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We revise in detail and in a pedagogical way the analysis of the boundary layer theory
of warm tearing modes in slab, reduced magnetohydrodynamics (MHD), when magnetic
reconnection is driven by electron inertia and/or resistivity, and ion-sound Larmor radius
effects are included. By comparison with the numerical solution of the corresponding
eigenvalue problem, we interpret these results by means of a heuristic approach, which
in the warm-electron regime, we show to be in general not feasible without knowledge of
the scaling of the gradient of the magnetic flux function, differently from what happens
in the cold-electron regimes. We put in evidence for a non-trivial relation between the
first derivative of the magnetic flux function and of the velocity parallel to the neutral
line, evaluated in its proximity, by thus providing insight to the multiple boundary layer
analysis that Pegoraro & Schep (Plasma Phys. Control. Fusion, vol. 28, 1986, p. 647) first
showed to be required in warm-tearing regimes. In this way, we also suggest and justify
a general operational definition of the reconnecting layer width and we discuss the linear
appearance of microscopic scales related to the gradients of the eigenfunctions of the
tearing modes.
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1. Introduction

Magnetic reconnection is one of the chief processes of conversion between
electromagnetic energy and particle kinetic energy in magnetised plasmas (see, e.g.
Biskamp 2000; Yamada, Kulsrud & Ji 2010). At the basis of extreme energy releasing
phenomena that naturally occur in space plasmas, such as solar flares, coronal mass
ejections or magnetic substorms, magnetic reconnection is of fundamental importance
also in magnetically confined thermonuclear fusion plasma experiments: in fusion devices
like tokamaks, it can cause disruptions (see, e.g. Wesson 1990), that is, the sudden
loss of the magnetic confinement. This is usually due to magnetic island formation via
tearing-like instabilities, and can affect the transport of matter and energy. Among the
different scenarios, which have been devised since the first formulations of the ‘magnetic
reconnection’ concept in the works by Giovanelli (1946), Hoyle (1949) and Dungey (1950),
tearing-type modes (Furth, Killeen & Rosenbluth 1963) are the prototypical example
of spontaneous reconnecting instabilities, that is, of magnetic perturbations that grow
exponentially in time by inducing magnetic reconnection. Their ‘explosive’ behaviour in
time make them the chief candidates for the explanation of several fast energy releasing
events, which, both in Nature and in laboratory plasmas, are attributed to magnetic
reconnection processes. Their theoretical modelling is however not trivial, since the
mathematics required to solve the corresponding eigenvalue problem is complicated by
some technical features that make its integration typically more complex than that of most
linear instabilities. Notably, due to the multi-scale nature of the linear problem in which
linear differential operators intervene, a boundary layer integration procedure is required.

Since Furth’s remark (Furth 1963, 1964) of the relevance of electron inertia in allowing
magnetic reconnection and since the early model by Furth (1964) and Coppi (1964c,a)
for inertia-driven reconnecting instabilities, kinetic scale effects have attracted increasing
attention in the attempt to model the rapid magnetic reconnection phenomena observed
in low collisionality plasmas. After the seminal paper by Furth et al. (1963), in which
the theory of resistive tearing modes was first formulated, several attempts have been
made to include collisionless and/or kinetic physics in the linear tearing mode theory.
Even if some works exist in which a full kinetic or girokinetic analytical treatment has
been considered (Coppi, Laval & Pellat 1966; Laval, Pellat & Vuillemin 1966; Hazeltine
& Ross 1975; Drake & Lee 1977; Cowley, Kulsrud & Hahm 1986; Daughton 1999;
Daughton & Karimabadi 2005; Zocco & Schekochihin 2011; Connor, Hastie & Zocco
2012b), the complexity of the boundary layer analysis and of the heuristic assumptions on
the ordering of the different microscopic scales makes the identification of the different
reconnection regimes a quite difficult task, especially when two or more non-ideal
magnetohydrodynamic (MHD) parameters enter in the reconnection rate. This is true even
in a relatively simple fluid description extended to include non-ideal MHD effects.

For this reason, heuristic approaches have been developed to tackle the boundary
layer problem with a simplified dimensional-like analysis, based on estimations about the
characteristic gradients and about the balance of the terms of the linear equations. These
techniques have been successfully used to recover the asymptotic scalings of the growth
rate and of the reconnection layer width in the purely resistive and purely inertial regimes
of reduced MHD (RMHD) instabilities. They are also often presented in textbooks on
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magnetic reconnection as a ‘short-cut’ procedure to obtain these results without carrying
out the full boundary layer integration of the eigenmodes. Providing an estimate of the
characteristic temporal and spatial scales of spontaneous reconnecting instabilities, and
comparing them with the values inferred from experimental measures of reconnection
events occurring in the laboratory or in Nature, are indeed among the elements of principal
interest, in this context. Heuristic methods based on dimensional analysis have also proven
to work for both small and large values of theΔ′ instability parameter (Ottaviani & Porcelli
1995) and for the fastest growing mode in a large aspect ratio current sheet (Bhattacharjee
et al. 2009; Comisso et al. 2013; Del Sarto et al. 2016). Moreover, they are generally
used to obtain insight on the physics of the problem and on the interpretation of some
non-trivial results of the boundary layer analysis (see, e.g. Drake & Lee 1977; Cowley
et al. 1986). However, as we are going to discuss in this work, heuristic methods ‘fail’
to obtain the scalings first computed by Pegoraro & Schep (1986) and Porcelli (1991)
with a boundary layer approach, when electron temperature effects are included, unless
some further careful assumptions are made, which are related to the boundary layer
decomposition of the spatial domain: whether it is possible to develop heuristc arguments
which allow one to obtain these results without relying on further information from
boundary layer analysis (or from numerical integration of the linear problem) is, at the
moment, an open question.

One of the main purposes of this work is to revise in a tutorial way the linear
analysis of tearing-type modes in these regimes, by discussing their analytical solutions
in the coordinate space and by showing in this way the advantages and limitations of
heuristic-type derivations. To the best of our knowledge, indeed, details of the analytical
theory for this double-boundary layer approach have been seldom discussed in the existing
literature. When this has occurred, the analysis was based on the solution of the eigenvalue
problem in the Fourier space (Pegoraro & Schep 1986), or by using a different linear
model based on a reduced fluid-kinetic approach (Zocco & Schekochihin 2011) and by
taking a somewhat different analytical approach based on perturbation methods to solve
the boundary layer equations that here we will tackle by direct integration instead.1 It
should be nevertheless recalled that other analytical works on this subject exist. In these,
the boundary layer analysis of tearing modes is however complicated by further ingredients
related, for example, to the geometry of the magnetic equilibrium profile (see, e.g. Militello
et al. 2004; Connor et al. 2012a; Zocco, Helander & Weitzner 2020) or to the inclusion
of full kinetic effects (see the references previously cited in this regard). Moreover, also
in the few works that addressed these subjects with different approaches with respect to
the one we develop here, most details of the complex analysis involved in the calculations
were often not reported and are difficult to track.

To simplify the analysis and to show in a pedagogical way the essential features of the
double boundary layer separation, we focus here on the limit of cold ions, which allows us
to take a fluid closure for the latter, differently from the semi-kinetic models considered
in practically all previous works that already treated this problem (see, e.g. Cowley et al.
1986; Pegoraro & Schep 1986; Pegoraro, Porcelli & Schep 1989; Porcelli 1991; Zocco &
Schekochihin 2011). In particular, we rely on the equations of the two-fluid reduced-MHD
model extended to include ion-sound Larmor radius effects, for which different derivations
exist (Zank & Matthaeus 1992; Schep, Pegoraro & Kuvshinov 1994; Bergmans 2001; Del
Sarto, Califano & Pegoraro 2006; Bian & Tsiklauri 2009), which are based on two different

1After acceptance of this manuscript the authors have become aware of another recent work (Granier et al. 2022), in
which an integration of the boundary layer equations in the coordinate space has been performed in the warm-electron,
small-Δ′ regime of tearing modes.
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types of ordering between fluctuations of the ion density and of the guide field magnetic
component (cf. Appendix A). Several more recent and refined gyrofluid models exist,
which are based on the evolution of more than two scalar fields. However, the two-field
model we focus on, which has been used in several nonlinear studies of different magnetic
reconnection scenarios (see Kleva, Drake & Waelbroeck 1995; Cafaro et al. 1998; Grasso
et al. 1999; Bergmans & Schep 2001; Del Sarto, Califano & Pegoraro 2003; Wang et al.
2011 to cite the earliest) or even of turbulence (Milosevich, Morrison & Tassi 2018),
contains the whole essential physics of the problem. More specifically, it yields the same
linear system to which all other, more refined, cold-ion models converge in the isothermal
electron limit.

To accomplish our pedagogical purpose, we then give a step-by-step presentation of the
boundary layer integration procedure in the coordinate space, with the aim of keeping
it ‘self-contained’, that is, by trying to provide all the analytical tools useful for the
purpose (e.g. element of complex analysis), when they result necessary for the algebra. By
then comparing the analytical results with those obtained with a numerical eigen-solver
(Betar et al. 2020) based on a multi-precision toolbox (Holoborodko 2012), we analyse the
spatial behaviour of the corresponding eigenfunctions and we discuss the limitations and
delicate points of heuristic estimations that are sometimes used as a ‘quicker’ alternative
to full boundary layer calculations. Although the main focus of this article is on the
warm-electron regime, we also consider, for comparison, the cold-electron limit, in which
a single boundary layer analysis suffices. In particular, we consider in a unified way
both the resistive and collisionless regimes, and we separately address the cold- and
warm-electron regimes. Each regime is associated with some characteristic non-ideal
parameter: the Lundquist number S−1, related to resistivity; the electron skin depth de,
related to electron inertia in the collisionless limit; and the ion-sound Larmor radius ρs,
related to the electron temperature.

We thus discuss the results of the boundary layer analysis, which yields the asymptotic
scaling (in terms of the non-ideal parameters ruling the reconnection process) of the
growth rates and of some characteristic spatial scales associated with the eigenfunctions,
as well as the approximated profile of the latter in some regions of the domain of
integration. We then discuss the asymptotic estimates of the first derivatives of the current
and velocity field on the neutral line. We also provide (to the best of our knowledge, for
the first time) a formal quantitative definition of the reconnection layer width, which we
argue to be valid in all reconnection regimes and which is given in terms of numerically
measurable quantities that are related to the spatial profile of the eigenfunctions.

Then, in interpreting these quantities in terms of a heuristic approach, whose limitations
in the warm-electron case we point out, we provide evidence that the introduction of
the scale ρs makes a further characteristic ‘mixed’ scale appear in the collisionless
large wavelength limit, which is smaller than de when ρs > de, since it scales like
∼ρ−1/3

s d4/3
e . Such a characteristic length, which in previous works (Porcelli 1991) had been

already noted, is identifiable as the reconnecting layer width, in agreement both with the
operational definition here proposed and with previous works that already recognised it as
such (Zocco & Schekochihin 2011).

By discussing the boundary layer results in light of a heuristic dimensional-type
approach, we also show a new, non-trivial relation between the first derivative of the
magnetic flux function and the first derivative of the parallel velocity, which holds close
to the neutral line. This velocity gradient displays characteristic scalings that depend on
the wavelength regime. Information about these scalings is a priori not evident, and the
analysis we provide on this subject at the end of this work suggests indeed that such
information can not be obtained via simple dimensional analysis, if not in the cold-electron
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regimes. Nevertheless, introducing this scale length allows, in any reconnection regime,
the writing of the scaling laws in a way that results to be perfectly symmetric between
the small and large wavelength limit, provided the characteristic instability parameter of
the small wavelength limit (i.e. the Δ′ parameter of Furth et al. 1963) is replaced in the
large wavelength limit by the gradient of the velocity (which we have here called Δ′

vy
,

by analogy). This fact, and the correspondence between some characteristic scale length
associated with this velocity gradient and scale lengths that in other works based on a
kinetic approach have been interpreted in terms of inherently kinetic features (Drake &
Lee 1977; Cowley et al. 1986; Ottaviani & Porcelli 1993; Zocco & Schekochihin 2011),
suggests that the role of this quantity in the tearing mode linear dynamics deserves future
investigation.

The structure of this article is as follows.

(i) In § 2, we discuss the model equations and some general aspects of magnetic
reconnection which include: a brief historical review of the notion of magnetic
reconnection associated with that of magnetic topology and some general features
of tearing modes and of the magnetic structures they induce (§ 2.1); the notion of
reconnection rate and its relation with the growth rate of the eigenvalue problem
(§ 2.2).

(ii) In § 3, we introduce the notion of boundary layer, we discuss its relevance to
tearing mode analysis and we outline the key points of the corresponding integration
strategy. Then we introduce the notion of instability parameter (Δ′) and the way it
intervenes in the matching of the solutions between the ideal and non-ideal regions
of the domain (§ 3.1). We discuss the wavelength regimes of the eigenmode solution,
in terms of the amplitude ofΔ′, by pointing out similarities and differences between
tearing modes in slab and in cylindrical geometry (§ 3.2). In § 3.3, we briefly review
previous works in which a boundary layer analysis similar to the one we develop
here has been discussed.

(iii) In § 4, we address the boundary layer integration by starting from the ideal
region, where the hypotheses of ideal MHD hold, and we detail the integration
procedure which allows the analytical evaluation of Δ′(k) in terms of the instability
wavenumber k for a specific equilibrium profile, which exemplifies a larger class of
equilibria (§ 4.1).

(iv) In § 5, we introduce the notions of ‘generalised’ resistivity and electron inertia,
which allow a unified treatment of the resistive and collisionless case altogether,
and we discuss the combination of the two non-ideal parameters. We then discuss
the strategy for the identification of the integration layers in the non-ideal region
via the general approximations valid in the non-ideal region (§ 5.1) and the criteria
of normalisation (§ 5.2). We then introduce the auxiliary function, useful for the
integration of the boundary layer problem in some regimes, by discussing its small
and large wavelength limits (§ 5.3) and then its normalisation (§ 5.4). Finally, we
outline the criteria that may make one prefer to perform the integration of the
non-ideal equation by using the auxiliary equations rather than the equations for
the two scalar fields (§ 5.5).

(v) In § 6, we solve the boundary layer problem in the cold-electron regimes. First we
find the solution in the large-Δ′ limit (§ 6.1) and then in the small-Δ′ limit (§ 6.2).

(vi) In § 7, we address the warm-electron regimes: after discussing the general form of
the equations in the non-ideal region (§ 7.1), we identify the two boundary layers
of interest in this case (§ 7.2) and then we outline the integration strategy that will
be pursued, by relying on the integral representation of hypergeometric functions
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(§ 7.3). First we consider the solution in the large-Δ′ (§ 7.4) and then in the small-Δ′

limit (§ 7.5).
(vii) In § 8, we address the problem of identifying the characteristic width of the

reconnecting layer by relying on further hypotheses of physical character and by
starting from the characteristic scales obtained from the boundary layer integration.
After reviewing different notions of the reconnecting layer that have been adopted
in the literature over the years (§ 8.1), we propose an operational definition of
its width, related to the distance of the local maxima (or minima) of the current
density from the neutral line, which can be useful for both experimental and
numerical application, and which is shown via numerical integration to provide
the same scalings of the inner layer width (§ 8.2). The asymptotic scalings of
further characteristic spatial scales associated with the derivatives of the magnetic
field and of the velocity profile on the neutral line are then estimated and
compared to the scalings of the reconnecting layer width in different regimes
(§ 8.3).

(viii) In § 9, we address the problem of the heuristic derivation of the scaling laws
of tearing modes via dimensional analysis. After discussing the relevance and
usefulness of the approach and after having outlined its general hypotheses (§ 9.1),
we apply it to the ‘textbook’ example of the cold-electron regimes, where its
efficiency is well established (§ 9.3). Then we show and discuss its ‘failure’ in
the warm-electron regimes, where it yields wrong estimates with respect to those
obtained from the boundary layer analysis (§ 9.3).

(ix) In § 10, starting from the physical insight brought by the analysis of the logical
points which may lead to the wrong dimensional estimates in the warm-electron
regime, we introduce a new characteristic scale length associated with the gradient
of the velocity component parallel to the neutral line and evaluated close to
it: by analogy with the instability parameter, we call it Δ′

vy
(§ 10.1). We then

postulate a further estimate for the gradient of the magnetic flux function, which,
depending on the reconnection regime, can be related to Δ′

vy
(§ 10.2). After having

shown the convergence of a numerical procedure which allows the quantification
of Δ′

vy
(§ 10.3), we show its relevance for the heuristic estimates: they can

now lead to the correct results – although in the warm-electron regime, the
procedure is not ‘closed’, since it is strongly suggested that the scale Δ′

vy
can

not be obtained by simple dimensional analysis – and they can be cast in a
‘symmetric form’, in which the scalings in the large-Δ′ limits mirror those of
the small-Δ′ limits provided the substitution Δ′ ↔ Δ′

vy
(§ 10.4). The significance

of the inverse scale length Δ′
vy

is further discussed by comparison with results
obtained in previous works on boundary layer calculations, in which a characteristic
length displaying similar scalings in some regimes had been already noted
(§ 10.5).

(x) Conclusions follow in § 11.
(xi) Further technical details are reported in the Appendices. These include: calculations

related to the derivation of the model and a discussion of the relevant hypotheses
(Appendix A); a brief discussion of alternative definitions found in literature for
the notion of ‘reconnection rate’, which are not directly relevant to the problem we
consider here (Appendix B); a discussion on the general strategy of integration of the
boundary layer problem of tearing modes in the Fourier space, and a comparison of
the equations we have integrated with those appearing in previous works available in
the literature (Appendix C); a didactical example of normalisation of a differential
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equation (Appendix D); the proof of convergence and linear independence of the
solution found in § 7.4 (Appendix E); and the detailed discussion of the logical steps,
which allow one to generalise the heuristic estimate discussed in § 10.4 in terms of
Δ′
vy

(Appendix F).

2. Model equations and linear problem: general features

We consider the reduced MHD limit, from now on noted as RMHD (Strauss 1976,
1977; Zank & Matthaeus 1992), and we consider the standard tearing equations in slab
geometry (∂/∂z = 0) for a strongly magnetised plasma whose guide field component is
along the z direction. Fluid incompressibility, valid for the bulk plasma at the leading
E × B-drift ordering and possibly with inclusion of drift-diamagnetic corrections (see
Appendix A), allows us to reduce the number of independent vector components and
therefore to consider a limited set of scalar quantities.

Choosing perturbations of the form ∼f (x)eiky+γ t+c.c. we linearise the equations around
equilibria with an odd B0

y(x) component, which vanishes at x = 0, and with a null in-plane
fluid velocity at equilibrium, U0(x, y) = 0. Here we have already used knowledge of the
fact that the eigenmodes we are considering have low frequencies, so that ω/γ ∼ 0. This
can be taken here as a verifiable heuristic assumption.

It can be shown that only two scalar fields are necessary. The relevant equations can
be then represented by the equation for one of the in-plane components of B and by the
equation for one of the in-plane components of the fluid velocity. These can be cast in the
form of two coupled equations for the stream functions ψ and ϕ. Details about all these
features, and bibliographical references as well, are provided in Appendix A.

In particular, ψ(x, y, t) and b(x, y, t) are the normalised scalar functions defining the
magnetic field components, B = ∇ψ × ez + bez, whereas ϕ(x, y, t) is the stream function
for the in-plane E × B-drift velocity, U⊥ = −∇ϕ × ez, expressing the normalised
gradient of the electrostatic potential in RMHD. Here, the large guide field ordering allows
us to completely neglect the dynamics related to the scalar function b.

Labelling with indices ‘0’ and ‘1’ the equilibrium quantities and first-order
perturbations, respectively, the linearisation is then performed around equilibria of the
form ψ(x, y, 0) ≡ ψ0(x), even with respect to x = 0, with φ(x, y, 0) = 0. Normalised as
indicated below and using, for simplicity of notation, the same symbols for the fields
defined in the coordinate space and for their Fourier transform with respect to the y
variable, the equations we will work with, read:

γ [ψ1 − d2
e(ψ

′′
1 − k2ψ1)] − ikϕ1(ψ

′
0 − d2

eψ
′′′
0 ) = −ikρ2

s (ϕ
′′
1 − k2ϕ1)ψ

′
0 + S−1(ψ ′′

1 − k2ψ1),
(2.1)

γ [ϕ′′
1 − k2ϕ1] = ikψ ′

0(ψ
′′
1 − k2ψ1)− ikψ1ψ

′′′
0 . (2.2)

We can also cast (2.1)–(2.2) in a matrix form (useful for the eigenvalue solution) as

γ

(F 0
0 L

)(
ψ1
ϕ1

)
=

(
S−1L B
A 0

)(
ψ1
ϕ1

)
, (2.3)

where we have introduced the differential operators

L ≡ ∂2

∂x2
− k2, F ≡ 1 − d2

eL, (2.4)

A ≡ ik(ψ ′
0L − ψ ′′′

0 ), B ≡ ik
[
(ψ ′

0 − d2
eψ

′′′
0 )− ρ2

sψ
′
0L

]
, (2.5)

with C being the ρs = 0 limit of B.
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(a) (b) (c)

FIGURE 1. Cartoon schematising three steps of a simplified 2-D magnetic reconnection process
that emphasises the notion of change of magnetic topology. (a) Two magnetic lines connecting
different pairs of fluid elements, A ↔ B and C ↔ D, are twisted by the ideal fluid motion
so as to locally generate strong spatial gradients, i.e. current densities. (b) Magnitude of the
spatial gradients locally compensates the smallness of the non-ideal parameters in the generalised
Ohm’s law, by thus allowing the relaxation of the topological constraints that in the ideal
limit, forbid the intersection of initially distinct magnetic lines; an X-point is formed. (c)
Magnetic reconnection process undergone at the X-point, by which magnetic energy is dissipated
and/or converted into other forms of plasma energy, which makes other magnetic configurations
accessible to the plasma; the magnetic topology has globally changed as the magnetic lines now
connect the pairs of fluid elements A ↔ D and B ↔ C.

The non-ideal parameters of the model are normalised to the reference scale length L0.
They correspond to the electron skin-depth, de, to the ion-sound Larmor radius, ρs, and
to the Lundquist number, S. The reference length L0 is chosen to be the equilibrium shear
length a of ψ0(x) at t = 0, whereas times are normalised to the reference Alfvén time τA
computed with respect to the in-plane equilibrium magnetic field component, evaluated
sufficiently far from the neutral line.

Several derivations exist of (2.1)–(2.2). The parameter ρs, which violates the Lagrangian
invariance of the parallel electron canonical momentum F ≡ ψ − d2

e∇2ψ , is related to
electron parallel compressibility effects (Grasso et al. 1999). It is also considered to be a
finite-Larmor-radius (FLR) effect, since in a strong guide field limit, it can be shown to be
due to a component of the non-isotropic electron pressure tensor that enters in the equation
of ψ via the diamagnetic drift component of the fluid electron velocity (see Schep et al.
(1994) and Appendix A).

2.1. Magnetic reconnection in tearing modes and formation of magnetic islands
A magnetic reconnection process is characterised by the formation of an X-point, where
initially distinct magnetic lines have connected thanks to non-ideal effects that become
important as the gradients of the magnetic field components, i.e. the components of the
current density, are large enough. As a result of the magnetic reconnection event,
the plasma system typically relaxes to a final state of lower ‘potential magnetic energy’,
the diminished energy being converted into plasma kinetic and internal energy as well
as into electron acceleration. During this process, the ‘magnetic topology’ in the plasma
changes since the connection of fluid elements is globally modified – see figure 1.

Non-ideal effects allow a local violation of the topological conservations implied by the
ideal Ohm’s law (Cowling 1933; Alfvén 1942; Batchelor 1950; Elsasser 1950a,b; Truesdell
1950; Lundquist 1951; Newcomb 1958), which would otherwise prevent initially distinct
magnetic lines embedded in the plasma to intersect. Mathematically speaking, this kind
of conservation is a consequence of the fact that Faraday–Ohm’s law in an ideal MHD
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plasma,
∂B
∂t

= ∇ × (U × B), (2.6)

is equivalent, thanks to a well-known vector identity (∇ × (U × B) = U(∇ · B)−
B(∇ · U)+ (B · ∇)U − (U · ∇)B) combined with the continuity equation (Truesdell
1950), to a vector expression that corresponds to the null Lie-derivative of the vector field
B/n dragged by the velocity field U : this directly implies the Lagrangian invariance of
magnetic lines from which a set of topological conservations follow, the most famous
of which go under the names of ‘(Cowling–)Alfvén theorem’ (Cowling 1933; Alfvén
1942), ‘Woltjer invariants’ Woltjer (1958) and ‘connection theorem’ (Newcomb 1958)
– see (Tur & Yanovsky 1993; Kuvshinov & Schep 1997; Del Sarto et al. 2006) and
references therein for a more detailed discussion; see, e.g. Dubrovin, Nivikov & Fomenko
(1991, § III.23) for a definition of Lie derivative in tensor notation in the coordinate
representation and Schouten (1989, § II.8) for the Lie-derivative of tensor densities of
arbitrary ‘weight’ (cf. also Lovelock & Rund (1989, p. 105) for the notion of a ‘relative
tensor’). This is mathematically analogous to the set of topological conservations related
to the fluid vorticity, which were well known to follow from the inviscid vorticity
equation in a barotropic fluid (see Truesdell 1954). In this context, the Alfvén theorem
of magnetic flux conservation in an ideal MHD plasma is the mirror correspondent of the
Helmholtz–Kelvin theorem of vorticity conservation in ideal hydrodynamics (Batchelor
1950; Elsasser 1950b; Truesdell 1950; Axford 1984; Greene 1993). We incidentally
note that some formal similarities can be also recognised in the eigenmode analysis of
resistive tearing modes and of ideal instabilities in presence of viscosity in a Kolmogorov
hydrodynamic flow (Fedele, Negulescu & Ottaviani 2021). In terms of the RMHD
equations above, the Lagrangian invariance of magnetic lines is expressed by the ideal
limit (de = ρs = S−1 = 0) of (2.1), although a finite ρs alone allows preservation of the
ideal MHD topological conservation, provided a redefinition of the stream function of the
velocity field U according to ϕ → ϕ − ρ2

s ∇2ϕ (Pegoraro et al. 2004). In particular, in
the collisionless regime, even the nonlinear evolution of tearing-type instabilities can be
shown to be ruled by the conservation of Lagrangian invariants whose existence is related
to the condition ρs 
= 0 (Cafaro et al. 1998; Grasso et al. 2001).

The early notion of magnetic reconnection has been formalised by Dungey (1950, 1953)
after the intuitions by Giovanelli and Hoyle. The former one first noted the occurrence
of solar flares in correspondence with regions of local inversion of the magnetic field
perpendicular to the Sun surface, and thus made the hypothesis that this could have been
a signature of a mechanism of conversion from the magnetic energy to the plasma kinetic
energy allowed by resistivity (Giovanelli 1946); the second one conjectured that the same
may have occurred also in the terrestrial magnetotail (Hoyle 1949). Resistivity is one of
the non-ideal effects capable of violating alone the Lagrangian invariance of B, so as the
electron inertia, or the electron–electron viscosity, or a non-zero out-of-plane component
of the rotational of the divergence of the pressure tensors, also are. All these non-ideal
effects, together with other ones such as the Hall-term, can be synthetically expressed
with the vector Φε in generalised Ohm’s law, ε generally indicating the infinitesimally
small parameter weighting the non-ideal contribution (we use the same normalisation of
(2.1)–(2.2)):

E + U × B = Φε. (2.7)

Magnetic reconnection at least requires ∇ × Φε 
= 0. Although ideal Ohm’s law at the
MHD scale takes the form of (2.7) with Φε = 0, note that the dominant contribution to
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generalised Ohm’s law, obtained by summing (A7)–(A8) multiplied by the respective
charge over mass of the species, comes from electron momentum equation. That is,
electrons fix the strongest ‘frozen-in’ condition between the plasma flow and the magnetic
field, which, by neglecting all electron inertia, electron–electron viscosity and electron–ion
viscosity (i.e. resistivity), and electron-pressure anisotropy, is expressed by the ‘ideal
Hall-MHD Ohm’s law’: E + ue × B = 0 ⇔ E + ui × B = di(J × B)/n. While at MHD
scales, where U � ui, the frozen-in condition equally applies for both ions and electrons.
At smaller spatial scales, the magnetic field can decouple from the ion fluid, but, as long
as E + ue × B � 0 (or, better, as long as E + ue × B � ∇f ) holds, magnetic lines are
dragged by the electron fluid flow. Note in this regard that (2.1) for the magnetic stream
function ψ , corresponding to the z-component of Ohm’s law, also expresses the variation
of the z-component of the electron canonical momentum (cf. Appendix A).

