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ON THE ENUMERATION OF PLANE BIPOLAR POSETS AND

TRANSVERSAL STRUCTURES

ÉRIC FUSY, ERKAN NARMANLI, AND GILLES SCHAEFFER

Abstract. We show that plane bipolar posets (i.e., plane bipolar orientations with
no transitive edge) and transversal structures can be set in correspondence to certain

(weighted) models of quadrant walks, via suitable specializations of a bijection due to

Kenyon, Miller, Sheffield and Wilson. We then derive exact and asymptotic counting
results. In particular we prove (computationally and then bijectively) that the number

of plane bipolar posets on n + 2 vertices equals the number of plane permutations (i.e.,

avoiding the vincular pattern 2 14 3) of size n. Regarding transversal structures, for each
v ≥ 0 we consider tn(v) the number of such structures with n + 4 vertices and weight v

per quadrangular inner face (the case v = 0 corresponds to having only triangular inner
faces). We obtain a recurrence to compute tn(v), and an asymptotic formula that for

v = 0 gives tn(0) ∼ c (27/2)nn−1−π/arccos(7/8) for some c > 0, which also ensures that

the associated generating function is not D-finite.

1. Introduction

The combinatorics of planar maps (i.e., planar multigraphs endowed with an embedding
on the sphere) has been a very active research topic ever since the early works of W.T.
Tutte [44]. In the last few years, after tremendous progresses on the enumerative and prob-
abilistic theory of maps [9, 2, 21, 36], the focus has started to shift to planar maps endowed
with constrained orientations. Indeed constrained orientations capture a rich variety of
models [22, 20] with connections to (among others) graph drawing [40, 4], pattern-avoiding
permutations [3, 37] and the study of their permuton limits [7, 6, 5], Liouville quantum grav-
ity [34], or theoretical physics [35]. From an enumerative perspective, these new families
of maps are expected to depart (e.g. [23, 19]) from the usual algebraic generating func-
tion pattern followed by many families of planar maps with local constraints [39]. From
a probabilistic point of view, they lead to new models of random graphs and surfaces, as
opposed to the universal Brownian map limit capturing earlier models. Both phenomena are
first witnessed by the appearance of new critical exponents α 6= 5/2 in the generic γnn−α

asymptotic formulas for the number of maps of size n, e.g. the critical exponent α = 4
holds for plane bipolar orientations [33, 11], whereas the exponent α = 5/2 is known to be
universal [18] for undecorated map enumeration.

A fruitful approach to oriented planar maps is through bijections (e.g. [1]) with walks with
a specific step-set in the quadrant, or in a cone, up to shear transformations. We rely here on
a recent such bijection due to Kenyon, Miller, Sheffield, and Wilson [33], hereafter referred
to as the KMSW bijection, that encodes plane bipolar orientations by certain quadrant
walks called tandem walks, and that was recently used in the article [11] to obtain counting
formulas for plane bipolar orientations with control on the face-degrees. Precisely, we will
exploit the KMSW bijection to study the enumerative properties of two families of oriented
planar maps. On one hand, plane bipolar posets, which are plane bipolar orientations with
no transitive edges. These also correspond to so-called planar lattices (i.e., lattices admitting
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a planar upward drawing) equipped with a planar embedding so that the min and max are
both in the outer face. Planar lattices have been extensively studied, in particular a classical
result is that they are exactly the lattices of Dushnik-Miller dimension at most 2 (see [32]
and references therein), and an analog of the Kuratowski theorem characterizing planarity of
lattices has also been established [31]. On the other hand, transversal structures [26, 28, 24]
(also known as regular edge labelings) are specific partitions of the inner edges of maps (with
a quadrangular outer face) into two plane bipolar posets that cross at any inner vertex.
These are the topological embedded structures dual to rectangular tilings (as illustrated in
Figures 10 and 11).

Overview of the results. We show in Section 2 that the KMSW bijection can be adapted
to plane bipolar posets and transversal structures, by a suitable reduction of these models
to plane bipolar orientations with some decorations on the faces. Building on these special-
izations, in Section 3 we obtain exact enumeration results. In particular, we show that the
number bn of plane bipolar posets on n+ 2 vertices is equal to the number of plane permu-
tations of size n introduced in [10] and recently further studied in [12], and that a reduction
to small-steps quadrant walks models (which makes coefficient computation faster) can be
performed for the number en of plane bipolar posets with n edges, and for the number tn(v)
of transversal structures on n + 4 vertices with weight v per quadrangular inner face. In
Section 4 we then obtain asymptotic formulas for the coefficients bn, en, tn(v) (with v ≥ 0),
all of the form cγnn−α with c > 0 and with γ, α 6= 5/2 explicit. Using the approach of [8] we
then deduce from these estimates that the generating functions for en, tn(0), tn(1) are not
D-finite. We also briefly explain that, based on our asymptotic estimates on tn(v), random
transversal structures on n + 4 vertices with weight v per quadrangular face can be pro-
posed as a model that interpolates between a random lattice (in the regime v = Θ(1)) and
a regular lattice (in the regime v → ∞). Finally, in Section 5 we provide a direct bijection
between plane permutations of size n and plane bipolar posets with n+ 2 vertices, which is
similar to the one [3] between Baxter permutations and plane bipolar orientations.

2. Oriented planar maps and tandem walks in the quadrant

After general definitions and properties on plane bipolar orientations in Section 2.1, we
recall in Section 2.2 the KMSW bijection, which encodes plane bipolar orientations by
certain quadrant walks, while controlling the number of edges, vertices, and faces of each
type. Then, respectively in Section 2.3 and Section 2.4, we show how the bijection can be
applied to plane bipolar posets (in two different ways) and to transversal structures.

2.1. Plane bipolar orientations. A planar map (we refer to the survey [39]) is a connected
multigraph embedded on the oriented sphere. A rooted planar map is a planar map with a
marked corner, called its root. The root vertex (resp. root face) is the vertex (resp. face)
incident to the root, the root face is taken as the unbounded face in planar representations
(obtained by a projection from the root face).

In an orientation of a planar map, a corner c = (v, e1, e2) is called lateral if one of e1, e2 is
ingoing at v and the other one is outgoing at v, it is called extremal otherwise, i.e., if either
e1, e2 are both ingoing or both outgoing at v.

A plane bipolar orientation is a rooted planar map endowed with an acyclic orientation
with a unique source S at the root-vertex, and a unique sink N incident to the outer face.
The vertices S,N are called the poles of the orientation. It is known [14] that a plane bipolar
orientation is characterized by the following local properties (for orientations with S as a
source and N as a sink), illustrated in Figure 1:
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Figure 1. (a) A plane bipolar orientation. (b) The local conditions at
non-pole vertices. (c) The local condition at inner faces.
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Figure 2. A plane bipolar orientation of outer type (2, 0), and the cor-
responding quadrant tandem walk from (0, 2) to (0, 0) under the KMSW
bijection.

(B): Each non-pole vertex has two lateral corners (so the incident edges form two groups:
ingoing and outgoing edges).

(B’): Each face f (including the outer one) has two extremal corners, so that the contour
is partitioned into a left lateral path Lf and a right lateral path Rf that share their
origins and ends, which are called the bottom vertex and top vertex of the face.

The type of a face f is the pair (i, j) where i + 1 (resp. j + 1) is the length of Lf (resp.
Rf ). The outer type of a plane bipolar orientation is the type of the outer face, while the
pole-type is the pair (p, q) such that p+ 1 is the degree of S and q + 1 is the degree of N .

2.2. The KMSW bijection. A tandem walk is a walk on Z2 with steps in {(1,−1)} ∪
{(−i, j), i, j ≥ 0}; it is a quadrant walk if it stays in N2 all along. We use the usual
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terminology1 of SE steps for the steps (1,−1). On the other hand, every step (−i, j) in such
a walk is called a face-step. The KMSW bijection maps a plane bipolar orientation B to a
tandem walk staying in the quadrant. Letting (a, b) be the outer type of B, the tandem walk
starts at (0, a) and is drawn step by step while traversing B, by the following procedure.
We consider the rightmost ingoing tree for B, i.e., the tree T spanning all vertices except
N and rooted at S, where the parent-edge of every non-pole vertex is its rightmost ingoing
edge. Then, during a clockwise walk around T starting at the root (at S), we draw a SE
step when walking along a tree-edge away from the root, and we draw a face-step (−i, j)
when first entering an inner face of type (i, j), see Figure 2 for an example.

Theorem 2.1 ([33]). The KMSW bijection is a bijection between plane bipolar orientations
of outer type (a, b) with n + 1 edges, and quadrant tandem walks of length n from (0, a) to
(b, 0). Every non-pole vertex corresponds to a SE step, and every inner face of type (i, j)
corresponds to a face-step (−i, j).

2.3. Application to plane bipolar posets. For B a plane bipolar orientation, an edge
e = (u, v) ∈ B is called transitive if there is a path from u to v avoiding e. If B has no
transitive edge it is called a plane bipolar poset.

Claim 2.2. Let B be a plane bipolar orientation. Then B is a plane bipolar poset iff for
each inner face, its type (i, j) satisfies i ≥ 1 and j ≥ 1.

Proof. Assume B has such an inner face f , and w.l.o.g. assume that Lf has length 1.
Then Lf is an edge e = (u, v), and it is transitive since Rf avoids e and goes from u to v.
Conversely, assume B has a transitive edge e = (u, v), and let P 6= e be a path from u to
v such that the region enclosed by P + e is minimal. Then, by minimality, the interior of
P + e has to be a face, which has e as one of its lateral paths. �

A tandem walk is called E-admissible if every face-step (−i, j) has i ≥ 1 and j ≥ 1.

Proposition 2.3. The KMSW bijection specializes into a bijection between plane bipolar
posets of outer type (a, b), and E-admissible tandem walks from (0, a) to (b, 0) in the quad-
rant.

