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Semiclassical descriptions of rotational transitions in natural and shifted angles: Analysis of unexpected results

In the semiclassical theory of rotational transitions, S-matrix elements are expressed as integrals over initial and final angles of probability amplitudes calculated along the classical paths joigning these angles, before final passage to an initial value representation [W. H. Miller, J. Phys. Chem. A 2001, 105, 2942]. These angles can be either natural angles fixing the orientation of the rotor, or angles shifted with respect to the previous ones so as to vary only within the interaction region causing the transitions.

The two approaches, however, were recently shown to lead to different predictions.

While the theory in natural angles lacks precision and exhibits unphysical behaviour, the theory in shifted angles is much more accurate and physically well behaved [L.

Introduction

Physical chemistry and part of physics often deal with molecular systems almost amphibian between the quantum and classical fields. Increasing our understanding of the semiclassical description of matter, which sheds light on the still ill-defined frontier between these fields, is thus a major theoretical goal of physical science. [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF][START_REF] Tannor | Introduction to quantum mechanics. A time-dependent perspective[END_REF][START_REF] Heller | The Semiclassical Way to Dynamics and Spectroscopy[END_REF][START_REF] Aieta | Representing molecular ground and excited vibrational eigenstates with nuclear densities obtained from semiclassical initial value representation molecular dynamics[END_REF] Semiclassical approaches are also of great practical importance. Indeed, quantum dynamical calculations become quickly unfeasible as the dimensionality of the system being studied increases. In contrast, classical simulations are almost not limited by dimensionality, and quantum constraints can be introduced in these simulations in the light of the semiclassical theory in order to improve the realism of their predictions. [START_REF] Makri | A Semiclassical Tunneling Model for Use in Classical Trajectory Simulations[END_REF][START_REF] Sierra | Quasi-Classical Trajectory-Gaussian Binning Study of the OH + D 2 -→ HOD(v 1 ', v 2 ', v 3 ') + D Angle-Velocity and Vibrational Distributions at a Collision Energy of 0.28 eV[END_REF][START_REF] González-Martínez | Vibrational predissociation of van der Waals complexes: Quasi-classical results with Gaussian-weighted trajectories[END_REF][START_REF] Nakamura | Development of semiclassical molecular dynamics simulation method[END_REF][START_REF] Richardson | Derivation of instanton rate theory from first principles[END_REF] In the present work, we wish to move forward on a puzzling question relating to semiclassical scattering. This was recently raised in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Erratum: Semiclassical initial value representation: From Møller to Miller[END_REF] within the semiclassical treatment of rotational transitions, [START_REF] Mccurdy | Interference effects in rotational state distributions: Propensity and inverse propensity[END_REF][START_REF] Kreek | Semiclassical collision theory: Multidimensional integral method[END_REF][START_REF] Campolieti | Semiclassical collision theory in the initial value representation: Efficient numerics and reactive formalism[END_REF] of great interest in interstellar chemistry [START_REF] Roueff | Molecular Excitation in the Interstellar Medium: Recent Advances in Collisional, Radiative, and Chemical Processes[END_REF] and stereodynamics. [START_REF] Von Zastrow | State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He[END_REF][START_REF] Nichols | Steric effects and quantum interference in the inelastic scattering of NO(X) +[END_REF] In order to introduce this question, let us define the framework in which it arises.

We consider the light-induced rotational transition of a planar rigid diatom oriented in a fixed plane of the laboratory by a single angle φ. (We call S-matrix elements the rotational transition amplitudes thereafter.) The advantage of the previous spatial restriction is that it strongly reduces the complexity of the mathematical developments. As shown in the following, the semiclassical description of S-matrix elements which naturally comes to mind involves the integration of a given probability amplitude with respect to initial and final values of φ, called natural angle from now on. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] Following Miller, [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] however, S-matrix elements can alternately be expressed as the integral of a probability amplitude with respect to initial and final values of a different angle φ, called shif ted angle, related to φ by φ = φ -Jτ /I, where J is the angular momentum of the rotor, I its moment of inertia and τ the instant at which one considers the system. φ has the property to be constant outside the interaction region causing the rotational transitions. Both methods finally require the passage to the initial value representation (IVR) invented by Miller 20,[START_REF] Miller | The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations[END_REF] in order to express S-matrix elements as integrals with respect to initial conditions, thereby going round the root search issue met when initial and final conditions are mixed. The derivation of the latter approach [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Erratum: Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF][START_REF] Miller | Semiclassical Theory of Atom-Diatom Collisions: Path Integrals and the Classical S Matrix[END_REF] is more involved than that of the former, but their numerical applications are of similar simplicity.

Nevertheless, we have recently found in particular cases of interactions that the approach in natural angles (IVR-N) is much less accurate than the one in shifted angles (IVR-S), [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] except in the classical limit where the two approaches converge towards each other. In fact, IVR-N predictions turn out to depend on the instant t at which trajectories are stopped after leaving the interaction region, before asymptotically tending towards the results of classical S-matrix theory (CSMT). [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF][START_REF] Miller | Semiclassical Theory of Atom-Diatom Collisions: Path Integrals and the Classical S Matrix[END_REF][START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] This unrealistic behaviour is in stark contrast with that of IVR-S predictions which are independent on t outside the interaction region, as it should be. The purpose of this work is to propose a rigorous analysis of this finding. (In the following, we will make extensive use of several results established in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] .) This analysis is valid for any type of interaction, not just for the particular cases mentioned above.

The work is laid out as follows. In Sec. 2, we define the system under consideration and give formally exact expressions of S-matrix elements. Their semiclassical IVR-N and IVR-S limits are respectively given in Secs. 3 and 4. Their evolutions as a function of time t after leaving the interaction region are studied in Sec. 5. The differences in evolution are shown to be linked to simple geometric differences between the classical paths underlying the two formulations. The asymptotic convergence of IVR-N towards CSMT is proved in Sec. 6.

Finally, we conclude in Sec. 7.

System under consideration and formal expression of S-matrix elements

We assume that the planar rigid diatom interacts with a laser pulse for values of time τ within the range [-t f , t f ]. Outside this range, the diatom rotates freely. As seen previously, φ is the orientation angle of the diatom within a fixed plane of the laboratory, J is its angular momentum and I its moment of inertia. The Hamiltonian of the system is

H = H 0 + V (1) 
where

H 0 = - 1 2I ∂ 2 ∂φ 2 (2) 
is the Hamiltonian of the free rotor. units are used throughout this work. V is the operator corresponding to V (φ, τ ), the time-dependent interaction potential between the laser pulse and the rotor. We define the stationary states of H 0 at time τ by |j; τ where j is the rotational quantum number. |j; τ and |j; 0 are related by |j; τ = e -iH 0 τ |j; 0 = e -iE j τ |j; 0

with

E j = j 2 2I . (4) 
The component of |j; 0 on |φ is

φ|j; 0 = e ijφ (2π) 1/2 .
(

) 5 
The angular potential being time-dependent, so is H ≡ H(τ ). Calling t a given value of τ larger than t f , the probability amplitude S j 2 j 1 that the diatom in the rotational state j 1 before its interaction with the laser pulse, ends up in the rotational state j 2 after the interaction, is given by