The first analytical model of magnetic reconnection was the well-known Sweet–Parker
model (Parker 1957; Sweet 1958), which assumes a steady inflow condition in an X-point:
in this case, the resistive reconnection steadily occurs in one point (the X-point) of a static
current sheet of finite elongation L and of large aspect ratio L/a, which asymptotically
scales as S, when the Lundquist number is defined with respect to the current sheet
thickness a, as in (2.1) – see figure 2(a) (when S is instead defined – let us call it SL
– with respect to the current sheet length, L, the scaling of the Sweet-Parker aspect
ratio reads L/a ∼ S1/2

L ). This steady reconnection scenario has been then extended to
the inertia-driven regime by Wesson (1990), for applications to the sawtooth crash in
tokamaks, and by Bulanov, Pegoraro & Sakharov (1992) for applications to reconnection
in the electron-MHD regime. Variations to this model, in which a different choice of
the boundary conditions around the reconnecting region has been made and different
rates of magnetic reconnection have been obtained, have been done in subsequent
works, starting from that of Petschek (1964) – see also (Vasyliunas 1975) and references
therein.

Instead, the notion of a tearing mode, the first example of a spontaneous reconnecting
instability, was formalised a few years later in the pioneering work by Furth et al. (1963).
In this case, the current sheet is assumed to have periodic boundary conditions along the
‘resonant line’ where the wave vector of the linear perturbation is locally orthogonal to
the equilibrium magnetic field. That is, if B0(xs) · k = 0, then the equation x = xs defines
a resonant line in two dimensions and a resonant surface in three dimensions. After a
translation of the reference amplitude of the sheared magnetic field component, it can
always be assumed that the sheared equilibrium magnetic field is zero at x = xs, and
changes sign in its neighbourhood: therefore, in slab geometry, the resonant line is usually
termed the ‘neutral line’. It can be seen from the energy principle that the B0(xs) · k = 0
condition minimises the stabilising role played by Alfvénic perturbations: this is why
rational surfaces (m, n) in large aspect ratio tokamaks are candidate resonant surfaces
for tearing-type instabilities. We recall that a rational surface in a tokamak is a magnetic
surface characterised by the condition q(r) = −m/n. In the large aspect ratio limit,
i.e. the ‘cylindrical tokamak’ approximation, the safety factor reads q(r) = Bϕr/(BθR),
where Bϕ and Bθ are respectively the toroidal and poloidal component of the magnetic
field, and r and R are the minor and major radius of the tokamak, respectively. It
is easy to verify that the condition k(r) · B(r) = 0 defines a rational surface for k =
m/(2πr)eθ + n/(2πR)eϕ . The harmonic perturbation along the neutral line direction (the
wave vector k of (2.1)–(2.2)) induces a sinusoidal modulation of the perturbed magnetic
field lines that gives rise to the characteristic ‘magnetic island’ pattern: in this case,
a pair of X-points (at the local minima of ψ1) delimits each magnetic island, and an
elliptic point for the magnetic field, called the O-point (at the local maximum of ψ1),
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(a) (b)

(c) (d )

FIGURE 2. Comparison of four reconnection scenarios. (a) Sketch of the steady Sweet–Parker
reconnection scenario. No particular hypotheses are done on the boundary conditions of the
reconnecting current sheet, whereas steadiness and a specific scaling of the aspect ratio with
non-ideal parameters like resistivity (i.e. L/a ∼ S−1, Parker 1957; Sweet 1958) or electron inertia
(Wesson 1990) are required. The configuration does not represent an instability: no distinction is
made between equilibrium and perturbed quantities. (b) Typical ‘magnetic island’ configuration
in the tearing-type reconnection. Periodic boundary conditions along the neutral line are required
and hyperbolic patterns of the velocity field near the X- and O-points develop together with the
island formation. The wavenumber of oscillations of the mode fixes the number of magnetic
islands which are generated. In the linear stage, the island width is w � δ � a. (c,d) Merger
configuration (c) of two undisplaced line currents (Syrovatskii 1966a; Biskamp & Welter 1980;
Kleva et al. 1995), which resembles (d) a non-periodic version of the ‘coalescence instability’
scenario. The latter concerns a periodic structure constituted by magnetic islands in a chain
(Finn & Kaw 1977; Pritchett, Lee & Drake 1979; Bhattacharjee, Brunel & Tajima 1983). In
the displaced current merger case, the attraction of two parallel current filaments squeezes the
magnetic field that piles up and typically dissipates at the X-point: in this configuration, one may
rather speak of ‘magnetic annihilation’ (cf. e.g. Priest & Sonnerup 1975; Watson & Craig 1998;
Gu et al. 2019). In the coalescence instability scenario, a somewhat similar process occurs (an
out-of-plane current density being associated with the O-point of each island) once a non-rigid
displacement along the neutral line perturbs the periodic configuration by making the islands get
closer, pairwise. Similarly, a periodic 2-D ‘paving’ of magnetic cell-like structures of different
shape (not shown here) can be destabilised the same way by planar, non-rigid displacements
(Longcope & Strauss 1993).
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is at the centre of the island – see figure 2(b) (see also White 1983, 1986) for a tutorial
discussion about further features of tearing mode analysis that go beyond the purpose of
the present work). In figure 2c,d), other reconnection scenarios related to the merger of
current filaments (Syrovatskii 1966a; Biskamp & Welter 1980) and to the ‘coalescence’ of
a chain of magnetic islands (Finn & Kaw 1977; Longcope & Strauss 1993) are shown for
comparison.

As tearing-type modes are linear instabilities, they grow exponentially in time, which
marks an important, fundamental difference with respect to the Sweet–Parker scenario:
the structure of the reconnecting current sheet is not static but is altered by the current
density associated with the tearing mode perturbation, which makes the magnetic island
grow in thickness until nonlinear saturation of the instability (see Ottaviani et al. 2004
and references therein for a survey of different saturation scenarios). This dynamics is
associated with hyperbolic patterns of the velocity field around both the X- and O-points,
whereas only the hyperbolic flow at the X-point is required in the Sweet–Parker scenario.
The hyperbolic flow at the X-point is responsible for the well-known quadrupole pattern
of the stream function of the velocity field, and the elliptic and hyperbolic structure of
ψ , ϕ and of their derived fields near the critical points (X and O) fix the symmetries
of the eigenmode solutions. We incidentally note that this also provides a quite simple
explanation (cf. Del Sarto et al. 2016, App. A) of the quadrupole pattern associated with
the out-of-plane magnetic field component at the X-point, in the regime where the Hall
term is dominant in the generalised Ohm’s law (quadrupole structure which is often
recognised as an experimental proxy of Hall-mediated reconnection – cf. e.g. Deng &
Matsumoto 2001): in this regime, the Lagrangian invariance of the magnetic field is
expressed with respect to the electron flow (see Fruchtman 1991; Pegoraro et al. 2004;
Del Sarto et al. 2006), which is in turn associated with the in-plane current density, and
therefore to the spatial modulation of the out-of-plane magnetic field. If the equilibrium
magnetic profile is even with respect to the neutral line, as it is typically assumed in
analytical models for tearing modes (as we will do here), the matrix operators of (2.3)
commute with the parity operator inducing the transformation x ↔ −x, which makes
tearing modes have a fixed parity in x. Taking into account the parity in y associated with
the harmonic perturbation, the point symmetries of the ψ1 and ϕ1 fields near the critical
points (X and O) for tearing modes developing in an even magnetic equilibrium can be
summarised as

X-point :
{
ψ even in x, even in y,
ϕ odd in x, odd in y, O-point :

{
ψ even in x, even in y,
ϕ odd in x, odd in y. (2.8)

These symmetries nonlinearly mix via the Poisson bracket operators, of which the terms
of (2.1)–(2.2) are a rewriting, after linearisation (cf. (A1)–(A2), Appendix A). A local
quadratic expansion of the eigenmodes near the critical points, which accounts for these
nonlinear couplings, allows interesting insight in the early nonlinear, local dynamics of
tearing-type instabilities (Pegoraro et al. 1995; Del Sarto et al. 2011).

We conclude by recalling that several effects, in addition to the inclusion of further
non-ideal terms in Ohm’s law, have been considered, over the years, in the linear theory
of tearing modes in reduced MHD. These include the effect of flows parallel to the
neutral line, which can have a stabilising effect on the tearing mode instability (Bulanov,
Sakai & Syrovatskii 1979; Syrovatskii 1981; Faganello et al. 2010), and which can also
make the latter compete with the Kelvin–Helmholtz instability (Hofmann 1974; Chen
& Morrison 1990; Ofman et al. 1991; Chen, Otto & Lee 1997) – cf. also (Einaudi
& Rubini 1986; Wang, Lee & Wei 1988; Bettarini et al. 2006; Li & Ma 2012) for a
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numerical linear study; the stabilising effect of an in-plane magnetic field component
orthogonal to the neutral line (see Nishikawa 1982; Somov & Verneta 1988, 1989); the
role of equilibrium density gradients, which via the diamagnetic drift frequency gives
a time-resonant character to the so-called drift-tearing modes (Coppi 1965; Drake & Lee
1977; Coppi et al. 1979). These diamagnetic effects are particularly important in tokamaks,
where they are related to the rotation of tearing structures and contribute to the nonlinear or
resonant coupling of tearing modes with different mode numbers (see, e.g. Hicks, Carreras
& Holmes 1984; Cowley & Hastie 1988; Fitzpatrick et al. 1993), but also influence their
linear evolution and stability threshold (see, e.g. Mahajan et al. 1978, 1979; Migliuolo,
Pegoraro & Porcelli 1991; Grasso, Ottaviani & Porcelli 2001; Yu 2010). In tokamaks, also
temperature gradients may induce, in the framework of a gyrokinetic description, the onset
of the so-called ‘micro-tearing’ modes (see, e.g. Hazeltine & Ross 1975; Drake & Lee
1977; Gladd et al. 1980; Connor, Cowley & Hastie 1990), which cause the formation of
microscopic magnetic islands that can affect turbulent transport (see Doerk et al. 2011)
and foster stochastic fluctuations of the magnetic field, which can in turn affect tearing
modes (Carreras, Rosenbluth & Hicks 1981) and the magnetic confinement (see, e.g. Firpo
2015). Also, we recall that the linear tearing mode theory has been extended and adapted
so as to study modes simultaneously and interdependently occurring on two (or more)
sufficiently close resonant surfaces, i.e. the double- (or multiple-) tearing modes (Furth,
Rutherford & Selberg 1973; Pritchett, Lee & Drake 1980; Wang et al. 2011); or to include
the so-called ‘neo-classical effects’ related to pressure gradient and toroidal curvature
in tokamak plasmas. Although the latter effects are intrinsically nonlinear, they can be
self-consistently included in the study of the linear growth of the so-called ‘neo-classical
tearing’ modes (NTMs, in specialised ‘jargon’): these are modes developing out of a seed
magnetic island (e.g. produced by previous tearing-type instabilities which have saturated
and have become stable) and which are driven by the so-called ‘boot-strap current’ (see,
e.g. Hahm 1988; Lütjens & Luciani 2002; Wilson 2012). In addition to the large number of
works developed over the years on these subjects, attention has also been recently drawn to
the role that a background plasma turbulence can have in driving the growth of NTMs (see,
e.g. Muraglia et al. 2009, 2011; Agullo et al. 2017a,b; Choi 2021). These latter subjects
are somewhat related (see, e.g. Brennan et al. 2002) to the further topic of forced magnetic
reconnection, which has also been considered in the framework of tearing mode theory, by
looking at the way an external forcing affects the stability and growth of the linear modes
(see, e.g. Hahm & Kulsrud 1985; Wang & Bhattacharjee 1997; Fitzpatrick 2008). None
of these subjects is however of further concern to us; here, in the following, we will focus
on the linear problem related to (2.1)–(2.2) only, with respect to which of each of these
ingredients would provide further elements of analytical complication that would lead us
beyond the purpose of this work.

2.2. Eigenvalue of the linear problem and reconnection rate in tearing-type modes
In the literature, the notion of ‘reconnection rate’, let us name it as Rrc, formally refers
to the rate at which the magnetic flux changes over time close to the X-point during a
magnetic reconnection event associated with it. In general, we can write

Rrc ≡ 1
ΦΩ(B)

dΦΩ(B)
dt

, ΦΩ(B) ≡
∫
Ω

B · dS, (2.9)

where Ω is the resonant surface, which, in a planar configuration, corresponds to the
surface generated by translation of the neutral line along the invariant coordinate (z in
the slab coordinate system we have chosen). If we assume the planar current sheet (or
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the neutral line) to be static and along the y direction, then Ω = �y�z, where the extension
of the length �y depends on the specific reconnection process considered.

The way this rate is evaluated clearly depends on the reconnection scenario which
is considered. A few words on this topic are therefore useful, since the contrasting
terminology acquired on this subject by specialised literature dealing with different
reconnection scenarios (e.g. steady, Sweet–Parker-like versus tearing-type reconnection)
can be sometimes confusing (cf. also Biskamp (2000, p. 54) for a brief discussion as well
as Appendix B). This is especially important, since the reconnection rate is related to the
rate at which magnetic energy is converted into other forms of plasma energy and therefore
to the power released in the form of thermal energy and particle acceleration during a
reconnection event. This subject is at the basis of many open questions turning around
magnetic reconnection in both laboratory and astrophysical plasmas. These subjects, still
debated, concern for example: the model capable of accounting for the short time scale
of the sawtooth crash and of other reconnection-related disruptions in tokamaks (see, e.g.
Wesson 1986, 2004; Porcelli, Boucher & Rosenbluth 1996; Boozer 2012; Jardin, Krebs
& Ferraro 2020); a theoretical model of the fast release of energy during solar flares and
coronal mass ejections (see, e.g. Shibata 1998; Cassak & Shay 2012; Aschwanden, Xu &
Jing 2014; Aschwanden et al. 2016; Janvier 2017; Aschwanden et al. 2019; Aschwanden
2020); the mechanism of energy release at the basis of X-rays and γ -ray emissions
(gamma-ray bursts) in pulsars, magnetars and nebulae (see, e.g. Lyutikov 2003; Tavani
et al. 2011; Uzdensky 2011); the processes by which the kinetic and magnetic energy
of the photospheric plasma are likely to heat up the expanding solar wind by a factor
∼ 106 over the distance of just a solar radius, supposedly via reconnection in the turbulent
coronal plasma (see, e.g. Leamon et al. 2000; Matthaeus & Velli 2011); the energy
injected in the magnetosphere via solar wind–magnetosphere interactions and released
during geomagnetic storms (see, e.g. Lakhina & Tsurutani 2016), and the impact that
the ensuing space–weather perturbations may have on terrestrial biosphere and human
activity (see National Research Council (2008) and further more specific studies like,
e.g. Gopalswamy 2016; Nelson 2016; Eastwood et al. 2018; Knipp et al. 2018). Regardless
of whether the tearing mode theory be actually relevant and capable to explain these
phenomena or not, it should be noted that the comparison of theoretical estimates of the
reconnection rate with the characteristic time scales directly measured or inferred from
experiments or simulations is probably the main criterion presently used to assess the
pertinence of tearing-type instabilities or of alternative magnetic reconnection models for
these energy releasing processes.

The operational definition by which the reconnected flux can be computed according
to (2.9) has been refined over time in different contexts, which also keep account of
observational difficulties related to issues encountered in both direct experimental and
numerical measurements (see Parker 1957; Petschek 1964; Syrovatskii 1966a,b; Bratenahl
& Yeates 1970; Baum, Bratenahl & White 1971; Parker 1973; Schnack 1978; Park,
Monticello & White 1984; Chen et al. 1997; Hesse, Forbes & Birn 2005; Comisso &
Bhattacharjee 2016; Grasso et al. 2020). For the purpose of the present discussion, we
here rely on the formal definition: combination of (2.9) with (2.7) via Faraday’s law and
Kelvin–Stokes theorem of circulation allows us to write

Rrc = 1
ΦS(B)

∫
Ω

(
∂B
∂t

− ∇ × (U × B)
)

· dS = − c
ΦS(B)

∫
Ω

(∇ × F ε) · dS, (2.10)

where the curl term in the first integral generally accounts for the evolution of the surface
over which the magnetic flux is calculated, as it is dragged by the bulk plasma velocity
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U . If the surface over which the flux is evaluated is static, like it can be chosen in
the Sweet–Parker scenario or for non-propagating tearing-like modes, that contribution
is null. This is the case in which we are interested, where we consider a non-evolving
integration surface along the neutral line, whose extension in the y direction depends on the
reconnection scenario considered, as it will be specified below. If, under this assumption,
we specify the surviving terms of the first integral of (2.10) for the slab geometry, RMHD
variables B = ∇ψ × ez + bez of (2.1)–(2.2), we can write dS = dy dz ex and therefore

ΦΩ(B) =
∫
Ω

B · dS =
∫
Ω

Bx,1 dy dz =
∫

lz

dz
∫

ly

∂ψ1

∂y
dy. (2.11)

Thus, posing the X-point to lay on the line x = 0, we obtain

Rrc =
∫

ly
dy ∂2ψ1(0, y, t)/∂t∂y∫
ly

dy ∂ψ1(0, y, t)/∂y
. (2.12)

In the case of tearing modes, it is easy to see from the symmetries of the eigenmode
solutions in (2.8) that it is appropriate to consider the integration interval in y to not
have the X-point in the middle (otherwise the spatial integral would vanish). For a single
tearing mode, the interval can be therefore taken to extend from the X-point to the O-point
(although each O-point is delimited by two X-points, the periodicity of the configuration
makes the numbering of X- and O-points be in a 1:1 correspondence). By construction,
the eigenmode of the magnetic stream function has a separable dependence on time and
on space of the form ψ1(x, y, t) = f (x, y)eγ t. In reality, although we are here anticipating
the formal results, as we will discuss in the next sections, it is easy to determine from
the magnetic island shape that the solution is of the form ψ1(x, y, t) = g(x) cos(ky)eγ t, if
y = 0 is taken at the O-point – cf. figure 2(b). Hence, one immediately obtains (the label
TM standing for ‘tearing mode’)

RTM(k) = γ (k), (2.13)

that is, for a tearing-type instability of wavenumber k, the notions of reconnection rate
and of growth rate are equivalent. The quadratic dependence of the magnetic energy on ψ
(cf. (A5)) trivially implies that for a single tearing mode, the rate at which magnetic energy
EB = ∫ |∇ψ1|2 dx dy is converted into other forms of energy during the linear stage of the
instability is 2RTM = 2γ .

Of course, if several tearing modes are simultaneously unstable, and/or if one or more
reconnection instabilities are in their nonlinear stage, the identification Rrc ↔ γ (k) is not
correct any longer, even if a dominant mode can be assumed to dominate the reconnection
process. In these cases, an evaluation of the global reconnection rate in a given volume,
more accurate at least from a numerical point of view, can be made by taking

Rrc � 1
2Ec

∣∣∣∣∂Ec

∂t

∣∣∣∣ , (2.14)

where Ec is a component of the total energy (cf. (A5)) involved in the reconnecting process
and the factor 1/2 accounts for the quadratic relation between the fields and the energy
components. Usually, Ec is the magnetic energy component EB, which in most reconnection
regimes (see, e.g. White 1983, 1986) can be shown to provide the ‘reservoir’ of energy of
the instability, which is ‘dissipated’ (or, more generally, converted into other forms) during
the process. It should be however noted that in some regimes of tearing-like instabilities,
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numerically studied by using ‘large’ values of de/L0 (i.e. de/L0 � 1 but not asymptotically
smaller than unity), the role of EB has been observed to be played, instead, by the electron
kinetic energy EJ = ∫

d2
e|∇2ψ1|2 dx dy associated with the equilibrium current sheet (Del

Sarto, Califano & Pegoraro 2005; Del Sarto et al. 2006). Also, the increase of some
kinetic energy component could be used for the estimate of (2.14), if it assumed that the
electromagnetic energy released during the reconnection event is dominantly transferred to
particle heating and/or acceleration, or to radiation. This is the way by which, for example,
the reconnection rate of processes at the basis of solar flares and coronal mass ejections,
or of the sawtooth cycle in tokamaks, is indirectly inferred from observational measures.

Some alternative definitions of ‘reconnection rate’, provided in terms of local estimates
of quantities, are also frequently used in the literature. These further definitions, briefly
outlined and discussed in Appendix B for comparison, are not of concern for the
purpose of this work, since they mostly deal with stationary reconnection or provide
approximations to the more accurate (2.13), valid in the case of interest to us.

We conclude this section with a note on the notion of ‘fast’, often used in the literature
for models devised in the attempt of modelling the rapid reconnection processes observed
in Nature and in experiments, which display growth rates faster – in an asymptotic sense
– than those predicted by the early reconnection models (i.e. resistive Sweet–Parker and
resistive tearing modes). On the one hand, the notion of ‘fast’ has changed over the years,
both depending on the specific reconnection context (space or laboratory) and on the
physical process allowing a relative increase of the reconnection rate (e.g. electron inertia,
the inclusion of the Hall-effect in Ohm’s law, the accounting for other nonlinear effects,
3-D effects and secondary instabilities – see appendices of Del Sarto & Ottaviani 2017)
for a short historical review on these subjects). On the other hand, it is unlikely that a
primary spontaneous tearing mode developing on a static current sheet overtake values of
order unity, when measured with respect to the normalisation time τA defined as below
((2.4)–(2.5)) – see Pucci & Velli (2014), Del Sarto et al. (2018), and § IX of Betar et al.
(2020) for more detailed discussions. It is however worth noting that for linear tearing
modes, the normalised growth rate evaluated from (2.1)–(2.2) typically becomes of the
order of unity or, better, of some decimal fraction of it, when the shear length becomes
comparable to the microscopic non-ideal scales of interest: that is, γ τA ∼ O(10−1)− O(1),
when some among de, ρs or (S−1/γ )1/2 become of the order of O(a/10)− O(a). However,
this also generally means that we are out of the limits of applicability of the boundary layer
theory (cf. § 3, next, and note that we leave aside, here, the open problem of discussing the
validity of an extended fluid modelling at these kinetic scales): in this case, the analytical
estimates of γ (k), which we are going to develop below, are not applicable and a numerical
computation is instead required. See figure 3 and table 2 of Del Sarto et al. (2011) for an
example in the collisionless limit.

3. Boundary layer approach for tearing modes: large- and small-Δ′ regimes

In this section, we start by describing the general strategy of integration with the
boundary layer approach to solve the eigenvalue problem of (2.1)–(2.2). Then, we discuss
the ordering and the instability parameter, which defines the unstable spectrum of
wavenumbers, and its consequences on the classification of different reconnection regimes
in both slab and toroidal geometries. Finally, we close the section by giving a brief review
on previous works using the boundary layer integration in the collisionless regime.

There are no exact analytical solutions available for the general eigenvalue problem
of (2.1)–(2.2). Approximated analytical solutions can be obtained by using a boundary
layer approach as first shown for the purely resistive tearing by Furth et al. (1963) in the
constant-ψ regime and by Coppi et al. (1976), Ara et al. (1978) and Basu & Coppi (1981)
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(a) (b)

FIGURE 3. Growth rates of collisionless tearing modes numerically computed from (2.1)–(2.2)
with the solver of Betar et al. (2020), for values of the non-ideal parameters at the limits of
(or beyond the) applicability of boundary layer theory, and for a wavelength ka ∼ O(1) (likely
value for modes on large aspect ratio current sheets having a microscopic thickness – a condition
typically met, e.g. in MHD turbulence (see, e.g. Franci et al. 2016; Del Sarto & Pegoraro 2017;
Franci et al. 2022). Note that once γ approaches unity, the effect of the non-ideal parameters on
the magnetic equilibrium ψ0 is not negligible anymore, and (2.1) and (2.2) in the resistive limit
(not shown here) should be modified accordingly (cf. Appendix A). (a) Case of cold electrons.
(b) Case of warm electrons, for different values of de/a and for values of ρs/a approaching one.

in the internal-kink regime. When kinetic-like effects are included, it is instead easier
to solve the boundary layer problem if calculations are performed after doing a Fourier
transform with respect to the variable x: this facilitates the analytical calculations since
it lowers the order of the differential equations in the ‘inner region’, as it has been first
shown by Pegoraro & Schep (1986) and Pegoraro et al. (1989).

The boundary layer approach consists in solving the linear problem in distinct
overlapping regions. The number of regions depends on the non-ideal parameters that
exist in the problem. Moreover, for the boundary layer approach to be applied, it is
necessary that the normalised non-ideal parameters (e.g. ε = S−1 or ε = (de/a)2) be much
smaller than unity, i.e. ε � 1. This makes it possible to perform an asymptotic analysis
by expanding quantities in powers of ε, and also grants the scale separation between the
boundary layers, since the characteristic width of the innermost layers, where ideal-MHD
breaks down, is a posteriori found to scale with a multiplication of positive powers of the
parameters ‘ε’ at play. Quantitatively speaking, comparison between theoretical estimates
and numerical integration of the boundary layer problem indicates that the condition
ε � 1 typically means that the microscopic scales (cf. end of § 2.2) related to the non-ideal
terms capable of breaking the ideal MHD conservation of the magnetic topology be not
larger than a fraction ∼ 10−1 of the equilibrium shear length a.

For example, for purely resistive or purely inertia-driven tearing modes in RMHD,
the linear problem is solved in two distinct regions and the solutions are asymptotically
matched in an intermediate layer, as shown in figure 4(a). In this case, the first region
is the ‘outer’ region in which the plasma is assumed to be at ideal MHD force-balance
equilibrium at spatial scales of the order of L0 = a. The second region is the ‘inner’
one, in which a solution is sought for the differential equations while retaining the
non-ideal parameters in the limit x � 1 (i.e. x/L0 � 1 in dimensional coordinates). The
characteristic size of the inner region is identified to correspond to the reconnection layer
width (cf. § 8), whose characteristic thickness we hereafter call δ, with δ → 0 as the
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(a) (b)

FIGURE 4. (a) Sketch of the boundary layer decomposition for the calculation of the tearing
eigenmodes with asymptotic matching techniques, when a single boundary layer is sufficient
(e.g. case of the resistive tearing first considered by Furth et al. 1963). The width δ of the inner
boundary layer is here the natural candidate for the width of the ‘reconnecting layer’, although
the latter is not formally defined, i.e. we can assume δ = δ1 (an assumption we will support in
§ 8 with further arguments). (b) Sketch of the boundary layer decomposition when two boundary
layers are required (e.g. case of the warm-collisionless RMHD). Note that the reconnecting layer
width, which we call δ, is, again, a priori not defined but, as we will see (§ 8), further arguments
can be found to identify it with the innermost layer width, i.e. δ = δ1.

non-ideal parameters tend to zero. The inner region is therefore defined by the inequality
x/δ � 1.

Seen from the inner region, the convergence to some point in the outer domain
is expressed with the limit x/δ → ∞ with respect to the ‘stretched variable’ x/δ. In
the matching layer, this limit should match the limit x/L0 → 0 (or, simply, x → 0 in
normalised units) for quantities evaluated in the outer region.

When more than one non-ideal parameter is involved in the problem, applying the
boundary layer approach becomes more difficult. This is due to the presence of at least two
boundary layers and therefore of two matching regions (cf. figure 4b), whose characteristic
widths, i.e. the normalisation scales for the asymptotic matching, say δ2 and δ1, depend on
the spatial scales of the problem in a non-trivial way. Moreover, the notion of ‘reconnection
layer width’, which we keep on naming δ, in this case is not a priori related to the width
of one of the boundary layers, although, as we will see (§ 8), we can make it correspond
to the extension of the innermost layer, δ1.

Operationally speaking, the integration of tearing mode equations by means of the
boundary layer approach, which we will detail in the nextsections, can be split in the
following sequence of steps.