Proof. It is a direct consequence of Theorem 2.1 and Claim 2.2. Indeed, Claim 2.2 ensures
that a plane bipolar orientation is a plane bipolar poset iff the type (i, j) of every inner
face satisfies i ≥ 1 and j ≥ 1, which occurs iff every face-step (−i, j) in the corresponding
tandem walk satisfies i ≥ 1 and j ≥ 1, i.e., the tandem walk is E-admissible. �

Note that in Proposition 2.3, the primary parameter of the poset (the one corresponding
to the walk length) is the number of edges (minus 1). We now give a bijection that will allow
us to encode plane bipolar posets by (weighted) quadrant tandem walks, this time with the
number of vertices as the primary parameter (associated wtih the walk length)2.

Given a plane bipolar orientation B (whose vertices and edges are black), a transversal
completion of B consists of the following steps:

• subdivide every edge into a path of length 2, with a so-called subdivision-vertex
(white vertex) in the middle ;

1Similarly later on, we will usually use compass notation for short steps.
2Though we will focus on univariate enumeration of plane bipolar posets, both approaches make it

possible to compute the number bn,m of plane bipolar posets having n vertices and m edges.
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Figure 3. The four possible types of inner faces in a V -transverse bipolar
orientation.

Figure 4. A possible configuration of transversal edges within an inner
face (of the underlying plane bipolar orientation) in a V -transverse bipolar
orientation, and the corresponding walk with steps in {W,N}.

• in every inner face f , add so-called transversal edges (red edges), each such edge
from a subdivision-vertex on the left side to a subdivision-vertex on the right side
of f , so that after adding these edges, all faces within f are of one of the 4 types
shown in Figure 3. Such a configuration of edges within f is called admissible.

A V -transverse bipolar orientation is defined as a plane bipolar orientation endowed with a
transversal completion, see the left-part of Figure 6 for an example.

Lemma 2.4. Let B be a plane bipolar orientation, and let f be an inner face of type (i, j)
in B. Then, the admissible configurations within f —in transversal completions of B— are
encoded by walks from (0, 0) to (−i, j) with steps in {W,N}.

Proof. The addition of edges within f is done as follows (see Figure 4). Given a walk γ
from (0, 0) to (−i, j) with steps in {W,N}, we start with f having no transversal edge, and
maintain two marked vertices : v` on the left lateral path of f and vr on its right lateral
path. We start with v` (resp. vr) on the first white vertex on the left (resp. right) lateral
path, and we start by drawing a transversal edge directed from v` toward vr. When reading
a step W (resp. N) of γ, we move up v` (resp. vr) on the next white vertex on the left (resp.
right) lateral path of f ; then we add a transversal edge directed from v` toward vr.
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Figure 5. The unique completion avoiding the appearance of an N-pattern
is the one where the encoding walk is of the form W iN j .

Conversely, every admissible configuration within f clearly yields such a walk, by travers-
ing the faces in f from bottom to top, excluding the first and last one, and writing a step
W (resp. N) each time a face of the 3rd (resp. 4th) type is traversed. �

We define a V -admissible tandem walk as a tandem walk where, to each face-step (−i, j),
a walk with steps in {W,N} is attached, with same starting and ending point as the face-
step.

Proposition 2.5. Plane bipolar posets of pole-type (p, q), with n + 2 vertices and f inner
faces, are in bijection with V -transverse bipolar orientations such that the underlying plane
bipolar orientation has outer type (p, q), with n edges and f + 2 vertices. These are in
bijection with V -admissible quadrant tandem walks of length n− 1 from (0, p) to (q, 0) with
f SE steps.

Remark 1. Proposition 2.5 yields an extension of the bijection in [25] between plane bipolar
posets with no N-pattern and bipolar orientations. That bijection corresponds to the case
where the walk attached to each face-step (−i, j) is W iN j , as illustrated in Figure 5. 4

Proof. Let B be a V -transverse bipolar orientation with poles S′ and N ′. Let B′ be obtained
as follows (see Figure 6):

• We add two vertices S and N in the outer face of B, respectively next to the left
lateral path and next to the right lateral path of B.

• For each white vertex v on the left (resp. right) boundary of B, we add a red edge
from S to v (resp. from v to N).

Let P be obtained from B′ by removing all back vertices and all black edges. Let Π∗E be the
partial order [14, Proposition 5.1] on the edges of B such that e < e′ if there is a sequence
e = e1, . . . , ek = e′ of edges such that for 1 ≤ i < k, ei and ei+1 are respectively on the
left side and on the right side of a same inner face. Clearly, any directed edge of P is from
a white vertex in the middle of an edge e ∈ B to a white vertex in the middle of an edge
e′ ∈ B such that e < e′. Hence P is acyclic. Moreover, if v is a white vertex different
from N or S, let e be the edge of B having v in its middle, and let f` be the face of B on
the left of e (possibly the “left outer face”), and let fr be the face of B on the right of e
(possibly the “right outer face”). From Figure 3 it easily follows that if f` is an inner face,
then v must have at least one ingoing edge within f`, and if f` is the left outer face, there is
one edge from S to v. Hence, v has positive indegree. Similarly, it has positive outdegree.
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Figure 6. (a) A V -transverse bipolar orientation B, (b) the map B′ ob-
tained after addition of S,N and their incident edges, (c) the plane bipolar
poset P = φ(B).

(a) Around a black vertex /∈ {S′, N ′}. (b) Around a white vertex /∈ {S,N}.

Figure 7. Configurations around vertices in the intermediate map B′.

Thus S is the only source and N the only sink of P . Hence, P is a plane bipolar orientation.
Moreover, from Figure 3, if follows that in B′ there is an inner face f of P around each
non-pole black vertex v, with the configuration shown in Figure 7a. Thus, the type of f is
(i, j) where i (resp. j) is the outdegree (resp. indegree) of v. Hence, P is a plane bipolar
poset. We let φ be the mapping that associates P to B.

The other way around, let P be a plane bipolar poset, with white vertices and red edges,
and let B′ be obtained from P by the following additions :

• We add a black vertex vf in every inner face f of P . We also add two black
vertices N ′, S′ in the outer face of P , respectively on the left side and on the right
side of P .
• For every inner face f of P , we add black edges connecting vf to all non-extremal

vertices around f ; the edges connected to the left (resp. right) lateral path of f are
directed from (resp. toward) vf , as in Figure 7a.
• For every vertex v /∈ {S,N} on the left (resp. right) boundary of P , we add a black

edge from N ′ to v (resp. from v to S′).
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Figure 8. (a) A 4-outer map endowed with a transversal structure. (b)
The local condition (T1). (c) The local condition (T2).

At every non pole white vertex, we have the configuration shown in Figure 7b. Hence, the
part made of the black edges and the vertices /∈ {S,N} is the 2-subdivision of an oriented
map B. Moreover, by Figure 7a, B has a single source at S′ and a single sink at N ′. We
also observe (see Figure 7b) that whenever there is an edge from u to v in B, in P ∗ (the
dual of P , in the sense of [14]) there is a directed path from u to v. Since P ∗ is acyclic, B
is thus also acyclic, so that it is a plane bipolar orientation. We let ψ be the mapping that
associates B to P .

To show that φ and ψ are inverse of one another, we observe that black vertices and black
edges removed by the construction φ are those added by ψ. Moreover, red edges we add
with φ on the left and on the right of B’s outer face are the edges incident to S and N in P ,
which we remove in the construction ψ.

Applying the KMSW bijection to V -transverse bipolar orientations, and using Lemma 2.4,
we obtain the bijective correspondence with V -admissible tandem walks as stated. �

2.4. Application to transversal structures. Another kind of oriented maps to be related
below to weighted quadrant tandem walks are transversal structures [26, 28, 24] (which
encode the combinatorial types of generic rectangulations). A 4-outer map is a simple map
whose outer face contour is a (simple) 4-cycle, the outer vertices being denoted W,N,E, S
in clockwise order. A transversal structure on such a map (see Figure 8) is an orientation
and bicoloration of its inner edges (in blue or red) so that the following local conditions are
satisfied:

(T1): the edges incident to W,N,E, S are respectively outgoing blue, ingoing red, ingoing
blue, and outgoing red;

(T2): for each inner vertex v, the incident edges in clockwise order around v form four
(non-empty) groups: outgoing red, outgoing blue, ingoing red, ingoing blue.

The WE-type of a transversal structure is the integer pair (deg(W )− 2,deg(E)− 2).

Lemma 2.6. In a transversal structure X, let Xr be the spanning oriented map formed by
the red edges, and the 4 outer edges, recolored red and oriented so as to form two directed
paths from S to N . Then Xr is acyclic and defines a poset. All inner faces have degree
in {3, 4} and must be of one of the five types shown in Figure 9. Inner faces incident
to W,N,E, S must have degree 3.

Proof. Assume thatXr has a directed cycle, and let γ be a minimal one, i.e. whose interior γ◦

does not contain the interior of another directed red cycle of Xr. Condition (T2) implies that
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Figure 9. The five types of inner faces in a transversal structure.

if γ is clockwise (resp. counterclockwise), then any blue edge in γ◦, incident to a vertex v
on γ, must be outgoing (resp. ingoing) at v. Hence, γ has no red chord inside, so that there
must be at least one vertex v0 in γ◦.

From v0 starts a path of outgoing blue edges (every vertex has at least one outgoing blue
edge) that can not loop by minimality of γ, hence has to reach a vertex v′ on γ. Similarly,
from v0 starts a path of ingoing blue edges that can not loop and reaches a vertex v′′ 6= v′

on γ. These two paths together with the path on γ connecting v′ and v′′, form a directed
cycle whose interior is in γ◦, a contradiction. Conditions (T1) and (T2) ensure that S is the
only source and N the only sink of Xr. Hence, Xr is a plane bipolar orientation.