S j 2 j 1 = j 2 ; t|T {e -i t -t H(τ )dτ }|j 1 ; -t (6) 
where

T {e -i t -t H(τ )dτ } = lim N →+∞ Π N -1 n=0 e -iH( 2tn N -t) 2t N (7) 
is the so-called time-ordered exponential operator (the n = 0 term is applied first, then, the n = 1 term, and so on...). [START_REF] Shankar | Principles of Quantum Mechanics[END_REF] Note that, in practice, t is taken at a value slightly larger than t f in order to minimize the duration of the propagation. Inserting in Eq. ( 6) two closure relations between the rotational states and the time-ordered exponential operator gives

S j 2 j 1 = dφ 2 dφ 1 j 2 ; t|φ 2 φ 2 |T {e -i t -t H(τ )dτ }|φ 1 φ 1 |j 1 ; -t . (8) 
As an alternative to Eq. ( 8), however, one may use the left identity of Eq. ( 3) to rewrite Eq. ( 6) as

S j 2 j 1 = j 2 ; 0|e iH 0 t T {e -i t -t H(τ )dτ }e iH 0 t |j 1 ; 0 . (9) 
Then, by inserting two closure relations between the rotational states at time 0 and the free evolution operators, and two closure relations between the latter and the time-ordered operator, we obtain

S j 2 j 1 = dφ 2 dφ 1 dφ 2 dφ 1 j 2 ; 0|φ 2 φ 2 |e iH 0 t |φ 2 φ 2 |T {e -i t -t H(τ )dτ }|φ 1 φ 1 |e iH 0 t |φ 1 φ 1 |j 1 ; 0 . (10) 
In the following, we will derive the IVR-N and IVR-S formulations from Eqs. ( 8) and (10), respectively. Note that Eq. ( 9) is strictly equivalent to

S j 2 j 1 = j 2 ; 0|Ω † -Ω + |j 1 ; 0 (11) 
with

Ω + = T {e -i 0 -t H(τ )dτ }e iH 0 t (12) 
and

Ω † -= e iH 0 t T {e -i t 0 H(τ )dτ }. (13) 
(T {e -i 0 -t H(τ )dτ } and T {e -i t 0 H(τ )dτ } are given by expressions analogous to that of T {e -i t -t H(τ )dτ } (see Eq. ( 7)).) Ω + and Ω -are the time-ordered analogs of the Møller operators which play a fundamental role in quantum scattering theory. [START_REF] Tannor | Introduction to quantum mechanics. A time-dependent perspective[END_REF][START_REF] Tannor | Wave packet correlation function formulation of scattering theory: The quantum analog of classical S-matrix theory[END_REF][START_REF] Tannor | Semiclassical calculation of chemical reaction dynamics via wavepacket correlation functions[END_REF][START_REF] Garashchuk | Semiclassical application of the Møller operators in reactive scattering[END_REF][START_REF] Zhang | Theory and application of quantum molecular dynamics[END_REF] Eq. ( 10) was originally introduced by means of Eq. ( 11) instead of Eq. (9). [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] 3 Initial value representation in natural angles 

e i(R(φ 2 ,φ 1 ;2t)-π 2 η) 2πi ∂φ 2 ∂J 1 φ 1 1/2 (14) 
with

R(φ 2 , φ 1 ; 2t) = t -t dτ (J φ -H) = φ 2 φ1 dφJ - t -t dτ H (15) 
and

H = J 2 2I + V (φ, τ ). ( 16 
)
H is here the classical function of Hamilton. φ is the derivative of φ with respect to τ . J and φ are related by J = I φ. The sum in Eq. ( 14) is over the whole set of classical paths connecting (φ 1 , -t) and (φ 2 , t). For each path, these two space-time points determine the initial and final values J 1 and J 2 of J. Considering for the moment t as a fixed parameter (we will make it vary in Sec. 5), this dependence will be formally written as

J 1 ≡ J 1 (φ 1 , φ 2 )
and J 2 ≡ J 2 (φ 1 , φ 2 ) in the following. The P aths in Eq. ( 14) implies that the J i 's may be multivalued functions of the φ i 's. For each path, R(φ 2 , φ 1 ; 2t) is the action integral, and η is the Maslov index, equal to the number of times ∂φ ∂J 1 φ 1 takes the value 0 between -t and t. Consequently, η jumps by one each time ∂φ ∂J 1 φ 1 changes sign. The physical picture associated to a jump is that of a trajectory grazing a caustic. [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF][START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] From Eqs. (3)-( 5), ( 8), ( 14) and ( 15), we obtain

S j 2 j 1 = 1 2π(2πi) 1/2 +∞ -∞ dφ 2 2π 0 dφ 1 P aths ∂φ 2 ∂J 1 φ 1 -1/2 exp{i (ϕ -πη/2)} (17) 
with

ϕ = j 1 φ 1 -j 2 φ 2 + Υ (18) 
and

Υ = E j 2 t + R(φ 2 , φ 1 ; 2t) + E j 1 t. (19) 
The present expression of ϕ only differs from that in Eqs. ( 74) and (75) of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] by one integration by part. Finally, J 1 ≡ J 1 (φ 1 , φ 2 ) implies φ 2 ≡ φ 2 (φ 1 , J 1 ). (These notations bypass the branch issue discussed for instance in Refs. 12 , 30 and 23 .) Therefore, dφ 2 may be replaced by ∂φ 2 ∂J 1 φ 1 dJ 1 in Eq. (17), thus leading to the two-dimensional IVR-N expression:

S j 2 j 1 = 1 2π(2πi) 1/2 2π 0 dφ 1 +∞ -∞ dJ 1 ∂φ 2 ∂J 1 φ 1 1/2 exp{i (ϕ -πη/2)}. (20) 
We note that P aths in Eq. ( 17) has disappeared in Eq. ( 20) since (φ 1 , J 1 ) defines a unique classical trajectory.

Initial value representation in shifted angles

The two dimensional IVR-S expression of S j 2 j 1 is obtained in two steps. As previously, one first replaces the three propagators in Eq. ( 10) by their vVG approximations. (These are exact for the free propagators, as shown further below.) Second, one analytically integrates the resulting integral with respect to φ 2 and φ 1 using the central mathematical tool of semiclassical mechanics, the stationary phase approximation (SPA). [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] Briefly, this integral over φ 2 and φ 1 is given by an expression involving its integrand and the determinant of the Hessian of its phase taken at the values of φ 1 and φ 2 making the phase stationary. These values are shown to satisfy the relations

φ 1 = φ 1 - t I J 1 (21) 
and

φ 2 = φ 2 + t I J 2 (22) 
and the final expression of S j 2 j 1 reads

S j 2 j 1 = 1 2π(2πi) 1/2 +∞ -∞ dφ 2 2π 0 dφ 1 P aths ∂φ 2 ∂J 1 φ 1 -1/2 exp{i(ϕ -π η/2)}. ( 23 
)
The details of the developments are given in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Erratum: Semiclassical initial value representation: From Møller to Miller[END_REF] .

As a matter of fact, the six variables (φ 1 , φ 2 , J 1 , J 2 , φ 1 , φ 2 ) turn out to be related by the four following constraints: 21) and Eq. (22). Each variable can thus be considered as a function of two variables among the five remaining ones.