(i) Solving the equations in the ideal MHD limit provides the solution in the outer
layer (the ‘outer solution’) and allows one to evaluate the instability parameter (the
so-calledΔ′ parameter, see § 3.1), which identifies the range of wavenumbers that are
tearing-unstable and allows one to distinguish among different wavelength regimes
of reconnection – the constant-ψ or tearing regime, the large-Δ′ or internal-kink
regime, and the fastest growing mode in a continuum wavelength spectrum of slab
tearing modes.

(ii) Considering the equations in the non-ideal region by assuming that the inverse
spatial gradients are small enough to count the microscopic scales associated with
the non-ideal parameters. This also allows some simplifications to the equations,
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related to the fact that the nth derivative with respect to x dominates over the nth
power of k.

(iii) Establishing, on heuristic basis, an ordering among terms of the non-ideal equations
depending on the value of the non-ideal microscopic parameters. This allows one to
distinguish different boundary layers (cf. figure 4b) in which the non-ideal equations
are differently approximated. This task becomes more complex as more non-ideal
parameters are present, and is subordered to the consistency of the solutions a
posteriori found after integration in each sub-region (hence, the ‘heuristic’ nature
of the ordering of the terms in the equations).

(iv) Integrating the non-ideal equations in each sub-region, by taking the solution in the
next-most, outer domain as a boundary condition. For example, with reference to
figure 4(b), the outer solution in the ideal region provides the boundary condition
in the matching layer II for the solution in the sub-domain |x| � δ2/2, which in turn
provides the boundary condition in the matching layer I for the solution in the region
|x| � δ1/2.

(v) Finally note that, in any case, constructing the global solution in the whole domain
in an explicit form is a not evident task and often it is not possible, since the integral
solutions in each non-ideal region may be not obtained in closed form. Nevertheless,
it is possible to obtain a quantitative estimate of the eigenvalues of the linear problem
(i.e. the growth rate of the reconnecting mode) from the conditions on the solutions
in the non-ideal region. Similarly, other spatial scales of interest (which, by further
arguments, can be interpreted as corresponding, e.g. to the reconnecting layer width,
δ – cf. § 8) can be quantitatively evaluated.

3.1. Orderings and instability parameter Δ′

In the present section, we discuss the different orderings of the operators in the eigenvalue
problem, which will allow us to obtain the governing equations in different regions of the
domain, and we introduce the notion of an ‘instability parameter’.

In the outer, ideal MHD region, the ordering of different operators in (2.3) is

γ ∼ 0, L ∼ 1, F � 1, A ∼ 1, B = C = ikψ ′
0 ∼ 1. (3.1)

Solving the equations resulting from this ordering allows us to obtain the solution in the
outer region, ψout.

At the neutral line, the equilibrium magnetic field (shear field) vanishes and changes
its sign when reconnection occurs. Therefore, this field should be an odd function in the
vicinity of x = 0. Hence, ψ0, whose x-derivative represents the shear field B0

y(x), is an
even function. Moreover, close to the neutral line, ψ0(x) is continuous at least up to its
first derivative. We then expand it as a Taylor series which, for symmetric tearing modes
in slab geometry, has non-zero coefficients only for even powers of x,

ψ0(x)|x→0 � C0 + C2x2 + C4x4 + · · · . (3.2)

Therefore, we can relate δ to the intensity of the equilibrium magnetic field and to the
gradient of the associated current density inside of the inner layer, when looked at from
the matching (or from the outer) region. So we write

ψ ′
0

∣∣
x→0 ∼ ψ ′′′

0

∣∣
x→0 ∼ x|inner � δ. (3.3)

Before going further, we note that condition (3.2) is too restrictive, in general, for slab
tearing modes on magnetic equilibria that are not symmetric with respect to the shear
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coordinate. An example is provided by tearing modes in a cylinder, for which C1 = 0 but
C3 
= 0 (Bertin 1982; Militello et al. 2004, 2011). It must be also noted that the inner
layer width, δ, has not yet been ‘defined’ here. As a quantity, it only explicitly appears in
boundary layer calculations as a normalisation scale for the differential equations in the
non-ideal region, whose boundaries are defined by the condition |x|/δ ∼ O(1). To date,
indeed, no general criterion exists to quantitatively define δ, whose estimation is made,
when possible, thanks to further hypothesis and heuristic ansatz (e.g. comparison with the
characteristic scales of the problem). In the present section, we therefore assume δ to be
simply defined as the innermost layer width (in § 8, we will propose a quantitative general
definition of δ, whose appropriateness in the different regimes we will prove numerically
by comparing it with theoretical estimates).

Unless a large aspect ratio current sheet is considered, for which an almost continuous
spectrum of wavenumbers can be destabilised that also allows k to be large, the further
ordering ∂x � k is assumed for x � 1. This implies the following orderings inside the
non-ideal region:

L � ∂2
x , F = 1 − d2

eL, A = −kδ(1 − L) ∼ −kδL, B = ikδ
[
(1 − d2

e)− ρ2
s L

]
.

(3.4)

The corresponding equations are solved for the ‘inner’ functions ψ1 = ψin and ϕ1 = ϕin.
The matching with the outer solution is assumed as a boundary condition to be imposed

across an intermediate matching layer, where one must compare the asymptotic series∑
a(in)n (x/δ)n for (x/δ) � 1 and

∑
n a(out)

n xn for x � 1 (we recall that all lengths appear
here as normalised to L0 = a), respectively representing the inner and outer solutions –
see Bender & Orszag (1978, § 9). This translates in the condition

lim
x/δ→±∞

a(in)m (x/δ)m � lim
x→±0

a(out)
m xm ( for m that corresponds to

the leading term of the series). (3.5)

Condition (3.5) is usually expressed in a looser notation as

lim
x/δ→±∞

ψin(x/δ) = lim
x→±0

ψout(x). (3.6)

Although (3.6) formally compares the two numerical values of the limits of the
eigenfunctions solving the differential equations, in the following, we will mean this
expression as a shortcut writing of (3.5), as it is usually done in tearing mode analysis.

The dependence on the outer solution becomes then explicit through the relation∫ +∞

−∞
ψ ′′

in d (x/δ) = ψout(0)Δ′, (3.7)

which introduces the instability parameter (Furth et al. 1963) related to the discontinuity
which is met in the first derivative of ψout as x → ±0,

Δ′(k;ψ0) ≡ lim
ε→0

ψ ′
out(ε)− ψ ′

out(−ε)
ψout(0)

. (3.8)

In the expression above, ε > 0. Definition (3.8) enters in (3.6) as∫ +∞

−∞
ψ ′′

in d(x/δ) = ψ ′
in(+∞)− ψ ′

in(−∞) = ψ ′
out(+0)− ψ ′

out(−0) = ψout(0)Δ′, (3.9)

where we have used the key fact that the outer solution ψout is continuous as x/L0 → 0
while this is generally not the case for its derivative ψ ′

out (as it is found a posteriori when
solving the inner equation for tearing-type modes).
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The linear problem in the inner region is closed by combining (3.7) with the relation
that can be established between ψin and ϕin. According to the inner region ordering, (2.2)
becomes γϕ′′

in = ikxψ ′′
in. Therefore,∫ +∞

−∞
ψ ′′

in d (x/δ) = −(iγ /k)
∫ +∞

−∞

ϕ′′
in

x/δ
d (x/δ) . (3.10)

It must be however noted that when more than one non-ideal parameter is involved
and/or when the microscopic scale of variation of ψ and ϕ differ (this happens, for
example, in 2-D electron-MHD (Bulanov et al. 1992), where the fluid stream function
is related to the fluctuation b of the Bz magnetic component and an equation for b replaces
that for ϕ), the matching procedure above requires more care, as we are going to see in § 7.
In these cases, more than two boundary layers must be considered and the corresponding
solutions must be matched – see Pegoraro & Schep (1986), Porcelli (1991) and Bulanov
et al. (1992). These are the cases for which heuristic estimations are difficult, since a
different width must be associated with each boundary layer (e.g. δ2 and δ1, with δ1 < δ2).
In this kind of analysis, the width of each layer appears as the characteristic normalisation
scale, say lnorm, with respect to which to consider the limits x/lnorm � 1 and x/lnorm � 1
while performing the asymptotic matching in the intermediate region between the layers.
In this sense, the limit ε → 0 of (3.8) also must be reinterpreted, which we should read as
ε = |x|/lnorm for lnorm = L0 = a. At the same time, also the relations between Δ′ and the
spatial gradients of ϕin expressed by combinations of (3.7) and (3.10) become non-trivial,
as we will discuss in § 10.

3.2. Small- and large-Δ′ limits in slab geometry and in tokamaks
For each eigenvalue problem in slab geometry, the numerical value of Δ′ depends both
on the choice of the magnetic equilibrium profile and on the value of k. A classification
of regimes of slab tearing modes can be generally done depending on the numerical
comparison of (Δ′)−1 and of the innermost layer width, δ1, regardless of the number of
boundary layers involved. For simplicity of notation, we generically use for them the
symbol δ, although it is only later (§ 8) that we will provide some argument to identify
the ‘reconnecting layer width’. In particular, one speaks of a small-Δ′ limit for Δ′δ � 1
and of a large-Δ′ limit for Δ′δ � 1.

Once the scaling of δ on the non-ideal parameters involved is known, the large- and
small-Δ′ limits in slab geometry can be made to respectively correspond to the small and
large wavelength limits of the tearing dispersion relation, which for each reconnection
regime can be defined with respect to the comparison of kL0 = ka with powers of the
non-ideal parameters involved (as it has been discussed for example by Bulanov (2017) for
the purely resistive case).

In particular, since Δ′ defined through (3.7)–(3.8) is, when analytically obtained (cf.
example below – § 4.1), a continuous function of the variable k, the large wavelength limit
can be postulated to correspond to a power-law dependence of the kind

lim
ka→0

Δ′(ka) = (ka)−p, p > 0, (3.11)

where p depends on the initial equilibrium profile (Del Sarto et al. 2016; Pucci et al. 2018;
Betar et al. 2020). While the limit above corresponds to Δ′ → ∞, the marginal stability
condition aΔ′(ka) → 1 is approached as ka → 1.

A fundamental difference between large- and small-Δ′ tearing-type modes in tokamak
devices and their corresponding small- and large-k limits in slab geometry must be
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however remembered, when the results of the two models are compared: in tokamak
devices, the wave vector is fixed by the resonant surface on which reconnection occurs,
and the large- or small-Δ′ condition is therefore determined by the specific shape of
the unstable magnetic profile (sometimes in turn determined by some ideal instability,
which has previously occurred and which has modified the otherwise stable magnetic
configuration). In slab Cartesian geometry, instead, the transition between the small- and
large-Δ′ limit occurs by moving along the k interval for a fixed, tearing-unstable magnetic
profile, and depends on the aspect ratio of the associated current sheet (see figure 5).

We remark indeed that the distinction between small- and large-Δ′ limits has been
historically introduced to characterise, in terms of the instability parameter Δ′ defined
by Furth et al. (1963), two different types of unstable modes observed in tokamaks. In
tokamak physics, for positive values ofΔ′, a distinction is made between the tearing mode
or constant-ψ mode, first studied in the cylindrical geometry approximation by Furth et al.
(1963) (and which formally corresponds to Δ′δ � 1) and the internal kink mode or m =
n = 1 non-ideal kink mode, first identified in cylindrical geometry by Coppi et al. (1976)
(and which formally hasΔ′ = ∞) (we recall indeed that, even ifΔ′ < 0, ideal instabilities
(i.e. the ‘ideal kink mode’) can also occur in a tokamak, depending on the value of
the safety factor q – cf. Wesson (1990), § 6). In a cylindrical tokamak approximation,
these two modes generally occur on different magnetic surfaces and for specific values
of the wavenumbers, and also display different relations between the eigenfunctions ϕ1
and ψ1: differently from the tearing mode, for which the fluid displacement ξ ≡ k2ϕ1/γ
is proportional to ∼ ψ1/x, the internal kink mode corresponds to a rigid displacement
ξ ∼ const. of the plasma inside the inner region; more specifically, for the internal kink
mode, ξ ∼ const. in the whole subdomain r ≤ rs, where rs is the radius of the resonant
surface, whereas ξ = 0 for r > rs (see, e.g. Porcelli 1987; Del Sarto & Ottaviani 2017 for
a more detailed discussion). It has been however shown by Ara et al. (1978) that, thanks
to the formal analogy between the two corresponding eigenvalue problems in cylindrical
and Cartesian geometry, the transition between the two types of modes can be modelled
in a slab geometry configuration by varying the value of the wavenumber for a fixed
magnetic equilibrium and for fixed values of the non-ideal parameters. This corresponds
to a transition between the small- and the large-Δ′ limits. In this context, both the tearing
(constant-ψ) mode and the internal-kink mode of tokamak physics can be considered as
examples of tearing-type modes when modelled in slab, Cartesian geometry. In this case,
a larger ‘free energy’ can be associated with tearing-type modes in the large-Δ′ limit. This
is the approach we take here.

Another fundamental difference between tearing and internal kink modes in tokamaks
on the one side, and tearing-type modes in slab geometry on the other side, is the fact
that in slab geometry, it makes sense to identify a further wavenumber ‘regime’ that
is characterised by the condition Δ′δ ∼ 1 (see Loureiro, Schekochihin & Cowley 2007;
Bhattacharjee et al. 2009; Del Sarto et al. 2016; Betar et al. 2020) at the varying of
the non-ideal parameters involved. This wavelength limit, which is met thanks to the
possibility to perform a ‘continuous’ transition from Δ′δ � 1 to Δ′δ � 1, corresponds
to the fastest growing mode that can be destabilised in a periodic current sheet when a
continuum spectrum of wavenumbers is admitted (see Furth et al. 1963, appendix D, and
also Biskamp 1982). Its scaling is exemplified in figure 6 for the case of purely resistive
tearing modes (i.e. de = 0, ρs = ν = 0 in (2.1)–(2.2)) destabilised on an equilibrium
profile ψ0 = cos(x/a), whose Δ′(k) formula has been discussed by Ottaviani & Porcelli
(1993, 1995) and for which the scaling γM ∼ S−1/2 can be deduced (dashed line in the
figure).
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FIGURE 5. Scheme of the correspondence between linear reconnecting instabilities in the
RMHD slab geometry limit and in the RMHD ‘cylindrical tokamak’ approximation, which
is compatible with the strong guide field assumption (Strauss 1976). At the bottom of the
figure, we highlight the fact that the slab geometry easily allows modelling both of tearing
modes of different wavenumber (centre frame) and of the double tearing mode, i.e. the
tearing-like instability simultaneously occurring on two sufficiently close resonant surfaces
(Furth et al. 1973), of which we have shown here only the symmetric case (rightmost frame).
Note however that we have considered here the ‘cylindrical tokamak’, or ‘large aspect ratio
tokamak’ approximation, in the strict limit of ∂/∂ϕ → 0, which maps into the ∂/∂z → 0
assumption that we consider in this article. In reality, the RMHD modelling also allows for
inclusion of the neglected derivatives with respect to the axis-symmetric coordinate ordered as
∂/∂ϕ ∼ ∂/∂z ∼ εB, in terms of the ratio εB between the in-plane and the guide magnetic field
components at equilibrium (cf. (A11) and discussion in the last paragraph of Appendix A).
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FIGURE 6. Dispersion relation of the purely resistive tearing as a function of ka (dots
correspond to numerically computed values), evaluated for the equilibrium ψ0 = cos(x/a). The
smaller box is a ‘zoom’ of the plot for low values of γ , which correspond to the range of smaller
values of S−1 indicated in the caption. The dashed line corresponds to the fastest mode scaling,
which for ψ0 = cos(x/a) is γM ∼ S−1/2. This can be obtained by using in (24) of Del Sarto
et al. (2016) the value p = 2, which can be deduced from the ka � 1 limit of the corresponding
Δ′(ka) formula (see Ottaviani & Porcelli 1993 or (8) of Ottaviani & Porcelli 1995). An 8th-order
accurate scheme has been used here for integration on a uniform grid by using the solver
discussed by Betar et al. (2020).

When tearing modes are destabilised in a large aspect ratio, periodic current sheet, so
that also the Δ′δ ∼ 1 modes are excited, several magnetic islands emerge and mutually
interact during the nonlinear evolution, e.g. via the coalescence instability (cf. § 2.1),
by moving along the neutral line. This dynamics is due to the superposition of several
unstable modes with different wavenumbers and growth rates, among which the fastest
mode is obviously the dominant one. In general, an aspect ratio L/a of the order of ∼20 is
sufficient to grant the instability of a wavenumber sufficiently close to the fastest growing
mode Velli & Hood (1989) – see also figure 1 of Betar et al. (2020). In this scenario, the
‘soliton-like’ behaviour of magnetic islands, noted already by Biskamp (1982) in his early
simulations, has earned them the name of ‘plasmoids’ (see, e.g. Biskamp & Welter 1989;
Biskamp 1996; Shibata & Tanuma 2001; Loureiro et al. 2007; Bhattacharjee et al. 2009),
by analogy with the similarly behaving ‘plasma blobs’, also termed ‘plasmoids’, that have
been identified and referenced in astrophysical plasma literature since the end of the sixties
(Cowling 1967). Plasmoid structures displaying ‘soliton-like’ features have been observed
in space plasmas, in particular, in magnetotail reconnection processes (see, e.g. early works
such as those by Hones (1979) and Birn & Hones (1981) or later works such as Hautz &
Scholer (1987), Scholer (1987) and also Lin, Cranmer & Farrugia (2008), for a review of
the usage of the term plasmoid in this context) and – although in a different geometrical
setting – they have been also observed in connection to coronal mass ejections, arguably
induced by reconnection processes in the solar corona (see, e.g. early works such as
Pneuman 1983; Gosling & McComas 1987). In this sense, in the recent literature, the term
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‘plasmoid regime’ of reconnection (Uzdensky, Loureiro & Schekochihin 2010; Huang &
Bhattacharjee 2010; Comisso et al. 2018; Zhou et al. 2021) is typically used to identify
both tearing reconnection in the Δ′δ ∼ 1 wavelength limit (cf. the early numerical study
by Biskamp (1986) on the instability of a Sweet–Parker current sheet to tearing modes)
and the generation of magnetic islands in current sheets developed as a consequence of a
turbulent motion. Here, the formation of ‘plasmoids’ is observed, either numerically (see
Biskamp & Welter 1989; Biskamp & Bremer 1994; Wei et al. 2000; Servidio et al. 2009,
2011; Wan et al. 2013; Franci et al. 2017 and several more recent works) or by experimental
measurements (see, e.g. Nishizuka et al. 2015; Kumar et al. 2019; Yan et al. 2022). We
recall in this regard that also the term ‘plasmoid instability’ has been used in recent
literature, with reference to the tearing instability associated with the fastest growing
mode, which is destabilised on a Sweet–Parker current sheet of length L, and for which a
scaling γM ∼ S1/4

L is obtained (Tajima & Shibata 1997; Loureiro et al. 2007; Bhattacharjee
et al. 2009). The diverging scaling with respect to a vanishing non-ideal parameter –
otherwise impossible for a spontaneous reconnecting instability – is here due to the fact
that the fastest growing mode develops in this case as a ‘secondary’ reconnection process
to a primary steady reconnection scenario (cf. figure 2): for S−1

L = 0, the Sweet–Parker
reconnection does not occur, by thus forbidding the onset of the tearing modes. Due to the
violently unstable nature of the tearing mode developing in the Sweet–Parker scenario, the
possibility to measure, in Nature, a steady, Sweet–Parker-like reconnecting current sheet
has been first questioned and discussed by Pucci & Velli (2014).

Interpreting the magnetic islands observed in current sheets developed by turbulence as
due to tearing mode instabilities is an hypothesis which is grounded on the assumption
that a standard Fourier representation can be used in a Wentzel–Kramers–Brillouin
(WKB)-sense also for reconnecting modes in a non-periodic, large aspect ratio current
sheet. In this case, the fastest growing mode can be assumed to be, in an asymptotic
sense, the dominant reconnecting instability. Although a proof of the correctness of
this assumption for finite length current sheets has not been provided yet, this kind of
approach has attracted since the beginning much attention in the context of both space
plasmas (see, e.g. Cross & van Hoven 1971; Van Hoven & Cross 1971) and solar physics
(see, e.g. Priest 1976; Velli & Hood 1989), and has been more recently been considered
for applications to secondary instabilities to primary reconnection processes (see, e.g.
Tajima & Shibata 1997; Shibata & Tanuma 2001; Tanuma et al. 2001; Loureiro et al.
2005; Daughton & Scudder 2006; Drake et al. 2006; Loureiro et al. 2007; Bhattacharjee
et al. 2009; Landi et al. 2015; Tenerani et al. 2015; Del Sarto et al. 2016; Del Sarto &
Ottaviani 2017; Papini, Landi & Del Zanna 2019b; Singh et al. 2019) and to reconnection
in turbulence (see, e.g. Pucci & Velli 2014; Loureiro & Uzdensky 2016; Tenerani et al.
2016; Comisso et al. 2018; Papini et al. 2019a; Betar et al. 2020; Kowal et al. 2020; Pucci
et al. 2020; Schekochihin 2020; Tenerani & Velli 2020; Franci et al. 2022) in the context
of the so-called ‘turbulent (or turbulence-mediated or turbulence-driven) reconnection’
scenario (Matthaeus & Lamkin 1986; Strauss 1988; Loureiro et al. 2009; Matthaeus &
Velli 2011; Schekochihin 2020) – not to be confused with the study of ‘turbulent-driven
magnetic island’ in tokamaks (cf. end of § 2.1). This topic is not of concern here, where
we consider strictly periodic current sheets only. We therefore direct the interested reader
to the aforementioned references. A survey of the scalings of the fastest growing mode in
different reconnection regimes (among which the collisionless regimes we consider in the
following) for periodic current sheets can be found in (Betar et al. 2020).

In the remainder of the article, we just focus on the formal solution of the eigenvalue
problems in a slab current sheet in the Δ′δ � 1 and Δ′δ � 1 limits. In this regard, we
note that, in a few cases, a closed form of the integral (3.7) has been provided: in resistive

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


28 H. Betar, D. Del Sarto, M. Ottaviani and A. Ghizzo

and collisionless regimes, formulae involving integration in the Fourier space have been
provided by Pegoraro & Schep (1986), Pegoraro et al. (1989), Schep et al. (1994), Basu
& Coppi (1981) and Porcelli (1991). These calculations provide the available analytical
formulae for the growth rates in the ‘internal-kink’ and ‘constant-ψ’ RMHD, collisionless
regimes.

Table 1 summarises the known results of the boundary layer analysis for the regimes of
reconnection of interest in this article. The general dispersion relation for RMHD tearing
modes, from which the large- and small-Δ′ limits can be obtained, has been written as in
Del Sarto & Ottaviani (2017, appendix C) in terms of a characteristic scale length δL that
coincides with the relevant layer width δ in the large- and small-Δ′ regimes. In §§ 5–7,
we will detail the analytical calculations that allow the relevant limits of these dispersion
relations to be recovered.

Finally, we draw attention to the fact that the definition (3.8) in a slab geometry changes
meaning as soon as the conditionΔ′δ � 1 is achieved, since application of (3.11) for ka �
1 andΔ′δ ∼ 1 formally implies a dependence of k on δ. In general, indeed, (Δ′)−1 becomes
a microscopic scale as soon as Δ′L0 � 1, and for Δ′δ � 1, the condition (Δ′(k))−1 � δ

is satisfied by a range of wavenumbers that depend on the non-ideal parameters which
define δ.

3.3. Boundary layer integration of collisionless tearing in the previous literature
In the following, we will discuss the method that can be used to find the analytical solution
of the boundary layer problem associated with the scalings of table 1.

Differently from Pegoraro & Schep (1986) and Porcelli (1991), who tackled the
boundary layer calculations in the Fourier space, we are going to address the integration
in the coordinate space: although a little more cumbersome, if one’s interest is limited
to obtaining the eigenvalue scaling alone, the analysis performed in the coordinate space
allows a more intuitive understanding of the physics of the problem. Moreover, it spares
one from the sometimes non-trivial task of reversing the Fourier transform so as to obtain
the eigensolutions in the coordinate space. To the best of our knowledge, these kinds of
calculations in the coordinate space for the warm-electron regime (ρs � de) have never
been reported in the literature, before.

Only in the work by Zocco & Schekochihin (2011) have some details of the analysis
for the double boundary layer integration in the presence of two matching layers been
discussed in the coordinate space (see appendix B therein). However, in that work, a
different analytical approach has been taken for the integration of a different analytical
reduced-MHD model including ion-FLR effects in the warm-collisionless regime. In
particular, starting from gyrokinetic equations, these authors derived a reduced model
consisting of three equations corresponding: to the scalar potential related to the E × B
drift velocity (ϕ); to the parallel component of the vector potential (A‖ = −ψ); and to the
‘reduced’ electron distribution function (ge, therein), which accounts for the moments of
the electron distribution function, except for the density and the mean parallel velocity. The
equation describing the evolution of ge is there coupled to the other two equations via the
perturbation of the parallel electron temperature (δTe,‖). In the linear limit, the latter can
be written in terms of ϕ: this allowed the authors to obtain the customary system of two
slab-geometry tearing equations for ϕ andψ , although modified with respect to (2.1)–(2.2)
we consider here, because of the contribution of the gyrokinetic ion operator that appears
in the vorticity equation after integration of the ion gyrokinetic equation (Pegoraro &
Schep 1981); this contribution clearly vanishes in the limit of null ion temperature in which
we are interested. In this way, Zocco and Schekochihin looked for asymptotic analytical
solutions of the boundary layer problem in the coordinate space by identifying two distinct
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layers: the electron and the ion regions whose widths are defined by the reconnection layer
width δ and by the ion-sound Larmor radius (ρs), respectively. However, differently from
the approach we are going to develop below, in which we will look for a direct integration
of the asymptotic solutions in the warm-collisionless regime, these authors solved the
linear equations in the two asymptotic regions for the warm-collisionless regime by using
perturbation methods (Zakharov & Rogers 1992). By matching the asymptotic solutions,
they then recovered the scaling laws first evaluated in the Fourier space (Porcelli 1991).

In the remainder of the article, we will treat both the collisionless and resistive limits in
a unified way, by separately considering the warm (ρs � de) and cold (de � ρs) regimes.
Then, we will specify the results of the dispersion relation in each reconnection regime.
We will thus reobtain the resistive scaling laws first computed by Furth et al. (1963) in the
cold-electron regime and by Pegoraro & Schep (1986) in the warm-electron regime, and
the collisionless scaling laws first evaluated by Coppi (1964c,a) in the cold-electron limit
and by Porcelli (1991) in the warm one.

In Appendix C, we make a brief review of previous works which have approached
boundary layer calculations in the Fourier space (included are some more recent works
which explicitly made a comparison between eigenmode solutions in the real and in the
Fourier space – Connor et al. 2012b), and we compare some key points of that procedure
with the integration procedure that we follow in this work.

4. Boundary layer solution in the outer ideal region

We now turn our attention to solve the linearised equations in the ideal MHD region.
In the outer region and sufficiently far from the reconnection layer, a steady force

balance condition in ideal MHD can be assumed. Therefore, the terms weighted by
the non-ideal parameters can be neglected. In this case, using ψ1 = ψout, ϕ1 = ϕout,
(2.1)–(2.2) become

ϕout = − iγ
kψ ′

0
ψout, (4.1)

ψ ′′
out =

(
k2 + ψ

′′′
0

ψ ′
0

)
ψout. (4.2)

Equation (4.1) says that ψ1 and ϕ1 have opposite spatial parity and are de-phased by π/2,
i.e. ψ1 ∼ cos(ky) versus ϕ1 ∼ sin(ky) if y = 0 is assumed at an O-point.

It is also evident that solving (4.2) gives the outer solution (ψ1 = ψout) which is
unequivocally determined by the equilibrium profile ψ0 and by k. Using (4.1), one can
so obtain also the eigenmodes ϕout. The number of inner regions depends instead on the
number of non-ideal parameters involved in the problem.

A class of magnetic equilibria of particular interest is provided by those fulfilling the
condition lim|x|→∞(ψ

′′′
0 /ψ

′
0) = constant, for which a quite general integration procedure

can be devised, as we are going to discuss in the specific example below.