Now we show that Xr is a poset. Assume it has an inner face f whose type has a zero
entry. Only one entry is zero, since the underlying map is simple. Assume e.g. f has type
(i, 0) for some i ≥ 1. Then there is a vertex v in the interior of the left lateral path of f .
By Condition (T2), there is at least one blue edge e in f starting from v. Since there is no
vertex in the interior of the right lateral path of f , no corner around f can possibly have the
ingoing part of e so as to satisfy (T2). Similarly, there can be no inner face of type (0, j) for
some j ≥ 1. Hence, Xr is a plane bipolar poset. It is similarly easy to check that, within
each inner face f of Xr, the blue edges have to go from the interior of the left lateral path
to the interior of the right lateral path of f (in order to have (T2) satisfied), and all faces
within f have to be of the five types shown in Figure 9. �

Remark 2. Lemma 2.6 implies that a 4-outer map admitting a transversal structures has
to have all its face-degrees in {3, 4}. In the reverse direction, it is known that if a 4-outer
map with triangular inner faces has no non-facial triangle, then it admits a transversal
structure [26]. Such transversal structures are called triangulated. As is also known [26],
transversal structures naturally arise as the dual to rectangular tilings, the quadrangular
faces corresponding to “degenerate” vertices in the tiling, where 4 rectangles meet. This
correspondence is illustrated in Figures 10 and 11. 4

As we are now going to show, transversal structures are bijectively related to certain
decorated plane bipolar posets which we call T-transverse bipolar orientations (in doing
this, we break the symmetry of the roles played by red edges and blue edges in transversal
structures). Precisely, for a plane bipolar poset (with red edges), a transversal addition
consists in the planar addition of so-called transversal edges (blue edges) in each inner
face f , each such edge directed from a vertex in the interior of the left lateral path to a
vertex in the interior of the right lateral path of f , such that after addition of these edges,
all faces within f are of the types shown in Figure 9. A T-transverse bipolar orientation
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Figure 10. A “generic” rectangular tiling, and its corresponding triangu-
lated transversal structure.

Figure 11. A rectangular tiling with two “degenerate” vertices where 4
rectangles meet, and its corresponding transversal structure.

is defined as a plane bipolar poset endowed with a transversal addition, see the left-part of
Figure 13 for an example.

Lemma 2.7. Let B be a plane bipolar poset, and let f be an inner face of type (i, j) in B.
Then the admissible configurations for transversal edges within f —in transversal additions
on B— are encoded by walks from (0, 0) to (−i, j) with steps in {W,N,NW} and starting
with a step NW .

Proof. Given a walk γ from (0, 0) to (−i, j) with steps in {W,N,NW} and with NW as
first step, the transversal edges within f are inserted from bottom to top while reading γ.
Precisely, we maintain two marked vertices: v` on the left lateral path of f and vr on its
right lateral path, initially v` and vr are both at the bottom vertex of f . When reading a
step (−ε`, εr) ∈ {W,N,NW} in γ, we move up v` (resp. vr) by ε` edge (resp. by εr edge)
on the left (resp. right) lateral path of f ; then we add an oriented transversal edge from v`
toward vr. Since γ starts with NW , the first added transversal edge forms with the bottom
vertex of f a face of the 1st type shown in Figure 9. In addition, every face enclosed between
two consecutive transversal edges has to be of the 2nd type (for each step W ), or the 3rd
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Figure 12. The configuration of transversal edges in an inner face of type
(i, j) (here i = 5, j = 7) of the red bipolar poset of a T -transverse bipolar
orientation, and the small step walk attached to the corresponding face-
step (−i, j).

type (for each step N), or the 5th type (for each step NW ). Since γ ends at (−i, j) and f
has type (i, j), the last added transversal edge forms with the top-vertex of f a face of the
4th type.

Conversely, every admissible configuration within f clearly yields such a walk, by writing
an initial step NW , then traversing the faces in f from bottom to top and writing a step
W (resp. N,NW ) each time a face of the 2nd (resp. 3rd, 5th) type is traversed. �

A T -admissible tandem walk is a tandem walk where each face-step (−i, j) satisfies i ≥ 1
and j ≥ 1, and to each such step is attached a walk with steps in {W,N,NW} starting with
a step NW considered as marked, and with same starting and ending point as the face-step.

Proposition 2.8. Transversal structures of WE-type (p, q), having n inner vertices and
m red edges, are in bijection with T -transverse bipolar orientations of outer type (p, q),
having m plain edges and n + 2 vertices. These are in bijection to T -admissible tandem
walks of length m − 1 from (0, p) to (q, 0), with n SE steps. Each quadrangular inner face
in the transversal structure corresponds to an unmarked NW step in an attached walk of a
face-step.

Proof. Starting from M a T -transverse bipolar orientation of outer type (p, q), with B the
underlying plane bipolar poset, we add vertices W,E in the outer face of B, respectively on
the left side and on the right side, and for every vertex v /∈ {S,N} on the left (resp. right)
boundary of B, we add a blue edge from W to v (resp. from v to E). We then add the
edges (W,N), (N,E), (E,S), (S,W ) (unoriented, uncolored) to form an outer quadrangle.
Let X be the obtained structure. Clearly, Condition (T1) is satisfied. In addition, the local
condition at non-pole vertices of plane bipolar orientations ensures that each inner vertex v
of X has a non-empty group of ingoing red edges, and a non-empty group of outgoing red
edges. Let f` be the face of B (possibly the “left outer face”) incident to the left lateral
corner of v, and let fr be the face of B (possibly the “right outer face”) incident to the
right lateral corner of v. Since all inner faces of X (upon recoloring red the outer edges and
directing them as two paths from S to N) are of the type shown in Figure 9, all ingoing
(resp. outgoing) blue edges incident to v have to be in f` (resp. fr), and there has to be at
least one such edge. Hence, Condition (T2) is satisfied, so that X is a transversal structure,
of WE-type (p, q). We let φ be the mapping that associates X to M .
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Figure 13. (a) A T -transverse bipolar orientation. (b) The corresponding
transversal structure.

Conversely, from X a transversal structure of WE-type (p, q), we simply remove W,E
and their incident edges. By Lemma 2.6, we obtain a T -transverse bipolar orientation M .
Let ψ be the mapping that associates M to X. Clearly, the two mappings are inverse of one
another, hence give a bijection. We give in Figure 13 an illustration of this bijection.

Applying the KMSW bijection to T -transverse bipolar orientations, and using Lemma 2.7,
we obtain the bijective correspondence with T -admissible tandem walks as stated. �

3. Exact counting results

In this section, we obtain exact enumeration results for plane bipolar posets and transver-
sal structures. After rephrasing the results of the previous section in the general terminology
of counting weighted tandem walks in the quadrant (Theorem 3.1), we give a unified func-
tional equation, which we call the master equation, for the generating function of weighted
tandem walks in the quadrant. Manipulations on the master equation then imply that
plane bipolar posets counted by edges are equinumerous to quadrant excursions for an ex-
plicit set of small steps (Proposition 3.2), and that plane bipolar posets counted by vertices
are equinumerous to plane permutations (Proposition 3.3), which have been counted in [12].
On the other hand, for transversal structures (with a weight-parameter for quadrangular
inner faces), we resort to a rewriting of the corresponding tandem walks into a model of
quadrant walks with small steps (and some forbidden patterns for consecutive steps), which
yields an explicit recurrence for the counting coefficients (Proposition 3.4).

For w(i, j) a weight-function (with (i, j) ∈ N2), a w-weighted tandem walk is a tandem
walk where every face-step (−i, j) has weight w(i, j). The w-weight of such a walk is the
product of the weights of its face-steps; and for a given finite set of walks, the associated
w-weighted number is the sum of w-weights of the walks in the set. Via the results obtained
in the previous section, we can reformulate the enumeration of plane bipolar posets and of
transversal structures in terms of weighted enumeration of quadrant tandem walks. In the
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statement below, transversal structures are counted with weight v per quadrangular inner
face; accordingly we use the terminology of v-weighted number of transversal structures. The
case v = 0 (resp. v = 1) gives the enumeration of triangulated (resp. general) transversal
structures.

Theorem 3.1. Let w(i, j) = 1i>0,j>0. Then the number of plane bipolar posets with n edges
and outer type (a, b) is equal to the w-weighted number of quadrant tandem walks of length
n− 1 from (0, a) to (b, 0).

Let w(i, j) =
(
i+j
i

)
. Then the number of plane bipolar posets with n + 2 vertices and

pole-type (p, q) is equal to the w-weighted number of quadrant tandem walks of length n− 1
from (0, p) to (q, 0).

Let w(i, j) =
∑
r≥0

(i+j−2−r)!
(i−1−r)!(j−1−r)!r!v

r (so w(i, j) =
(
i+j−2
i−1

)
for v = 0). Then the v-

weighted number of transversal structures of WE-type (p, q), with m red edges and n + 4
vertices, is equal to the w-weighted number of quadrant tandem walks of length m− 1 from
(0, p) to (q, 0), having n SE steps.

Proof. This is a direct consequence of Proposition 2.3, Proposition 2.5, and Proposition 2.8,
respectively. Indeed, for plane bipolar posets counted by edges, the weight just filters those
tandem walks with no face-step having a zero entry; while for plane bipolar posets counted by
vertices, and for transversal structures, the weight w(i, j) corresponds to the number of ways
to choose the walk attached to a face-step (−i, j), as shown in Figure 4 and Figure 12. �

Let Pwa (x, y) denote the generating series of w-weighted quadrant tandem walks starting
in position (0, a), with respect to the number of steps (variable t), end positions (variables x
and y) and number of SE steps (variable u). A last step decomposition immediately yields
the following master equation in the ring of formal power series in t and y with coefficients
that are Laurent series in x̄ = 1/x (and polynomial in u):

Pwa (x, y) = ya+ tu
x

y
(Pwa (x, y)−Pwa (x, 0))+t

∑
i,j≥0

w(i, j)
yj

xi

(
Pwa (x, y)−

i−1∑
k=0

xk[xk]Pwa (x, y)

)
= ya+tu

x

y
(Pwa (x, y)−Pwa (x, 0))+tW0(x̄, y)Pwa (x, y)−t

∑
k≥0

Wk+1(x̄, y)xk[xk]Pwa (x, y)

where Wk(x̄, y) =
∑
i≥k,j≥0 w(i, j)y

j

xi . The subtracted terms correspond to the cases of
adding a step that makes the walk leave the quadrant. For the addition of a face-step
(−i, j), note that the walk leaves the quadrant iff it ends at some abscissa k ∈ {0, . . . , i−1}.