J 1 ≡ J 1 (φ 1 , φ 2 ), J 2 ≡ J 2 (φ 1 , φ 2 ), Eq. (
In particular, φ 2 ≡ φ 2 (φ 1 , J 1 ), which gives meaning to the pre-exponential factor ∂φ 2

∂J 1 φ 1 -1/2
in Eq. ( 23). (The pre-exponential factor will simply be called prefactor from now on.) The contribution ϕ to the phase in Eq. ( 23) is given by

ϕ = j 1 φ 1 -j 2 φ 2 + Υ (24) 
and

Υ = -E J 2 t + R(φ 2 , φ 1 ; 2t) -E J 1 t. (25) 
E J 1 and E J 2 are given by Eq. ( 4) with the real J 1 and J 2 instead of the integer j. The present expression of ϕ is obtained from Eqs. ( 21) and (62) of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] . It is thus significantly different from that in Eqs. ( 65) and (66) of the same reference (though it has obviously the same value). From Sec. II.B and II.C of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] , the phase index η in Eq. ( 23) reads

η = η + ν ( 26 
)
where ν is the number of negative eigenvalues of the Hessian matrix of the function

f (φ 2 , φ 1 ) = R(φ 2 , φ 1 ; 2t) - I 2t [(φ 1 -φ 1 ) 2 + (φ 2 -φ 2 ) 2 ]. (27) 
Finally, since φ 2 ≡ φ 2 (φ 1 , J 1 ), we can replace dφ 2 in Eq. ( 23) by ∂φ 2 ∂J 1 φ 1 dJ 1 . This leads to the two-dimensional IVR-S expression

S j 2 j 1 = 1 2π(2πi) 1/2 2π 0 dφ 1 +∞ -∞ dJ 1 ∂φ 2 ∂J 1 φ 1 1/2 exp{i(ϕ -π η/2)}. ( 28 
)
Contrary to (φ 1 , φ 2 ), (φ 1 , J 1 ) defines a unique classical path. P aths in Eq. ( 23) has thus disappeared in Eq. ( 28).

5 Evolution of S-matrix elements as a function of t after leaving the interaction region

Case of IVR-N elements

Instead of deriving Eqs. ( 17) and ( 20) from Eq. ( 8), one may start from Eq. (10). The main lines of the developments, slightly more involved but intuitively more appealing, are as follows: the free propagators φ 2 |e iH 0 t |φ 2 and φ 1 |e iH 0 t |φ 1 in Eq. ( 10) are replaced by their semiclassical limits and integration with respect to φ 2 and φ 1 is analytically performed.

Eq. ( 8) is then found and developments continue as in Sec. 3. Details are given in Appendix A. The interest of this derivation is that the free semiclassical propagations of the initial and final rotational states resulting from the integration over φ 1 and φ 2 , respectively, are associated with the portions of linear classical paths represented in Fig. 1 by the blue and red segments. The blue one goes from (φ

1 = φ 1 + j 1 I t, τ = 0) to (φ 1 , τ = -t), the red one from (φ 2 , τ = t) to (φ 2 = φ 2 -j 2
I t, τ = 0), and both are run backward in time. As shown in Appendix A, the two actions E j 1 t and E j 2 t in Υ (see Eq. ( 19)) are associated with the blue and red paths, respectively. These segments are connected by the green path, run forward in time (see Fig. 1), and the action integral R(φ 2 , φ 1 ; 2t) along the latter is the third contribution to Υ (see Eq. ( 19)). Note that the green path is non linear only within the range [-t f , t f ] where the interaction with the laser pulse takes place.

For fixed values of φ 2 and φ 1 , the dependence of ϕ on t is thus the same as that of Υ (see Eq. ( 18)). From Eqs. ( 15) and ( 19), we have

∂ϕ ∂t φ 2 ,φ 1 = E j 2 + E j 1 + ∂R ∂t φ 2 ,φ 1 = E j 2 -E J 2 + E j 1 -E J 1 . (29) 
However, we know that J = I φ, so the slope at τ for a given path in Fig. 1 is equal to φ = J/I. Therefore, the slopes of the blue and green segments at τ = -t are equal to j 1 /I and J 1 /I, respectively, while the slopes of the red and green segments at τ = t are equal to j 2 /I and J 2 /I, respectively. Now, J 1 and J 2 are determined by φ 1 and φ 2 and in general,

j 1 = J 1 and j 2 = J 2 .
Geometrically, this implies non zero angles between segments at τ equal -t and t, as is the case in Fig. 1. In other words, a momentum jump occurs at each inversion of the arrow of time. For such paths, E j 2 = E J 2 and E j 1 = E J 1 , so Eq. ( 29) clearly

shows that ϕ depends on t. In addition, as discussed in Sec. IV of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] (see also Ref. [START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] ), the instant at which the Maslov index η makes its last jump varies with φ 2 and φ 1 . (This instant may tend to infinity for some trajectories.) Therefore, η is also dependent on t. Finally, 

 0        t -t j 1 I t   - j 2 I t =   +   = -t f t f
∂ϕ ∂φ 1 φ 2 ,t = j 1 + ∂R ∂φ 1 φ 2 ,t = j 1 -J 1 , (30) 
so

∂ 2 ϕ ∂φ 2 ∂φ 1 1/2 = ∂φ 2 ∂J 1 φ 1 -1/2 . ( 31 
)
(The lower script t in Eq. ( 30) has been removed in Eq. (31) for convenience.) Eq. ( 17) can thus be rewritten as

S j 2 j 1 = 1 2π(2πi) 1/2 +∞ -∞ dφ 2 2π 0 dφ 1 P aths ∂ 2 ϕ ∂φ 2 ∂φ 1 1/2 exp{i (ϕ -πη/2)}. (32) 
Hence, for fixed values of φ 2 and φ 1 , both the phase and the prefactor of the integrand of the IVR-N expression of S j 2 j 1 depend on t. In general, the integral of a given function f (φ 2 , φ 1 , t) over φ 2 and φ 1 is expected to vary with t, and numerical calculations show that this is indeed the case of the right-hand-side (RHS) of Eq. (32) for not too large values of t. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF]31 In Appendix B, we arrive at the same conclusion starting from Eq. ( 20). As previously stated, however, we will prove in Sec. 6 that for asymptotically large values of t, IVR-N S-matrix elements reach the constant values predicted by CSMT.

Case of IVR-S elements

Contribution ϕ to the phase and prefactor

As seen in Sec. 4, the IVR-S expression of S j 2 j 1 (Eq. ( 23)) is obtained from Eq. ( 10) by integrating over φ 2 and φ 1 within the SPA. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Erratum: Semiclassical initial value representation: From Møller to Miller[END_REF] Before applying the SPA, the three-segment paths contributing to Eq. ( 10) look in general like the one in Fig. 1 (though the identities shown in Fig. 1 are not satisfied). However, applying the SPA leads to Eqs. ( 21) and (22) which force the slope (φ 1 -φ 1 )/t of the blue segment to be equal to the slope J 1 /I of the green segment at τ = -t, and the slope (φ 2 -φ 2 )/t of the red segment to be equal to the slope J 2 /I of the green segment at τ = t. These constraints give to the three-segment path the shape displayed in Fig. 2. As a matter of fact, the angles between segments are zero at τ equal -t and t, and the green segment overlaps the blue and red segments outside the range [-t f , t f ]. In other words, no momentum jump occurs when the arrow of time is reversed. (Similar paths for the collinear reaction H+H 2 are displayed in Fig. 7 of Ref. [START_REF] Tannor | Semiclassical calculation of chemical reaction dynamics via wavepacket correlation functions[END_REF] and Fig. 1a of Ref. [START_REF] Garashchuk | Semiclassical application of the Møller operators in reactive scattering[END_REF] .) The action integral Υ along the path of Fig. 2 is given by Eq. ( 25).