4.1. A specific example of evaluation of Δ′(ψ0; k)
Having in mind the numerical results to be presented in the next sections, let us solve the
outer equations for the equilibrium profile

ψ ′
0(x) = tanh(x)

cosh2(x)
, (4.3)

which is the one used by Betar et al. (2020) to obtain the scalings to which we will
make comparison. This profile was first proposed by Porcelli et al. (2002). Substituting
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the previous relation into (4.2), one finds

ψ ′′
out −

(
α2 − 12

cosh2(x)

)
ψout = 0, (4.4)

where α2 = k2 + 4 and ψ
′′′
0 /ψ

′
0 = 4 − 12/cosh2(x). Grasso first evaluated the

corresponding Δ′, reported by Porcelli et al. (2002), by looking for a polynomial solution
expressed in powers of tanh(x) (D. Grasso, private communication 2017). Here, we
formally revise the problem, and we reduce (4.4) to a Legendre-type equation that can
be shown to be valid for different kinds of equilibria, which we will discuss elsewhere.

First, we notice that limx→∞ cosh−2(x) = 0. This represents a main requirement if one
seeks to apply periodic boundary conditions on the problem by considering ψ0 as a
periodic function in x with spatial period of infinite extension. Therefore, far enough from
the neutral line where the reconnection event takes place, the hyperbolic term in (4.4) can
be neglected and (4.4) becomes

ψ ′′
f − α2ψf = 0, (4.5)

whose solution is
ψf (x) = Ae−αx, (4.6)

with A an integration constant. One then expects the solution of (4.4) to take the form

ψout(x) = ψf (x)f (x) = Ae−αxf (x). (4.7)

Substituting the previous equation in (4.4), one obtains

f ′′ − 2αf ′ + 12
cosh2(x)

f = 0. (4.8)

Motivated by the fact that tanh′(x) = cosh−2(x), we perform the change of variables
z = tanh(x). Then, (4.8) for f (z) reads

(1 − z2)f ′′ − 2(z + α)f ′ + 12f = 0, (4.9)

where the ‘′’ refers to the derivation with respect to z. The neutral line is now at
z = tanh(x) = 0. When α = 0, (4.9) becomes a Legendre equation of order three (we
recall that a Legendre equation of order p reads (1 − z2)f ′′ − 2zf ′ + p( p + 1)f = 0 –
see Abramowitz & Stegun 1964, § 8.1.1). This equation has two regular singular points
occurring at z = ±1 (x → ±∞), and one of its two linearly independent solutions is a
polynomial of third degree. This reads

f = a + bz + cz2 + dz3, (4.10)

where the coefficients can be found by substituting the polynomial solution into (4.9) and
equating to zero the coefficients with equal powers of z. After obtaining these coefficients,
using z = tanh(x) and (4.7), the outer solution of (4.2) becomes

ψout = Ae−α|x|
{

1 + 6α2 − 9
α(α2 − 4)

tanh(|x|)+ 15
(α2 − 4)

tanh2(|x|)+ 15
α(α2 − 4)

tanh3(|x|)
}
.

(4.11)

The equation in the outer region accepts both an even and an odd solution. The even
solution is the one required for tearing modes (the magnetic island shape is symmetric
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with respect to the neutral line – cf. also (2.8)). This solution displays a discontinuity in
ψ ′

out at x = 0. Taking the limit of the first derivative of (4.11),

lim
x→±0

ψ ′
out = A

{
∓
√

k2 + 4 ± 6k2 + 15

k2
√

k2 + 4

}
, (4.12)

we obtain, using (3.8),

Δ′ = 2
−k4 + 2k2 + 15

k2
√

k2 + 4
. (4.13)

It follows that Δ′ > 0 when k ∈ [0,
√

5], which represents the spectrum of unstable
wavenumbers to tearing-type instabilities for the equilibrium profile given by (4.3).

The outer solution for the case in which the magnetic equilibrium is given by Harris’
profile ψ ′

0(x) = tanh(x) (Harris 1962) can be obtained in the same manner, as already
noted by Furth (1963) (§ 4, therein). In this case, the equivalent of (4.9) is a Legendre
equation of degree p = 2. Therefore, f (z) = a + bz, which leads to an even solution
ψout(x) = ψ0e−k|x|{k + tanh(|x|)}. Following the same arguments as before, one recovers
the result Δ′ = 2(1/k − k), where the instability condition Δ′ > 0 is met when k ∈ [0, 1]
(Furth et al. 1963). The point we underline here is that the solution of the outer equation
and the evaluation of Δ′ by splitting the problem in (4.5)–(4.6) can be, in principle, used
for a quite large class of magnetic equilibria.

As anticipated, the conditionΔ′ > 0 determines the spectrum of unstable wavenumbers
for a given equilibrium profile. This can be formally seen as related to the change of
concavity that the solution ψ1 must undergo while moving from the outer to the inner
region, for the singular eigenfunction obtained in the ideal-MHD limit to become ‘regular’,
thanks to the presence of non-ideal effects that allow reconnection (Furth et al. 1963). In
general, exponentially growing solutions of the linear problem are obtained when Δ′ > 0
(cf. figure 7).

5. Equations in the non-ideal region

After having solved the linearised equations in the ideal MHD region, we are now
interested in finding their solutions in the non-ideal region. We thus begin this section
by introducing a ‘generalised resistivity’, which allows us to cast the linear equations
in a unique form that can be applied to both the collisionless and resistive regimes.
For analytical purposes that will become evident in the following, in this section, we
also normalise the linear system with respect to an arbitrary characteristic length – say
� – which will be later specified in each subdomain and in each regime. Then, we will
introduce an auxiliary function χ related to both scalar fields ψ1 and ϕ1, which allows us
to combine the inner layer equations into a single equation. It is this equation that, in some
reconnection regimes, will be later approximated in each subdomain of the boundary layer
approach and which will be solved analytically according to the strategy detailed in § 3.

For the analytical integration of the linear problem, it is first useful to introduce a
parameter that includes both the resistive and inertia-related non-ideal terms in Ohm’s
law by thus highlighting their ‘almost symmetric’ contributions in (2.1). This can be
equivalently done in terms of the ‘generalised resistivity’, as first suggested by Furth
(1963) (§ 5 therein), which, in the normalised units we use, reads

S̄−1 ≡ S−1 + γ d2
e , (5.1)

or in the form of a ‘generalised electron skin depth’, as done by Porcelli (1991) (note that
Porcelli (1991) uses the symbol Δ in place of the d̄e we adopt here), by expressing the
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Lundquist number in terms of the normalised electron–ion collision rate, νei, as S−1 =
d2

eνei/2, so as to write

d̄2
e ≡ d2

e + S−1

γ
= d2

e

(
1 + 1

2
νei

γ

)
. (5.2)

In either case, the second left-hand side term and the last right-hand side term of (2.1)
can be re-absorbed into a single contribution that formally accounts for both resistive and
inertial effects, the latter being therefore interpretable, in the form γ d2

e , as a ‘collisionless
resistivity’. Using for example (5.2), we rewrite (2.1) as

γ [ψ1 − d̄2
e(ψ

′′
1 − k2ψ1)] − ikϕ1(ψ

′
0 − d2

eψ
′′′
0 ) = −ikρ2

s (ϕ
′′
1 − k2ϕ1)ψ

′
0. (5.3)

In the following, when we will analytically integrate the linear problem in the non-ideal
region, it will be more convenient to start from (2.2) and (5.3), of which we will then take
the appropriate collisional or collisionless limits. Specialising the parameters S̄−1 or d̄e to
the purely resistive or purely collisionless limits is meaningful for linear tearing modes,
because of the extremely narrow region of the parameter space in which both S−1 and de
appreciably contribute to the asymptotic scalings (Betar et al. 2020). A transition from
resistive to inertia-dominated regimes can instead be relevant to the onset of secondary
collisionless modes over primary resistive tearing modes (Del Sarto & Ottaviani 2017),
provided the applicability of the WKB approximation we spoke of in § 3.2 for secondary
tearing instabilities developing on finite length, large-aspect ratio current sheets generated
by the primary reconnection event. In this case, the possibility of having a transition
of regime depends on both the rescaling of the shear length and of the magnetic field
amplitude of reference (see Del Sarto et al. 2018).

A further distinction will be made between the ‘cold’ regime d̄2
e � ρ2

s (discussed in
§ 6) and the opposite ‘warm’ regime ρ2

s � d̄2
e (discussed in § 7). The reason why we are

going to treat the two cases separately is due to the fact that the normalisation scales that
define the extent, in an asymptotic sense, of the innermost boundary layer domain (i.e.
δ1 of figure 4b) turn out to be different, depending on whether ρs is negligible or not
with respect to de (or to (S−1/γ )1/2). The asymptotic scaling of the layer width, δ1, also
determines, via the matching conditions, the scalings of the reconnection rate γ . It follows
that the ‘cold’ collisionless solution cannot be obtained as a trivial limit ρs → 0 of the
solution obtained for the ‘warm’ case.

Operationally speaking, we will solve the inner equations using the generalised
electron skin depth of (5.3), so we will first formally recover the collisionless results of
Coppi (1964c), Coppi (1964a) and Porcelli (1991). Then, we will comment about the
correspondence of these results with those obtained by Furth et al. (1963), Coppi et al.
(1976), Ara et al. (1978), Pegoraro & Schep (1986) and Pegoraro et al. (1989) when
resistivity dominates over electron inertia.

5.1. Differential equations in the non-ideal region
The fact non-ideal effects are important in a region which is microscopic with respect
to the equilibrium shear scale a, allows us to use (3.2) so as to write ψ ′

0(x) ≈ 2xC2 =
xψ ′′

0 |x=0 ≡ xJ0, where we have named J0 ≡ ψ ′′
0 (x)|x=0 the value (normalised to B0 and

L0 = a) of the second derivative of the equilibrium flux function at the neutral line. Using
the ordering given by (3.4), (5.2)–(2.1) become

γψ1 − γ d̄e
2
ψ ′′

1 = ikJ0xϕ1 − ikJ0ρ
2
s xϕ′′

1 , (5.4)

γϕ′′
1 = ikJ0xψ ′′

1 . (5.5)
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It can be noted that a direct comparison between the relative weight of the parameters
d̄e

2
and ρ2

s in (5.4) can be done after eliminating ϕ′′
1 in (5.4) via (5.5). Doing so, (5.4) takes

the form

γψ1 = ikJ0xϕ1 + γ

(
d̄e

2 + ρ2
s

k2J2
0

γ 2
x2

)
ψ ′′

1 . (5.6)

The coefficient multiplying ψ ′′
1 at the right-hand side of (5.6) can be read as

a generalised, space-dependent, ‘Lundquist number’, i.e. it can be assimilated to
a space-dependent resistivity/conductivity. (In more complex reconnection models
based on a gyrokinetic modelling and including also ion-FLR effects, it can be
shown (Cowley et al. 1986; Zocco & Schekochihin 2011) that the generalised
conductivity, which rules the collisionless reconnection process inside the innermost
layer dominated by electron dynamics, takes a rational-polynomial form of the kind
σe = (a + b(x/δ1))/(c + d(x/δ1)

2 + e(x/δ1)
4), where δ1 is the innermost reconnecting

layer width and a, b, c, d and e are coefficients that depend on the plasma parameters.
This form has been used by Connor et al. (2012b) to obtain, via Fourier-space integration,
a general dispersion relation encompassing drift-tearing modes, kinetic Alfvén modes
and the internal kink mode at low values of the plasma β parameter.) To have magnetic
reconnection, i.e. to allow for the existence of tearing-type unstable modes, the coefficient
d̄e

2
must be non-null since ρ2

s alone does not allow the relaxation of the topological
constraints forbidding the intersection and breaking of initially distinct magnetic lines
(cf. § 2.1). Once the importance of the d̄e

2
term in the non-ideal region is established,

one sees that the condition for which the last term in parenthesis of (5.6) is negligible in a
subdomain of the integration domain, even for a non-vanishing value of ρs, is

ρ2
s

d̄e
2 �

(
γ

kxJ0

)2

. (5.7)

This assumption will be later done in some regimes and will be heuristically verified.

5.2. Normalisation and distinction of the boundary layers
More in general, to solve the system (5.4)–(5.5) with the boundary layer approach, further
hypotheses are done about the relative magnitude of the different contributions inside
of the inner layer, and some auxiliary function (traditionally noted as χ ) relating ϕ1 to
ψ1 via (5.5) is introduced, depending on the Δ′-regime, so as to bring the system to a
single ordinary differential equation (ODE). In each regime, appropriate normalisation
of the spatial scales can be therefore chosen so as to better identify the extension of the
sub-intervals of the inner region, where some term dominates over or is negligible with
respect to the others. This is why, in the following, in the reconnection regimes and Δ′

limits which will be of interest, at each time, we will perform several changes of variable
based on different normalisation choices.

This is an important step in the boundary layer procedure, since it is at this level that
one introduces the layer widths δ1 or δ2 (cf. figure 4), although only implicitly: in practice,
a ‘stretched’ coordinate is introduced by referring the coordinate x to a characteristic
length, say �, which replaces x in different subdomains of the non-ideal region. It is when
the limits |x|/� � 1 or |x|/� � 1 will be taken for the purpose of finding solutions of
the differential equations within the boundary layer approach that the length � will be
identified as the layer width, e.g. δ2 or δ1. Also note that the length � may initially depend
on some unknown parameter like the eigenvalue γ : its scaling, and therefore that of � and
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subsequently that of the layer width to which it corresponds, will be therefore determined
a posteriori, from the conditions on the solutions obtained by integrating and matching
the equations for small and large values of these stretched variables. Note that since the
initial choice of each length scale � is essentially arbitrary, it must be a posteriori verified
for consistency that, asymptotically, δ1 � δ2 � 1 (when both δ2 and δ1 are expressed in
units of L0 = a).

It is also worth stressing that the identification of each boundary layer is subordered
to the identification of the negligibility of some term of the non-ideal equations. This
means that we must have knowledge of the relative ordering of the non-ideal parameters
at play (for example, had we wanted to include viscosity, a third scale length – let us
say λν – would have appeared. If the hypothesis λν � ρs � d̄e had been fulfilled, one
could have a priori expected three subdomains in the non-ideal region: one where ν
alone dominates, one where both ν and ρs in principle dominate, and one where all three
non-ideal parameters are in principle important. Then, one should evaluate if, in the two
innermost regions, specific conditions can be satisfied so that the dominant contribution
of one or two non-ideal terms alone can be isolated: this possibly refines further the
subdomains of interest for the purpose of the integration. It is at this level that we finally
define the boundary layers, with respect to which the matching conditions will be fixed), or,
if this is not the case, specific assumptions must be done on them by separately considering
the different possible combinations, until in each case, the ‘thinnest’ sub-domain is this
way singled out: this is the innermost region where the eigenmode solution must be first
integrated by imposing the boundary conditions from outside.

As an example of general interest for the calculations that we are going to develop next,
we can consider a normalisation of (5.4)–(5.5) to an arbitrary length �, which we will
specify later, in each case examined. This will also let us get rid of some ‘superfluous’
parameters in the equations. We thus define

ζ = x
�
, G = γ

k�J0
, ϕ̃1 = −i

γ

k�J0
ϕ1(ζ ), ψ̃1 = ψ1(ζ ), (5.8)

which allow us to re-write (5.4)–(5.5) as

ψ̃1 −
(

d̄2
e

�2
+ ρ2

s

�2

ζ 2

G2

)
ψ̃ ′′

1 = − ζ

G2
ϕ̃1, (5.9)

ϕ̃′′
1 = ζ ψ̃ ′′

1 , (5.10)

where both functions ϕ̃1 and ψ̃1 depend now on ζ .
We note that G depends on γ , which generally makes both quantities complex numbers:

they are real for usual tearing-type instabilities, which, in the absence of diamagnetic
effects related to equilibrium density gradients, do not propagate; instead, they are purely
imaginary if the magnetic profile is stable. Because of this feature, in the following, it will
be useful to perform some integration in the complex plane.

Also note that if � = 1 (in units of L0 = a), then, in dimensional units, we can write
G = γ τ0/(ka), where γ τ0 expresses the growth rate of the unstable mode measured with
respect to the ‘natural timescale’ τ0 ∼ √

mn0/(4π)(c/J0), which equals here the transition
time of a shear Alfvén wave across the shear length a (cf. Betar et al. 2020). Therefore,
G|�=1 � 1 in an asymptotic sense, as long as the wavenumber is fixed and then ka is
unordered with respect to γ τ0. If, instead, the scale � is microscopic, the ordering of G
with respect to unity must be a posteriori evaluated.
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5.3. Auxiliary function ‘χ’ and large- and small-Δ′ limits
The strategy by which the inner equations are integrated depends on mathematical features
that we are going to discuss in detail in each specific regime and wavelength limit on
which they depend (see also § 5.5). In general, some approximations and hypotheses are
required, since they allow us to combine (5.9)–(5.10) into a single equation. An integration
strategy which is particularly efficient, especially in the large-Δ′ limit, consists in casting
the equations for ψ̃1 and ϕ̃1 into an equation for an auxiliary variable, even with respect to
ζ , which is typically noted χ(ζ ), after the notation first chosen for it by (Coppi et al. 1976;
Ara et al. 1978)

χ(ζ ) ≡ ζ ψ̃ ′
1(ζ )− ψ̃1(ζ ). (5.11)

This is directly connected to (5.10), of which it is an integral. Indeed, we have

ϕ̃′′
1 (ζ ) = χ ′(ζ ) =⇒ ϕ̃′

1(ζ ) = χ(ζ )− lim
ζ→∞

χ(ζ ) = χ(ζ )− χ∞. (5.12)

In the last passage, we have named χ∞ the value of χ(ζ ) as ζ → ∞. Note that in boundary
layer calculations, when � will be identified as δ2 or δ1, the limit ζ → ∞ for which χ∞
is defined must be taken in the matching layer outside of the innermost layer, but still
inside the non-ideal region, i.e. for δ1 � x � 1 (in units of L0 = a): since ϕ̃′

1 represents
the y−component of the velocity, it approaches zero as ζ → ∞ inside the ideal region.
Determining the asymptotic behaviour of χ∞ at both limits of the unstable wavelength
spectrum is important since the scaling laws of the eigenvalue problem depend on it
(Ara et al. 1978). In practice, depending on whether χ∞ is zero or not, the differential
equation for χ is homogeneous or not (see (5.19) below). These topics are discussed in
the remainder of this section by considering, for simplicity, the case of a single boundary
layer (i.e. assuming � = δ1).

5.3.1. Asymptotic estimate of χ∞ in the small-Δ′ limit
In the case of the small-Δ′ limit and when x → 0, according to the definition of χ(ζ )

and to the matching condition limζ→∞ ψ̃1(ζ ) ∼ limx→0 ψout(x), one finds

χ∞ = lim
ζ→∞

χ(ζ ) ∼ lim
x→0

xψ ′
out(0)− ψout(0) � −c0, (constant-ψ ordering). (5.13)

In this case, we have used the ‘constant-ψ’ approximation (Furth et al. 1963), i.e. the fact
that in the small-Δ′ regime, the inner solution tends to a constant value ψ1(0) when it
approaches the innermost region. Such constant value is approximatively obtained already
from the x → 0 limit of the outer solution ψout(x), so that in this wavelength limit, we can
write limx→0 ψout(x) = c0.

The constant-ψ ordering can be assumed and heuristically verified after integration of
the eigenmode problem for the single boundary layer limit (cf. Furth et al. 1963; White
1983), and in the small-Δ′ regime, it can be shown to be equivalent to the condition
δ1Δ

′ � 1. In this case, we can also estimate limx→0 xψ ′
1(x) ∼ limx→0 xΔ′ψout(x) ∼ δ1Δ

′c0,
where in the last passage, we have (over)estimated limx→0 x by the extent of the innermost
layer width: owing to the Δ′δ1 � 1 condition, the last passage of (5.13) is thus justified,
whence one deduces

χ∞ = −c0, for δ1Δ
′ � 1. (5.14)

5.3.2. Asymptotic estimate of χ∞ in the large-Δ′ limit
In the large-Δ′ limit for x → 0, instead, one finds that χ∞ = 0. This has been first

discussed by Coppi et al. (1976) and Ara et al. (1978), where it has been shown that the
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vanishing of χ(ζ ) far out from the resonant region (equivalent to the innermost layer in our
notation) is consistent with the rigid plasma displacement that characterises the internal
kink mode in a cylindrical tokamak: in the notation and slab geometry assumption we
use in this work, this corresponds to write ϕ̃1(ζ ) = −γ ζ for |ζ | ≤ 1 and ϕ̃1(ζ ) = 0 for
|ζ | > 1 (cf. also Porcelli 1987; Del Sarto & Ottaviani 2017), whence the condition χ∞ = 0
immediately follows by direct comparison with the definition in (5.12). An alternative way
to look at the consistency of this result is to consider the Taylor expansion of the outer
solution given by (4.7):

ψout(x) ∼ c0 + c1|x| =⇒ ψout ∼ c0 + c1|x| =⇒ Δ′ ∼ 2c1

c0
. (5.15)

This solution formally holds in the outermost matching layer, where the instability
parameter Δ′ is defined by neglecting non-ideal effects, i.e. by taking the limit x → 0
of the eigenmode in the ideal region. Therefore, the use of limx→0 ψout(x) to match the
solution limζ→∞ ψ1(ζ ) is a priori not always justified. This however is not the case
of the large-Δ′ limit, in which it can be a posteriori shown, from heuristic arguments
(see Ottaviani & Porcelli (1995) for the ‘cold’ reconnection regime) or by numerical
integration, that the discontinuity in the derivative of ψout occurs in a position which gets
progressively closer to the neutral line, as long as the numerical value of Δ′(k) increases
(cf. also §§ 8–10). In this limit, using therefore limζ→∞ ψ̃1 � limx→0 ψout(x) combined
with (5.15) in the definition of (5.11), one finds

lim
ζ→∞

χ(ζ ) ∼ c1|x| − c0 − c1|x| = −c0 ∼ c1

Δ′ . (5.16)

The fact that c0 → 0 as Δ′ increases is shown in figure 7, where the spatial profile of
ψ1, obtained after numerical integration of the purely resistive regime (for S−1 = 10−5),
is shown for the values of Δ′(k) = −19.19 (green curve), Δ′(k) = 48.9 (blue curve)
and Δ′(k) = 3.2766 (orange curve), evaluated using (4.13) for k = 10, 0.1 and 1.7,
respectively. Thus, in the large-Δ′ limit where Δ′ → ∞, (5.16) implies that

χ∞ = 0 for Δ′ → ∞. (5.17)

The fact that condition Δ′ → ∞ can be replaced by Δ′ larger than the inverse of some
characteristic scale length will be discussed in § 10. As already anticipated (§ 3.2), this
condition can be generally read as Δ′δ1 � 1.

5.4. Auxiliary equation for the function χ(ζ ) in the non-ideal region
Definitions in (5.11)–(5.12) can be used to cast (5.9) in an equation for χ(ζ ). For analytical
convenience, i.e. to facilitate the substitution of variables, it is preferable to evaluate the
derivative of (5.9) after it has been divided by ζ . After opportunely regrouping the terms
of the equation so obtained, the result reads

(ζ ψ̃ ′
1 − ψ̃1)− d̄2

e

�2
(ζ ψ̃ ′′′

1 + ψ̃ ′′
1 − 2ψ̃ ′′

1 )− 1
G2

ρ2
s

�2
ζ 2 (ζ ψ̃ ′′′

1 + ψ̃ ′′
1 ) = − 1

G2
ζ 2ϕ̃′

1, (5.18)

which can be rewritten as(
d̄2

e

�2
+ ρ2

s

�2

ζ 2

G2

)
χ ′′ − 2

d̄2
e

�2

χ ′

ζ
−

(
1 + ζ 2

G2

)
χ = − ζ

2

G2
χ∞. (5.19)

In the following, we will take different limits of this equation, depending on the tearing
regime and wavelength limit considered. We emphasise that to give to the right-hand side
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FIGURE 7. Profile of the eigenfunction ψ1 in the purely resistive regime, computed via the
numerical solver of Betar et al. (2020) for S−1 = 10−5 and k = 10 (green curve), k = 1.7 (orange
curve) and k = 0.1 (blue curve). These three values are respectively exemplificative of: the stable
regime (Δ′ = −19.19 < 0, green curve); of the small-Δ′ wavelength limit (Δ′ = 3.2766, red
curve); and of the large-Δ′ wavelength limit (Δ′ = 48.9, blue curve). In the stable case (Δ′ < 0),
the eigenfunction does not change concavity as x approaches the neutral line, whereas for the
unstable tearing-type solutions obtained for Δ′ > 0, the value c0 ≡ limx→0 ψ1(x) decreases
approaching zero as the value of Δ′(k) increases approaching +∞.

term χ∞ of (5.19) the geometrical (and physical) meaning we have previously discussed
in terms of the boundary layer theory, the length � must correspond to the layer width,
δ2 or δ1 (depending on whether we are in the case of figure 4), to which the solution ψout
obtained in the ideal region is matched.

5.5. Wavelength limit and choice of integration via the equations for χ or for ψ and ϕ
The choice of performing the integration by using (5.4)–(5.5) for ψ1 and ϕ1, rather than
(5.19) for χ , clearly depends on analytical convenience. In general, we note that this choice
can be biased by the ease by which the boundary conditions imposed by the solution
obtained in the outer, ideal region, are ‘transferred’ to the solution in the innermost region.
The asymptotic matching generally poses some constraints on the integration constants
in each subdomain, but it is easy to see that, operationally speaking, these conditions
take different and quite ‘appealing’ forms in the small- and large-Δ′ limits, depending on
whether one looks at the equation for ψ1 or at the auxiliary equation for χ , respectively. In
particular, the following are observed.

(i) In the small-Δ′ limit, it is usually more convenient to perform the integration on
the equation for ψ1, for which the boundary conditions imposed from the ideal
region are directly implemented by making explicit the dependence on Δ′ via (3.7)
and (3.10). In this case, the constraint imposed by the solutionψout in the ideal region
can be directly used on the integration of the innermost equation in the form of the
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constant-ψ condition. Indeed, if we define c0 ≡ limx→0 ψout(x) and we heuristically
assume the constant-ψ condition to be valid, the latter implies that ψ1 � c0 both in
the innermost region |x| ≤ δ1 and in the possible intermediate region δ1 < |x| ≤ δ2.
Therefore, also when two boundary layers are present, the constant-ψ condition
can be directly implemented in the integration of the innermost equation, by thus
practically allowing one to ‘bypass’ the procedure of matching between the solutions
in the ideal and in the intermediate region, and then between the solutions in the
intermediate and in the innermost region2 (at least for the purpose of establishing the
dispersion relation, i.e. to find the asymptotic scalings of the eigenvalue). However,
as the matching occurs in the boundary layer with the ideal region, it is generally
more convenient to maintain the normalisation to the intermediate layer width, also
when two layers are present. This approach will be used in §§ 6.2 and 7.5.

(ii) In the large-Δ′ limit, it is instead usually more convenient to perform the integration
on the auxiliary equation, since in this case, the constraint imposed by the outer
solution ψout on the solutions in the non-ideal region is simply expressed as χ∞ = 0
(cf. § 5.3.2). From an operational point of view, this realises the matching between
the ideal and the intermediate region. The dispersion relation is therefore directly
obtained by solving the non-ideal equation for χ∞ = 0 in case a single boundary
layer is present, or by matching the innermost solution and the intermediate solution
(both sought under the constraint χ∞ = 0) if two boundary layers are present. This
approach will be used in §§ 6.1 and 7.4.

6. Solutions in the inner region: cold regime

Let us first discuss the reconnection regime with both cold electrons and ions. The
linear problem has been first solved in the small-Δ′ wavelength limit by Furth et al. (1963)
in the resistive regime and by Coppi (1964c,a) in the inertial regime, using boundary
layer calculations in the coordinate space. A solution of the linear problem in the large-Δ′

wavelength limit has been first provided in the resistive regime by Coppi et al. (1976) and
has been extended in the collisionless regime by Porcelli (1991). In this latter work, the
calculations in the Fourier space, with which Pegoraro & Schep (1986) also recovered the
resistive results of Furth et al. (1963) and Coppi et al. (1976), have been extended to
the purely collisionless regime. We will come back to these more recent works relying on
the integration in the Fourier space in § 7, where we will discuss the ‘warm’ reconnection
regime including FLR effects related to parallel electron compressibility (i.e. a kind of
diamagnetic effect).