3.1. Plane bipolar posets by edges. The case of bipolar posets counted by edges corre-
sponds to having w(i, j) = 1i 6=0,j 6=0 (cf Claim 2.2). The master equation then becomes

Ea(x, y) = ya + t
x

y

(
Ea(x, y)− Ea(x, 0)

)
+ t

x̄

1− x̄
y

1− y
(
Ea(x, y)− Ea(1, y)

)
,

and the coefficient [tnxb]Ea(x, 0) gives the number of plane bipolar posets of outer type
(a, b) with n+ 1 edges.

By some algebraic manipulations similar to those performed in [12, Sect.5.2], we can
relate the enumeration of plane bipolar posets by edges to a simpler model of quadrant
walks:

Proposition 3.2. For n ≥ 1, let en be the number of plane bipolar posets with n edges. Then
en is equal to the number of quadrant excursions of length n−1 with steps in {0, E, S,NW,SE}.
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Proof. Note that, for n ≥ 2, en is also (by adding a path of length 2 from source to sink
on the left side) the number of plane bipolar posets with n + 2 edges and left boundary
of length 2, thus en = [tn+1]E1(1, 0). Let Q(u, v) := E1(x, y) under the change of variable
relation {x = 1 + u, ȳ = 1 + v̄} (note that E1(1, 0) = Q(0, 0)). Via the change of variable,
the functional equation for E1(x, y) becomes

Q(u, v) = 1 + t(1 + u+ v̄ + uv̄ + ūv)Q(u, v)− t(1 + u)(1 + v̄)Q(u, 0)− tūvQ(0, v).

This resembles the functional equation for the series Q̂(u, v) of quadrant walks (starting at
the origin) with steps in {0, E, S,NW,SE}, whose functional equation is

Q̂(u, v) = 1 + t(1 + u+ v̄ + uv̄ + ūv)Q̂(u, v)− t(1 + u)v̄Q̂(u, 0)− tūvQ̂(0, v).

By coefficient extraction in each of these two functional equations, we recognize that Q(u, v)

and Q̂(u, v) appear to be related as Q(u, v) = v
1+v + t(1 + u)− t2 + t2(1 + v)Q̂(u, v). This

relation can then be easily checked. Indeed, if we substitute Q(u, v) by v
1+v + t(1 +u)− t2 +

t2(1 + v)Q̂(u, v) in the first functional equation, we recover the second functional equation

(multiplied by t2(1 + y)). As a consequence [tn]Q(0, 0) = [tn−2]Q̂(0, 0) for n ≥ 3. Thus

for n ≥ 2, en = [tn+1]E1(1, 0) = [tn+1]Q(0, 0) = [tn−1]Q̂(0, 0) (and for n = 1 one manually

checks that e1 = 1 = [t0]Q̂(0, 0)). �

While the series E1(1, 0) is non D-finite as discussed in the next section, the reduction
to a quadrant walk model with small steps ensures that the sequence e1, . . . , en can be
computed with time complexity O(n4) and using O(n3) bit space. The sequence starts as
1, 1, 1, 2, 5, 12, 32, 93, 279, 872, 2830, . . ., it is A363682 in [41].

3.2. Plane bipolar posets by vertices. In the case of plane bipolar posets enumerated
by vertices, by Proposition 3.1 we have w(i, j) =

(
i+j
i

)
for i, j ≥ 0, so that Wk(x̄, y) =

1
1−(x̄+y)

x̄k

(1−y)k
in Q[[y, x̄]]. The master equation then rewrites

Ba(x, y)=ya+ t
x

y
(Ba(x, y)−Ba(x, 0))+

t

1−y
1

x− 1
1−y

(
xBa(x, y)− 1

1−y
Ba

(
1

1−y
, y

))
,

and the coefficient [tnxb]Ba(x, 0) gives the number of plane bipolar posets of pole-type (a, b)
with n+ 3 vertices.

From the functional equation, we now prove that plane bipolar posets counted by vertices
are equinumerous to so-called plane permutations introduced in [10] and that have been
recently studied in [12]. These are the permutations avoiding the vincular pattern 2 14 3, i.e.,
with no pattern 2143 where 1 and 4 are adjacent. Plane permutations also the permutations
such that the dominance poset of the point diagram is planar.

Proposition 3.3. Let bn denote the number of plane bipolar posets with n + 2 vertices.
Then bn is equal to the number of plane permutations on n elements.

Proof. Note that bn is also, by adding a new source of degree 1 (connected to the former
source), the number of plane bipolar posets of pole-type (0, j) with n + 3 vertices and
arbitrary j ≥ 0, so that bn = [tn]B0(1, 0). Let S(u, v) := v(B0(v, 1 − ū) − 1), so that,
under the change of variable {y = 1 − ū, x = v}, we have S(u, v) = x(B0(x, y) − 1),

B0(1, 0) = 1 + S(1, 1) and 1
1−yB0

(
1

1−y , y
)

= uB0(u, 1 − ū) = S(u, u) + u. The main
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equation for B0 then rewrites

S(u, v) = x(B0(x, y)− 1)

=x(y0 − 1)+ t
x

y
(xB0(x, y)−xB0(x, 0))+

tx

1−y
1

x− 1
1−y

(
xB0(x, y)− 1

1−y
B0

(
1

1−y
, y

))
=

tuv

u− 1
(S(u, v) + v − S(1, v)− v) +

tuv

v − u
(S(u, v) + v − S(u, u)− u)

= tuv +
tuv

1− u
(S(1, v)− S(u, v)) +

tuv

v − u
(S(u, v)− S(u, u)) .

This equation for S(u, v) is exactly [12, Eq. (2)] (they use (x, y, z) for our (t, u, v)), where
[tn]S(1, 1) gives the number of plane permutations of size n. This concludes the proof, since
bn = [tn]B0(1, 0) and B0(1, 0) = 1 + S(1, 1). �

Remark 3. It is shown in [12, Prop 13] that the generating function of plane permutations
is D-finite, and in [12, Theo 14] that the number of plane permutations of size n admits
single sum expressions similar to the sum expression for the Baxter numbers. 4

In Section 5 we will give a direct bijective proof of Proposition 3.3, via a similar approach
as in the bijection between Baxter permutations and plane bipolar orientations introduced
in [3].

3.3. Transversal structures. Finally, in the case of transversal structures, the weight-

function is w(i, j) =
∑
r≥0

(i+j−2−r)!
(i−1−r)!(j−1−r)!r!v

r = [x̄iyj ] x̄y
1−x̄−vx̄y−y , so that W0(x̄, y) =

W1(x̄, y) = x̄y
1−x̄−vx̄y−y , and more generally Wk+1(x̄, y) = y

1−y
1

x− 1+vy
1−y

(
x̄(1+vy)

1−y

)k
. The

master equation then rewrites

Ta(x, y) = ya + tu
x

y
(Ta(x, y)− Ta(x, 0)) +

ty

1− y
1

x− 1+vy
1−y

(
Ta(x, y)− Ta

(
1 + vy

1− y
, y

))
,

and [untm]T1(1, 0) gives the v-weighted number of transversal structures with n+ 4 vertices
and m + 1 red edges, having WE-type (1, j) for j ≥ 1. Upon deleting the outer path
(S,W,N), this is also the v-weighted number of transversal structures (of arbitrary WE-
type) with n + 3 vertices and m − 1 red edges. As shown in the next section this series
(in the variable u, with t = 1) is non D-finite. However, similarly as for plane bipolar
posets counted by edges, we can make the coefficient computation faster by reduction to a
model of quadrant walks with small steps (however this time with some forbidden two-step
sequences).

Proposition 3.4. Let tn(v) be the v-weighted number of transversal structures on n + 4
vertices. Let t↘n (i, j), t↖n (i, j) be the coefficients given by the recurrence, valid for n ≥ 1:

(1)

{
t↘n (i, j) = t↘n−1(i− 1, j + 1) + t↖n−1(i− 1, j + 1),
t↖n (i, j) = t↘n (i+ 1, j − 1) + (1 + v) t↖n (i+ 1, j − 1) + t↖n (i+ 1, j) + t↖n (i, j − 1),

with boundary conditions t↘n (i, j) = t↖n (i, j) = 0 for any (n, i, j) with n ≤ 0 or i < 0 or

j < 0 or i > n, with the exception (initial condition) of t↘0 (0, 1) = 1.

Then, for n ≥ 1, we have tn(v) = t↘n+2(1, 0).

Proof. Upon adjoining the paths SWN and SEN to the red poset, tn(v) is the v-weighted
number of transversal structures on n+ 6 vertices, with WE-type (1, 1). Let Nn(i, j) be the
set of quadrant walks starting at (0, 1), ending at (i, j), with steps in {SE,W,N,NW,NW}
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(with NW for the marked NW steps), having n SE step, and such that no step in {N,W,NW}
comes after a SE step. Such walks are counted with weight v per step NW . By Propo-
sition 2.8, tn(v) is the v-weighted number of walks in Nn+2(1, 0). For n ≥ 1 and i, j ≥ 0,
let t↘n (i, j) (resp. t↖n (i, j)) be the v-weighted number of walks in Nn(i, j) ending (resp. not
ending) with a SE step. Then a last step decomposition ensures that t↘n (i, j), t↖n (i, j) satisfy
the recurrence above. Note also that a quadrant walk in Nn(1, 0) has to end with a SE step,
hence the v-weighted number of these walks is t↘n (1, 0). �

Similarly as for plane bipolar posets counted by edges, for any fixed integer v, the recur-
rence makes it possible to compute the sequence t1(v), . . . , tn(v) with O(n4) bit operations
using O(n3) bit space. This includes triangulated transversal structures (case v = 0) and
general transversal structures (case v = 1). For the triangulated case, we obtain the same
complexity order as the recurrence in [27]; another counting method is described in [37]
exploiting a bijection to a certain family of pattern-avoiding permutations. On the other
hand, a counting method working for general v is given in [13] using a growth process and
inclusion-exclusion. The sequences for v = 0 and v = 1 appear as A342141 and A181594
in [41], they start respectively as

1, 2, 6, 24, 116, 642, 3938, 26194, 186042, . . . 1, 2, 6, 25, 128, 758, 5014, 36194, 280433, . . .