The contributions to Υ associated with the blue, green and red segments are, respectively,

(-E J 1 t), R(φ 2 , φ 1 ; 2t) and (-E J 2 t). The contribution ϕ to the phase of Eq. ( 23) is deduced from Υ by Eq. ( 24). We could use Eqs. ( 24) and ( 25) in order to show that ϕ is independent on t beyond t f . However, an intuitively more appealing expression of ϕ allowing us to arrive at the same conclusion is obtained by integrating R(φ 2 , φ 1 ; 2t) (Eq. ( 15)) by part and using Eqs. ( 21), ( 22), ( 24) and (25). The resulting expression is

ϕ = [j 1 -J 1 ]φ 1 + [J 2 -j 2 ]φ 2 + Θ (33) with Θ = (E J 2 + E J 1 ) t - J 2 J 1 φdJ - t -t dτ H (34) 
(see Eqs. ( 65) and (66) of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] ). The variation of ϕ with t is thus given by

∂ϕ ∂t φ 2 ,φ 1 = -φ 1 ∂J 1 ∂t φ 2 ,φ 1 + φ 2 ∂J 2 ∂t φ 2 ,φ 1 + ∂Θ ∂t φ 2 ,φ 1 (35) 
with

∂Θ ∂t φ 2 ,φ 1 = E J 2 + E J 1 + t ∂E J 2 ∂t φ 2 ,φ 1 + t ∂E J 1 ∂t φ 2 ,φ 1 -φ 2 ∂J 2 ∂t φ 2 ,φ 1 + φ 1 ∂J 1 ∂t φ 2 ,φ 1 -H(t) -H(-t). (36) 
However, it should be clear from Fig. 2 that if one increases the value of t while keeping φ 1 and J 1 at the same values, one extends the three segments towards to past and future, but the trajectories underlying them are unaltered. As a consequence, φ 2 and J 2 depend on φ 1 and J 1 , but not on t. In other words, the relations φ 2 ≡ φ 2 (φ 1 , J 1 ) and

J 2 ≡ J 2 (φ 1 , J 1 )
are parametrically independent on t, contrary to the relations φ 2 ≡ φ 2 (φ 1 , J 1 ) and J 2 ≡ J 2 (φ 1 , J 1 ). The former relations can then be inverted to give J 1 ≡ J 1 (φ 1 , φ 2 ) and J 2 ≡ J 2 (φ 1 , φ 2 ), also independent on t. Eqs. ( 35) and (36), thus, lead to

∂ϕ ∂t φ 2 ,φ 1 = E J 2 -H(t) + E J 1 -H(-t). (37) 
Now, the particular shape of the three-segment path displayed in Fig. 2 causes

E J 2 -H(t)
and

E J 1 -H(-t) to exactly cancel out since H(t) = E J 2 and H(-t) = E J 1 . Therefore, ∂ϕ ∂t φ 2 ,φ 1 = 0. ( 38 
)
Finally, from Eqs. (15) ( 24) and ( 25), we have

∂ϕ ∂φ 1 φ 2 = j 1 + J 2 ∂φ 2 ∂φ 1 φ 2 -J 1 ∂φ 1 ∂φ 1 φ 2 - ∂ ∂φ 1 φ 2 (E J 2 + E J 1 )t. (39) 
Using Eqs. ( 21) and (22), this equation becomes after some mathematical step

∂ϕ ∂φ 1 φ 2 = j 1 -J 1 . (40) 
Hence,

∂ 2 ϕ ∂φ 2 ∂φ 1 1/2 = ∂φ 2 ∂J 1 φ 1 -1/2 (41) 
and Eq. ( 23) can be rewritten as

S j 2 j 1 = 1 2π(2πi) 1/2 +∞ -∞ dφ 2 2π 0 dφ 1 P aths ∂ 2 ϕ ∂φ 2 ∂φ 1 1/2 exp{i(ϕ -π η/2)}. ( 42 
)
Both the contribution ϕ to the phase and the prefactor are thus independent on t (see Eq. ( 38)). We will now show that this is also the case of the phase index η. 

 0          t -t -t f t f

Phase index

The demonstration of the independence of η on t is much more involved than that of ϕ and the prefactor, and only the key steps of this demonstration are given in the following. As previously seen, η is equal to η + ν (see Eq. ( 26)) where the Maslov index η is the number of times ∂φ ∂J 1 φ 1 changes sign when τ runs from -t to t (see a few lines before Eq. ( 17)) and ν is the number of negative eigenvalues of the Hessian of the function f given by Eq. (27).

The eigenvalues of the Hessian are solutions of

∂ 2 f ∂φ 2 1 -λ ∂ 2 f ∂φ 2 ∂φ 1 ∂ 2 f ∂φ 2 ∂φ 1 ∂ 2 f ∂φ 2 2 -λ = 0. ( 43 
)
From Eqs. ( 29), ( 40), ( 53), ( 55) and (61) of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] (in Eq. (55),

∂ 2 f ∂φ 2 1 is in fact ∂ 2 f ∂φ 2 2
), the above equation becomes

λ 2 + ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 + 2I t ∂φ 2 ∂J 1 φ 1 ∂φ 2 ∂J 1 φ 1 λ + ∆ = 0 (44) with ∆ = I t 2 ∂φ 2 ∂J 1 φ 1 ∂φ 2 ∂J 1 φ 1 . (45) 
∆ is the determinant of the Hessian of f . The solutions of Eq. ( 44) are

λ ± = -∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 + 2I t ∂φ 2 ∂J 1 φ 1 ± sgn ∂φ 2 ∂J 1 φ 1 D 1/2 2 ∂φ 2 ∂J 1 φ 1 . (46) 
with

D = ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 2 -4 ∂φ 2 ∂J 1 φ 1 ∂J 2 ∂φ 1 J 1 . (47) 
Using the identity

∂φ 2 ∂J 1 φ 1 = ∂φ 2 ∂J 1 φ 1 + t I ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 + t I 2 ∂J 2 ∂φ 1 J 1 (48) 
(see Eq. (49) of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] ), one may check that

λ + λ -= ∆, (49) 
as it should be. The Hessian matrix being symmetric, the λ ± 's are real, and D ≥ 0. This inequality will be useful further below.

Our goal now is to analyse the sign changes of λ + and λ -as t increases beyond t f for the trajectory starting from (φ 1 , J 1 ). Eq. ( 46) suggests that sign changes will possibly happen whenever the denominator ∂φ 2 ∂J 1 φ 1 changes sign. However, one may also wonder whether the numerator of Eq. ( 46) cannot change sign for certain values of t such that ∂φ 2 ∂J 1 φ 1 is different from 0. We first consider this second possibility before going back to the first.