The reason for which we start from the case of cold species is that, from the point
of view of the boundary layer theory, the ‘cold’ regime in which we neglect ρs-related
terms in (2.1)–(2.2) is both conceptually and analytically simpler than the ‘warm’ tearing
regime (cf. figure 4). Since we consider the cold limit d̄2

e � ρ2
s which encompasses the

case ρs = 0, to ensure convergence of the solution with the ρs = 0 limit, we assume the
validity of the condition (5.7) in the whole integration domain. We can verify a posteriori
its validity, once the eigenvalue problem is solved.

We also mention here that the analytical results we are going to obtain below have been
numerically verified by Betar et al. (2020) to be valid for d̄e

2
> ρ2

s /100, i.e. for d̄e � ρs/10.

2In (Granier et al. 2022) it has been pointed out that in the warm small-Δ′ regime the equation for ϕ1 changes of
form while moving from the layer of width δ2 to the innermost layer of width δ1: while this would formally require to
carry out the full boundary layer calculation for its integration, doing so only yields negligible additive corrections of
order O(δ1/ρs) � 1 to the growth rate scalings.
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6.1. Solution for d̄2
e/ρ

2
s � 1: large-Δ′ limit

Assuming heuristically the validity of (5.7), we neglect the second term in parentheses in
(5.9). The restriction to the large Δ′-limit, in which the condition in (5.17) holds, suggests
that we make use of the auxiliary function χ(ζ ) defined by (5.11), which leads us to
consider the appropriate limit of (5.19):

χ ′′ − 2
ζ
χ ′ − �2

d̄2
e

(
1 + ζ 2

G2

)
χ = 0. (6.1)

The structure of the equation suggests that we take � ≡ d̄e as the normalisation length to
be used in the definitions of (5.8). This means that we postulate

δ1 = d̄e, (6.2)

which, at least for d̄e = de, is evidently consistent with the asymptotic condition δ1 � 1.
A solution to (6.1) can be sought in the form

χ1 = e−αζ 2
. (6.3)

Substituting it in (6.1) yields

2α = 1, 4α2 = 1
G2
. (6.4)

Using the first part of (5.8) and combining the two conditions above, gives

γ = kd̄eJ0. (6.5)

This result can be specialised both to the fully collisionless (d̄2
e = d2

e ) and to the fully
collisional (d̄2

e = S−1/γ ) internal-kink regime. We recall in this regard that numerical
analysis (Betar et al. 2020) confirms that the parameter space interval where both inertial
and resistive effects non-negligibly combine is very narrow, so that tearing modes can be
usually considered either as fully collisionless or as fully resistive.

In the collisionless limit, we thus recover the result of (Porcelli 1991)

γ = kdeJ0 δ1 ∼ de. (6.6)

In the resistive case, (6.6) specialises to the result of (Coppi et al. 1976)

γ = k2/3J2/3
0 S−1/3, δ1 ∼ k−1/3J−1/3

0 S−1/3. (6.7)

Substitution of the results of (6.6) and (6.7) for x ∼ δ1 in (5.7) makes it equivalent to the
condition ρ2

s /d̄
2
e � 1 from which we started, thus verifying a posteriori its correctness.

The scalings in (6.6) and (6.7)), in contrast to those of the large-Δ′ limit of the
warm-collisionless regime, can be obtained using a heuristic-type derivation based on
dimensional estimates, as we are going to prove in § 9.3.

Finally, some words about the second solution of (6.1), which we have neglected, since
it can be shown that it is not of interest to the tearing instability problem. To this purpose,
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we can look for a solution of the form χ2(ζ ) = u(ζ ) χ1(ζ ). Substituting χ = χ2 in (6.1)
and using the fact that χ1 already solves it, one obtains, after a little algebra,

u′′χ1 + 2u′
(
χ ′

1 − χ1

ζ

)
+ uχ ′′

1 = 0. (6.8)

Further substitution of (6.3) into the equation above yields

u′′ −
(

4αζ + 2
ζ

)
u′ = 0, (6.9)

which, defining w = u′, can be brought to a directly integrable form:

dw
w

= 4αζ dζ + 2 dζ
ζ

=⇒ w(ζ ) = w0 ζ
2e2αζ 2

, (6.10)

w0 being a constant of integration. Specialising the result for α = 1/2, integrating w once
to find u and then substituting the result in χ2 = uχ1, one obtains

χ2 = i
√

π

2
erf

(
iζ√

2

)
e−(ζ 2/2) + ζ, (6.11)

which is odd and unbounded when ζ → ∞. Therefore, for our purposes, the solution
χ2 can be disregarded since its spatial parity is not compatible with that of tearing modes
(i.e. it is not compatible with the formation of X-points).

6.2. Solution for d2
e/ρ

2
s � 1: small-Δ′ limit

In the small-Δ′ limit, the boundary layer analysis mirrors that of the paper by Furth et al.
(1963) if the resistive limit d̄2

e → S−1/γ is considered. In general, regardless of the form
of d̄e, we can here use the ‘constant-ψ’ approximation stating that ψ̃1(ζ ) → c0 as ζ → 0
(cf. (5.15)). However, instead of using the auxiliary equation (5.19), in this case, it is more
convenient to consider (5.9) in which ψ̃ ′′

1 has been eliminated by using (5.10) since, after
combination with the constant-ψ limit, this yields an equation for the function ϕ̃1(ζ ) that
can be brought to an integrable form more easily than the equation for χ(ζ ):

ϕ̃′′
1 − ζ 2

G2

�2

d̄2
e

ϕ̃1 = c0
�2

d̄2
e

ζ. (6.12)

Note that in this equation, the length � is so far left unspecified. In practice, at this stage of
the calculations, it can be taken � = 1, which would be still consistent with the constant-ψ
limit with respect to which the substitution ψ̃1(0) � c0 has been done. The identification
of a proper normalisation length defining the boundary layer width can be done after a
further change of variable that leads (6.12) to an integrable form in which the boundary
layer integration can be more easily performed. Equation (6.12) for � = 1 can be indeed
brought to the form

Φ ′′ − z2Φ = z (6.13)

after the change of variables and coordinates

z = (Gd̄e
)−1/2

ζ, Φ =
(

d̄e

G3

)1/2 (
ϕ̃1

c0

)
. (6.14)

The normalisation of Eq. (6.12) is detailed in Appendix D as a didactical example of how
to generally proceed to find the normalisation coefficients of a differential equation. In the
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limit d̄2
e → S−1/γ , (6.13) is the equation of the resistive tearing mode studied by Furth

et al. (1963), whose solution has been provided by Basu & Coppi (1976), Coppi et al.
(1976) and Ara et al. (1978) (cf. (III.26) and (III.27) and appendix A in the latter) in the
closed integral form:

Φ = −1
2

z
∫ 1

0
(1 − t2)−1/4e−(1/2)tz2

dt. (6.15)

The scaling of the eigenvalue γ and its dependence on the amplitude of the instability
parameterΔ′ can be made explicit by comparing the eigenfunctionΦ(z) to ϕ1(x/δ2) in the
matching condition expressed by (3.7), which also allows us to identify the layer width δ2:
combining (3.7) and (3.10) (where we re-introduce the quantity J0) yields

ψout(0)Δ′ = −i
γ

kJ0

∫ +X̄′

−X̄′

ϕ′′
1 (x

′)
x′ dx′, (6.16)

where Δ′ is defined by (3.8), x′ = x/δ1 and X̄′ = X̄/δ1 is indicative of some point of the
matching region such that δ1 � X̄ � 1 in units of L0 = a. Connection with (6.13) follows
from noticing that (6.14) implies:

d2ϕ̃1

dζ 2

∣∣∣∣
�=1

= c0

(
1

d̄eG3

)∣∣∣∣1/2

�=1

(
dz
dζ

)2 d2Φ

dz2
= c0

( G
d̄3

e

)∣∣∣∣1/2

�=1

d2Φ

dz2
. (6.17)

This authorises us to identify

x′ = x
δ1

−→ z = x

(Gd̄e)|1/2�=1

, −i
γ

kJ0

d2ϕ(x′)1
dx′2 −→ c0

( G
d̄3

e

)∣∣∣∣1/2

�=1

d2Φ

dz2
, (6.18)

which now fixes the boundary layer width to be

δ1 = (Gd̄e)
∣∣1/2

�=1 =
√
γ d̄e

k
, (6.19)

whose consistency with the condition δ1 � 1 must be verified once G|�=1 is explicitly
obtained. Substituting then ψout(0) � limζ→0 ψ̃1(ζ ) = c0 and using (6.18) makes (6.16)
become

Δ′ =
( G

d̄3
e

)∣∣∣∣1/2

�=1

∫ +Z̄

−Z̄

Φ ′′

z
dz, (6.20)

where Z̄ = X̄/(Gd̄e)|1/2�=1. The integral in the previous equation is convergent, let us call
its value I ≡ ∫ +∞

−∞̄ (Φ
′′/z) dz � ∫ Z̄

−Z̄(Φ
′′/z) dz. Then, using the definition in (5.8) for � = 1,
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one obtains

γ = kd̄3
e(Δ

′)2
(

J0

I2

)
. (6.21)

In the inertia-dominated regime, d̄e = de, one recovers the well-known result by Coppi
(1964c,a), later re-obtained by Porcelli (1991):

γ = k(Δ′)2de
3

(
J0

I2

)
, δ1 = Δ′d2

e

I
. (6.22)

In taking the resistive limit, d̄e = (S−1/γ )1/2, one obtains instead the classical result of
Furth et al. (1963), later recovered by Pegoraro & Schep (1986):

γ = k2/5(Δ′)4/5S−3/5

(
J0

I2

)2/5

, δ1 = k−2/5(Δ′)1/5S−2/5

(J0I2)2/5
. (6.23)

In both cases (6.22) and (6.23), the asymptotic condition δ1 → 0 as de → 0 or S−1 → 0 is
verified.

7. Solutions in the inner region: warm-electron regime

Let us now consider the boundary layer problem in the ‘warm’ reconnecting regime by
limiting our attention to the case of cold ions, consistent with (2.1) and (2.2).

Extending the analysis to include ion temperature effects related to FLR corrections in
the fluid description of these low frequency modes is possible, but generally it requires
relying on reduced models (i.e. ‘gyrofluid’ models), in which the ion response related to
the separation between the motion of particles and of gyrocentres is obtained by starting
from the gyrokinetic Vlasov equation. Fluid models of reconnection, in which this has
been done, typically differ because of the way the gyrokinetic operator is approximated
and because of the number of scalar fields that are retained in the description (see, e.g.
Pegoraro & Schep 1981, 1986; Pegoraro et al. 1989; Porcelli 1991; Schep et al. 1994;
Loureiro & Hammett 2008 for essentially two-field models, and, e.g. Aydemir (1992),
Zakharov & Rogers (1992), Dorland & Hammett (1993), Smolyakov, Pogutse & Hirose
(1995), Pogutse, Smolyakov & Hirose (1998), Waelbroeck, Hazeltine & Morrison (2009),
Zocco & Schekochihin (2011), Waelbroeck & Tassi (2012), Connor et al. (2012b) and
Tassi, Sulem & Passot (2016) for other gyrofluid models retaining more than two scalar
fields). A common feature of linear tearing analysis build on these gyrofluid models, as
well as on other descriptions retaining kinetic features at a more fundamental level (see
Drake & Lee 1977; Cowley et al. 1986; Rogers et al. 2007), is the ‘symmetric’ way by
which ion and electron temperature effects enter in the dispersion relation in regimes
where an estimate of the growth rate of tearing-type modes is analytically available.
This symmetry is expressible via the formal substitution ρ2

s → ρ2
s + ρ2

i in the dispersion
relations which we are going to discuss in the remainder of this work. In regimes of the
parameter space that go beyond the applicability of the analytical predictions by Pegoraro
& Schep (1986), Pegoraro et al. (1989) and Porcelli (1991), a departure from the symmetry
between ρs and ion-Larmor-radius effects associated with the parameter ρi = ρs

√
Ti/Te

has been numerically observed in the growth rate of the internal-kink mode (Del Sarto
et al. 2011). Dealing with these subjects would include some complicacy about the build
of the linear model, which are unnecessary with respect to the purpose of the present work.
This is why we neglect them here.

We therefore start from (5.4) and (5.5). Since the problem has now two characteristic
spatial scales, namely d̄e and ρs, the identification of the two boundary layers will require
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us to perform two subsequent normalisations and approximations of the terms of the
aforementioned equations. Since we are now restricting to the parameter range where
ρ2

s is not negligible with respect to d̄2
e , we can assume ρ2

s � d̄2
e . A natural choice for

choosing a first normalisation scale defining the ‘largest’ non-ideal region of interest is
therefore to pose � = ρs. We note that identifying this as a boundary layer width or not
is a further logical step, whose appropriateness depends on the kind of approximations of
the equations and integration strategies that can be possibly performed with respect to the
stretched variable x/ρs. This is what we are going to discuss below.

Also note that for economy of symbols – let us say – in this section, we will use some
symbols used in the changes of variables of § 6 with a different definition that will be
given in each specific case (this will concern, in particular, the definition of ζ , G and the
use of the ‘·̃ · ·’ to label some normalised quantities).

7.1. Equations in the non-ideal region for ρs � de

As we enter the non-ideal region from the ideal one, when x < 1, the first non-ideal
characteristic scale that is encountered under the hypotheses previously done is ρs > de.
This is the first scale length with respect to which we can try to identify a boundary layer:
aiming to single out a subdomain in the x � 1 range where only ρs possibly matters, we
start by fixing � = ρs in (5.8), so that (5.9) and (5.10) become

ψ̃1 −
(

d̄2
e

ρ2
s

+ ζ̃ 2

G̃2

)
ψ̃ ′′

1 = − ζ̃

G̃2
ϕ̃1, ϕ̃′′

1 = ζ̃ ψ̃ ′′
1 , (7.1)

with

ζ̃ = x
ρs
, G̃ = γ

kρsJ0
, ϕ̃1 = −iG̃ϕ1(ζ̃ ), ψ̃1 = ψ1(ζ̃ ). (7.2)

The auxiliary equation (5.19) specialises to(
d̄2

e

ρ2
s

+ ζ̃ 2

G̃2

)
χ̃ ′′ − 2

d̄2
e

ρ2
s

χ ′

ζ̃
−

(
1 + ζ̃ 2

G̃2

)
χ̃ = − ζ̃

2

G̃2
χ̃∞. (7.3)

Equation (7.3) can be shown to be equivalent to (B42) of Zocco & Schekochihin (2011),
although the latter has been obtained from a four-field system which also accounts for the
dynamics of the reduced electron guiding centre contribution and for the parallel electron
temperature perturbation (ge and δT‖,e, respectively, therein). These authors also solved
the boundary layer problem in the coordinate space, but – also because of the different
system of equations they started from – they took a different path with respect to the
one we take here, in which we tackle the integration of the inner equation directly in
the different wave length limits of interest. In this sense, the comparison between the
boundary layer integration procedure of the aforementioned article and the one we are
going to outline here is not immediate, although possible, since some different operational
assumptions in the definition of the boundary layers and in the analytical technique of
integration have been used in that work and in the present one. In their work, Zocco
& Schekochihin (2011) identified two non-ideal integration regions where ion physics
and electron physics were respectively dominating. In these two regions, they sought the
solutions of their auxiliary equation, from which they computed the magnetic flux function
ψ in the electron and ion region (A‖,e and A‖,i in their notation, respectively, which, in
this work, map into the solution ψ that we will compute in the innermost and outermost
non-ideal regions) by assuming in the large- and small-wavelength limit some heuristic
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orderings (a posteriori verified) in terms of Δ′ and what they named the ‘reconnection
region’ (δin, in their notation). As we will later discuss (§ 8), the characteristic width of
their ‘reconnection region’, δin, differs from that of the innermost boundary layer that we
are going to identify (δ1). However, in some regimes, δin can be interpreted in the light of a
further characteristic scale length, which we will introduce in § 10 (namely, what we will
call (Δ′

vy
)−1). In the following, we are going to adopt an integration procedure based on

the integral representation of hypergeometric functions, whereas, in their work, (Zocco &
Schekochihin 2011) used a perturbative method to obtain a closed form solution for A‖,e.
Note that, so far, the boundary layers have not yet been identified here.

7.2. Boundary layers in the non-ideal region for ρ2
s /d

2
e � 1

We now specialise the condition ρs � de by making the assumption ρ2
s /d̄

2
e � 1, which

requires a sufficiently large scale separation between d̄e and ρs ≥ d̄e. Note that this is
henceforth the strongest assumption about the relative ordering of the non-ideal parameters
at play, which is done in this analysis for tearing modes in the warm-electron regime.
Nevertheless, the quantitative results obtained in this way are usually applied also for
ρs � d̄e: numerical calculations in a wide interval of the parameter space (Betar et al.
2020) suggest that the condition ρs > d̄e/10 can be assumed for the validity of the
results we are going to obtain below. In the interval ρs/10 � d̄e � 10ρs, a transition from
power-law scalings of the cold limit of § 6 to those of the warm limit that we are going to
discuss here is observed.

7.2.1. Outermost boundary layer
Assuming ρ2

s /d̄
2
e � 1, (7.1) becomes

ψ̃1 − ζ̃ 2

Ḡ2
ψ̃ ′′

1 = − ζ̃

Ḡ2
ϕ̃1, ϕ̃′′

1 = ζ̃ ψ̃ ′′
1 (7.4)

and (7.3) reads

χ̃ ′′ −
(

1 + G̃2

ζ̃ 2

)
χ̃ = −χ̃∞. (7.5)

These equations must be assumed to be valid in an interval where spatial scales are
comparable to ρs but larger than d̄e, that is, d̄e/ρs � ζ̃ � 1, where the first inequality
is meant in the sense discussed above. Therefore, restriction to this interval formally
corresponds to take d̄e = 0 in (5.4). The integration of (7.8) and the matching of their
solutions with ψout of the ideal region via (3.5) and (3.6) formally identifies the outermost
boundary layer of width

δ2 = ρs. (7.6)

7.2.2. Innermost boundary layer
Of course, since the formation of the X-point via reconnection requires d̄e 
= 0, a second,

innermost boundary layer can be defined in a region where both scales d̄e and ρs matter.
The width δ1 of this second boundary layer does not necessarily correspond to the scale
d̄e (if it were so, the condition δ1 � δ2 would require d̄e � ρs, which is an even stronger
restriction than that defining the validity of (7.6)). To identify this inner boundary layer,
we can look back to (7.1) and (7.3) or to ((5.9) and (5.10) and (5.19)) and notice that the
two terms in parentheses, in which there is an explicit dependence on both ρs and d̄e, are
comparable (regardless of the definition of � and G) if (ζρs)

2/(Gd̄e)
2 ∼ 1. In dimensional
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units, this means xkρsJ0/(γ d̄e) ∼ 1, which suggests that we introduce the normalisation
scale � = γ d̄e/(kρsJ0). Using then in (5.9) and (5.10) the change of coordinates and
variables expressed by

ζ = x
�

= xkρsJ0

γ d̄e
, G = ρs

d̄e
, ϕ1 = −iGϕ1(ζ ), ψ1 = ψ1(ζ ), (7.7)

we write

ψ1 − d̄2
e

�2

(
1 + ζ 2)ψ ′′

1 = − ζ

G2
ϕ1, ϕ′′

1 = ζψ ′′
1 . (7.8)

Using the definition of G in (7.7) and the fact that ρ2
s /d̄

2
e � 1, one sees that in this interval,

ζϕ1/G2 ∼ ζ 2ψ1d̄2
e/(J

2
0)ρ

2
s � ψ1 so that (7.8) can be approximated as

ψ1 − d̄2
e

�2

(
1 + ζ 2)ψ ′′

1 = 0, ϕ′′
1 = ζψ ′′

1 , (7.9)

and with the same normalisation, (7.3) (or (5.19)) becomes

(1 + ζ 2)χ ′′ − 2
ζ
χ ′ − �2

d̄2
e

χ = −ζ 2χ∞. (7.10)

Note that in the definitions above, we have used the same symbols for �, G and ζ ,
previously introduced in (5.8), since the different regime of interest here should not induce
any confusion with those symbols used in § 6. Also note that to avoid unnecessary burdens
to notation in the following calculations, we have used for ψ1(ζ ) and ϕ1(ζ ) the same
symbol that we use everywhere else for ψ1(x) and ϕ1(x). This, also, should not cause any
confusion as the argument of the function will be later specified in the few cases where
the two meanings could be confounded.

Later in this section, we will proceed with the integration of these solutions and with
their matching. It is therefore reasonable to postulate the innermost layer width to be

δ1 = γ d̄e

kρsJ0
, (7.11)

which we will later show to be the case, indeed, although we remind that the identification
δ1 → � formally requires us to a posteriori verify that δ1 � ρs � 1. From now on, we will
therefore write δ1 defined by (7.11) in place of � defined by (7.7).

7.3. Integration strategy in the warm-electron regime for ρ2
s /d̄

2
e � 1

We can now better establish the integration strategy for this problem, which has been
generally outlined at the end of § 3. We have identified three overlapping spatial intervals
of the integration domain in which different limits of the eigenvalue equations hold. For
practical reasons, these can be identified in terms of the variable ζ̄ introduced in (7.1) and
(7.2).

(i) The innermost region x ≤ δ1, where δ1 = γ d̄e/(kρsJ0), to be yet quantified, and
(7.9)- and (7.10) are valid. This integration domain applies for ζ̃ � 1, i.e. for x � ρs.

(ii) The intermediate region δ1 � x ≤ δ2 where δ2 = ρs and (7.4) and (7.5) hold. This
integration domain applies for ζ̃ ∼ 1, i.e. for δ1 � x � a.
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(iii) The outer region valid for x such that δ2 � x, whose governing equations are those
of ideal MHD. Here, (4.2) is used. This integration domain applies for ζ̃ � 1, i.e.
for x ∼ a.

Two matching regions can be therefore identified.

(a) In the interval δ1 < x < δ2, the solution χ(ζ ) of (7.10) is matched with solution χ̃ (ζ̃ )
of (7.5) according to limζ→∞ χ(ζ ) = limζ̃→0 χ̃(ζ̃ ).

(b) In the interval δ2 < x < a, the solution χ̃ (ζ̃ ) of (7.5) (corresponding to ψ̃1(ζ̃ ) and
ϕ̃1(ζ̃ ) of (7.4)) is matched with the solutions ψout(x) and ϕout(x) of (4.1) and (4.2)
according to limζ̃→∞ ψ̃1(ζ̃ ) = limx→0 ψout(x) and limζ̃→∞ ϕ̃1(ζ̃ ) = limx→0 ϕout(x).

Notice that the matching conditions also generally depend on the wavelength range, that
is, on the value of Δ′, which rules the solution in the ideal region. This can influence the
integration strategy, as outlined in § 5.5.

Before solving (7.1) or (7.3) in both the inner and the outer regions, and then matching
the corresponding solutions to obtain the general solution of the problem, it is useful to
discuss (see § 7.3.1) a general method that can be used to solve equations having the form
of (7.9). This method is based on the integration in the complex plane via representation
by means of hypergeometric functions.

7.3.1. Solution of the equation in the innermost interval (x � δ1) via integral
representation of hypergeometric functions

Equation (7.9) is a second-order ordinary differential equation that in the complex
plane has three singular points at ζ = ±i and ζ = ∞. Therefore, employing some
transformations, it can be written in the standard form of a hypergeometric equation.
This suggests that we look for the solution of (7.9) and (7.10) in terms of hypergeometric
functions. Inspired by the integral representation of hypergeometric functions, we can thus
look for a solution of (7.9) of the form

ψ1 = 1
2πi

∮
C

F(s)(1 + ζ 2)s ds, (7.12)

where C is a closed contour in the complex plane which starts at −∞ of the real axis, goes
around the singularities of the function F(s) (it will turn out that these singularities are
given by an infinite number of simple poles of F(s)) and then returns back to −∞. This
representation will allow us to employ the residue theorem which states that ψ1 equals the
sum of residues enclosed by the contour C. The second derivative of ψ1 becomes

ψ ′′
1 =

∮
C

2s(2s − 1)F(s)(1 + ζ 2)s−1 ds −
∮

C
4s(s − 1)F(s)(1 + ζ 2)s−2 ds. (7.13)

Shifting the operator in the second term by taking s′ = s + 1, (7.13) reads

ψ ′′
1 =

∮
C

2s(2s − 1)F(s)(1 + ζ 2)s−1 ds −
∮

C
4s(s + 1)F(s + 1)(1 + ζ 2)s−1 ds. (7.14)

Substituting the previous relation in (7.9), one obtains an expression stating that the
integral of (1 + ζ 2)s times a function of s equals zero. A sufficient condition for its validity
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is to set to zero the function of s, which reads

[2s(2s − 1)− (δ1/d̄e)
2]F(s)− 4s(s + 1)F(s + 1) = 0. (7.15)

To get an insight on the form of F(s), let us write F(s + k) in terms of F(s) by using (7.15).
After a little algebra, we obtain

F(s + 1) =

(
s − α

2

)(
s − β

2

)
s(s + 1)

F(s), (7.16)

where α = 1
2 − ν, β = 1

2 + ν and ν = (1/4 + (δ1/d̄e)
2)1/2. Then,

F(s + j) =

(
s − α

2

)
j

(
s − β

2

)
j

(s)j(s + 1)j
F(s), (7.17)

where

(q)j ≡ q(q + 1) · · · (q + j − 1) = Γ (q + j)
Γ (q)

(7.18)

is the so-called ‘Pochhammer symbol’ defined in terms of the Γ -function (see Abramowitz
& Stegun 1964, § 6.1.22). Motivated by the form of (7.17) one can look for a function F(s)
expressed as a combination of Gamma functions, that is,

F(s) = Γ (s + a)Γ (s + b)
Γ (s + c)Γ (s + d)

. (7.19)

If, by comparison with (7.17), we choose c = 0 and d = 1, (7.15) becomes(
a + b + 1

2

)
s + ab +

(
δ1

2d̄e

)2

= 0. (7.20)

The previous equation should be satisfied for any value of s. Therefore, one obtains

a + b + 1
2

= 0, ab +
(
δ1

2d̄e

)2

= 0, (7.21)

which has the following solutions:

a = −α
2
, b = −β

2
, α = 1

2
− ν, β = 1

2
+ ν, ν =

(
1
4

+ δ2
1

d̄2
e

)1/2

. (7.22)

Here, a and b are real numbers because (δ1/d̄e)
2 is also a real number, whence it is evident

that the singularities of F(s) are points on the real axis. Using (7.22), F(s) reads

F(s) =
Γ

(
s − α

2

)
Γ

(
s − β

2

)
Γ (s)Γ (s + 1).

(7.23)

One sees that F(s) has two series of simple poles at

s = α

2
− m, s = β

2
− m, m = 0, 1, 2, 3, . . . . (7.24)

It is also clear that the previous poles are associated with two series of residues. The
first one is obtained by taking the limit s = α/2 − m in the evaluation of the residue of
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F(s)(1 + ζ 2)s,

ψα = Resα ≡
∞∑

m=0

lim
s→α/2−m

[
(s + m)Γ

(
s − α

2

)] Γ (−ν − m)(1 + ζ 2)α/2−m

Γ

(
5
4

− ν

2
− m

)
Γ

(
1
4

− ν

2
− m

)
=

∞∑
m=0

(−1)m

m!
Γ (−ν − m)

Γ

(
5
4

− ν

2
− m

)
Γ

(
1
4

− ν

2
− m

)(1 + ζ 2)α/2−m, (7.25)

where the limit in the previous equation is obtained using the property Γ (s + 1) = sΓ (s),
which leads to

lim
s→−m

(s + m)Γ (s) = lim
s→−m

(s + m)
Γ (s + 1)

s

= lim
s→−m

(s + m)
Γ (s + m + 1)

s(s + 1) · · · .(s + m − 1)(s + m)
= (−1)m

m!
. (7.26)

The second series of the residues can be calculated taking the limit s = β/2 − m. Then,

ψβ = Resβ =
∞∑

m=0

(−1)m

m!
Γ (ν − m)

Γ

(
5
4

+ ν

2
− m

)
Γ

(
1
4

+ ν

2
− m

)(1 + ζ 2)β/2−m. (7.27)

Therefore, using the residue theorem (
∮

C f (z) dz = 2πi
∑

z∈C Res[f (z)]), and substituting
in (7.12), ψ1 becomes

ψ1 = ψα + ψβ. (7.28)

We recall that this solution is valid as long as x � δ2, i.e. x � ρs.
The same result could be found by using the Frobenius method (see, e.g. Bender &

Orszag 1978, § 3.3) by assuming a power series solution of the form ψ1 = ∑∞
m=0 gm(1 +

ζ 2)λ−m: after substituting ψ1 in (7.9) and using g0 
= 0, the indicial equation leads to λ1 =
α/2 and λ2 = β/2, where α and β are given by (7.22). The coefficients gm for both λ1 and
λ2 can be found by equating the coefficients of the powers of ζ to zero. In this way, one
obtains again (7.25)–(7.28).

