€(/Q€d:L'7@),
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5 SENSITIVITY ANALYSIS 23

Next, the sensitivities are evaluated by differentiating (56) with respect to u
and p in directions ¢, € H'(2)? and ¢, € H'(2) defined by:

\@

<g§(é DD €)7¢u> = —/Qb(é)Vp.qsu+/QA*(é)e(¢u) . e(@) dz (57)

and

oL ; ) . A
<(0,...,),¢p> :/Q(fbVqu).uder/Qb(Q)Vqﬁp.y +/QK Vo, . Vp da

op
(58)
which when it vanishes, is nothing more than the variational formulation asso-
ciated to adjoint-state. Furthermore, the derivatives with respect u and p in
directions ¢, € H'(2)? and ¢, € H'(2) are simply the state equations defined
by:

(Getb.anppt.on) = [ (ac@) s ) arrovp.0.). 69

and

oc .
<3p(9 i, 4, . )<z>p> | 575 Vo, o (60)

which when it vanishes, is nothing more than the variational formulation asso-
ciated to state equations (48). Finally, the partial derivative of the Lagrangian
L with respect to 6 in direction 8 € L*°(£; R) at the stationary point

(u,u,p,p) is defined by:
dr - 6A*

HA* OK* 0b _
(e(u)T 50 e(u) + aeVp.Vp—&—aeVp.u—Fﬁ))de

Load sensitivities

(61)
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6 Topology optimization over composite
materials

6.1 Alternate minimization method

This section presents the proposed numerical algorithm, which is based on
the homogenization method. The key idea is to compute composite designs
for the relaxed formulation rather than ”classical” designs, which are merely
approximately optimal for the original formulation. Our optimization problem
is solved using the alternative minimization algorithm. We seek minimizers of
sum of the elastic compliance, fluid-elastic compliance and of the weight of a
solid structure under fluidic pressure loads.

6.1.1 Minimizing over the stress field.

Minimization over the stress field ¢ consists in solving the linear elasticity prob-
lem (27) over the effective tensor A*(x), for given design 6(x) of microstructure
periodically perforated by the smooth honeycomb cell. Consequently, the linear
elasticity problem (27) can be recast as a variational problem defined by:

veV(Ip), /

A*(@)e(u) : e(v) de = fs v ds—i—/ (=bVp) . v dx (62)
Q rs, Q

which numerically is solved using P; finite elements to compute the displace-
ment vector field u.

6.1.2 Minimizing over the density field.

Minimization over the density field 6 for a given stress tensor o is performed
using the projected gradient algorithm. The minimum compliance problem
defined by (43) is not a self-adjoint, hence one needs to define the associated
adjoint problem, which we define herein using the Céa method presented in
sect.(5). The descend direction h = d#f is given by solving the bilinear equation:

0A* OK* b
(e(u)T 50 e(u) + 20 Vp.Vp+ %(G)Vp.quﬂ))hdx,

(63)

Load sensitivities

where the descend direction h = df, has to satisfy the inequality given by:

<g§(9,u,u,p,p7 5),d9> <0 (64)
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6 TOPOLOGY OPTIMIZATION OVER COMPOSITE MATERIALS 25

which is achieved by choosing:

9= (= et g etw) + (et G et + 5V Vot 070w ) )

Load sensitivities

(65)

At iteration n, the optimal density 6 is then updated by performing the
projected gradient:
0" = Py 1)(0™ + 6db), (66)

where § > 0 is the step size and P 1) is the projection operator on the interval
[0,1]. The value of the Lagrange multiplier ¢ is computed at each iteration by
a dichotomy process designed to respect the volume constraint. We emphasize
that the exact value of ¢ can not be analytically given because of the projection
operator: numerically, the partial derivative of the Lagrangian aﬁ is regularized
using an equivalent H'-norm by solving the following varlatlonal formulation:

_OK* Ob
50 Vp.Vp——Vp. u—é))hdx,

a0
(67)

where 7 is a small coefficient, which typically depends on the size of the
elements of the mesh: thanks to this coefficient, we are able to numerically
regularize the partial derivative on a length scale of order n and to limit the
checkerboard effect on the density 6, similar to those reported in [37-39]. In
practice, we use an adaptive step size d, which consists in increasing § by 20%, if
the newly computed homogenized structure is accepted: if current compliance
is lower than the previous one, else 4 is divided by 2.

6.1.3 Volume constraint.

As explained in sect. 2, we do not known how to determine ¢ beforehand.
As such, an alternative computations were performed, where the Lagrange
multiplier ¢ is adjusted at each iteration, so that the corresponding value of
the optimal density satisfies the volume constraint. In other words, once the
stress o™ is computed through (62), we determine 6™ through (66) and then
0™ is determined through a simple iterative procedure, namely by dichotomy.