Assume there is a value t d of t such that at t d , ∂φ 2 ∂J 1 φ 1 is different from 0. On the other hand, ∂φ 2 ∂J 1 φ 1 may in principle be 0. However, it is clear from Eq. ( 28) that this value makes 0 the integrand of Eq. ( 28) and does not contribute to S j 2 j 1 . We thus assume in the rest of this section that ∂φ 2

∂J 1 φ 1 is different from 0. Now, if both ∂φ 2 ∂J 1 φ 1 and ∂φ 2 ∂J 1 φ 1 are non 0 at t d , ∆
is found from Eq. ( 45) to be also non 0. Hence, from Eq. ( 49), neither λ + nor λ -can be 0 at t d , proving thereby that the eigenvalues cannot change sign while ∂φ 2 ∂J 1 φ 1 is different from 0. In other words, λ + and λ -can only change sign at a sign change of ∂φ 2 ∂J 1 φ 1 . We thus consider the value t c of t at which ∂φ 2 ∂J 1 φ 1 changes sign. The latter being given by Eq. ( 48), t c is solution of the quadratic equation

∂J 2 ∂φ 1 J 1 t c I 2 + ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 t c I + ∂φ 2 ∂J 1 φ 1 = 0, (50) 
obtained by taking ∂φ 2 ∂J 1 φ 1 at 0 in Eq. (48). For τ larger than t f , φ(τ ) satisfies

φ(τ ) = φ 2 + J 2 I (τ -t c ) . ( 51 
)
The reason is that φ 2 is the value of φ(τ ) at t which, here, has the particular value t c , and beyond t f , the time-dependence of φ(τ ) is linear. From Eq. (51), we have

∂φ (τ ) ∂J 1 φ 1 = ∂φ 2 ∂J 1 φ 1 + ∂J 2 ∂J 1 φ 1 τ -t c I = ∂J 2 ∂J 1 φ 1 τ -t c I (52) 
(at t = t c , ∂φ 2 ∂J 1 φ 1 is 0). The Maslov index η jumps by one unit at τ = t c since ∂φ(τ ) ∂J 1 φ 1 changes sign. Moreover, this jump is the last one since ∂φ(τ ) ∂J 1 φ 1 varies linearly with τ and beyond t c , it will never take the value 0 again. Calling η ∞ the asymptotic value of the Maslov index (its value for t → ∞), we thus have η = η ∞ -1 right before t c , and η = η ∞ right after t c . We wish to emphasize here that the dependence of ∂φ(τ ) ∂J 1 φ 1 on τ given by Eq. ( 52), and the dependence of ∂φ 2 ∂J 1 φ 1 on t given by Eq. ( 48) are two different things. The fact that the former is linear while the latter is quadratic should not disturb the reader. We now study how λ + and λ -vary along the green segment of the trajectory starting from (φ 1 , J 1 ) when τ approaches and exceeds t c . From Eq. (50), the two possible values of t c are given by

t ± c I = -∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 ± sgn ∂J 2 ∂φ 1 J 1 D 1/2 2 ∂J 2 ∂φ 1 J 1 . ( 53 
)
Since we have previously seen that D ≥ 0, the t ± c 's are real. However, the physically acceptable values of t c should be positive. From Eqs. ( 47) and (53), it is relatively easy to see that:

(i) if ∂J 2 ∂φ 1 J 1 > 0 and ∂φ 2 ∂J 1 φ 1 < 0 [case (i.a)], or if ∂J 2 ∂φ 1 J 1 < 0 and ∂φ 2 ∂J 1 φ 1 > 0 [case (i.b)], t + c > 0 while t - c < 0. (ii) if ∂J 2 ∂φ 1 J 1 > 0, ∂φ 2 ∂J 1 φ 1 > 0 and ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 < 0 [case (ii.a)], or if ∂J 2 ∂φ 1 J 1 < 0, ∂φ 2 ∂J 1 φ 1 < 0 and ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 > 0 [case (ii.b)], t + c > 0 and t - c > 0. (iii) if ∂J 2 ∂φ 1 J 1 , ∂φ 2 ∂J 1 φ 1 and ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1
all have the same sign, both t + c and t - c are negative.

In the following, we will thus consider t + c in case (i), and both t + c and t - c in case (ii). The partial derivatives in Eq. ( 53) are obviously supposed to be such that the previous times are larger than t f . One should not be bothered by the fact that for the same green trajectory (see Fig. 2), there may be two different times t + c and t - c at which the trajectory touches a caustic for the last time, i.e., at which ∂φ 2 ∂J 1 φ 1 undergoes an ultimate change of sign. This is just because the green paths touching the caustic at t + c and t - c are initiated at the different instants -t + c and -t - c , respectively, and the locations of the caustics met along the green path vary in terms of these instants.

We now treat case (i.a), corresponding to ∂J 2 ∂φ 1 J 1 > 0 and ∂φ 2 ∂J 1 φ 1 < 0, for which only

t + c > 0.
Our purpose is to study the signs of λ + and λ -when t is slightly lower or slightly larger than t + c . Eq. ( 46) shows that among all the quantities involved in the expressions of the λ ± 's, the only ones that depend on t are t -1 in the numerator, and ∂φ 2 ∂J 1 φ 1 in the denominator. The idea is thus to replace them in Eq. ( 46) by their first order developments around t + c , given by:

1 t = 1 t + c 1 - t -t + c t + c ( 54 
)
and

∂φ 2 ∂J 1 φ 1 = ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 + 2t + c I ∂J 2 ∂φ 1 J 1 t -t + c I (55) 
or, using Eqs. (53),

∂φ 2 ∂J 1 φ 1 = sgn ∂J 2 ∂φ 1 J 1 D 1/2 t -t + c I . (56) 
By doing this, one finds after some steps of algebra

λ ± = Λ ± 1 ± sgn ∂φ 2 ∂J 1 φ 1 ∂J 2 ∂φ 1 J 1 + I t + c 2 ∂φ 2 ∂J 1 φ 1 sgn ∂J 2 ∂φ 1 J 1 D 1/2 (57) with Λ ± = D -sgn ∂J 2 ∂φ 1 J 1 D 1/2 ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 2 ∂φ 2 ∂J 1 φ 1 sgn ∂J 2 ∂φ 1 J 1 D 1/2 -∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 . ( 58 
)
For t slightly lower than t + c , and given that ∂J 2 ∂φ 1 J 1 > 0, one deduces from Eq. ( 56) that

∂φ 2 ∂J 1 φ 1 < 0. Therefore, ∂J 2 ∂φ 1 J 1 ∂φ 2
∂J 1 φ 1 < 0 and from Eq. (57), one finds

λ + = I t + c 2 ∂φ 2 ∂J 1 φ 1 sgn ∂J 2 ∂φ 1 J 1 D 1/2 . ( 59 
)
Since ∂J 2 ∂φ 1 J 1 > 0 and ∂φ 2 ∂J 1 φ 1 < 0, λ + < 0. Moreover, λ + is larger or equal to λ -. Hence, λ -< 0 (since ∆ = λ + λ -(see Eq. ( 49)), ∆ is positive; this is consistent with the sign deduced from Eq. ( 45), both ∂φ 2 ∂J 1 φ 1 and ∂φ 2 ∂J 1 φ 1 being negative). Therefore, ν = 2. For t slightly larger than t + c , ∂φ 2 ∂J 1 φ 1 > 0 and

∂J 2 ∂φ 1 J 1 ∂φ 2 ∂J 1 φ 1 > 0.
Therefore, λ -is now the root given by the RHS of Eq. ( 59). Recalling that ∂J 2 ∂φ 1 J 1 and ∂φ 2 ∂J 1 φ 1 also have different signs. From Eq. ( 45), we thus find ∆ < 0. The identity ∆ = λ + λ - and the negative sign of λ -finally implies λ + > 0. Therefore, ν = 1. To conclude case (i.a), η = η + ν is thus equal to (η ∞ -1 + 2) right before t + c , and (η ∞ + 1) right after t + c .

η is thus conserved at the grazing of the last caustic by the opposite variations of ν and η.

Consequently, η is independent on t beyond t f , just as the prefactor and ϕ.