A discussion about both the convergence and the independence of solutions (7.25) and
(7.27) is in Appendix E.

7.4. Solution of the auxiliary equation for ρ2
s /d

2
e � 1: large-Δ′ limit

We now solve the auxiliary equation (7.10) in the large-Δ′ limit. Its detailed analytical
investigation becomes essential in this wavelength limit since, as we will see in § 9.3, the
‘standard’ heuristic derivation here (surprisingly) fails to recover the correct scaling laws.

In this wavelength limit, the solution of the auxiliary equation in the innermost region
can be matched directly to the solution obtained in the outermost non-ideal region by
setting χ∞ = 0, as discussed in § 5.5. From this matching, we will obtain the scaling laws
for both the growth rate and the reconnecting layer width.
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7.4.1. Solution in the innermost layer x ≤ δ1

We can solve (7.10) by following the same line of thought used to solve (7.9), as
described in § 7.3.1: we thus assume a solution of the form

χ(ζ ) = 1
2πi

∮
C

G(s)(1 + ζ 2)s ds. (7.29)

After calculating the first and second derivative of (7.29) with respect to ζ , and substituting
them into (7.10), one obtains the condition

[2s(2s − 1)− (δ1/d̄e)
2]G(s)− 4(s + 1)2G(s + 1) = 0. (7.30)

By noticing the similarity of the previous relation with (7.15), we look for a G(s) of the
form

G(s) = Γ (s + a)Γ (s + b)
Γ 2(s + 1)

= F(s)
s
. (7.31)

We recall that the previous equation has been written by assuming c = d = 1 in (7.19),
and this allows us to eliminate the (s + 1)2 coefficient in (7.30). In (7.31), we have also
used Γ 2(s + 1) = sΓ (s)Γ (s + 1). This choice leads us again to (7.21) and, therefore, to
the same values for a and b which are given by (7.22), meaning that both (7.19) and (7.31)
have the same infinite series of poles, as can be expected from the definition of χ expressed
by (7.29). Therefore, the general solution of (7.10) reads

χin(ζ ) = χα(ζ )+ χβ(ζ ), (7.32)

where

χα(ζ ) =
∞∑

m=0

(−1)m

m!
Γ (−ν − m)

Γ 2

(
5
4

− ν

2
− m

)(1 + ζ 2)α/2−m, (7.33)

χβ(ζ ) =
∞∑

m=0

(−1)m

m!
Γ (ν − m)

Γ 2

(
5
4

+ ν

2
− m

)(1 + ζ 2)β/2−m. (7.34)

We close the discussion in this section by noticing that the leading terms in (7.32)
are (1 + ζ 2)α/2 and (1 + ζ 2)β/2. Therefore, we can look for an approximate asymptotic
solution of the form

χin(ζ ) ≈ χ
appr
in (ζ ) = A(1 + ζ 2)α/2 + B(1 + ζ 2)β/2 + C, (7.35)

where A, B and C are constants. Their values will be estimated by matching the solutions
in the different regions and by applying the constraints at ζ = 0, which we are going to
obtain in § 7.4.2. Note that for limit ζ → ∞, (7.35) can be further approximated to

χin(ζ ) ≈ χ
appr
in (ζ ) = Aζ α + Bζ β + C. (7.36)
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7.4.2. Constraints at the origin
Any solution of the auxiliary equation must satisfy the constraints below that follow

from the definition of χ(ζ ) in (5.11) and from (7.9) at ζ = 0:

ψ ′′
1 (0) = δ2

1

d̄2
e

ψ1(0) = χ ′′(0) = − δ
2
1

d̄2
e

χ(0), (7.37)

ψ iv
1 (0) = δ2

1

d̄2
e

ψ ′′
1 (0)− 2

δ2
1

d̄2
e

ψ1(0) = −2
(

1 − 1
2
δ2

1

d̄2
e

)
ψ ′′

1 (0) = −2
δ2

1

d̄2
e

(
1 − 1

2
δ2

1

d̄2
e

)
ψ1(0),

(7.38)

χ iv(0) = 3ψ iv
1 (0) = −6

(
1 − 1

2
δ2

1

d̄2
e

)
ψ ′′

1 (0) = −6

(
1 − 1

2
δ2

1

d̄2
e

)
χ ′′(0) = 6

δ2
1

d̄2
e

(
1 − 1

2
δ2

1

d̄2
e

)
χ(0).

(7.39)
These expressions will be later used in the asymptotic matching, so as to determine the
free coefficients in the expression of χ aprr

in in (7.35).

7.4.3. Solution in the intermediate region, δ1 � x ≤ δ2

In this region, we look for a solution χ̃ (ζ̃ ) of (7.3). Being interested in the large-Δ′ limit,
we can pose χ̃∞ = 0. Equation (7.3) then becomes the homogeneous equation

χ̃ ′′ −
(

1 + G̃2

ζ̃ 2

)
χ̃ = 0, (7.40)

where ‘′’ refers to the derivative with respect to ζ̃ = x/ρs. This equation belongs to the
family of modified Bessel equations (see Abramowitz & Stegun 1964, § 9.6.1). In fact, it
can be transformed into the standard modified Bessel equation via the change of variable
χζ̃ = ζ̃ 1/2u(ζ̃ ) that leads to

ζ̃ 2u′′ + ζ̃u′ −
(
ζ̃ 2 + ν2

)
u = 0, (7.41)

where ν is given by the last of (7.22). The only solution of the previous equation that is
bounded when ζ̃ → ∞ (or equivalently, when x → ∞) is the modified Bessel function of
the second kind, that is, u(ζ̃ ) = Kν(ζ̃ ). Therefore, (7.40) has the solution

χ̃mid(ζ̃ ) = ζ̃ 1/2Kν(ζ̃ ), (7.42)

the label ‘mid’ standing for the intermediate region domain δ1 � x ≤ δ2 where it is defined.
Its asymptotic behaviour as ζ̃ → 0 is given by

χ̃
appr
mid ≡ lim

ζ̃�1
χ̃out(ζ̃ ) = lim

ζ̃�1
ζ̃ 1/2Kν(ζ̃ ) = lim

ζ̃�1
ζ̃ 1/2

(π

2

) I−ν(ζ̃ )− Iν(ζ̃ )
sin(πν)

∼ 2ν

Γ (1 − ν)
ζ̃ α − 2−ν

Γ (1 + ν)
ζ̃ β, (7.43)

where we used the relation in § 9.6.2 of Abramowitz & Stegun (1964). Here, α and β are
once more given by (7.22), and Iν(ζ̃ ) is the modified Bessel function of the first kind,

Iν(ζ̃ ) ≡
(
ζ̃

2

)ν ∞∑
m=0

(
ζ̃ 2

4

)m

m!Γ (ν + m + 1)
. (7.44)
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7.4.4. Matching of solutions: scaling laws and eigenfunctions
The scaling laws for both the growth rate γ and the width of the innermost layer, δ1,

are obtained from matching the solutions in the innermost and intermediate regions of the
domain. This formally closes the eigenvalue problem.

To accomplish this, we start by estimating the second and the fourth derivative of
χ

appr
in (ζ ) at ζ = 0. Then we will apply the constraints at the origin written in § 7.4.2 and

the condition limζ→∞ χ(ζ ) = limζ̃→0 χ̃ (ζ̃ ), that is, limζ→∞ χ
appr
in (ζ ) = limζ̃→0 χ̃

appr
mid (ζ̃ ), so

as to obtain the equations that will allow us to find A, B and C, and, finally, the scaling
laws.

First of all, from the matching of (7.43) with (7.36), we obtain

A = 2ν

Γ (1 − ν)

(
δ1

ρs

)α
, B = − 2−ν

Γ (1 + ν)

(
δ1

ρs

)β
. (7.45)

Taking the second and the fourth derivatives of χ appr
in (we here omit superscript ‘appr’ to

simplify the notation), one finds

χin(0) = A + B + C, (7.46)

χ ′′
in(0) = Aα + Bβ, (7.47)

χ iv
in (0) = 6Aα

(α
2

− 1
)

+ 6Bβ
(
β

2
− 1

)
. (7.48)

Then, using the constraint on the second derivative given by (7.37) and (7.47),

C = −A

(
1 + α

(
d̄e

δ1

)2)
− B

(
1 + β

(
d̄e

δ1

)2)
. (7.49)

The constraints on the fourth derivative in (7.39) and on (7.48) instead lead to

Aα

(
α −

(
δ1

d̄e

)2
)

+ Bβ

(
β −

(
δ1

d̄e

)2
)

= 0. (7.50)

Combining the previous equation with (7.45), one obtains

− A
B

=
β
(
β − (

δ1/d̄e
)2
)

α
(
α − (

δ1/d̄e
)2
) = 22ν

(
δ1

ρs

)−2ν
Γ (1 + ν)

Γ (1 − ν)
, (7.51)

where we used α − β = −2ν. For small values of (δ1/d̄e), (7.22) gives ν ≈ 1/2,
α ≈ −(δ1/d̄e)

2 and β ≈ 1; therefore, (7.51) becomes

1
2

(
d̄e

δ1

)4 (
1 −

(
δ1

d̄e

)2
)

= 2
Γ

(
3
2

)
Γ

(
1
2

) (
ρs

δ1

)
. (7.52)

Using Γ (3/2) = Γ (1/2)/2 = √
π/2 and (δ1/d̄e)

2 � 1 (to be verified a posteriori), the
equation above implies

δ1 ∼ ρ−1/3
s d̄4/3

e (7.53)
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whence, using the definition in (7.11), one obtains

γ ∼ kρ2/3
s d̄4/3

e . (7.54)

Specialising (7.53) and (7.54) to the purely resistive regime, d̄e = (S−1/γ )1/2, one recovers
the result of Pegoraro & Schep (1986) for the growth rate (cf. (33) therein and also (20) in
Pegoraro et al. 1989) and of Zocco & Schekochihin (2011) for δ1 (cf. δη in (B100), therein),

γ ∼ k6/7ρ4/7
s S−1/7, δ1 ∼ k−4/7ρ−5/7

s S−4/7. (7.55)

Specialising the same equations to the purely collisionless regime, d̄e = de, one recovers
instead the result of Porcelli (1991) for both for the growth rate ((8), therein) and for
the innermost layer width (quantity σ , defined therein above (7); see also Bhattacharjee,
Germaschewski & Ng 2005),

γ ∼ kρ2/3
s d1/3

e , δ1 ∼ ρ−1/3
s d4/3

e . (7.56)

In both the purely resistive and the collisionless case, the conditions δ2
1 � d̄2

e and δ1 �
δ2 ∼ ρs we had previously heuristically assumed, are a posteriori verified.

Finally, by looking at the definition of χ , it is obvious that ψ1 ≈ χ
appr
in when x � δ1,

since xψ ′
1 ∼ xψ1/δ1 � 1. Therefore, substituting the values of ν, α, β, G and δ1 in (7.35),

one obtains for the inner layer

lim
x�δ1

ψ1 � 21/2

Γ (1/2)

(
δ1

ρs

)−δ2
1/d̄

2
s
(

1 + x2

δ2
1

)−δ2
1/d̄

2
s

− 2−1/2

Γ (3/2)

(
δ1

ρs

)(
1 + x2

δ2
1

)1/2

+
(
δ1

ρs

)(
1 + d̄2

s

δ2
1

)
. (7.57)

Integrating (5.12) and using (7.35), one finds for x � δ1,

lim
x�δ1

ϕ1 �
∞∑

m=0

[
21/2

Γ (1/2)

(
δ1

ρs

)−δ2
1/d̄

2
s
(−δ2

1/d̄
2
s

m

)
b

− 2−1/2

Γ (3/2)

(
δ1

ρs

)(−1/2
m

)
b

](
x
δ1

)2 m+1

+
(
δ1

ρs

)(
1 + d̄2

s

δ2
1

)(
x
δ1

)
, (7.58)

where (
r
m

)
b

= r(r − 1) · · · (r − m + 1)
m!

= (r)m
m!

(7.59)

is the usual binomial coefficient, generalised for real values of the argument r.
Notice that for x ≤ δ1, the dominant term in (7.58) is the one with m = 0. Therefore,

to the lowest order, ϕ can be approximated as ϕ ∼ x. Figure 8 shows the spatial profile
of ψ1, χ appr

in and xψ ′
1 in blue, black and orange colours, respectively, in a sub-interval

of the integration domain. These profiles have been computed numerically by solving
the eigenvalue problem for ψ1 and ϕ1 with the solver of Betar et al. (2020) and using
the definitions in (7.36). We can this way numerically verify that χ aprr

in ≈ ψ1 within the
innermost layer with |x| � δ1, in agreement with the previous discussion.

The eigenfunctions (7.57) and (7.58) agree with the behaviour of the perturbed
current density profile provided by Pegoraro & Schep (1986) in the inner layer for the
warm-resistive regime (d̄e = (S−1/γ )1/2), which had been already numerically verified by
Betar et al. (2020).
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FIGURE 8. Profiles of ψ1 (blue), χappr
in of (7.46) (black-dashed) and xψ ′

1 (orange) in the
reconnection layer around the neutral line: these profiles are obtained by numerical integration
of the complete eigenvalue problem and should be compared to the approximated analytical
solutions ((7.57) and (7.58)). The width of reconnection layer, evaluated as it will be specified in
§ 7, is δ = δ1 � 10−6. The physical parameters of the numerical integration performed with the
solver of Betar et al. (2020) in the large-Δ′ limit are shown in the figure.

7.5. Solution of the linear equations for ρ2
s /d

2
e � 1: small-Δ′ limit

In the small-Δ′ limit, we use again the constant-ψ approximation, as we already did in
the integration of the cold-electron limit in § 6.2. Figure 9 shows the appropriateness of
this assumption also in the warm-electron regime: it displays the profile of ψ1 numerically
computed with the eigenvalue solver of Betar et al. (2020) in the collisionless regime
for de = 2 × 10−2, ρs = 5 × 10−3 and for a value of k = 1.7, which corresponds to
Δ′(k) = 3.3 and δ1 � 2.4 × 10−6 (evaluated according to the definition in (8.3) – see
later).

Therefore, we write ψ1 = c0 in the whole non-ideal region and, as discussed in § 5.5,
this allows us to more conveniently perform the integration by looking at the equations
for ψ1 and ϕ1 rather than the auxiliary equation. In this way, (7.1) can be combined in the
form (

1 + ρ2
s

d̄2
e

ζ̃ 2

G̃2

)
ϕ̃′′

1 = ρ2
s

d̄2
e

ζ̃ 2

G̃2
ϕ̃1 + c0

ρ2
s

d̄2
e

ζ̃ . (7.60)

The results of § 8.3 in the small-Δ′ cold-electron limit are recovered by neglecting the
ρ2

s ζ̃
2ϕ̃′′

1/(d̄
2
e G̃2) contribution in the left-hand side term of (7.60). Its presence here makes

an intermediate matching region also appear in this wavelength limit.
This can be seen in figure 10, where the results of a numerical integration performed

in the small-Δ′ limit of the warm collisionless regime (d̄e = de) with the solver of Betar
et al. (2020) are shown. The blue curve corresponds to the ρ2

s ζ̃
2ϕ̃′′

1/(d̄
2
e G̃2) term in (7.60).

Its strong variation close to the neutral line is concentrated in a narrow region much
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FIGURE 9. Spatial profile ofψ1, numerically computed with the eigenvalue solver of Betar et al.
(2020) in the collisionless regime for a choice of the parameters de = 2 × 10−2, ρs = 5 × 10−3,
and for a value of k = 1.7. These values correspond toΔ′(k) = 3.3 and to δ = δ1 � 2.4 × 10−6,
evaluated according to the definition in (8.3) introduced next. The smaller box inserted at the top
right-hand corner of the figure shows a zoom of the solution inside the innermost layer of width
∼ δ = δ1, in which the appropriateness of the constant-ψ1 condition is evidenced.

smaller than δ2 = ρs, which is of the order of δ1 (evaluated from the numerically computed
eigenfunction, as it will be discussed in § 8). The green curve corresponds instead to the ϕ̃′′

1
term in (7.60), i.e. to the first left-hand side contribution between parentheses, whereas the
orange curve corresponds to the first term on the right-hand side of (7.60), ρ2

s ζ̃
2ϕ̃1/(d̄2

e G̃2).
This term can be neglected with respect to the one corresponding to the blue curve. For
completeness, the contribution of the last right-hand side term of (7.60), c0ρ

2
s ζ̃

2/d̄2
e , is

shown as the black, dashed line. From the comparison of these contributions, one verifies
the appropriateness of the hypotheses justifying (7.4).

Thus, an intermediate region, corresponding to the interval δ1 < |x| � δ2 of § 7.2.1, can
be recognised: here, (7.4) hold, which we can combine in the form

ζ̃ ϕ̃′′
1 = ζ̃ ϕ̃1 + c0Ḡ2. (7.61)

However, as discussed in § 5.5, it is not necessary here to first perform the integration of
(7.61), since the constant-ψ condition holds in this case also in the innermost region.

7.5.1. Matching and scalings in the non-ideal region x � 1
Combining (7.8) is in practice equivalent – except for the chosen normalisation – to

neglecting the ∼ ζ̃ 2ϕ̃1/ term in (7.60). Using the latter, where we recall lengths are
normalised to ρs, we write

ϕ̃′′
1 = c0

ρ2
s

d̄2
e

ζ̃

1 + ρ2
s ζ̃

2/(d̄2
e G̃2)

. (7.62)
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FIGURE 10. Comparison of the spatial profiles of the terms ρ2
s /(d̄

2
e G̃2)× ζ̃ 2ϕ̃′′

1 (blue curve),
of ρ2

s /(d̄
2
e G̃2)× ζ̃ 2ϕ̃1 (orange curve) and of ϕ̃1 (green curve) of (7.60), in a region of the

domain with width |x| < δ2 = ρs. The parameters of the numerical integration performed with
the eigen-solver of Betar et al. (2020) in the small-Δ′ limit are shown at the top of the figure.
The value of δ = δ1 in the bottom right corner has been evaluated according to the definition in
(8.3).

The equivalent of (3.10), obtained after integration of the second of (7.1) (cf. it also with
(6.16)) reads ∫ +Z̃

−Z̃
ψ̃ ′′

1 dζ̃ =
∫ +Z̃

−Z̃

ϕ̃′′
1

ζ̃
dζ̃ , (7.63)

where Z̃ = X/ρs � 1 is a matching point in the interval δ1 � X � δ2 in units of L0 = a.
Use of (3.9) allows one to establish the matching conditions with the outer solution by
making explicit the dependence on Δ′: writing therefore

∫ +Z̃
−Z̃ ψ̃

′′
1 = c0Δ

′ and substituting
(7.62) in (7.63), one obtains

c0Δ
′ =

∫ +Z̃

−Z̃

ϕ̃′′
1

ζ̃
dζ̃ = c0

ρ2
s

d̄2
e

∫ +Z̃′

−Z̃′

dζ̃

1 + �2ζ̃ 2
= c0

ρ2
s

�d̄2
e

arctan(�ζ̃ )
∣∣∣+Z̃

−Z̃
, (7.64)

where � ≡ ρs/(d̄eG̃). Taking the asymptotic limit Z̃ → ∞ and using arctan(�̄ζ̃ )|+∞
−∞ = π,

(6.16) reads

c0Δ
′ = c0π

ρ2
s G̃
d̄e

=⇒ γ = √
πJ0kρsd̄eΔ

′ =⇒ δ1 ∼ Δ′d̄2
e , (7.65)

where in the last passage, we have used the definition in (7.11) of δ1 = γ d̄e/(kρsJ0). We
can thus explicate the scalings above in the purely collisionless and purely resistive limits.
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In the former, taking d̄e = de, one obtains

γ ∼ J0kΔ′ρsde, δ1 ∼ Δ′d2
e , (7.66)

that is, the result of Porcelli (1991) (cf. the discussion between (8) and (9), therein). Taking
instead d̄e = S−1/2γ −1/2, one obtains

γ ∼ J2/3
0 (kΔ′)2/3ρ2/3

s S−1/3, δ1 ∼ J−1/3
0 k−2/3(Δ′)1/3ρ−2/3

s S−2/3, (7.67)

that is, the result first obtained by Pegoraro & Schep (1986) for the growth rate (cf.
(39), therein) and by Zocco & Schekochihin (2011) for δ1 (which maps into δη of (B.96),
therein).

7.5.2. Approximated eigenmodes in the non-ideal region x � 1
Approximated expressions for the eigenmodes can be obtained by integrating (7.62)

twice, and by calculating the second of these integrals by parts: one finds the following
approximate formula for the eigenfunction ϕ̃1(x/δ2) in a spatial interval x � δ2 � ρs that
covers the whole non-ideal region:

ϕ1(x) � c0δ
3
1

2d̄2
e

{(
x
δ1

)
ln

(
1 +

(
x
δ1

)2
)

+ 2 arctan
(

x
δ1

)
− 2

(
x
δ1

)}
. (7.68)

Substituting (7.68) into (7.62), using the second part of (7.8) and integrating twice by parts,
gives an approximated expression for ψ1:

ψ1(x) � c0 + c0δ
2
1

d̄2
e

{(
x
δ1

)
arctan

(
x
δ1

)
− 1

2
ln

(
1 +

(
x
δ1

)2
)}

. (7.69)

From the expressions above, it is straightforward to find closed forms for both the magnetic
field components and the current density perturbations, using their definitions Bx(x) ≡
kψ1, By(x) ≡ −∂ψ1/∂x, and Jz(x) ≡ −δ2ψ1/∂x2 and (7.69). These lead to

Bx(x) = −k sin(ky)ψ1(x), By(x) = −kδ1c0

d̄2
e

arctan
(

x
δ1

)
, (7.70)

Jz(x) = − c0

d̄2
e

1

1 +
(

x
δ1

)2 . (7.71)

In the appropriate limits, this equation corresponds to (74) of Pegoraro & Schep (1986)
and to (31) of Betar et al. (2020).

8. Operational definition of the reconnecting layer width, δ, and other microscopic
scales related to the eigenmodes

We have seen (§§ 6 and 7) that the boundary layer calculations allow one to determine
the asymptotic scaling of the width of the layers, where approximate solutions of
the eigenfunctions can be analytically evaluated. These characteristic widths appear as
normalisation scales δ1 and δ2, which, although sometimes can be seen as ‘natural’,
being suggested by the comparison of some terms in the equations (as in the cases we
previously considered), are a priori arbitrary and are essentially determined by the algebra.
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Recognising some of these scales as indicative of the reconnecting layer width requires
instead further insight (and hypothesis) of physical nature.

This is the subject we discuss in this section, where we are going to provide an
operational definition allowing the measurement of the reconnecting layer width, δ, which
is in agreement with previous theoretical assumptions (i.e. theoretical definitions based on
some physical insight that have been used in the previous literature), and which can be
useful for both numerical and experimental quantitative estimates. The appropriateness of
this definition is then shown by direct comparison with boundary layer calculations of §§ 6
and 7 and by numerical verification of its asymptotic scaling.

By analysing some local properties of the derivatives of the eigenfunctions close to or
on the neutral line, we also identify the asymptotic scalings of some microscopic scales,
which are associated with the inverse of these spatial gradients. The relevance of these
scale lengths will be shown again by comparison between the results of the boundary
layer calculations and the numerical results.

To this purpose, we use the adaptive multi-precision solver discussed by Betar et al.
(2020), which had been specifically developed to address the generalised eigenvalue
problem in a slab periodic box of dimension [−Lx/2,Lx/2], for k assigned. This solver
uses a compact finite difference scheme of tunable precision for the derivatives on a
non-uniform grid along the x-direction. The use of a non-uniform grid and of tunable
precision in the calculation allow us to resolve the inner layer even for microscopic,
realistic values of the non-ideal parameters: the grid spacing in the inner layer can
be so chosen to be much smaller than in the outer layer to save computing time
without loosing accuracy. In that work, we verified the numerical scalings predicted
by boundary layer calculations in different reconnection regimes. Although the scalings
in the small-Δ′ regime are insensitive of the magnetic equilibrium profile, this is not
the case for the large-Δ′ limit, as it had been already noted in a series of works by
Cross & van Hoven (1971), Van Hoven & Cross (1971), Van Hoven & Cross (1973b)
and Van Hoven & Cross (1973a): in both (Betar et al. 2020) and in the present
article, the numerical results refer to the equilibrium profile (4.3) in a numerical box
with Lx = 4π.

8.1. Notions of reconnecting layer and estimates of its width in previous literature
The reconnecting layer width δ, meant as the extension of the interval around the neutral
line, where the reconnection process takes place and is mostly localised, is not per se
unequivocally defined via boundary layer calculations. Its identification requires further
ansatz based on physical assumptions. Because of this, in most of the early reference
papers about boundary layer calculations performed in the warm fluid–electron regime,
the notion of ‘reconnecting layer width’ has not been explicitly used (cf. Pegoraro &
Schep 1986; Pegoraro et al. 1989; Porcelli 1991). In this context, an early notion of ‘layer
width’, identifiable as δ, has just been used in some kinetic models for tearing modes (cf.
Drake & Lee 1977; Mahajan et al. 1978, 1979; Cowley et al. 1986). In particular, in some
of these works (Drake & Lee 1977; Cowley et al. 1986), it has been referenced as the
‘electron layer width’, because of its identification with the microscopic region dominated
by electron dynamics, in contraposition to the broader ‘ion layer width’, where non-ideal
effects are important, but at scales larger than those of electrons. In this sense, δ has been
made to actually correspond to the innermost layer width, which we have named δ1 (the
‘ion layer’ being practically correspondent to δ2). This identification, which also agrees
with the assumption made in cold-electron regimes (practically since the first work of
Furth et al. (1963) – cf. also Ottaviani & Porcelli 1995) where a single non-ideal layer can
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be identified, has been made more explicit in later works (Bhattacharjee et al. 2005; Zocco
& Schekochihin 2011; Connor et al. 2012b).

The physical argument which is at the basis of the identification δ → δ1, and which has
been more or less explicitly stated in different works on tearing mode analysis, grounds
on the idea that it is the innermost subdomain which contains the essential non-ideal
physics allowing the reconnection process. For example, for ρs > d̄e, the non-ideal region
extending up to x/ρs ∼ 1 is not of interest in this sense, coherently with the fact that ρs does
not allow, per se, the onset of tearing instabilities: it is only in the innermost layer of width
δ1 that both electron inertia (de) or resistivity (S−1) and ion-sound FLR effects (ρs) are
important. Because of this, δ1 is the natural candidate to be identified as the characteristic
microscopic region where magnetic lines dragged there by the flow can intersect, by thus
violating the frozen-in condition. And since this cannot occur as long as magnetic lines
are frozen in the electron flow (cf. comment on (2.7)), this layer is arguably dominated by
electron physics, whence the appropriateness of naming it the ‘electron layer.’

Alternative, yet similar, expressions have been frequently used in the literature to
characterise the layer where the electron frozen-in condition is violated. In this regard,
it is worth mentioning the ‘dissipation region (or layer)’, named this way with reference
to the dissipation of magnetic flux in resistive reconnection (see, e.g. among many others,
Parker 1973; Mandt, Denton & Drake 1994; Shay et al. 1998), and the probably even
more common expression, ‘(electron) diffusion region’. Introduced with initial reference
to the resistive magnetic diffusion in Sweet–Parker-like steady reconnection processes –
see, e.g. Sonnerup (1973) and Vasyliunas (1975) – the latter expression is currently used to
identify the reconnecting layer in any reconnection processes, and thus also in all regimes
of tearing-type modes (see, e.g. Drake & Kleva 1991; Hesse, Forbes & Birn 1999; Le et al.
2013) and several other works, especially connected to astrophysical plasma research). All
these notions fit with the idea of identifying the extension of the reconnecting layer with
that of the reconnecting current sheet. In practically all works on magnetic reconnection
explicitly touching on the subject, the scale length δ is more or less explicitly assimilated
also to the characteristic width of the ‘(reconnecting) current layer (or sheet)’.