For general transversal structures with control on the number of quadrangular inner faces,
the complexity to compute t1(v), . . . , tn(v) (this time seen as polynomials in v) is now O(n5)
bit operations using O(n4) bit space. The sequence starts as

1, 2, 6, 24+v, 116+12v, 642+114v+2v2, 3938+1028v+48v2, 26194+9220v+770v2 +10v3 . . .

The inclusion-exclusion method of [13] gives another polynomial-time procedure to compute
these coefficients. On the other hand, efficient encoding procedures for general transversal
structures have been given in [38, 42], and it should be possible to turn them into a recurrence
for tn(v) (extending the one in [27]) with same complexity order as we obtain here.

4. Asymptotic counting results

We adopt here the method by Bostan, Raschel and Salvy [8] (itself relying on results by
Denisov and Wachtel [15]) to obtain asymptotic estimates for the counting coefficients of
plane bipolar posets (by vertices or by edges) and transversal structures (by vertices). Let
S = {SE} ∪ {(−i, j), i, j ≥ 0} be the tandem step-set. Let w : N2 → R+ satisfying the
symmetry property w(i, j) = w(j, i). The induced weight-assignment on S is w(s) = 1 for

s = SE and w(s) = w(i, j) for s = (−i, j). Let a
(w)
n be the weighted number (i.e., each walk

σ is counted with weight
∏
s∈σ w(s)) of quadrant tandem walks of length n, for some fixed

starting and ending points. Let

S(z;x, y) :=
x

y
z−2 +

∑
i,j≥0

w(i, j)
yj

xi
zi+j ,

let S(z) := S(z; 1, 1), and let ρ be the radius of convergence (assumed here to be strictly

positive) of S(z) − z−2. Let w̃(s) := 1
γw(s)z

y(s)−x(s)
0 be the modified weight-distribution

where γ, z0 > 0 are adjusted so that w̃(s) is a probability distribution (i.e.
∑
s∈S w̃(s) = 1)

and the drift is zero, which is here equivalent to having z = z0 ∈ (0, ρ) solution of S′(z) = 0
(one solves first for z0 and then takes γ = S(z0); note also that S′(z) is increasing on (0, ρ)
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so that z0 is unique if it exists). Then as shown in [15, 8] we have, for some c > 0,

(2) a(w)
n ∼ c γn n−α, where α = 1 + π/arccos(ξ), with ξ = −∂x∂yS(z0;x, y)

∂x∂xS(z0;x, y)

∣∣∣
x=1,y=1

.

As shown in [15], the dependence of c on the starting point (i0, j0) and ending point (i1, j1)
is of the form c = κg(i0, j0)g(j1, i1) for some absolute constant κ > 0 and a function g from
N2 to R>0, (which is a discrete harmonic function for the walk model). In the special case
where the starting point is (0, p) and ending point is (q, 0), the dependence of c on p and q
is thus of the form c = κf(p)f(q) for some function f from N to R>0, in which case we say
that c has separate dependence on p and q.

Proposition 4.1 (Plane bipolar posets counted by edges). For fixed p, q ≥ 1, let en(p, q)
be the number of plane bipolar posets of outer type (p, q) with n edges. Let z0 ≈ 0.54 be
the unique positive root of z4 + z3 − 3z2 + 3z − 1. Let γ = 5z3

0 + 7z2
0 − 13z0 + 9 ≈ 4.80,

ξ = 1− z0/2 ≈ 0.73, and α = 1 + π/arccos(ξ) ≈ 5.14. Then there exists a positive constant
c (with separate dependence on p and q) such that

en(p, q) ∼ c γn n−α.

Moreover, the associated generating function
∑
n≥1 en(p, q)zn is not D-finite. These results

also apply to the coefficients en (number of plane bipolar posets with n edges) via the relation
en = en+4(1, 1) (valid for n ≥ 2).

Proof. This case corresponds to taking w(i, j) = 1i 6=0,j 6=0. By Proposition 3.1, en(p, q) is
the number of w-weighted tandem walks of length n− 1 from (0, p) to (q, 0). We have

S(z;x, y) =
x

y
z−2 +

z/x

1− z/x
zy

1− zy
.

Hence S(z) − z−2 = z2

(1−z)2 , of radius of convergence ρ = 1. Next we have S′(z) =
2(z4+z3−3z2+3z−1)

z3(1−z)3 ; and thus S′(z) has a positive root in (0, 1) which is the unique posi-

tive root z0 ≈ 0.54 of the polynomial P (z) = z4 + z3 − 3z2 + 3z − 1. Since P (z) is the
minimal polynomial of z0, any rational expression (with coefficients in Q) in z0 reduces
to a polynomial expression in z0 of degree smaller than deg(P ) = 4. Clearly, γ = S(z0)

and ξ = −∂x∂yS(z0;x,y)
∂x∂xS(z0;x,y)

∣∣
x=1,y=1

have rational expressions in z0 (since S(z;x, y) is rational

in x, y, z), and the expressions we obtain by reduction are γ = 5z3
0 + 7z2

0 − 13z0 + 9 and
ξ = 1− z0/2.

For a generating function
∑
n anz

n with an ∈ Z, a known sufficient condition for being
not D-finite is that an ∼ c γnn−α with α /∈ Q. As shown in [8], if ξ is an algebraic number
with minimal polynomial X(s), then α := 1 + π/arccos(ξ) is rational iff (the numerator
of) X( 1

2 (ζ + ζ−1)) has a cyclotomic polynomial among its prime factors. Here the minimal

polynomial of ξ is X(s) = P (2−2s) (since z0 = 2−2ξ), and the numerator of X( 1
2 (ζ+ζ−1))

is the prime polynomial ζ8 − 9 ζ7 + 31 ζ6 − 62 ζ5 + 77 ζ4 − 62 ζ3 + 31 ζ2 − ζ + 1 which is
not cyclotomic since, as recalled in [8], all cyclotomic polynomials of degree at most 30 have
their coefficients in {−2,−1, 0, 1, 2}. Hence for any fixed p, q ≥ 1, the generating function∑
n≥1 en(p, q)zn is not D-finite.

Finally, the claimed relation en = en+4(1, 1) follows from the fact that, for n ≥ 2, a plane
bipolar poset with n edges identifies to a plane bipolar poset of outer type (1, 1) with n+ 4
edges, upon adding a left outer path of length 2 and a right outer path of length 2. �
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Proposition 4.2 (Plane bipolar posets counted by vertices). For fixed p, q ≥ 0, let bn(p, q)
be the number of plane bipolar posets of pole-type (p, q) with n+2 vertices. Then there exists
a positive constant c (with separate dependence on p and q) such that

bn(p, q) ∼ c
(

11+5
√

5
2

)n
n−6.

These results also apply to the coefficient bn (number of plane bipolar posets with n + 2
vertices) via the relation bn = bn+2(0, 0).

Proof. This case corresponds to w(i, j) =
(
i+j
i

)
. By Proposition 3.1, bn(p, q) is the number

of w-weighted tandem walks of length n from (0, p) to (q, 0). We have

S(z;x, y) =
x

y
z−2 +

1

1− z/x− zy
.

Hence S(z) − z−2 = 1/(1 − 2z) of radius of convergence ρ = 1/2. Next, we have S′(z) =
2(z−1)(z2−3z+1)

(z3(1−2z)2 thus S′(z) has a positive root in (0, 1/2) which is the unique positive root

z0 = 3−
√

5
2 ≈ 0.38 of the polynomial z2 − 3z + 1. Any rational expression in z0 thus

reduces to an expression a + a′
√

5 with a, a′ in Q. We find γ = 1
2 (11 + 5

√
5) ≈ 11.09, and

ξ = 1
4 (1 +

√
5) ≈ 0.81 (we actually have ξ = 1 − z0/2, as for plane bipolar posets counted

by edges), and α = 1 + π/arccos(ξ) = 6.
Finally, the claimed relation bn = bn+2(0, 0) follows from the fact that for n ≥ 0 a plane

bipolar poset with n+ 2 vertices identifies to a plane bipolar poset of pole-type (0, 0) with
n+ 4 vertices, upon creating a new sink (resp. a new source) connected to the former sink
(resp. source) by a single edge. �

Remark 4. We recover, as expected in view of the previous section, the asymptotic constants
γ and α for plane permutations, which were obtained in [12] (where c was also explicitly
computed). 4

Theorem 4.3 (Transversal structures). Let v ∈ [0,+∞). Let γ(v) > 1, ξ(v) ∈ (0, 1) be
given by (see Figure 14 for plots)

γ(v) =
1

2(2 + v)

(
2v2+18 v+27+(9+4v)3/2

)
, ξ(v) =

1

4(2 + v)2

(
4v2 + 14v + 11 +

√
9 + 4v

)
,

and let α(v) = 1 + π/arcos(ξ(v)). For fixed p, q ≥ 0, let t
(p,q)
n (v) be the v-weighted number

of transversal structures of WE-type (p, q) with n+ 4 vertices.
Then there exists a positive constant c(v) (with separate dependence on p and q) such

that
t(p,q)n (v) ∼ c(v) γ(v)nn−α(v).

These results also apply to the v-weighted number tn(v) of transversal structures with n+ 4

vertices, via the relation tn(v) = t
(1,1)
n+2 (v).

For v = 0 (triangulated case) and v = 1 (general case), we have

γ(0) =
27

2
, ξ(0) =

7

8
, α(0) ≈ 7.22, γ(1) =

47 + 13
√

13

6
, ξ(1) =

29 +
√

13

36
, α(1) ≈ 8.18.

In both cases, the associated generating function
∑
n≥1 tn(v)zn is not D-finite.

Proof. For v = 0, we have w(i, j) =
(
i+j−2
i−1

)
, and the associated series is

S̃(z;x, y) = xȳz−2 +
z2x̄y

1− z(x̄+ vx̄y + y)
.
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Figure 14. The plot of γ(v) (on the left) and ξ(v) (on the right) and their
respective equivalents v and 1.