Case (ii.a) is treated in Appendix C, and it was verified that cases (i.b) and (ii.b) can be treated following the same reasonings. The conservation of η beyond t f demonstrated in case (i.a) is confirmed in the three remaining cases. This property is thus general.

In conclusion, both ϕ and η are constant beyond t f , and so are the IVR-S values of S j 2 j 1 (see Eq. ( 42)).

Asymptotic convergence of IVR-N towards CSMT

After several unsuccessful attempts to demonstrate from Eq. ( 17) the asymptotic convergence of IVR-N towards CSMT, we finally obtained this result by first expressing Eq. (17) in terms of shifted angles. The outline of the developments is as follows: we successively re-express in terms of the shifted angles the volume element, the phase and the prefactor of Eq. ( 17). The resulting expression suggests that in the limit where t tends to infinity, the SPA can be used to exactly integrate over the shifted angles. The final result is the CSMT expression of S j 2 j 1 . Details are given below.

(i) The relation between the volume elements in Eqs. ( 17) and ( 23) is

dφ 1 dφ 2 = Jdφ 1 dφ 2 (60) 
with

J = ∂φ 1 ∂φ 1 φ 2 ∂φ 1 ∂φ 2 φ 1 ∂φ 2 ∂φ 1 φ 2 ∂φ 2 ∂φ 2 φ 1 . (61) 
Using Eqs. ( 21) and ( 22), the Jacobian becomes

J = 1 + t I ∂J 2 ∂φ 2 φ 1 - ∂J 1 ∂φ 1 φ 2 + t 2 I 2 ∂J 2 ∂φ 1 φ 2 ∂J 1 ∂φ 2 φ 1 - ∂J 2 ∂φ 2 φ 1 ∂J 1 ∂φ 1 φ 2 . ( 62 
)
There are two types of partial derivatives in this problem: those of a final variable with respect to an initial one with the other initial variable held constant, and the others. In order to deduce Eq. ( 23) from Eq. ( 10), [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] it was necessary to express any derivative of the second type in terms of derivatives of the first type. We apply here the same method.

Following a reasoning analogous to that in Sec. II.D of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] , but with the φ i 's instead of the φ i 's, we have

∂J 2 ∂φ 2 φ 1 = ∂J 2 ∂J 1 φ 1 ∂φ 2 ∂J 1 φ 1 (63) 
and

∂J 1 ∂φ 1 φ 2 = - ∂φ 2 ∂φ 1 J 1 ∂φ 2 ∂J 1 φ 1 . (64) 
(See Eqs. ( 44) and (42) in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] , respectively.) Moreover, the relations J 2 ≡ J 2 (φ 1 , J 1 ) and

φ 2 ≡ φ 2 (φ 1 , J 1 ) imply the differentials dJ 2 = ∂J 2 ∂φ 1 J 1 dφ 1 + ∂J 2 ∂J 1 φ 1 dJ 1 (65) 
and

dφ 2 = ∂φ 2 ∂φ 1 J 1 dφ 1 + ∂φ 2 ∂J 1 φ 1 dJ 1 . (66) 
The partial derivative ∂J 2 ∂φ 1 φ 2 is thus found by replacing dφ 2 by 0 in Eq. (66), expressing dJ 1 in terms of dφ 1 from the resulting identity, replacing dJ 1 by its expression in terms of dφ 1 in Eq. ( 65), and dividing dJ 2 by dφ 1 . This gives

∂J 2 ∂φ 1 φ 2 = ∂J 2 ∂φ 1 J 1 - ∂φ 2 ∂φ 1 J 1 ∂J 2 ∂J 1 φ 1 ∂φ 2 ∂J 1 φ 1 . (67) 
Using Eqs. ( 63), ( 64) and (67), one shows that Eq. (62) becomes

J = 1 + a (68) 
with

a = t I ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 + t I ∂J 2 ∂φ 1 J 1 ∂φ 2 ∂J 1 φ 1 . (69) 
(ii) We now focus on ϕ (Eqs. ( 18) and ( 19)). Substituting in the latter φ 1 and φ 2 by the RHS of Eqs. ( 21) and ( 22), respectively, one finds after some steps of algebra

ϕ = ϕ + b (70) with b = t 2I (J 1 -j 1 ) 2 + (J 2 -j 2 ) 2 . (71) 
(See Eqs. ( 24) and ( 25) for the expression of ϕ.)

(iii) Finally, we consider the prefactor in Eq. ( 17). Using Eqs. ( 48), ( 68) and (69), we have

∂φ 2 ∂J 1 φ 1 -1/2 = ∂φ 2 ∂J 1 φ 1 J -1/2 . ( 72 
)
From Eqs. (60), ( 68), ( 70) and (72), we may rewrite Eq. ( 17) as

S j 2 j 1 = 1 2π(2πi) 1/2 +∞ -∞ dφ 2 2π 0 dφ 1 P aths ∂φ 2 ∂J 1 φ 1 -1/2 |1 + a| 1/2 exp{i(ϕ + b -πη/2)}. (73) 
Lastly, replacing dφ 2 by ∂φ 2 ∂J 1 φ 1 dJ 1 in Eq. ( 73) leads to the desired IVR-N expression

S j 2 j 1 = 1 2π(2πi) 1/2 2π 0 dφ 1 +∞ -∞ dJ 1 ∂φ 2 ∂J 1 φ 1 1/2 |1 + a| 1/2 exp{i(ϕ + b -πη/2)}. (74) 
As compared to the IVR-S expression (see Eq. ( 23)), the prefactor is multiplied by |1 + a| 1/2 , the b term is added to the phase, and the index is reduced to that of the propagator (see Eq. ( 14)). Owing to the fact that none of the quantities φ 1 , φ 2 , J 1 , J 2 and ϕ depend on t and given Eqs. ( 69) and (71), the analytical dependence on t of the prefactor and the phase (excluding (-πη/2)) is very clear in Eqs. ( 73) and (74) (both the prefactor and the phase increase with t) compared to Eqs. (17) and (20). As previously outlined, however, numerical calculations show that the fluctuations of IVR-N S-matrix elements caused by these variations progressively vanish as t takes large values. In the rest of this section, we mathematically justify this convergence.

Assuming from now on that t tends to +∞, we can replace the term |1 + a| in Eq. ( 73) by its second order term (see Eq. ( 69)). Eq. (73) can thus be rewritten as

S j 2 j 1 = dφ 2 dφ 1 P aths g(φ 2 , φ 1 )e itf (φ 2 ,φ 1 ) (75) with g(φ 2 , φ 1 ) = t 2π(2πi) 1/2 I ∂J 2 ∂φ 1 J 1 1/2 ∂φ 2 ∂J 1 φ 1 -1 e i(ϕ-πη/2) (76)
and

f (φ 2 , φ 1 ) = (J 1 -j 1 ) 2 + (J 2 -j 2 ) 2 2I . ( 77 
)
By noting that the phase in Eq. ( 75) is proportional to t, the reader familiar with the SPA [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF][START_REF] Heller | The Semiclassical Way to Dynamics and Spectroscopy[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] will immediately realize that given the infinite value of t, the SPA can be used to exactly integrate the RHS of Eq. ( 75) and find the dominant contributions to S j 2 j 1 . Indeed, the central result of the SPA is

dφ 2 dφ 1 g(φ 2 , φ 1 )e itf (φ 2 ,φ 1 ) = l g(φ 2l , φ 1l )e i[tf (φ 2l ,φ 1l )-πν l /2] 2πi t|∆ l | 1/2 (78) 
(the sign = must be replaced by the sign ≈ whenever t is finite). (φ 2l , φ 1l ) is the l th station-

nary point of f , ∆ l =    ∂ 2 f ∂φ 2 1 l ∂ 2 f ∂φ 2 2 l - ∂ 2 f ∂φ 2 ∂φ 1 l 2    (79)
is the determinant of the Hessian of f at (φ 2l , φ 1l ), and ν l is the number of negative eigenvalues of the Hessian. A validity condition of Eq. ( 78) is that g is analytical about the stationary points of f (note that the phase of g(φ 2 , φ 1 ) varies infinitely slowly as compared to that of tf (φ 2 , φ 1 )). From now on, the subscript l will be dropped in order to alleviate notation. From Eq. (77), f is stationary for the values of the angles satisfying