6.2 Implementation

This section presents our complete optimization process to perform topol-
ogy optimization of structures under fluidic pressure loads and some general
difficulties related to the homogenization method.
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6.2.1 Complete optimization algorithm.

The Alternate direction algorithm is an iterative method, structured as follows:

Algorithm 1

1. Initialization of the design variable 6 such that :

C)
VreQ 0%x) =
Jo 1 da

2. ITteration until convergence, for n > 0 :

(a) Computation of the state variable p™ through the Biot-Darcy problem
(25), with design variable (0™ (z), A*(x))

(b) Computation of the stress tensor o™ through the linear elasticity problem
(27), with design shape (6™(x), A*(z))

(¢) Computation of the descend direction df™ for the stress tensor ¢™ using
formulas (64-67)

(d) Updating the design variable §”*! using formulas (65) for the descend
direction df™ and then updating the effective tensor (0"+!(z), A*(x)),
by linear interpolation.

Note that, the alternate direction algorithm is apparented to the two known
methods in [40-42].

6.2.2 Convergence criterion.

The procedure is iterated until the quantity

max(<max<|en+1_av> L Jo AN ot s ot de 0 [ 67 dm)

Jo AL (Om)om o da+ L [, 0" da

becomes smaller than a preset threshold. About 100 iterations are required to
reach a criterion of order 107°. Other convergence criteria could be used, for
instance the L2 norm of ¢"t! — o™,

7 Numerical results and discussion

To demonstrate that evaluation of the consistent nodal loads seen in sect.3
from the obtained pressure field produces physically correct results, various
(benchmark) design problems involving fluidic pressure loaded stiff structures
and small strains are solved to show the efficacy and robustness of the pro-
posed method, while minimizing the sum of the elastic compliance, fluid-elastic
compliance and of the weight of a solid structure. Any change in the value of
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7 NUMERICAL RESULTS AND DISCUSSION 27

considered parameters is reported within the definition of the problem formu-
lation. The above algorithm has been implemented in FreeFem++-[43], where
all the unknowns are discretized using P; finite elements. For all our compu-
tations, a linear material model with Young’s modulus E = 12 x 109 Nm ™2
and Poisson’s ratio v = 0.35 are considered. The void (i.e., # = 0) is replaced
with a very compliant material: namely, the smallest admissible value of @ is
fixed at 1.e — 3, in order to avoid singularities of the effective tensor when the
elasticity problem is solved.

7.1 Pressurized arch

This example was originally introduced and solved in [11, 23]. A structure with
dimensions 0.2m x 0.1m is fixed at the edges of its left and right bottom on a
zone of width %, while a pressure load p = 1 bar (i.e., 1 x 10° Nm~—2) is applied
to the bottom and vanishes on the boundary Fgo (i.e., p|F]J;0 = 0): see Fig.6
for a schematic of this test case. The workspace € is discretized with 44492
triangular elements. Evidently, prior to the analysis, the force contribution
from the prescribed pressure appears only in y-direction.

On Fig.7, we plot the objective function history for this calculation: smooth
and relatively fast convergence is observed; while Fig.8 displays the output of
the alternate minimization algorithm for a volume fraction set to © = 20%,
with the resulting pressure field, deformed mesh, and von Mises stress at the
final state. The density 6 is represented with a gray scale: areas where 6 = 1
are black (pure material), whereas white regions correspond to voids.

The topology of the result is similar to that obtained in previous literature [23],
for similar problems with different design and optimization settings. Although
one can guess a “shape” on the edges of the structure, its center contains a
large composite zone.

L,=02m
AN
TG
Tf
L,=0.1m Po

Fig. 6 Setting for fluid-elastic compliance minimization problem of 7.1 issued from [11, 23]

27



DO
o
"

L

Performance

=
e}
T
|

| |
0 50 100 150
Iterations

Fig. 7 Convergence history for fluid-elastic compliance minimization problem of Section 7.1

(a) Density (b) Pressure

(¢) Deformed mesh (d) von Mises

Fig. 8 (a) The optimal density, (b) pressure field, (c¢) deformed mesh, and (d) von Mises
stress for test case 7.1
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7.2 Pressurized piston

This second test case was originally introduced and solved in [15, 23]. The
workspace is a 0.12m x 0.04m rectangle, fixed on the boundary I'},, while
submitted to pressure load p = 1 bar on the upper boundary I‘g and vanishes
on boundary I‘I{U: see Fig.9 for a schematic of the test case. The volume fraction
is set to © = 30%. It is desired to find a stiffest optimum design ”shape” which
can convey the applied pressure loads on the upper boundary to the lower
fixed support readily.
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Fig. 9 Setting for fluid-elastic compliance minimization problem of test case 7.1 issued from
(15, 23]