By Proposition 3.1, t
(p,q)
n (v) is the w-weighted number of tandem walks from (0, p) to (q, 0)

with n SE steps. Consider such a walk π. Since there is no step of the form (0, j) (such
a step has weight 0 here) it starts with a SE step, and since there is no step of the form
(−i, 0), it also ends with a SE step. Let π̃ be the walk obtained from π by deleting the last
SE step, and aggregating the other steps into groups formed by a SE step followed by a
(possibly empty) sequence of non-SE steps; precisely each such group s1, . . . , sk yields the

aggregated step σ = s1 + · · · + sk with weight w(σ) =
∏k
i=1 w(si). The obtained weighted

walk π̃ = (σ1, . . . , σn) starts at (0, p), ends at (q − 1, 1) (since the last SE step of π has
been deleted), and the condition that π stays in the quadrant {x ≥ 0; y ≥ 0} translates to
the condition that π̃ stays in the shifted quadrant {x ≥ 0; y ≥ 1} (indeed, π stays in the
quadrant iff the starting point of every SE step is in the shifted quadrant). Note also that
the series corresponding to one aggregated step is

S(z;x, y) =
xȳ z−2

1− z2x̄y
1−z(x̄+vx̄y+y)

.

Hence S(z)− z−2 = 1
1−2z−z2 , of radius of convergence ρ(v) =

√
v+2
v+1 − 1. The function S(z),

defined on (0, ρ(v)), is convex, and diverges as z → 0+ and z → ρ(v)−, hence reaches its
minimum at the unique value z = z0(v) ∈ (0, ρ(v)), where S′(z) = 0. We have

S′(z) = −2

(
vz2 + z2 + z − 1

) (
vz2 + 3 z − 1

)
(vz2 + z2 + 2 z − 1)

2
z3

The single root of the numerator in the interval (0, ρ(v)) is z0(v) = −3+
√

9+4v
2v , which is

one of the two roots of vz2 + 3 z − 1. Note that it is a regular function at v = 0: z0(v) =
1
3−

1
27 v+ 2

243 v
2+O(v3). We then find γ(v) = S(z0(v)) = 1

2(2+v)

(
2v2+18 v+27+(9+4v)3/2

)
,

and ξ(v) = 1
4(2+v)2

(
4v2 + 14v + 11 +

√
9 + 4v

)
.

Let v ∈ {0, 1}. To show that the associated series
∑
n tn(v)zn is not D-finite, we consider

the minimal polynomial X(s) of the algebraic number ξ(v). For v = 0, we find X(s) =
8s − 7. We have X( 1

2 (ζ + ζ−1)) = (4ζ2 − 7ζ + 4)/ζ, whose numerator is not cyclotomic,
as it is irreducible of degree 2 with coefficients of absolute value larger than 2. Hence,∑
n tn(0)zn is not D-finite according to [8]. For v = 1, we find X(s) = 36s2 − 58s+ 23, and

X( 1
2 (ζ+ζ−1)) = 1

36 x2

(
36x4−58x3 +95x2−58x+36

)
, whose numerator is not cyclotomic,
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Figure 15. Construction of a transversal structure with n inner vertices
and n−Θ(

√
n) quadrangular faces. Letting h = b

√
nc, we take the h×h grid

Gh (regular grid with h2 points), and complete it by adding the n−h2 first
points of the hook Gh+1\Gh (traversed starting with the top row left-to-
right and then the right column top-to-bottom). We then build a transversal
structure with n inner vertices at the n points as indicated; its number of
quadrangular inner faces is n − 2h + δ, with δ = 1 for n = h2, δ = 0 for
n− h2 ∈ [1..h], and δ = −1 for n− h2 ∈ [h+ 1..2h].

as it is irreducible of degree 4 with coefficients of absolute value larger than 2. Hence,∑
n tn(1)zn is not D-finite �

Remark 5. Our estimate implies that tn(0)/tn−1(0) converges to 27/2, which had been
conjectured in [27] based on numerical computations. Another consequence of our estimate
is that the coding procedure in [43] for triangulated transversal structures can be made
asymptotically optimal, as it implies that the asymptotic growth rate of tn(0) is bounded
by 27/2.

Let us also mention that the recurrence for tn(0) obtained in [27] actually gives another
quadrant walk model to obtain the asymptotic estimate for tn(0) (via Denisov-Wachtel).
Indeed, although not in a completely bijective way (simplifications occur from algebraic
manipulations), the recurrence in [27] implies that tn(0) is the number of walks of length n−1
in the 1/8th plane {0 ≤ y ≤ x}, starting and ending at the origin, where the series for the set
of steps is S(x, y) := 1

1−y (x+ 2ȳ+ x̄ȳ). Equivalently, tn(0) is the number of walks of length

n− 1 in the quadrant, starting and ending at the origin, where the series for the set of steps
is S(x, y) := 1

1−x̄y (x+2xȳ+ ȳ). As in our walk model, the symmetry S(x, y) = S(ȳ, x̄) holds.

Accordingly, we let S(z;x, y) := S(x/z, yz), and S(z) = S(z; 1, 1). We find that S′(z) = 0

for z = z0 := 2/3, where we have γ := S(z0) = 27/2 and ξ := −∂x∂yS(z0;x,y)
∂x∂xS(z0;x,y)

∣∣
x=1,y=1

= 7/8.

Finally, we note that the recurrence obtained in [13] for the coefficients of tn(v) does not
seem applicable to asymptotic enumeration, since it involves subtractions as a consequence
of inclusion-exclusion. 4

Remark 6. The case of plane bipolar posets counted by vertices, this time with (p, q) cor-
responding to the outer type rather than the pole-type, can be treated from the weight-
assignment w(i, j) = 1i6=0,j 6=0 (used for plane bipolar posets counted by edges) and aggre-
gating the steps into groups formed by a SE step followed by a (possibly empty) sequence
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of non-SE steps. In that case the series for one aggregated step is

S(z;x, y) =
x/y z−2

1− z2y/x
(1−z/x)(1−zy)

,

which coincides with the expression S(z;x, y) = x
y z
−2 + 1

1−z/x−zy (obtained from Proposi-

tion 3.1) used in the proof of Proposition 4.2. The asymptotic constants γ = 11+5
√

5
2 , α = 6

are thus the same as those in Proposition 4.2. 4
We conclude this section with some observations and consequences of properties of the

functions γ(v) and ξ(v). Let tn,k be the number of transversal structures with n+ 4 vertices
and k inner quadrangular faces. Let k(n) = max(k, tn,k 6= 0). Based on the Euler relation,
for any transversal structure with n + 4 vertices and k inner quadrangular faces, we have
k = n + 1 −∆/2, with ∆ the number of triangular inner faces. Hence k(n) ≤ n − 1 (there
are at least 4 triangular faces, one incident to each outer edge). On the other hand, it is
easy to obtain n− k(n) = O(

√
n), as shown in Figure 15, hence k(n) ∼ n.

Corollary 4.4. For un any integer sequence such that un ≤ k(n) and un = n − o(n), let

sn =
∑k(n)
k=un

tn,k. Then limn→∞ s
1/n
n = 1.

Proof. Since sn ≥ 1, it suffices to show that c := lim sup s
1/n
n satisfies c ≤ 1. We have

tn(v) ≥ snv
un . On the other hand, un = n − o(n), hence c · v ≤ γ(v). The expression of

γ(v) in Theorem 4.3 ensures that γ(v) ∼ v as v →∞. Hence c ≤ 1. �

Corollary 4.4 agrees with the fact that in the regime where k = n−o(n), there is a strong
rigidity in transversal structures: they take the form of a regular grid (as in Figure 15) with
O(n − k) = o(n) “defaults” (triangular faces, or vertices of degree larger than 4). Since
the regime k = n − o(n) has dominating asymptotic contribution to tn(v) as v gets large,
v-weighted transversal structures can be proposed as a model that interpolates between
a random lattice (case v = Θ(1)) and a regular lattice (case v → ∞), for instance the
(conjectural) local limit L∞(v) is expected to converge to the regular lattice Z2 as v →∞.
If we look at the subexponential term n−α(v), since ξ(v) is increasing to 1 as v increases from
0 to∞, α(v) = 1+π/arccos(ξ(v)) is increasing to +∞, and the corresponding central charge

c = c(v) (determined by 12 (2−α(v)) = c−1−
√

(1− c)(25− c)) is decreasing to −∞. This is
again consistent with the assumption that a random v-weighted transversal structure should
approach the behaviour of a regular lattice as v gets large; e.g. the Hausdorff dimension is
known [17] to increase to 2 when c decreases to −∞.

Remark 7. A different model of random planar lattices approaching a regular lattice (based
on an auxiliary parameter) has been proposed in [29, 30], where the authors consider Eulerian
quadrangulations weighted by βn2−4, with n2 the number of vertices of degree 2. When
β = 0, one gets a regular lattice behaviour (all vertices have degree 4, except for four
vertices of degree 2). In [30] it is demonstrated that, for any β > 0, the asymptotic regime
of the model is n−5/2 (regime of “pure gravity”). This contrasts with our model, where the
polynomial exponent α in the asymptotic estimate varies continuously with the auxiliary
parameter v (in our model, when β := 1/v tends to 0, the exponent α diverges to +∞,
which as explained above is consistent with a regular lattice behaviour). 4

5. Bijection between plane permutations and plane bipolar posets

We give here a bijective proof of the fact, established in Proposition 3.3, that plane
permutations of size n are equinumerous to plane bipolar posets with n + 2 vertices. The
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Figure 16. (a) A plane permutation π = (6, 11, 4, 7, 9, 12, 10, 1, 5, 8, 2, 3).
(b) The embedded plane bipolar poset φ(π). (c) The underlying plane
bipolar poset Φ(π).

construction can be seen as the analog for plane bipolar posets of the bijection introduced
in [3] between Baxter permutations and plane bipolar orientations.