∂f ∂φ i φ j = 1 I (J 1 -j 1 ) ∂J 1 ∂φ i φ j + (J 2 -j 2 ) ∂J 2 ∂φ i φ j = 0, (80) 
(i, j) = (1, 2) and (2, 1). Clearly, obvious roots of the above equations satisfy J i = j i , i = 1, 2 (case I). But other possible roots satisfy J i = j i and

∂J j ∂φ i φ j = ∂J j ∂φ j φ i = 0, (i, j) = (1, 2) or
(2, 1) (cases II), or ∂J i ∂φ i φ j = ∂J j ∂φ i φ j = 0, (i, j) = (1, 2) and (2, 1) (case III). However, case I involves 2 constraints, against 3 and 4 in cases II and III, respectively. Case I is therefore much more likely than cases II and III and henceforth, we will ignore the latter.

At the stationary points, the second derivatives of f are given by

∂ 2 f ∂φ 2 i = 1 I ∂J 1 ∂φ i 2 φ j + ∂J 2 ∂φ i 2 φ j (81) 
(i, j) = (1, 2) and (2, 1), and

∂ 2 f ∂φ 1 ∂φ 2 = 1 I ∂J 1 ∂φ 1 φ 2 ∂J 1 ∂φ 2 φ 1 + ∂J 2 ∂φ 1 φ 2 ∂J 2 ∂φ 2 φ 1 . ( 82 
)
Using Eqs. ( 79), ( 81) and (82), we arrive at the following intermediate expression of the Hessian of f :

∆ = 1 I 2 ∂J 1 ∂φ 1 φ 2 ∂J 2 ∂φ 2 φ 1 - ∂J 1 ∂φ 2 φ 1 ∂J 2 ∂φ 1 φ 2 2 . ( 83 
)
Using Eqs. ( 63), ( 64) and (67), the final expression of ∆ is

∆ = 1 I 2 ∂J 1 ∂φ 2 φ 1 ∂J 2 ∂φ 1 J 1 2 . ( 84 
)
Moreover, it is clear from Eq. (77) that the second order development of f around any stationary point gives to f (φ 2 , φ 1 ) the shape of a parabolic well. Consequently, the eigenvalues of the Hessian of f are necessarily positive, and the phase index ν l in the RHS of Eq. ( 78) is always zero. By taking this into account and the fact that J 1 = j 1 and J 2 = j 2 , one deduces from Eqs. ( 33), ( 34), ( 75)-( 78) and (84):

S j 2 j 1 = P aths 2π i ∂J 2 ∂φ 1 J 1 -1/2 exp{i(Θ -πη/2)} (85) 
( P aths in this expression combines P aths in Eq. (75) and l in Eq. ( 78)). This is nothing but the standard expression of classical S matrix theory (CSMT). [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF][START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] In summary, we have shown that Eq. ( 20) (IVR-N) is equivalent to Eq. ( 17), itself equiv-alent to Eq. ( 73), itself tending towards Eq. (85) (CSMT) when t tends to +∞. Therefore, the IVR-N method totally misses its objective which was to provide results more simply and more accurately than CSMT. Instead of that, IVR-N predictions suffer from the three following major flaws: (i) they fluctuate in terms of t over a transitory period following t f , (ii) they require an ever increasing number of trajectories to be converged as t increases (the integrand of Eq. ( 74) oscillates all the faster as t is large while its modulous diverges), and

(iii) they asymptotically tend towards CSMT predictions. In contrast, the IVR-S method does not suffer from any of these flaws.

Conclusion

The semiclassical initial value representation (SCIVR) is a fascinating theory bridging the gap between the quantum and classical descriptions of molecular dynamics. However, it is far from obvious to apply SCIVR with precision to the calculation of S-matrix elements, particularly for realistic three-dimensional processes. Beyond the numerical instabilities caused by non linear couplings within the interaction region, or the choice of the semiclassical propagator to be used, unexpected flaws of the semiclassical propagation may affect the quality of the predictions, like the one recently highlighted in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] : if one performs SCIVR calculations of rotational transition probabilities using the usual angular coordinates of the classical and quantum descriptions, called natural angles in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] and this work, transition probabilities lack precision and exhibit unrealistic behaviour. On the other hand, if one uses Miller's shifted angles, [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] having the property to be shifted with respect to the natural angles so as to vary only within the interaction region, transition probabilities are much more accurate and their pathological behaviour disappears. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] In the present work, we have performed a rigorous analysis of these findings within the framework of the model of light-induced rotational transitions proposed in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] . The work is technical, but a simple idea emerges:

both SCIVR approaches involve backward-forward-backward semiclassical propagations, but the three-segment paths underlying them involve at each time-arrow inversion a momentum jump in natural angles (see Fig. 1), instead of momentum conservation in shifted angles (see Fig. 2). It is precisely this momentum jump that makes the first calculations defective, and its conservation that makes the second virtuous.

It would be interesting to check whether the conclusions of the present analysis, based on the van Vleck-Gutzwiller propagator, are also valid when the latter is replaced by the more accurate Herman-Kluk propagator. [32][START_REF] Kay | Semiclassical initial value treatments of atoms and molecules[END_REF][START_REF] Buchholz | Herman-Kluk propagator is free from zero-point energy leakage[END_REF][START_REF] Werther | Coherent state based solutions of the time-dependent Schrödinger equation: hierarchy of approximations to the variational principle[END_REF] (see Eq. (A19) of Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] , or Eq. ( 19) of Ref. [START_REF] Leibscher | Semiclassical catastrophes and cumulative angular squeezing of a kicked quantum rotor[END_REF] ). For a Cartesian variable, the propagator is limited to the k = 0 term of the sum. For an angle, however, the sum is mandatory as this angle plus any multiple of 2π corresponds to the same physical configuration. The above propagator is thus based on all the classical trajectories running straight ahead from φ 1 at time 0 to φ 1 modulo 2π at time -t. Using Eqs. (A.1), (A.2) and ( 5), one finds and (5). We can do that since exp(-i2πj 1 k) = 1. Therefore, Eq. (A.3) can be rewritten as

Q(φ 1 ) = 1 (2π) 1/2 - I 2πit
Q(φ 1 ) = 1 (2π) 1/2 - I 2πit 1/2 +∞ -∞
dφ 1 e i -I(φ 1 -φ 1 ) 2 2t +j 1 φ 1 .