On Fig.10, we plot the convergence history for this calculation: smooth and
relatively rapid convergence is observed; while Fig.11 depicts the optimal den-
sity and the pressure field, deformed mesh, and von Mises stress at final state.
The topology of the result is similar to that obtained in previous literature
[9, 20, 21, 23], for similar problems with different design and optimization set-
tings. It is noted that, from a relatively diffused initial interface, the boundary
exposed to pressure loading is gradually formed during the optimization pro-
cess. Although one can guess a "shape” on the edges of the structure, its center
contains a large composite zone.
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Fig. 10 Convergence history for the fluid-elastic compliance minimization problem of
Section 7.2

(a) Density (b) Pressure

0.0016544

(¢) Deformed mesh (d) von Mises

Fig. 11 (a) The optimal density, (b) pressure field, (c) deformed mesh, and (d) von Mises
stress for test case 7.2
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7.3 Pressurized MBB

In this test case, the structure to be found is submitted to pressure load p;, = 1
bar on the boundary I‘]J; , while its boundary I'}; is clamped. The workspace
Q is sketched on Fig.12: a rectangle of dimensions 0.3m x 0.1m. The domain
is discretized with 43440 triangular elements, where the volume fraction is set
to © = 30%. Note that, this example has already been investigated by several

authors in the case of structural design under mechanical loading.

Pin
rf
ry L,=01m
rf,
L L,—03m

[ 1

Fig. 12 Setting for fluid-elastic compliance minimization problem of Section 7.3

on Fig.13, we plot the convergence history for this calculation: smooth and
relatively fast convergence is observed, while Fig.14 displays the topology of
the final design and the resulting von Mises stress, pressure field and deformed
mesh under pressure loads at the final state. Very interestingly, we retrieve the
fact that the topology of the result is similar to that obtained in the case of
mechanical load.
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Fig. 13 Convergence history for the fluid-elastic compliance minimization problem of
Section 7.3
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(a) Density (b) von Mises

(c) Pressure (d) Deformed mesh

Fig. 14 (a) The optimal density, (b) von Mises stress, (c) pressure field, and (d) deformed
mesh for test case 7.3

7.4 Two dimensional counter-flow exchanger

In this example, the structure to be found is a two-dimensional counter-flow
exchanger of dimensions 2 x 2.2. The setup is seen in Fig.15 and consists of
a fluid inlet of density g ,, in the lower-left part of the domain, with the
corresponding outlet pressure on the opposite lower-right side; also, another
fluid inlet of density g, is located at the upper-right side of the domain,
with the corresponding outlet pressure at the opposite upper-left side. All the
other boundaries in this device are insulated from the outside: zero Neumann
boundary conditions hold for the pressure (i.e., %Z = 0), while homogeneous
Dirichlet boundary conditions are applied on the boundary of a small non
optimizable rectangle w of dimensions 2 x 0.2. The numerical values of the
parameters involved are displayed on Fig.16.

Our aim is to achieve a trade-off between the minimization of the compliance
imposed by the fluid and the maximization of the hydraulic strain energy,
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subject to the volume constraint (or not), that is:
J*(0,u(f)) = « </ A%e(u) : e(u) dm) +(1—-a) <— / K*Vp.Vp alx)7
Q Q

Elastic strain energy Hydraulic strain energy

st { by Jo 0 do = ©
(68)

where a € [0,1] is termed as a weighting factor: it measures the relative weight
given to each term in (68). The objective functional J*(#,u(#)) corresponds
to the internal energy stored inside the structure. Here, we consider to two
configurations, i.e.: (i) a test case with volume constraint set to © = 20%, first
and (i4) test case without volume constraint, second, for several values of a.

iy =04
Fﬁ,:%:qog FfD:p:po
!B:uzO
I} :p=po Iy %2 =g
ly,=04]

Fig. 15 Setting of the 2-d counter-flow exchanger 7.4. The brown layers at the walls stand
for zero Neumann boundary conditions for the pressure (i.e. op — 0); homogeneous Dirichlet

» On
boundary conditions hold on dw. "
Po 90,1 90,2
1.5 3 5

Fig. 16 Numerical values of the physical parameters in the 2-d counter-flow exchanger test
case in Section 7.4

Fig. 17 to Fig. 18 display the optimal densities for a sweep of « for the two
configurations, i.e.: with or without volume constraint. Very interestingly, we
retrieve the fact that the topology of the results contains a large composite
zone, where the force contribution induced by the fluid appears in all directions,
which evidently, prior to the analysis is expected. For this latter, the corre-
sponding objective history for the two configurations are depicted on Fig. 19
to Fig. 20. On Fig. 21, we plot the final volume with respect to « for the sec-
ond configuration (i.e.,with volume unconstrained), while on Fig. 22 to Fig. 23,
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we show the convergence history for o = 1/2 for the both configurations. On
Fig. 24, we display the corresponding pressure field for both configurations,
with o = 1/2.