However, in spite of the vast scientific literature, spanning almost seven decades, which
addresses the subject of characterising the reconnecting layer in different reconnection
scenarios and regimes, no precise and generally acquired operational definition seems
to exist for it. Identifying the reconnecting region and measuring the spatial profile of
physical quantities inside of it is a crucial element for the modelling of reconnection
processes observed in Nature or in experiments (cf. e.g. Bratenahl & Yeates 1970; Yamada
et al. 1997; Vaivads et al. 2004; Yamada et al. 2010). Even identifying its position and
extension from measurements may be a non-trivial task, and indeed specific proxies are
sought for this purpose in different reconnection regimes (e.g. the quadrupolar pattern
of the magnetic field for Hall-reconnection, etc.). Also, when reconnection is known or
is expected to occur because of tearing-type modes, for which quite accurate analytical
estimates are available, quantitative information on δ obtained from measurements can
give insight on important features of the reconnection process (we will dedicate §§ 9
and 10 of this work to this point and to the heuristic interpretation of the boundary
layer calculation). Moreover, once compared with theoretical estimates, this quantitative
information can give indication on the dominant non-ideal effects at play. We recall
indeed that the scale δ1 obtained from boundary layer calculations is not ‘trivial’ (cf.
§§ 9 and 10): for example, in the large-Δ′ limit of the ρs > d̄e regime, we have seen the
scale δ1 to be asymptotically smaller than both d̄e and ρs. At the same time, despite this
information being available since the first boundary layer calculations performed in the
Fourier space in the warm electron regime, its interpretation in physical terms has not
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been univocal: while practically all early works agreed on recognising the non-ideal ion
region to have extension of the order of ρs, the width of the current layer has been instead
differently identified, on the basis of slightly different physical arguments, often depending
on further hypotheses or heuristic estimates. For example, the current width in the linear,
large-Δ′, warm-collisionless regime has been also estimated to be larger than de (see, e.g.
Drake & Kleva 1991; Ottaviani & Porcelli 1995), on the basis of the heuristic arguments
developed by Drake & Lee (1977), Cowley et al. (1986) and then re-discussed by Zocco
& Schekochihin (2011), or of the order of ∼ de (see, e.g. Grasso et al. 1999), based on
the simple argument that de is the characteristic scale related to the reconnection process
in collisionless regimes (see, e.g. Vasyliunas 1975). The distinction between current layer
width and reconnecting layer width, which was done by Zocco & Schekochihin (2011), is
a subtle point to which we will return later, at the end of § 10.5.

From all these argument follows the interest in seeking a priori estimates of δ, which
can be of general acceptance and do not ground on boundary layer calculations but can be
directly implemented by starting from experimental or numerical data.

In the context of nonlinear numerical simulations of tearing mode reconnection,
different examples of the estimate of δ have been proposed in the literature. Sometimes,
δ has been identified in terms of the global profile of the eigenmode superposed on the
equilibrium function. For example, Ali, Li & Kishimoto (2014) have measured the width
of the current sheet as the distance between the local minima of Jz,1(x, y0)+ Jz,0(x) with
respect to the coordinate x, and for y0 that corresponds to the ordinate of the X-point. The
current layer width has also been identified (Tenerani et al. 2015) by evaluating the distance
between the local minima of what here we would name Bx,1(x, y0) ∼ ψ1(x) cos(k( y − y0)).
It can be noted that the estimate of Tenerani et al. (2015) relates to the numerical evaluation
we later give of the inverse scale length D′ (cf. (10.10) and figure 14) rather than of δ. In
the context of the aforementioned work, this is however coherent since in the simulations
of Tenerani et al. (2015), the instability of a large aspect ratio current sheet is studied,
where a fastest growing mode exists (as evidenced already by Furth et al. 1963) for which
Δ′ ∼ 1/δ (cf. Loureiro et al. 2007; Bhattacharjee et al. 2009; Del Sarto et al. 2016; Betar
et al. 2020). In the nonlinear simulations of Papini et al. (2019b), instead, the reference
value for δ has been taken by evaluating the full width (with respect to, let us say, the x
coordinate) at half-maximum of the total current Jz minus its average background value,
that is, δ has been evaluated as the width at half-height of a local estimation of Jz,1(x).

8.2. Operational definition of the reconnecting layer width, δ, and its scalings
Here, we propose a quantitative, operational definition for the measurement of δ, which
differs with respect to those previously suggested in the way we estimate the current layer
width, at least for tearing-type reconnection. We start indeed by noting that, in agreement
with the well-known identification ‘reconnecting layer ↔ current sheet’, this layer can be
identified as the region around the neutral line in which the current density related to the
perturbation is concentrated. In our notation, this current density is Jz,1 = −∇2ψ1. Inside
of this region, a velocity field is also concentrated, corresponding to an outflow parallel
to the neutral line outwardly directed from the X-point, which is a hyperbolic point of the
flow (see sketch in figure 11). In the notation used here, such a velocity field is vy,1 = −ϕ′

1.
The profiles of Jz,1(x) and of vy,1(x) close to the neutral line (cf. figure 12) are

qualitatively analogous, so that both their respective characteristic ‘thicknesses’ could
be taken as candidates for δ. Therefore, by referring to the eigenfunctions only, we here
consider the distance from the neutral line of the local maxima (or minima) of the gradient
of the current density (J′

z) and to the distance from the neutral line of the local maxima
(or minima) of the vorticity (ϕ′′). Since these two distances can in principle differ, we
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FIGURE 11. Sketch of the hyperbolic pattern of the velocity field associated with linear
perturbations around the X-point. The yellow stripe represents the reconnecting layer in the
vicinity of the neutral line, where a current sheet Jz,1 of width ∼ δ is concentrated (the width
of the magnetic island, instead, may well trespass the width of this region, during its nonlinear
evolution – cf. caption of figure 2). Note that the estimate vx,1 ∼ γ δ, with vx,1 = −ikϕ1, holds
inside of this region, whereas the vy,1 = ϕ′

1 component exhibits a change of sign on the neutral
line and therefore displays a strong gradient across the Δx � δ interval.

(a) (b)

FIGURE 12. Examples of evaluation of the half-width of the current layer as the distance of the
local maxima (minima) of ψ ′′′

1 = −J′
z,1 (a) and of ϕ′′

1 (b) from the neutral line (the parameters
of the numerical calculation are indicated at the top of the panels).

respectively name them δψ and δϕ:

δψ : J′′
z,1

∣∣
x=δψ = ψ iv

1

∣∣
x=δψ = 0, δϕ : v′′

y,1

∣∣
x=δφ = ϕ′′′

1

∣∣
x=δϕ = 0. (8.1)

As shown in figure 12, δψ and δϕ can be easily calculated once the profile of the
corresponding eigenfunction has been computed.

A numerical scan performed in the whole parameter range of the regimes considered by
Betar et al. (2020) indicates that δψ and δϕ approximatively display the same asymptotic
scaling, as shown in figure 13, as an example, for the warm-collisionless reconnection
regime. We can so write δψ ∼ δϕ , even if a proportionality factor not much different
from unity is present (for example, we measured δϕ � 2δψ in warm-collisionless RMHD
with ρs/de � 10), which seems to display a weak dependence on the non-ideal parameters
involved, at least in the parameter range we have numerically investigated.
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(a) (b)

(c) (d )

FIGURE 13. Scalings of δϕ (a,c) and δψ (b,d) calculated using the definitions given by (8.1). The
scalings, shown on the different panels, prove that these two quantities follow the same scaling
laws.

Based on the coherence with the numerical results that show the correspondence of
the scalings of δ1 with those of δψ in all the reconnection regimes considered (also when
electron–electron viscosity is included – see Betar et al. 2020),

we identify δ as twice the distance from the neutral line of theinflection point of Jz. (8.2)

Accordingly, we propose to operationally define the layer width as

δ ≡ δψ ∼ δ1. (8.3)

The symbols δSD and δLD can be therefore used to indicate δ ≡ δψ ∼ δ1 in the small- and
large-Δ′ regimes.

8.3. Further micro-scales related to the gradients of the eigenmodes on the neutral line
A further ensemble of characteristic spatial scales of the system is provided by the
normalised derivatives of the eigenfunctions evaluated on the neutral line. These can be
shown to be related to combinations of powers of the non-ideal parameters and of δ1.
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We define

δ
(N)
ψ ≡

∣∣∣∣∣ψ(N)
1

ψ1

∣∣∣∣∣
−(1/N)

x=0

, N = 2, 4, 6, . . . , (8.4)

where N is the order of the derivative with respect to the shear variable x.
These length scales can be related to the local expansion of the eigenfunctions in a

neighbourhood of x = 0. Using the fact that both ψ1 and vy,1(x) = ϕ′
1(x) are even and are

continuous, at least up to the third derivative with respect to x, we can write

ψ1(x) � c0

⎧⎨⎩1 ± 1
2

(
x

δ
(2)
ψ

)2

± 1
4!

(
x

δ
(4)
ψ

)4

± . . .

⎫⎬⎭ , (8.5)

vy(x) = ϕ′
1(x) � q0

⎧⎨⎩1 ± 1
2

(
x

δ
(2)
vy

)2

± 1
4!

(
x

δ
(4)
vy

)4

± . . .

⎫⎬⎭ . (8.6)

Note that the coefficients of (8.6) are related to those of (8.5). Using indeed
dϕ1(ζ )/dζ = ζdψ1(ζ )/dζ − ψ1(ζ )− χ∞ (cf. (5.11) and (5.12)) for ζ = x/δ1, whence
dx/dζ = δ1, and taking into account the normalisation of ϕ1(ζ ), i.e. ϕ1(ζ ) = Aϕ1(x)
with A = −iγ /(kδ1J0) in the cold-electron regime and A = −iρs/d̄e in the warm-electron
regime, one obtains

dϕ1

dx
= x

Aδ1

dψ1

dx
− ψ1

Aδ1
− χ∞

Aδ1
. (8.7)

Direct substitution of ((8.5) and (8.6)) into (8.7) and comparison of equal powers of
x yields

q0 ∼ − c0

Aδ1
− χ∞

Aδ1
, δ(N)vy

∼
(

1 + χ∞
c0

)1/N

(N − 1)1/N δ(N)ψ . (8.8)

Using then (5.14) and (5.17), we can write

q0 ∼ O(Δ′δ1)

Aδ1
for Δ′δ1 � 1, q0 ∼ − c0

Aδ1
for Δ′δ1 � 1. (8.9)

Notice that the first of (8.9) is of scarce utility here, since not accurate enough: the estimate
(5.14), which identifies χ∞ ∼ −c0 by neglecting possible corrections roughly estimable as
being of the order of ∼ O(Δ′δ1), cannot be indeed used for the present calculations, as
it would always yield vy(0) = 0. This does not generally agree with the analytical results
of the boundary layer calculations in the small-Δ′ limit (cf. e.g. figure 14c obtained via
numerical integration of the eigenvalue problem). Therefore, when needed, depending on
the reconnecting regime and wavelength limit considered next, we will rely on a more
accurate estimate obtained from the boundary layer solution found in the case of interest.

The scalings of some of the length scales δ(N)ψ are easily found to be related to those of
δ1 (and hence of δ ∼ δψ ). This can be proven analytically. A possibility, quite generally
applicable, consists in combining ((2.1) and (2.2)) by using ϕ0(0) = 0 with the local
expansion

ψ0(x) � C0 + C2

2
x2 + C4

4!
x4 + O(x4), (8.10)

and in differentiating the eigenfunctions the number of times which is needed. Note the
correspondence C2 = J0 in the notation used in previous sections. The sought scalings
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can be obtained by balancing the dominant terms of the equations while taking the limit
x → 0, and by using the scalings of γ and δ1 obtained from boundary layer calculations.
An alternative procedure consists in the direct evaluation of these derivatives from the
approximated eigenmode solutions close to the neutral line, once they are obtained by
integration of the boundary layer problem.

Here, below (§ 8.3.1), we use the second procedure to compute δ(2)ψ and the former to
obtain δ(4)ψ .

8.3.1. Asymptotic scalings of δ(2)ψ and of δ(4)ψ
The scalings that can be obtained for δ(2)ψ and δ

(4)
ψ in the different regimes are

summarised in table 2.
The estimate of δ(2)ψ is of interest, since it provides a direct estimate of the peak amplitude

of the current density on the neutral line during the linear stage of the tearing mode
evolution. According to the values in table 2, Jz|x=0 � c0/d̄e. Also, the scale of δ(2)vy

is
of potential interest, since it gives the characteristic curvature with respect to x of the
velocity profile vy(x) on the neutral line. While, according to (8.8) and (8.9), δ(2)vy

∼ d̄e

in the large-Δ′ limit, in the small-Δ′ limit, its value is typically asymptotically smaller,
since it depends on the estimate of (1 + χ∞/c0) � 1 (cf. e.g. (8.21) for the cold-electron
limit). These estimates are likely to be relevant for the study of the stability of the
Bickley jet (Bickley 1937) related to the vy(x) velocity component, which, especially in
the cold collisionless, large-Δ′ regimes, nonlinearly develops along the neutral line and
for d2

e � ρ2
s , leads to a turbulent regime via the onset of secondary Kelvin–Helmholtz

instabilities (Del Sarto et al. 2003, 2006). A similar feature had been observed also in
early nonlinear simulations of the collisionless internal-kink mode in cylindrical geometry
(Biskamp & Sato 1997) and had motivated dedicated studies of the stability of the Bickley
jet in the presence of a background magnetic field aligned to it (Biskamp, Schwarz &
Zeiler, 1998). The destabilisation via Kelvin–Helmholtz of a Bickley jet developing during
the nonlinear stage of the collisionless reconnection process has been confirmed also in
nonlinear simulations of tearing modes in three-dimensional geometry (Grasso, Borgogno
& Pegoraro 2007; Grasso et al. 2009, 2020).

The estimate of δ(4)ψ is also of interest, since it intervenes in the modelling of the
nonlinear current sheet evolution, which in the purely collisionless regime has been shown
to shrink exponentially in time (Ottaviani & Porcelli 1993, 1995).

Below, we separately evaluate δ(2)ψ and δ(4)ψ so to prove the scalings reported in the table.

8.3.2. Asymptotic scalings of δ(2)ψ
The scaling of δ(2)ψ follows from (2.1), which, in the purely collisionless limit, both ‘cold’

and ‘warm’, implies the conservation of the electron canonical momentum on the neutral
line because of (8.10): ∂t(ψ − d2

e∇2ψ)|x=0 = 0. The result can be formally extended to the
resistive regime by relying again on the generalised electron skin depth d̄e. More precisely,
regardless of the value of ρs, we obtain from (2.1)

δ
(2)
ψ = d̄e√

1 + k2d̄2
e

� d̄e, (8.11)

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


Microscopic scales of collisionless tearing modes 65

L
en

gt
h

sc
al

e
C

ol
d

re
gi

m
es

W
ar

m
re

gi
m

es

co
lli

si
on

le
ss

re
si

st
iv

e
co

lli
si

on
le

ss
re

si
st

iv
e

Δ
′ δ

1
�

1
Δ

′ δ
1

�
1

Δ
′ δ

1
�

1
Δ

′ δ
1

�
1

Δ
′ δ

1
�

1
Δ

′ δ
1

�
1

Δ
′ δ

1
�

1
Δ

′ δ
1

�
1

δ
(2
)

ψ
d e

(S
γ
)−

1/
2

d e
(S
γ
)−

1/
2

δ
(4
)

ψ

√ d e
δ S

D
√ d e

δ L
D

δ
−1
/
2

SD

(S
γ
)1
/
4

δ
−1
/
2

LD
(S
γ
)1
/
4

√ d e
δ S

D
√ d e

δ L
D

δ
−1
/
2

SD

(S
γ
)1
/
4

δ
−1
/
2

LD
(S
γ
)1
/
4

T
A

B
L

E
2.

Sc
al

in
g

of
th

e
sp

at
ia

ls
ca

le
sa

ss
oc

ia
te

d
w

ith
th

e
se

co
nd

-a
nd

fo
ur

th
-o

rd
er

de
ri

va
tiv

e
of
ψ

1(
x)

,e
va

lu
at

ed
on

th
e

ne
ut

ra
ll

in
e

x
=

0
in

di
ff

er
en

t
re

co
nn

ec
tio

n
re

gi
m

es
an

d
w

av
el

en
gt

h
lim

its
.I

n
ea

ch
re

gi
m

e,
δ S

D
an

d
δ L

D
ar

e
th

os
e

of
ta

bl
e

1
an

d
co

rr
es

po
nd

to
th

e
di

ff
er

en
tv

al
ue

s
of
δ 1

ev
al

ua
te

d
in

§§
6

an
d

7.

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


66 H. Betar, D. Del Sarto, M. Ottaviani and A. Ghizzo

since in both the large- and small-Δ′ regimes, purely resistive or purely inertial, k2d̄2
e � 1.

The above expression can also be approximatively written as

ψ ′′
1

ψ1

∣∣∣∣
x=0

� 1
d̄2

e

=⇒ δ
(2)
ψ � d̄e. (8.12)

The corresponding scalings in table 2 descend from (8.12), after the relevant parameter
and wavelength limits are considered.

8.3.3. Asymptotic scalings of δ(4)ψ
To evaluate δ(4)ψ , we should differentiate the solutions ψ1 obtained in each reconnection

regime and wavelength limit. Save for the warm-electron, large-Δ′ limit, where the last
equality of (7.38) immediately gives |(d4ψ1/dζ 4)/ψ1|ζ=0 � 2δ2

1/d̄
2
e + O(δ4

1/d̄
4
e), whence

δ
(4)
ψ can be rapidly evaluated by using ζ = x/δ1 and then δ1 = dx/dζ , in all other cases,

some more algebra is required. It is therefore interesting to look if it is possible to address
all the regimes and cases in a unified way. To this purpose, we can combine (8.10) and
(8.5) and (8.6) with the limit x → 0 of the second-order derivative of (2.1) and of the
first-order derivative of (2.2) with respect to x. Having introduced once more d̄e so as to
treat the inertial and resistive cases all together, we obtain

γ
(
(1 + k2d̄2

e)ψ
′′
1 − d̄2

eψ
iv
1

) |x=0 � i2C2k
(
ρ2

s ϕ
′′′
1 − ϕ′

1

) |x=0, (8.13)

γϕ′′′
1 |x=0 � ik

(
C2ψ

′′
1 − C4ψ1

) |x=0. (8.14)

Combining them and using (8.6),

γ 2 ((1 + k2d̄2
e)ψ

′′
1 − d2

eψ
iv
1

) |x=0 � −2C2k2ρ2
s (C2ψ

′′
1 − C4ψ1)|x=0 − i2C2kγ q0. (8.15)

Finally, using (8.12),

− d̄4
e

1 + k2d̄2
e

ψ iv
1

ψ1

∣∣∣∣
x=0

� −1 − 2(C2)
2 k2

1 + k2d̄2
e

ρ2
s

γ 2
+ 2C2

k2

1 + k2d̄2
e

d̄2
e

γ 2

(
ρ2

s C4 − i
γ q0

kc0

)
.

(8.16)

At this point, we specialise the result to the cold and to the electron limits.

Cold-electron limit
In the cold limit ρs = 0, using A = −iγ /(kδ1J0), q0 ∼ −c0/(Aδ1) or ∼ −2c0/(Aδ1)

(cf. (8.9)), we can so distinguish two cases.
(a) One case is for k2d̄2

eδ1/γ
2 ∼ de � 1, which corresponds to the large-Δ′ limit, in

which we obtain the scaling∣∣∣∣ψ iv
1

ψ1

∣∣∣∣
x=0

� 1
d̄4

e

=⇒ δ
(4)
ψ � d̄e ∼ δ1 ∼

√
d̄eδLD. (8.17)

(b) The second case is for kd̄2
e q0/(c0γ ) � 1, which is true in the small-Δ′ limit, for

which γ d̄e/k ∼ δ2
1 (cf. (6.19), but for which a better estimate of q0, as given by

the first part of (8.9), must be found. To this purpose, we can directly use the
solution found for Φ(z) = (d̄ek3J3

0/γ
3)1/2ϕ1(x(kJ0)

1/2/(γ d̄e)
1/2) from boundary
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layer calculations performed in this regime (§ 6.2). We first take the derivative of
(6.15):

dΦ
dz

= −1
2

∫ 1

0
(1 − t2)−1/4e−(1/2)tz2

dt + z2
∫ 1

0
t(1 − t2)−1/4e−(1/2)tz2

dt. (8.18)

Since z ∝ x, we can evaluate Q0 ≡ Φ ′(z)|z=0 and then relate it to q0 = ϕ′
1(x)|x=0.

From (8.18), we obtain

Q0 = −1
2

∫ 1

0

dt
(1 − t2)1/4

= −
∫ π/4

0

√
1 − 2 sin2(u) du = −E

( π

4

∣∣∣ 2
)
, (8.19)

where in the last passage, we have made the changes of variables of integration
t = sin θ and u = θ/2, and where E is the incomplete elliptic integral of second
kind (see Gradshteyn & Ryzhik 2015, (8.2) in § 8.111). Using (6.14), we thus find

q0 = i
c0γ

kd̄eJ0
Q0 = −i

c0γ

kd̄eJ0
E
( π

4

∣∣∣ 2
)
. (8.20)

Finally, using (6.21), one finds

q0 = −i
c0

(
Δ′d̄e

)2

I2
E
( π

4

∣∣∣ 2
)
. (8.21)

This leads to

ψ iv
1

ψ1

∣∣∣∣
x=0

� −i2
C2

I2
E
( π

4

∣∣∣ 2
) kΔ′

γ
, (8.22)

that is, ∣∣∣∣ψ iv
1

ψ1

∣∣∣∣
x=0

� 1
Δ′d̄3

e

=⇒ δ
(4)
ψ �

√
d̄eδSD. (8.23)

Warm-electron limit
In the warm limit ρs > d̄e, we can assume instead the first term of (8.22) to be always
dominant at the right-hand side and greater than unity, so as to write

ψ iv
1

ψ1

∣∣∣∣
x=0

� 2C2
2

k2

γ 2

ρ2
s

d̄4
e

. (8.24)

Using finally the definition (7.11), we obtain, in both the small- and large-Δ′ limits,∣∣∣∣ψ iv
1

ψ1

∣∣∣∣
x=0

� 1
d̄2

eδ
2
1

=⇒ δ
(4)
ψ �

√
d̄eδ1. (8.25)

Specialising d̄e in the purely inertial or purely resistive regime and taking the relevant
scalings in the large-Δ′ allows us to complete table 2.
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9. Heuristic derivation of the scaling laws of tearing modes

In previous sections, we obtained the growth rate scaling law by analytically solving the
eigenvalue problem in the warm- and cold-collisionless regimes. To solve the equations,
we expanded the equilibrium profile around the neutral line using a Taylor series.
Therefore, despite the cumbersome analysis developed to find them, the eigenfunctions
so obtained are merely approximations and not ‘exact’ solutions of the problem. The
complexity of the boundary layer approach is also evident, which leads to differential
equations of hypergeometric nature.

A complementary approach is possible, which, in some cases as we are going to see,
allows the estimate of the scalings of both the growth rate and of the reconnecting layer
width by providing some more physical insight about the analytical assumption made in
the boundary layer formalism. This method is based on some heuristic orderings of the
terms in the inner layer equations, and on balancing these terms together to obtain the
scaling laws via dimensional analysis – see Drake & Lee (1977) and Cowley et al. (1986)
for an application to kinetic tearing, Betar et al. (2020) for an application to the cold
resistive and viscous-resistive regimes, and Drake & Kleva (1991) for an application to
secondary instabilities to a primary tearing-type mode. Although it has not been detailed,
this approach has been also used to get the collisionless scalings of tearing modes in
Ottaviani & Porcelli (1995). An analogous approach is at the basis of the available
theoretical estimates of the scalings of the reconnecting rate in the whistler-mediated
reconnection scenario (Mandt et al. 1994) and of the reconnecting rate in Hall-MHD
reconnection (Biskamp, Schwarz & Drake 1995, 1997). Heuristic ansatz on the scaling
of the gradients of the tearing eigenfunction have been revealed to be useful also for
quantitative estimates – which have been numerically verified a posteriori – about the time
and spatial behaviour of the reconnecting current sheet during its nonlinear, collisionless
evolution (Ottaviani & Porcelli 1993, 1995). More in general, heuristic estimates are of
fundamental importance to allow insight on the physical interpretation of less evident
analytical results (see, e.g. Drake & Lee 1977; Cowley et al. 1986 for tearing modes and
Grasso et al. (1999) for the interpretation of the physical meaning of ρs in reduced MHD
reconnection).

While this heuristic method, with some variations, is frequently presented in textbooks
as a shortcut procedure to find the scalings of the cold-electron, resistive tearing mode (see,
e.g. Biskamp 2000, § 4.1.1; Schnack 2009, Lecture 34; Boyd & Sanderson 2003, § 5.3.1,
to give some examples), its application cannot be clear when more than one boundary
layer exists, as it is in the case of warm-electron tearing modes. Discussing this point
is therefore of general interest: this is what we are going to do in this section, where
we compare the heuristic approach to the boundary layer analysis presented in previous
sections. In particular, we are going to show that further information is required to get
consistent results from the heuristic analysis to get the correct scalings when ρs � d̄e.
From preliminary analysis, this information appears not to be immediately available from
a priori arguments. This suggests that the heuristic approach should be carefully handled,
when electron temperature effects (and, more in general, FLR effects) are included, since
it could lead to incorrect estimates, as we are going to show below.

9.1. General hypotheses in the heuristic approach to the scaling estimate
Let us first outline the general hypotheses, which allow one to recover the correct scaling
laws by dimensional analysis in the textbook-like examples of the purely resistive and of
the purely inertial tearing mode analysis.
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We first re-write the eigenvalue equations for x � 1 (i.e. x/a � 1 in dimensional units),
in the non-ideal region:

ψ1 − i
kx
γ

J0ϕ1 = d̄2
eψ

′′
1 + ρ2

s

γ 2
k2x2J2

0ψ
′′
1 , (9.1)

ϕ′′
1 = −i

kx
γ

J0ψ
′′
1 , (9.2)

where (9.2) was used to express the second term on the right-hand side of (9.1), and
resistivity has been included in the parameter d̄2

e .
The usual heuristic estimations, as they have been successfully used for both the purely

collisionless and purely resistive regimes, are based on the following ideas.

(i) There is a characteristic scale, say lc, for the gradient of ψ1, which we are going to
quantitatively define in the following. It allows one to estimate ψ ′

1 ∼ ψ1/lc at some
point x in the neighbourhood of the neutral line.

(ii) A single characteristic microscopic scale exists for both the first derivative of ψ ′
1

and ϕ1: this corresponds to the inner layer width, δ, which we operationally define
according to (8.3), (this can be proven via numerical integration of the equations –
see later).

(iii) We can generally assume δ ≤ lc.

We then add a further assumption that can be a posteriori verified (also numerically),
and somewhat generalises the examples for which the heuristic approach has been
successfully applied in the past.

(iv) lc is the largest characteristic scale length in the matching layer with the ideal-MHD
solution. That is, in a neighbourhood of the neutral line, we write the estimates

ψ ′
1 ∼ ψ1

lc
, ψ ′′

1 ∼ ψ1

δlc
. (9.3)

The two characteristic scales that naturally appear when a distinction has been made
between the large-Δ′ and small-Δ′ limits are (Δ′)−1 and δ. Accordingly, in the small-Δ′

limit, lc = (Δ′)−1 with Δ′δ � 1, while in the large-Δ′ limit, lc = δ and Δ′δ � 1. This
argument suggests the following scalings (Ottaviani & Porcelli 1995):

ψ ′′
1

ψ1
∼ 1
δ2

for (Δ′δ � 1),
ψ ′′

1

ψ1
∼ Δ′

δ
for (Δ′δ � 1). (9.4)

Note that, differently from (8.12), where the ratioψ ′′
1 /ψ1 is evaluated exactly on the neutral

line (x ≡ 0), in the estimates of (9.4), it is evaluated in the neighbourhood of the line
(i.e. x � 0).