(A.4)

Integration over φ 1 can then be exactly performed by using the central result of the SPA: The strict equality between both sides of Eq. (A.5) is only true when f is a quadratic function and g(φ 1 ) is constant, which is exactly the case here. The unique stationary point of f is defined by

φ 1 = φ 1 + j 1 I t. (A.8)
positive, λ + is positive. Moreover, since ∂φ 2 ∂J 1 φ 1 > 0 and ∂φ 2 ∂J 1 φ 1 < 0, we find from Eq. (45) that ∆ < 0. Since ∆ = λ + λ -(see Eq. ( 49)), λ -is negative. Therefore, ν = 1. For t slightly larger than t + c , ∂φ 2 ∂J 1 φ 1 > 0 and ∂J 2 ∂φ 1 J 1 ∂φ 2 ∂J 1 φ 1 > 0. Therefore, λ -is now the root given by the RHS of Eq. (59). Since ∂J 2 ∂φ 1 J 1 and ∂φ 2 ∂J 1 φ 1 have the same sign, λ -> 0. λ + being larger or equal to λ -, λ + > 0. Hence, ν = 0. To sum up, η = η + ν is equal to (η ∞ -1 + 1) right before t + c , and (η ∞ + 0) right after t + c .

We continue with the signs of λ ± around t - c . Following the reasoning preceding Eq. ( 54), we replace t -1 and ∂φ 2 ∂J 1 φ 1 in Eq. ( 46) by their first order developments around t - c , given by: When doing that, one finds after some steps of algebra

1 t = 1 t - c 1 - t -t - c t - c (C.
λ ± = Λ ± 1 ∓ sgn ∂φ 2 ∂J 1 φ 1 ∂J 2 ∂φ 1 J 1 - I t - c 2 ∂φ 2 ∂J 1 φ 1 sgn ∂J 2 ∂φ 1 J 1 D 1/2 (C.4) with Λ ± = - D + sgn ∂J 2 ∂φ 1 J 1 D 1/2 ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 2 ∂φ 2 ∂J 1 φ 1 sgn ∂J 2 ∂φ 1 J 1 D 1/2 + ∂φ 2 ∂φ 1 J 1 + ∂J 2 ∂J 1 φ 1 . (C.5)
For t slightly lower than t - c , and given that ∂J 2 ∂φ 1 J 1 > 0, one deduces from Eq. (C.3) that and ∂φ 2 ∂J 1 φ 1 also have different signs. From Eq. (45), we thus find that ∆ < 0. The identity ∆ = λ + λ -and the negative sign of λ - finally implies λ + > 0. Therefore, ν = 1. To conclude, η = η + ν is thus equal to (η ∞ -1 + 2) right before t - c , and (η ∞ + 1) right after t - c . For both t + c and t - c , η is thus conserved at the grazing of the last caustic by the opposite variations of η and ν. Consequently, η is independent on t beyond t f , just as the prefactor and ϕ.

Figure 1 :

 1 Figure 1: Example of three-segment path underlying the IVR-N calculation of S j 2 j 1 . The arrows of time indicate the direction in which the three-segment path is traveled. A momentum jump occurs at each time arrow inversion, i.e., at -t and t.

Figure 2 :

 2 Figure 2: Example of three-segment path underlying the IVR-S calculation of S j 2 j 1 . The arrows of time, not indicated here, are as in Fig. 1. In the present case, no momentum jump occurs at inversions of the time arrow.

∂J 1 φ 1 have 2 ∂J 1 φ 1 and ∂φ 2

 122 different signs, λ -< 0. Moreover, ∂φ

+j 1

 1 (φ 1 -2πk) . (A.3)Note that we have added (-2πj 1 k) to the phase directly obtained from Eqs. (A.1), (A.2)

dφ 1

 1 g(φ 1 )e if (φ 1 ) = k g(φ 1k ) 2πi |f (φ 1k )| 1/2 e i[f (φ 1k )-πν k /2] . (A.5) φ 1k is the k th stationary point of f and ν k is equal to 0 (1) if f (φ 1k ) is positive (negative).Identifying the LHS of Eq. (A.5) with the RHS of Eq. (A.4),

  ∂J 1 φ 1 > 0. Therefore, ∂J 2 ∂φ 1 J 1 ∂φ 2 ∂J 1 φ 1 > 0 and from Eq. (C.4), one finds Since ∂J 2 ∂φ 1 J 1 > 0 and ∂φ 2 ∂J 1 φ 1 > 0, λ + < 0. Moreover, λ + is larger or equal to λ -. Hence, λ -< 0. Therefore, ν = 2. For t slightly larger than t - c , ∂φ 2 ∂J 1 φ 1 < 0 and ∂J 2 ∂φ 1 J 1 ∂φ 2 ∂J 1 φ 1 < 0. Therefore, λ -is now the root given by the RHS of Eq. (C.6). Recalling that ∂J 2 ∂φ 1 J 1 and ∂φ 2 ∂J 1 φ 1 have the same sign, λ -< 0. Moreover, ∂φ 2 ∂J 1 φ 1

	∂φ 2				
	λ + = -	I t -c	2	∂φ 2 ∂J 1 φ 1 ∂φ 1 J 1 D 1/2 sgn ∂J 2	(C.6)

Acknowledgements

I am grateful to W. H. Miller and D. Tannor for very stimulating exchanges.

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Appendix A: From Eq. (10) back to Eq. (8) Let us consider the contribution

to the integral of Eq. (10). The RHS of this equation corresponds to the free backward propagation of φ 1 |j 1 ; 0 from time 0 to -t. The semiclassical expression of φ 1 |e iH 0 t |φ 1 deduced from Eqs. ( 14)-( 16) is given by

Eq. (A.8) defines the classical trajectory running backward in time straight from φ 1 at time 0 to φ 1 at time -t. This is in fact the only trajectory contributing to the propagation of φ 1 |j 1 ; 0 from time 0 to -t among the infinite set of trajectories contributing to the propagator itself (see Eq. (A.2)). Inserting Eq. (A.8) in Eq. (A.7) leads to

From Eqs. (A.4)-(A.6) and (A.9)-(A.11), the final expression of Q(φ 1 ) is

in agreement with the right-most term of Eq. ( 8). (The right-most identity in Eq. (A.12) comes from Eqs. (3) and (5).) The semiclassical propagator for the free rotor is thus exact.

From Eqs. ( 10), (A.1) and (A.12), we have

Eq. ( 8) is then obtained by performing the integration over φ 2 in exactly the same way as previously.

Appendix B: Dependence of the integrand of Eq. (20) on time t

Eq. ( 20) involves an integral with respect to φ 1 and J 1 . For fixed values of these two variables, the dependence of ϕ on t is thus

Integration by part of R(φ 2 , φ 1 ; 2t) leads to

From Eqs. (B.1) and (B.3), we finally obtain

Since in the general case, j 1 = J 1 and j 2 = J 2 , ϕ varies with t. The consequences of this dependence are as discussed in Sec. 5.1.

Appendix C: Dependence of λ ± on time t in case (ii.a)

We start to determine the signs of λ ± around t + c . For t slightly lower than t + c , and given that ∂J 2 ∂φ 1 J 1 > 0, one deduces from Eq. (56) that ∂φ 2 ∂J 1 φ 1 < 0. Therefore, ∂J 2 ∂φ 1 J 1 ∂φ 2 ∂J 1 φ 1 < 0 and from Eq. (57), one finds that λ + is given by Eq. (59). Since both ∂J 2 ∂φ 1 J 1 and ∂φ 2 ∂J 1 φ 1 are