5.1. Presentation of the construction and a first proof of bijectivity. Recall that a
permutation π ∈ Sn is called a plane permutation if it avoids the vincular pattern 2 14 3 (i.e.,
no pattern 2143 has 1 and 4 adjacent). We adopt the standard diagrammatic representation
of π, i.e., we identify π to the set {(i, π(i)), i ∈ [1..n]}, whose elements are called the points
of π. The dominance order on the points of π is the poset where p = (x, y) ≤ p′ = (x′, y′) iff
x ≤ x′ and y ≤ y′. The dominance diagram of π is obtained by drawing a segment (p, p′) for
each pair of points such that p′ covers p in the poset. It is known [10] that a permutation is
plane iff its dominance diagram is crossing-free. The completion π of π is the permutation
on [0, ..n + 1] where π(0) = 0, π(n + 1) = n + 1 and π(i) = π(i) for i ∈ [1..n]. Clearly, if π
is plane, then so is π. We denote by Pn the set of plane permutations of size n, and by Bn
the set of plane bipolar posets on n+ 2 vertices. For π ∈ Pn, we let φ(π) be the dominance
diagram of π, and let Φ(π) ∈ Bn be the underlying plane bipolar poset on n + 2 vertices,
see Figure 16 for an example.

Remark 8. Note that the neighbors of the source S of Φ(π) correspond to the left-to-right
minima of π, the neighbors of the sink N of Φ(π) correspond to the right-to-left maxima of
π, the non-pole vertices on the right boundary of Φ(π) correspond to the right-to-left minima
of π, and the non-pole vertices on the left boundary of Φ(π) correspond to the left-to-right
maxima of π. 4

We now describe the inverse construction Ψ (illustrated in Figure 17), which is actually
just the mapping formulation of a dominance drawing algorithm due to Di Battista, Tamassia
and Tollis [16]. Let B be a plane bipolar poset, with I its set of non-pole vertices, S its
source and N its sink. The left tree T` (resp. right tree Tr) of B is the spanning tree of
I ∪ {S} where for every v ∈ I its parent-edge is its leftmost (resp. rightmost) ingoing edge.
For v ∈ I, we let x(v) be the rank (in [1..n]) of v for the order of first visit in clockwise
order around Tr. Similarly, we let y(v) be the rank (in [1..n]) of first visit of v during a
counterclockwise tour around T`. Let Ψ(B) be the permutation whose point-diagram is
{(x(v), y(v)), v ∈ I}, see Figure 18. Then the following property holds:
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Figure 17. The mapping Ψ, from a plane bipolar poset to a plane permu-
tation.

Figure 18. The property Ψ(Φ(π)) = π visualized on the embedded plane
bipolar poset φ(π). (a) The non-pole vertices ordered by first visit in clock-
wise order around the right-tree Tr (in red) are in order of increasing ab-
scissas. (b) Likewise the non-pole vertices ordered by first visit in counter-
clockwise order around the left-tree T` (in blue) are in order of increasing
ordinates.

Claim 5.1 ([16]). For B a plane bipolar poset, Ψ(B) is a plane permutation and φ(Ψ(B))
gives a planar drawing of B. Hence, Φ(Ψ(B)) = B.

Remark 9. As noted in [16], this result also follows from the study of planar lattices [31, 32].
Letting ≤ be the underlying partial order on the vertices of B, the planar embedding of B
yields a so-called left-to-right order denoted λ: for u, v ∈ V two distinct non-pole vertices, we
let u λ v if u is on the left of any path from the source to the sink and passing by v (in which
case v is on the right of any path from the source to the sink and passing by u). The order λ
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is a conjugate order for ≤, i.e., each pair of distinct elements of V is comparable for exactly
one of the two orders ≤, λ. Letting λd be the reverse order of λ, both Orderx = ≤ ∪ λ
and Ordery = ≤ ∪ λd are total orders on V , and their intersection is ≤, so that the poset
represented by B has Dushnik-Miller dimension at most 2.

A simple argument then ensures that placing every vertex v with abscissa (resp. ordinate)
given by its rank in Orderx (resp. Ordery), placing S and N at the lower-left and upper-right
corner, and drawing edges as segments, yields a planar drawing of B. Moreover (see [16,
Lemma 2]), this procedure coincides with the vertex placement given by Ψ, i.e., Orderx
(resp. Ordery) coincides with the order of first visit in clockwise order around Tr (resp. in
counterclockwise order around T`). 4

Claim 5.2. For every π ∈ Pn, we have Ψ(Φ(π)) = π (see Figure 18).

Proof. Let B = Φ(π), and consider the drawing φ(π) of B. Given Remark 9, it is enough
to show that for two permutation points p, q ordered so that p has smaller abscissa (resp.
ordinate), the corresponding vertices vp, vq of B satisfy vp ≤ vq or vp λ vq (resp. satisfy
vp ≤ vq or vp λ

d vq). Let us check the property regarding the order on abscissas (the
argument for ordinates is similar). If p has smaller ordinate than q, then vp ≤ vq. If p has
larger ordinate than q, then p and q are not comparable for ≤ (since it is the dominance
order). In that case, q lies in the south-east quadrant of p, so that it is necessarily on
the right of any path from source to sink passing by p (such a path being a broken line of
segments of positive slope), hence vp λ vq. �

From Claim 5.1 and Claim 5.2 we obtain:

Proposition 5.3. The mapping Φ is a bijection from Pn to Bn. Its inverse is Ψ.

5.2. Generating trees for plane permutations and plane bipolar posets. In this
section, we give an alternative proof of Proposition 5.3 via isomorphic generating trees,
similarly as the proof method in [3]. This also yields an alternative proof of the fact that
the vertex placement by Ψ yields a planar dominance drawing of any plane bipolar poset
(and thus also an alternative proof of the fact that planar lattices have Dushnik-Miller
dimension at most 2).

We recall first the generating tree for plane permutations as introduced in [12]. Let
n ≥ 1 and π′ ∈ Pn+1. The parent of π′ is the permutation π of size n obtained by
deleting the rightmost element and renormalizing, i.e., it is the permutation π such that
π(i) = π′(i) − 1π′(i)>π′(n+1) for i ∈ [1..n]. Clearly, π ∈ Pn. Conversely, for π ∈ Pn and
a ∈ [1..n + 1], let π · a be the permutation π′ of size n + 1 such that π′(n + 1) = a, and
π′(i) = π(i) + 1π(i)≥a for i ∈ [1..n]. Then a is called active for π if π · a is in Pn+1, in which
case the point p of π of ordinate a − 1 is also called active and we use the notation πp for
π · a. A point q in π clearly corresponds to a point in πp, and by a slight abuse of notation
this point is also referred to as q. The following characterizes the non-active points and will
be used later on.

Claim 5.4. For π ∈ Pn, the point S = (0, 0) is always active, and moreover a point p ∈ π
is active iff it does not occur as the left element of a pattern 213 in π.

Proof. The first statement follows from the fact that the value a = 1 is always active.
Regarding the second statement, if p occurs as the left element of a pattern 213 in π, then
this pattern becomes a pattern 2 14 3 in π−1

p , so πp (as π−1
p ) is not a plane permutation.

Conversely, if p is not active, then πp is not plane, and neither is π−1
p . Hence the addition

of the new point p′ at the right end creates a pattern 2 14 3 in π−1
p , and p is the 1 in that
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Figure 19. The 3 possible cases for the parent of a plane bipolar poset.

pattern (i.e., the point with smallest abscissa among the 4 points). In π the pattern formed
by the 3 points of abscissa ≤ n is thus 231 with p as the left element. �

Let π ∈ Pn. Note that the rightmost point (n, π(n)) of π is always active. The ac-
tive points of π with ordinate weakly larger (resp. strictly smaller) than π(n) are called
upper-active (resp. lower-active). We let p1, . . . , ph+k be the active points of π ordered by
decreasing ordinate, with p1, . . . , ph the upper-active ones (with ph the rightmost point of
π), and ph+1, . . . , ph+k the lower-active ones (ending with ph+k = (0, 0)). Let j ∈ [1..h+ k]
and let π′ = πpj , which is to be the jth child of π in the generating tree of plane per-
mutations. In π′ let p′ be the new added point at the right end. Then as shown in [12]
(and a consequence of Claim 5.4), the upper-active points of π′ are p1, . . . , pj−1, p

′ (for any
j ∈ [1..h + k]), while the lower-active points are ph, . . . , ph+k if j ≤ h, and pj , . . . , ph+k if
j > h. In other words [12, Prop.5], upon assigning the label pair (h, k) to a plane permuta-
tion, the generating tree of P = ∪nPn is isomorphic to the tree generated by the succession
rule

(3) Ω =

 (1, 1)
(h, k) (1, k + 1), . . . , (h− 1, k + 1), (h, k + 1)

(h+ 1, k), . . . , (h+ k, 1).

We now describe a generating tree for plane bipolar posets counted by vertices. Let n ≥ 1,
and let B′ ∈ Bn+1. We first define how the parent B of B′ (which has one vertex less) is
obtained. Let e′ = (u′, N) be the last edge on the right boundary of B′ (i.e., the rightmost
ingoing edge of N); e′ is called the top-right edge of B′, and its origin is called the top-right
vertex of B′. Let B′/e′ be the plane bipolar orientation obtained by contracting e′. Note
that all the inner faces have the same type in B′/e′ as in B′, except if the face f on the
left of e′ is an inner face, in which case its type (i, j) in B′ becomes (i, j − 1) in B′/e′. In
other words B′/e′ is a plane bipolar poset if f is the left outer face or is an inner face of
type (i, j) with j ≥ 2; we let B := B′/e′ in this case (Figure 19(i)). Note that B has one
edge less than B′. Otherwise f is an inner face whose right boundary is reduced to a single
edge ε in B′/e′, and we let B be the plane bipolar poset (B′/e′)\ε. These cases are shown
in Figure 19 (ii) (when ε has an inner face on its right) and Figure 19(iii) (when ε has the
right outer face on its right). In these last two cases, B has two edges less than B′.