/L"T

) a=0.25 (b) o = 0.40 ) a=0.50 (d) a=0.77
(e) a = 0.80 (f) a =0.85 (g) o = 0.90 (h) a = 0.95

Fig. 17 The Optimal densities for a sweep of «, with volume fraction © = 20%

) a=0.25 (b)a—040 ) = 0.50 (d) a=0.77

(e) @ =0.80 ) a=10.85 ) a=0.90 (h) @ =0.95

Fig. 18 The Optimal densities for a sweep of «, without volume constraint
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a 0.25 0.40 0.50 0.77 0.85 0.90 0.93 0.95

J*(a) | =451 | —0.06 | 0.962 | 5.055 | 5.025 | 6.533 | 10.17 | 0.163

Fig. 19 The converged objective function wrt. o, with volume fraction © = 20%

e’ 0.25 0.40 0.50 0.77 0.85 0.90 0.93 0.95

J*(a) | —4.51 | —2.54 | —1.83 |—0.57 |—0.55 |—1.47 | 0.026 | 0.286

Fig. 20 The converged objective function wrt. «, without volume constraint

0.5 y

0.2 b

! ! ! !
0.2 0.4 0.6 0.8 1
«

Fig. 21 The final volume history wrt. «, in the second configuration, i.e., without volume
constraint.

We note that, in both configurations, namely when the optimization is sub-
jected to a volume constraint or not, the topology of the optimal design is
« dependent, namely, for all a € (0,0.40), the topology tends to maximize
the hydraulic strain energy, which in process minimize the output pressure,
whereas for all & € [0.40, 1), the topology of the result tends to achieve a trade-
off between the minimization of the compliance induced by the fluid and the
maximization of the hydraulic strain energy, which evidently is what we intent
to achieve for this optimization problem. However, in the second configuration
(i.e.,without volume constraint), we emphasize a gain of volume fraction but
not necessarily a gain in performance, see Fig. 20.
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Fig. 22 The convergence history wrt. o = 1/2, for volume constraint © = 20%
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Fig. 23 The convergence history wrt. @ = 1/2, and with no volume constraint

(a) with volume constraint (b) without volume constraint

Fig. 24 The pressure field at final state for both configuration: with and without volume
constraint, for o = 1/2
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8 Conclusion and perspectives

In this paper, a novel approach to perform topology optimization of design
problems involving fluidic pressure loaded structures was presented using the
homogenization method. The approach permits use of standard finite element
formulation and does not require explicit boundary description or tracking.
As the fluidic pressure loads vary with the shape and location of the exposed
structural boundary, a main challenge in such problems is to determine design-
dependent pressure field and its design sensitivities. In the proposed method,
Biot-Darcy’s law is used to define the design dependent pressure field by solv-
ing an associated PDE using the standard finite element method. The porosity
of each FE is related to its material density via a smooth enough function to
ensure a smooth transition between void and solid elements. The Biot’s coeffi-
cient is also related to material density, explicitly defined in the case of isotropic
porous medium, where the determined pressure field is further used to find
the consistent nodal loads. In the early stage of the optimization, the obtained
nodal loads are spread out within the design domain and thus, may enhance
exploratory characteristics of the formulation and thereby the ability of the
optimization process to find well-performing solutions. Furthermore, the Biot-
Darcy’s parameters, selected a priori to the optimization, affect the topologies
of the final density. The method facilitates analytical calculation of the load
sensitivities with respect to the design variables using the computationally
inexpensive adjoint-variable method. This availability of load sensitivities is an
important advantage over various earlier approaches to handle pressure loads
in topology optimization. In addition, it is noticed that consideration of load
sensitivities within the approach does alter the final density designs, and that
the load sensitivities terms are particularly important when designing pressure
loaded structures. Moreover, in contrast to methods that use explicit boundary
tracking, the proposed Biot-Darcy method offers the potential for relatively
straightforward extension to 3D problems. The effectiveness and robustness
of the proposed method is verified by minimizing the sum of the elastic and
fluid-elastic compliance, and of the weight of a solid structure under pressure
loads. The method allows relocation of the fluidic pressure-loaded boundary
during optimization, and smooth and steady convergence is observed. Exten-
sion to 3D structures and to liquid-liquid heat exchangers problems are prime
directions for future research.
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