Conversely, to describe the set of children of a given B ∈ Bn we need a bit of terminology.
The neighbors q1, . . . , qs, qs+1 of N —ordered from left to right, with qs+1 the top-right
vertex— are called the quasi-max vertices of B, the upper faces of B are the inner faces



26 É. FUSY, E. NARMANLI, AND G. SCHAEFFER

Figure 20. The 3 types of children Bv of a plane bipolar poset B: (i)
when v (here r) is a quasi-max, (ii) when v (here s) is upper-active and not
quasi-max, (iii) when v (here t) is lower-active.

f1, . . . , fs (ordered from left to right, possibly s = 0 and this set is empty) incident to N ,
so that fi is the face on the right of the edge (qi, N) for i ∈ [1..s]. The upper-active vertices
of B are those on the left boundary of the upper faces (excluding N and the bottom vertex
in each such face), plus the top-right vertex u = qs+1. The lower-active vertices of B are
those on the right boundary except {u,N} (but including S).

As we describe now, in the generating tree there is one child Bv for each active vertex
v of B (i.e., for each vertex v of B that is either lower-active or upper-active). For v a
quasi-max vertex qi of B (with i ∈ [1..s + 1]), Bv is obtained as follows (see Figure 20(i)):
create a new vertex u′ (the new top-right vertex) whose unique out-edge points to N , and
redirect the out-edge of each quasi-max (qi, . . . , qs+1) to point to u′ so that, from left to
right, the in-neighbors of N are q1, . . . , qi−1, u

′, and the in-neighbors of u′ are qi, . . . , qs+1.
For v an upper-active vertex of B that is not a quasi-max, let fi (i ∈ [1..s]) be the inner
face having v on its left boundary. Then Bv is obtained as follows: create a new vertex u′

(the new top-right vertex) whose unique out-edge points to N , connect v to u′ and redirect
the out-edge of each quasi-max (qi+1, . . . , qs) to point to u′ so that, from left to right, the
in-neighbors of N are q1, . . . , qi, u

′, and the in-neighbors of u′ are v, qi+1, . . . , qs+1. Finally,
for v a lower-active vertex of B, Bv is obtained from B by adding a path of length 2 from v
to N on the right side. Note that Bv has one more edge than B when v is a quasi-max, and
two more edges otherwise. The following statement is readily checked case-by-case (looking
at Figure 19 and Figure 20).

Claim 5.5. For B ∈ Bn and v an active vertex of B, the parent of Bv is B. Conversely,
for B′ ∈ Bn+1, let B be the parent of B′ and let v be the vertex of B corresponding to the
leftmost in-neighbor of the top-right vertex of B′. Then v is active in B, and B′ = Bv.

Claim 5.5 ensures that, for B ∈ Bn, the children of B in the generating trees (i.e., the
plane bipolar posets whose parent is B) are exactly the posets Bv ∈ Bn+1 with v running over
all active vertices of B. We let h (resp. k) be the number of upper-active (resp. lower-active)
vertices of B, and we list the active vertices as the concatenation of L(f1), . . . , L(fs), Llower,
where L(fi) is the downward list of vertices on the left boundary of fi (excluding the top and
bottom vertex of fi), and Llower is the list of lower-active vertices ordered downward along
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Figure 21. For π ∈ Pn, the active points p1, . . . , ph+k of π listed downward
(i.e., by decreasing ordinate) match the active vertices v1, . . . , vh+k of Φ(π)
listed downward. (Upper-active points/vertices are shown red, while lower-
active points/vertices are shown green.)

the right outer boundary of B. Let v1, . . . , vh+k be the obtained list, called the downward
ordering of active vertices (see the right-part of Figure 21 for an example). Note that
v1, . . . , vh are the upper-active vertices and vh+1, . . . , vh+k are the lower-active ones.

Then one easily checks (looking at Figure 20) that the upper-active vertices of Bvj —with
u′ the new created top-right vertex— are v1, . . . , vj−1, u

′ (for any j ∈ [1..h + k]), while the
lower-active vertices are vh, . . . , vh+k if j ≤ h, or are vj , . . . , vh+k if j > h. Hence, upon
assigning the label pair (h, k) to every plane bipolar poset, the generating tree of B = ∪nBn
is isomorphic to the tree generated by the succession rule (3). To summarize we obtain:

Proposition 5.6. The class B = ∪nBn of plane bipolar posets is in bijection with the
class P = ∪nPn of plane permutations, via the common succession rule (3). The induced
(recursively specified) bijection between Pn and Bn is called the canonical bijection.

Our goal is now to show that the mapping Φ coincides with the canonical bijection. In
order to do so, we first show that for π ∈ Pn the active points of π match the active vertices
of Φ(π) (see Figure 21 for an example):

Claim 5.7. Let π ∈ Pn. Then the active vertices of φ(π) coincide with the active points
of π. Moreover the downward ordering of the active vertices coincides with the downward
ordering (ordering by decreasing ordinate) of the active points.

Proof. Consider a non-active point p ∈ π. By Claim 5.4 it occurs as the left element of a
pattern 213 in π, and it is easy to see that it must also occur as the left element of a pattern
2 13 in π. Let p′, p′′ be the points corresponding to 1, 3 in the pattern, which form a rise
in π, and thus form an edge e in φ(p). Moreover, since p is dominated by p′′ but not by
p′, the rightmost path γ from p (i.e., the path taking the rightmost outgoing edge at every
step) has to hit p′′, and it has to reach p′′ with e on the right side. Note that if the vertex v
corresponding to p was active, then the rightmost path from v would not have any ingoing
edge on its right side before reaching N . Hence v can not be active.

Conversely, let p be an active point of π, and in φ(π) let γ be the rightmost path from p.
Assume that after leaving p but before reaching N it passes by a point p′′ 6= N (hence p′′ ∈ π)
with an ingoing edge e = (p′, p′′) on the right side. Since we consider the rightmost path from
p, the point p′ can not dominate p. Since φ(π) is an embedded poset (no transitive edge),
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Figure 22. The situation in the proof of Theorem 5.8.

the point p′ can not be dominated by p either. Hence the points p, p′, p′′ form a pattern 213,
with p or p′ as the left element and with p′′ as the right element. Geometrically one checks
that if the left element was p′ then e would have to reach γ from the left, a contradiction.
Hence the left element is p, contradicting the fact that p is active. Hence γ has no ingoing
edge on its right side before reaching N , and this ensures that the corresponding vertex is
active in the bipolar poset (the rightmost path follows the left side of a face incident to N).

It remains to check that the downward ordering of active vertices corresponds to the
ordering by decreasing ordinates. The quasi-max q1, . . . , qs+1 of the poset, ordered from
left to right, correspond to the right-to-left max of π, ordered by increasing abscissa and
decreasing ordinate (see Figure 21, where these are surrounded). Letting f1, . . . , fs be the
upper faces of the bipolar poset, ordered from left to right, for i ∈ [1..s] a vertex on the left
boundary of fi is dominated by qi but not by qi+1, hence all these vertices have ordinate
between those of qi+1 and qi. And the lower-active vertices are dominated by qs+1, hence
have ordinate smaller than the ordinate of qs+1. These observations ensure that the two
orderings coincide. �

Theorem 5.8. The mapping Φ realizes the canonical bijection between P = ∪nPn and
B = ∪nBn.

Proof. We assume that the statement holds at size n and want to prove it at size n+ 1. Let
π ∈ Bn having h upper-active points and k lower-active points, and let p1, . . . , ph+k be the
active vertices of π listed downward. By the inductive assumption, B := Φ(π) is the image of
π by the canonical bijection (i.e., π and B are at the same place in the respective generating
trees). By Claim 5.7, p1, . . . , ph+k correspond to the active vertices v1, . . . , vh+k of B, listed
downward. It remains to check that, for j ∈ [1..h+ k] we have Φ(πpj ) = Bvj . We treat here
the case where vj is upper active but not quasi-max (the other cases can be treated similarly).
Let q1, . . . , qs+1 be the quasi-max vertices of B ordered from left to right (corresponding to
the right-to-left maxima of π ordered downward), and let f1, . . . , fs be the upper faces of B
(ordered from left to right). Let fi be the one having vj on its left boundary. Let p′ be the
added point in πpj (just above pj , at the right end, see Figure 22). To have Bvj = Φ(πpj )
we just have to check that the in-neighbours of p′ in φ(πpj ) are pj , qi+1, . . . , qs+1. Denoting
by y′ the ordinate of pj , this amounts to check that pj , qi+1, . . . , qs+1 are the right-to-left
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maxima of π|y≤y′ , which easily follows from Claim 5.7 and the fact that qi+1, . . . , qs+1 are
already right-to-left maxima of π, see Figure 22. �

6. Conclusion and open questions

We have obtained exact and asymptotic enumeration results for two types of oriented
planar maps: plane bipolar posets (counted by edges or by vertices), and transversal struc-
tures, where we can control the number of quadrangular faces (degenerate vertices in the
dual rectangular tiling). We conclude with a list of related open questions:

• Is there a direct bijection between plane bipolar posets with n edges and quad-
rant excursions of length n − 1 with step-set {0, E, S,NW,SE}? (These sets are
equinumerous, by Proposition 3.2.)

• Some “Baxter-like” summation formulas are known [12] for the number of plane
permutations of size n. Is there a bijective encoding (e.g. by a system of non-
intersecting lattice walks) of plane permutations or size n, or of plane bipolar posets
with n+ 2 vertices, that yields such a formula?

• Is there a characterization of 4-outer maps that admit a transversal structure? As
we have seen in Lemma 2.6, a necessary condition is that inner face degrees are in
{3, 4}, and it is also quite easy to show the necessity of being 4-connected upon
adding a vertex v∞ connected to the 4 outer vertices. We recall that a precise
characterization is known [26] when all inner faces have degree 3 (the condition of
existence is that any triangle bounds a face).

• Can the recurrence for triangulated transversal structures given in [27] be extended
to have a weight v per quadrangular inner face, and yield another derivation of the
asymptotic estimate in Theorem 4.3?

• For fixed v > 0, is there a local limit (as n→∞) for random transversal structures
with n+4 vertices and weight v per quadrangular inner face (where a random vertex
is chosen as the center of the considered neighbourhoods)?
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