After approximating x ∼ δ in the inner layer, (9.2) gives

ϕ′′
1 ∼ kδ

γ
J0ψ

′′
1 , (9.5)

which is true in all tearing regimes. All further estimates rely on assumptions about the
relative ordering between the terms of the equations. In what follows, we will discuss
the derivation of the scaling laws in the different regimes by using this method: it will
prove to be successful in the cold-collisionless limit, but we will see that it fails in the
warm-collisionless regime.
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9.2. Heuristic derivation of the scaling laws in the cold-electron regime (ρ2
s � d̄2

e )
In these regimes, we can take ρs = 0. Therefore, the second term on the right-hand side of
(9.1) vanishes.

For reasons of ‘economy of thought’ and of convenience about the generalisability of
the heuristic approach, which will be discussed next (cf. comments on (10.4) in § 10.1),
we now follow a procedure, which, although practically equivalent to those that can be
found in classical textbook examples, slightly differs from most of them, as far as some
ansatz are concerned: in particular, we are not going to make use of the estimate ϕ′′

1 ∼
ϕ1/δ

2
1, otherwise typically used, and which can be verified to be valid in the cold-electron

regimes.
We then start by balancing the remaining terms of (9.1) and (9.2). This leads us to

ψ1 ∼ d̄2
eψ

′′
1 , ϕ1 ∼ γ

kδJ0
ψ1, ϕ1 ∼ γ d̄2

e

kδJ0
ψ ′′

1 . (9.6)

Differentiating twice the second part of (9.6) and using (9.5), one gets

γ ∼ kδJ0, (9.7)

which is valid for both wavelength limits and in both the collisionless and resistive
regimes. Substituting (9.4) in the first part of (9.6), one obtains

δ ∼ d̄e for (Δ′δ � 1), δ ∼ d̄2
eΔ

′ for (Δ′δ � 1). (9.8)

It can be noticed that, looking at the physical aspects, the first of the conditions in (9.6) is
the result of the balance between the two terms directly involved in the process of energy
conversion that is related to magnetic reconnection: the magnetic potential ψ1 on the one
side, and, on the other side, the electron kinetic energy d2

eψ
′′
1 in the collisionless limit or

the energy dissipated by Ohm’s law in the resistive limit, S−1ψ ′′
1 .

At this point, it is convenient to treat the purely inertial and the purely collisionless case
separately.

(a) Collisionless case.
Substituting d̄e → de and (9.8) into (9.7) yields

γ ∼ J0kde for Δ′δ � 1, γ ∼ J0k(Δ′)2d3
e for Δ′δ � 1. (9.9)

The corresponding scalings of the width of the reconnecting layer read

δ ∼ de for Δ′δ � 1, δ ∼ Δ′d2
e for Δ′δ � 1. (9.10)

These are the scaling laws of Porcelli (1991) that we have analytically obtained
in § 6.

(b) Resistive case.
Substituting instead d̄e → S−1/2/γ 1/2 and proceeding as above yields the scalings
of Furth et al. (1963) and Coppi et al. (1976) (see also Ottaviani & Porcelli 1995),
which we have also already obtained in § 6:

γ ∼ J2/3
0 k2/3S−1/3 for Δ′δ � 1, γ ∼ J2/5

0 k2/5(Δ′)4/5S−3/5 for Δ′δ � 1),
(9.11)

δ ∼ J−1/3
0 k−1/3S−1/3 for Δ′δ � 1, δ ∼ J−2/5

0 k−2/5(Δ′)1/5S−2/5 for Δ′δ � 1.
(9.12)
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9.3. Heuristic derivation of the scaling laws in the warm-electron regime (ρs � d̄e)
If we now follow an analogous approach in the warm-collisionless regime, problems arise
suggesting some (or all) of the hypotheses made at points (i)–(iii) and in (9.3)–(9.5) to not
be correct. Let us see why.

In this regime, the second term on the right-hand side of (9.1) does not vanish.
Therefore, it is expected that this term will be of the same order of the first right-hand
side term at the boundary of the inner layer (i.e. at |x| � δ). Balancing these two terms
yields

γ

kJ0
∼ ρs

d̄e
δ. (9.13)

By balancing the first left-hand side terms of (9.1), one estimates ψ1 ∼ d̄2
eψ

′′
1 . For the

small-Δ′ limit, one has ψ ′′
1 /ψ1 ∼ Δ′/δ ∼ 1/d̄2

e , meaning δ ∼ Δ′d̄2
e . Therefore, for the

Δ′δ � 1 limit, one obtains

γ ∼ J0kΔ′ρsd̄e, δ ∼ Δ′d̄2
e . (9.14)

These scaling laws for γ and δ are identical to those given by (7.65) which we analytically
derived in § 7.5. That is, they allow us to recover the small-Δ′ limit of the scalings of
(Pegoraro & Schep 1986).

Following the same line of thought to find the scaling laws of the large-Δ′ limit,
one would expect, as discussed in § 9, that the largest scale lc equals δ since this time,
δ � (Δ′)−1. Therefore, ψ1 ∼ d̄2

eψ
′′
1 gives δ ∼ d̄e, which differs from the scaling in (7.53).

Proceeding with this argument, after substituting δ ∼ d̄e in (9.13), the scaling γ ∼ kρs
is obtained. This also differs from the scaling law obtained analytically in (7.54) and
which, instead, has been numerically verified (Betar et al. 2020). No numerical evidence
in the range ρs � d̄e has been found of the scalings δ ∼ d̄e and γ ∼ kρs. Also note that
γ ∼ kρs does not display any explicit dependence on d̄e, which contains the non-ideal
parameters that allow magnetic reconnection (and which should make γ → 0 as d̄e → 0).
We therefore conclude the scalings δ ∼ d̄e and γ ∼ kρs to be wrong.

This implies that the generalisability of the heuristic approach to the warm regimes
is not evident and further information about the estimates of the relevant quantities is
needed.

Even if this problem is not solved yet, and a closed set of equations for the heuristic
estimates is not available when ρs � d̄e, in the next subsection, we investigate this
possibility by introducing a new characteristic scale-length of the system associated with
the gradient of the velocity component parallel to the neutral line, and which we postulate
to be related to the gradient of the magnetic flux function at the boundaries of the ‘outer
region’: although so far we must rely on its numerical estimate, we are going to show that
this allows us to use a heuristic-type approach to get the correct scaling laws of the growth
rate and of the inner layer width in all reconnection regimes here considered. In this sense,
introducing this scale length at least allows us to generalise the heuristic procedure to
warm-electron regimes, although this generalisation remains so far incomplete, due to the
lack of a procedure apt to a priori estimate this scale length. Moreover, the asymptotic
scaling of this quantity can be shown to correspond to that of a characteristic scale length,
which in both Porcelli (1991) and Zocco & Schekochihin (2011) has been obtained as a
normalisation length in boundary layer integration procedure. In these works, it had been
related to the width> δ1 of the domain sub-interval in which the solution of the innermost
equation is valid in the large-Δ′ limit.
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10. An ansatz about the ‘generalisation’ of the heuristic estimates: the role of the
velocity gradient in the non-ideal region

A critical ingredient of the previous analysis is the estimate of the characteristic length,
lc, related to the first derivative of the magnetic stream function in the non-ideal region.
Let us focus on the ρs � d̄e regime, where heuristic estimates display problems. Using
ψ1 ∼ d̄2

eψ
′′
1 and (9.13), we see that the scale length lc enters in the estimates of the growth

rate and of the reconnecting layer width as

γ ∼ J0
kρsd̄e

lc
, δ ∼ d̄2

e

lc
. (10.1)

In both the collisionless and resistive regimes, the correct estimates are recovered in
the small-Δ′ limit when lc ∼ (Δ′)−1, whereas they are incorrect in the large-Δ′ limit if
we assume lc ∼ δ. This suggests looking for another reasonable estimate for lc, in this
case.

The strategy we pursue here is therefore to look for a third ‘effective’ scale length for lc,
different from Δ′ and δ, that would allow us to recover the correct scaling from (10.1) in
the large-Δ′ limit, and to verify its relevance and appropriateness by means of numerical
calculations.

10.1. Velocity gradient in the innermost non-ideal region
The likely candidate we propose for an alternative definition of lc is the inverse of the
logarithmic jump in the component of the derivative of the fluid velocity parallel to
the neutral line and evaluated at x = ±δ, which we name Δ′

vy
, in (loose) analogy with

the usual Δ′ defined for the magnetic stream function ψ1:

Δ′
vy

≡ v′
y(δ)− v′

y(−δ)
vy(δ)

= ϕ′′
1 (δ)− ϕ′′

1 (−δ)
ϕ′

1(δ)
. (10.2)

It must be noted that in (10.2), we have used the ‘whole’ eigenfunction ϕ1, differently
from what happens in the definition of Δ′, in which only the ‘outer’ eigenfunction ψout
is involved. This fact is important for the numerical computation of both Δ′

vy
and Δ′, as

it will be discussed in § 10.3. Definition (10.2) and the identification δ = δ1 means that
1/Δ′

vy
represents the characteristic scale length of the velocity gradient at the boundary of

the innermost layer, i.e. the ‘electron diffusion region’.
Evaluating (9.2) at x = δ and x = −δ, and using the definition (10.2), we obtain

γΔ′
vy
ϕ′

1|x=δ = ikδJ0 (ψ
′′
1 |x=δ + ψ ′′

1 |x=−δ). (10.3)

Using the fact that ψ ′′
1 (δ) = ψ ′′

1 (−δ) and assuming the validity of condition (9.3) at x = δ,
we find

γϕ′
1

kψ1

∣∣∣∣
x=δ

= 2iJ0

lcΔ′
vy

. (10.4)

Equation (10.4) expresses a constraint on the product lcΔ
′
vy

which depends on the
scaling of γ , and on the profiles of vy = ϕ′

1 and of ψ1. It should be noted that in the
cold-electron regimes, the correct scalings can be obtained via heuristic approach using
the hypothesis ϕ′′

1 |x�δ ∼ ϕ1/δ
2
1 (see, e.g. Biskamp 2000, § 4.1.1). Should this assumption

be always correct, the scaling lc ∼ (Δvy)
−1 ∼ δ1 would be always obtained in the large-Δ′

limit regardless of the reconnection regime, but this estimate does not allow us to recover
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the correct scalings when ρs � d̄e. However, although so far the asymptotic scaling of Δ′
vy

is not known, considering the results that we have found to be valid in the cold-electron
regimes, we can expect that, at least for ρs = 0 and in the large-Δ′ limit, the quantity Δ′

vy

be related to (actually, ‘be proportional to the inverse of’) δ1.

10.2. A heuristic generalisation of the definition of the scale lc

Based on the remarks above, we heuristically postulate the definition:

lc ∼ max{(Δ′)−1, (Δ′
vy
)−1}, (10.5)

which we will later show (§ 10.4) to be indeed consistent with all other definitions and
hypotheses, and thus, arguably correct. It can be a posteriori verified that the results
would have been equally consistent even if we had developed the arguments which
follow using the alternative definition lc ∼ max{(D′)−1, (Δ′

vy
)−1}, based on the further

inverse scale length D′, which we introduce below, in (10.10), and whose scaling we
numerically compute later, in different regimes. Definition (10.5) has been chosen, here,
since Δ′ is always a priori known, whereas the evaluation of D′, too, requires a numerical
integration of the boundary layer problem. According to heuristic definition (10.5), in the
small-Δ′ limit, we expect lc ∼ (Δ′)−1 � (Δ′

vy
)−1, whereas in the large-Δ′ limit, we expect

lc ∼ (Δ′
vy
)−1 � Δ′. From (10.5), the transition between the two limits is therefore ruled by

the asymptotic scaling of the ratio γϕ′
1/(kψ1). In particular, regardless of the reconnection

regime (resistive or collisionless, warm or cold), we must have

γϕ′
1

kψ1

∣∣∣∣
x=δ

∼ Δ′

Δvy

� 1 (for Δ′δ � 1),
γ ϕ′

1

kψ1

∣∣∣∣
x=δ

∼ O(1) (for Δ′δ � 1). (10.6)

The first of the conditions in (10.6) can be however a posteriori refined and
re-formulated as a condition on the ratio (γ ϕ′′

1 )/(kψ1), which reads

γϕ′′
1

kψ1

∣∣∣∣
x=δ

∼ O(1) (for Δ′δ � 1). (10.7)

This condition follows from (9.2) combined with the second part of (9.3) and from the
knowledge we have about the scalings of δ and γ in terms of lc: using the estimates
lcδ ∼ d2

e and lcδ ∼ S−1/γ that we obtain by specialising d̄e to the collisionless and resistive
regimes, respectively, we obtain

γϕ′′
1

kψ1

∣∣∣∣
x=δ

∼ δ

d2
e

(collisionless),
γ ϕ′′

1

kψ1

∣∣∣∣
x=δ

∼ γ δ

S−1
(resistive). (10.8)

Equation (10.9) is then verified in all reconnection regimes once we substitute the relevant
known scalings we have already evaluated from boundary layer theory into (10.8). Also,
using the definition of Δ′

vy
of (10.2), the two equations in (10.8) result to be compatible

with the second part of (10.6). In conclusion, we can therefore write the constraints:⎧⎪⎪⎨⎪⎪⎩
γϕ′′

1

kψ1

∣∣∣∣
x=δ

∼ O(1)

γ ϕ′
1

kψ1

∣∣∣∣
x=δ

∼ Δ′

Δvy

� 1
(forΔ′δ � 1),

γ ϕ′
1

kψ1

∣∣∣∣
x=δ

∼ O(1) (forΔ′δ � 1). (10.9)
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These conditions can be taken to be generally discriminating for the transition from the
small- to the large-Δ′ scaling relations in any reconnection regimes.

It must be however emphasised that, while both (10.6) and (10.8) are self-consistently
deduced from the specific hypotheses we have made so far, (10.7) must be heuristically
assumed, since, although a priori reasonable and compatible with the first of conditions
(10.6), it does not follow from the other hypotheses, but it is just verified once the scalings
of γ and δ are found.

The discussion and the analysis we are going to develop next (§ 10.4) seems to
suggest that accomplishing this latter task in the context of the heuristic derivation
may not be feasible. Nevertheless, we will numerically prove the correctness of the
hypotheses (i)–(iii) of § 9 and we will show that definitions (10.4) and (10.5) are
consistent with the estimates of the correct scalings, provided the scaling of Δ′

vy
is

known. In doing so, we will elucidate (cf. Appendix E) the logical points of the
heuristic approach in the different tearing regimes by pointing out when an a priori
self-consistent estimate can be done or not, and, in the second case, which information
is missing. Before doing so, we need however to first discuss how to numerically
evaluate Δ′

vy
, which must be compared with the numerical value of Δ′ and of δ, the

latter of which has been already discussed in § 8. This is what we are going to do
in § 10.3.

10.3. Numerical evaluation of Δ′ and Δ′
vy

Let us first look at a numerical procedure that allows us to quantify the inverse scale
lengths Δ′ and Δ′

vy
defined by (3.8) and (10.2), respectively.

Of course, because of the definition in (3.8), the values of Δ′ are always independent
of the non-ideal parameters. The numerical evaluation of Δ′(k) becomes therefore trivial
whenever an analytical formula that depends only on k and on the equilibrium profile can
be obtained (cf. (4.13)).

Then, for the evaluation of Δ′
vy

, the definition in (10.2) may be operationally used,
although it is procedurally quite demanding: it requires to compute first the eigenfunction
ϕ1, then its first and second derivative, and then to evaluate them at x = δ, a value which
can be numerically obtained by using the definition in (8.3) and by following the procedure
sketched in figure 12.

It is however possible to ‘speed up’ the calculation of the scalings of both Δ′ and Δvy ,
by relying on an alternative numerical procedure.

This procedure mimics the numerical evaluation of Δ′ that is made possible only in the
small-Δ′ limit, thanks to the geometrical interpretation that can be given of the instability
parameter in terms of a local expansion of the outer solution (Furth et al. 1963): we recall
that by usingψout ≈ c0 + c1|x| as |x| → 0, thenΔ′ = 2c1/c0 (cf. §§ 5.3.1 and 5.3.2). These
two coefficients can be evaluated by measuring the value of ψout and of the slope of the
tangent to ψout close to x = 0.

This idea can be borrowed so as to evaluate analogous quantities defined with
respect to the total solutions ψ1 and ϕ1: noting that, graphically speaking, both ψ1
and ϕ′

1 still display a linear behaviour with respect to x as x → δ, both in the
small- and large-Δ′ limits, we write ψ1|x→δ ≈ c0 + c1|x| and vy|x→δ = ϕ′

1|x→δ ≈ q0 +
q1|x|. Note that these approximations are consistent with the local expansions (8.5)
and (8.6), which are valid, instead, for x � δ. Therefore, once the corresponding
eigenfunctions have been numerically computed, at |x| ∼ δ, we can evaluate
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(a) (b)

(c)

FIGURE 14. (a) Example of numerical evaluation of the coefficients c0 and c1 of (10.10),
once the profile of ψ1(x) and of its derivatives ψ ′

1(x) have been computed for |x| ≥ δ in a
neighbourhood of x = δ. (b) Analogous example of evaluation of q0 and q1 of (10.10) from ϕ′

1
and ϕ′′

1 , calculated once the eigenfunction ϕ1 has been computed; in this example, Δ′
vy

≈ 73.82.
(c) A zoomed version of panel (b) in which the inner region, here of width δ ≈ 0.00184
(computed according to the method outlined in § 8), is shaded in light-blue colour. All the values
required to estimate Δ′

vy
using (10.2) are here shown; it is this way thatΔ′

vy
≈ 74.48 is obtained,

in very good agreement with the result computed with the alternative method sketched in panel
(b).

(see figure 14)

D′ ≡ 2
c1

c0
, Δ′

vy
= 2

q1

q0
. (10.10)

In particular, due to the smallness of δ, the coefficients c1, c0 and q0, q1 can be numerically
computed as shown in figure 14, by measuring the values of ψ1 and ϕ1 and of the peak
values of their derivatives close to x = 0.

We have verified that the scalings obtained for Δ′
vy

in this way agree with those directly
computed by first evaluating δ and by then using the definition in (10.2), as shown in
figure 14(b,c), and that D′ = Δ′ in the small-Δ′ limit.

Figure 15 displays the scaling laws of (D′)−1, (Δ′
vy
)−1 and δ, numerically computed

according to the operational definitions given by (10.10) and (8.3), respectively, in the
cold-collisionless regime at ρs = 0: the different characteristic lengths are shown in
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(a) (b)

FIGURE 15. Examples of scaling laws of D′, Δ′
vy

(cf. (10.10)) and δ with respect to de, for
ρs = 0. The large-Δ′ limit is in panel (a), the small-Δ′ in panel (b). The values of D′ andΔ′

vy
are

computed numerically according to the procedure sketched in figure 14. In the small-Δ′ limit,
the values of Δ′, obtained from (4.13), coincide with the orange line in panel (b).

figure 15(a) for the large-Δ′ limit, and in figure 15(b) for the small-Δ′ limit. Figure 16
shows the corresponding scaling laws for the tearing modes in the warm-collisionless
regimes at ρs 
= 0. The dependence of (D′)−1, (Δ′

vy
)−1, and δ on the electron skin

depth (de) is in figure 16(a,c), the dependence on the ion-sound Larmor radius (ρs)
is in figure 16(b,d); both the large-Δ′ limit (figure 16(a,b)) and the small-Δ′ limit
(figure 16(c,d)) are considered.

Numerical results prove that, as it could be expected, D′ of (10.10) coincides with the
definition of Δ′ only in the small-Δ′ limit, where we can indeed state that ψ1(x)|x→δ+ �
ψout(x)|x→δ+ (cf. figure 15b, and figure 16c,d). In this limit, D′ can be therefore taken
as an accurate estimate of Δ′, in spite of the fact that the latter is formally defined by
evaluating the derivatives of ψout at a distance from the neutral line much larger than δ.
This is made possible by the fact that in this large wavelength limit, the outer solution must
match the inner one in an overlapping region that gets sufficiently close to |x| = δ. That
is, the constant-ψ hypothesis holds in the whole non-ideal region, down to the innermost
layer.

Different is the result in the large-Δ′ limit: in the cold-collisionless regime, (D′)−1

displays the same asymptotic scaling of δ, except for a numerical factor (cf. figure 15a), and
these scaling laws are the same as for (Δ′

vy
)−1; in the warm-collisionless regime, instead,

both (D′)−1 and (Δ′
vy
)−1 display the same asymptotic scalings (D′)−1 ∼ (Δ′

vy
)−1 ∼ ρ1/3

s d2/3
e

(figure 16a,b) which are non-trivial, since they differ from δ−1
LD ∼ ρ1/3

s d4/3
e . Analogous

results, not shown here, are found in the warm-resistive, large-Δ′ limit, in which,
for these quantities, we obtain also an explicit dependence on k: (D′)−1 ∼ (Δ′

vy
)−1 ∼

k−2/7ρ−1/7
s S−2/7 and δ ∼ k−4/7ρ−5/7

s S−4/7.
For summary, we recall here the scalings of Δ′

vy
that have been numerically obtained in

the different regimes:

Δ′
vy

∼ δ−1
SD (warm/cold and collisionless/resistive regimes at small-Δ′);

Δ′
vy

∼ δ−1
LD (cold and collisionless regimes at large-Δ′);
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(a) (b)

(c) (d )

FIGURE 16. Examples of scaling laws of D′, Δ′
vy

(cf. (10.10)) and δ for ρs 
= 0. Panels (a,b)
correspond to the large-Δ′ limit, whereas panels (c,d) correspond to the small-Δ′ limit. The
values of D′ andΔ′

vy
are computed numerically according to the procedure sketched in figure 14.

Notice that D′ and δ are independent of ρs in the small-Δ′ limit (cf. panel d). In the small-Δ′
limit, the values of Δ′ obtained from (4.13) coincide with the blue lines in panels(c,d).

Δ′
vy

∼ ρ−1/3
s d−2/3

e (warm-collisionless regime at large-Δ′ );
Δ′
vy

∼ k−2/7ρ1/7
s S−2/7 (warm-resistive regime at large-Δ′ ).

10.4. Role of Δ′
vy

in heuristic-type estimates

It is easy to verify that combining the estimates in (10.1) with the definition in (10.5)
and with the scalings numerically obtained for Δ′

vy
, the correct scaling laws obtained

in §§ 6 and 7 can be recovered in both the warm-collisionless and warm-resistive
regimes.

This is discussed in detail in Appendix F, in which the logical steps of the procedure
are singled out and identified, thus providing insight on the physical interpretation
of the analytical results of the boundary layer calculations. In particular, the main
hypotheses on which this (partial) heuristic approach relies and the corresponding results
in all collisionless regimes, both ‘warm’ and ‘cold’, are summarised in tables 3–5 of
Appendix F, where the logical steps of the procedure are presented as statements and
formulae.
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There are two main results of this analysis.

(i) Introducing the scale length Δ′
vy

and postulating the definition in (10.5) make it
possible to obtain the scaling laws, which are, in principle, correct in all regimes
and wavelength limits; however, in the large-Δ′ warm-electron regime, the procedure
results to be not ‘closed’, in the sense that the estimation of the scaling law of Δ′

vy

seems to be not possible by simple dimensional analysis.
(ii) Quite interestingly, using the definition in (10.5), the scaling laws of all reconnection

regimes can be cast in a form which is perfectly symmetric in the small- and large-Δ′

limit, with respect to the substitution Δ′ ↔ Δ′
vy

.

These results, on the one hand, suggest to us that introducing the inverse scale lengthΔ′
vy

is a promising ingredient in the attempt to extend the heuristic-type analysis. On the other
hand, however, finding the further constraint that makes it possible to obtain a priori all the
sought algebraic scalings without resorting to numerical analysis and by mere dimensional
analysis seems an elusive task. The logical steps identified in the tables of Appendix F,
as well as some further insight on the interpretation of the boundary layer results, which
follows from the heuristic approach and which we are going to discuss below (§ 10.5),
could imply the heuristic analysis to be intrinsically not applicable in some regimes. This
problem becomes manifest, in particular, in the large-Δ′ limit when ρs 
= 0, in which the
scaling ofΔ′

vy
is a non-trivial power law combination of the scales ρs and d̄e. Nevertheless,

the coherence of the results summarised in tables 3–5 supports the consistency of the
heuristic ‘ansätze’ we have made so far.

In particular, the logical steps identified in tables 3–5 show that the difference between
the warm and cold regimes lies in the balance condition ψ1 ∼ ikxϕ1/γ ϕ1, which is valid in
the cold regimes only (hypothesis [T6.H2] of table 5), and which is replaced by the balance
expressed by hypothesis [T5.H2] of table 4 when ρs 
= 0. Condition [T6.H2] expresses
indeed the validity of (4.1), in turn related to the inverse scale Δ′, down to the boundary
layer at the frontier with the innermost region: this means that the newly introduced scale
(Δ′

vy
)−1 is redundant in this regime with respect to δ and Δ′−1 (as, however, it was evident

already from the heuristic-type approach discussed in § 9.3). We have indeed seen from
the numerical results summarised at the end of § 10.3 that the scaling of (Δ′

vy
)−1 turns

out to always coincide with that of δ. Such a ‘closure’ condition for Δvy is lost at ρs 
= 0,
when hypothesis [T6.H2] is replaced by hypothesis [T5.H2], which leads to the general
constraint γ ∼ kρs(δ/lc)

1/2: here, a value different from that of δ or (Δ′)−1, with respect
to which the transition from the small- to the large-Δ′ limits is measured, is in principle
admitted for lc.

10.5. Significance of the inverse spatial scale Δ′
vy

: coherence with boundary layer
calculations and comparison with previous work

Some insight about the physical significance of the characteristic spatial scales associated
with Δ′

vy
is obtained from comparison of their scalings with identical asymptotic scalings

which can be obtained from some boundary layer results available in the previous literature
(Pegoraro & Schep 1986; Cowley & Hastie 1988; Porcelli 1991; Zocco & Schekochihin
2011) and from related works discussing the implications of these results (Ottaviani &
Porcelli 1995; Grasso et al. 1999).

Combination of (10.5) (i.e. hypothesis T4.H1) with hypotheses T5.H3 or T6.H3 allows
the identification of the small- and large-Δ′ limits, say Δ′δ ≷ 1, expressed in each

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


Microscopic scales of collisionless tearing modes 79

reconnection regime in terms of lc and thus in terms of Δ′
vy

:

Δ′δ ≷ 1 ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ′de ≷ max

{
1
Δ′de

,
1

Δ′
vy

de

}
(collisionless),

Δ′S−1 ≷ max

{
γ

Δ′ ,
γ

Δ′
vy

}
(resistive).

(10.11)

In this regard, it is interesting to compare, e.g. the conditions for the warm-collisionless
case with the similar conditions in Grasso et al. (1999) that have been written (cf. (17) and
paragraphs below (18) therein) as

Δ′de > min

{
1,

(
de

ρs

)1/3
}
, Δ′de < 1, (10.12)

based on the results of the boundary layer calculations in the Fourier representation
by Porcelli (1991) (cf. conditions on ‘λH ≡ −π/Δ′’ in between (7) and (9) therein).
Substitution of the scalings numerically found for Δ′

vy
in § 10.3 for ρ2

s � d2
e into the

collisionless condition of (10.11) gives

Δ′de > max

{
1
Δ′de

,

(
ρs

de

)1/3
}
, Δ′de < max

{
1
Δ′de

,Δ′de

}
, (10.13)

(large-Δ′) (small-Δ′)

which are indeed compatible with the conditions in (10.12), once (Δ′de)
2 < 1 is deduced

from the second part of (10.13) in the small-Δ′ limit and therefore Δ′de < 1 is assumed,
with Δ′de ∼ 1 fixing the threshold value also for the first inequality of (10.13).

In this regard, we notice that the non-trivial characteristic scale length associated
with the asymptotic scaling, which we have numerically found for Δ′

vy
in the large-Δ′,

warm-electron limit, naturally emerges from the boundary layer analysis developed
by Pegoraro & Schep (1986); Porcelli (1991): here, the general dispersion relation
encompassing both the small- and large-Δ′ limits can be written in terms of d̄e as (to
this purpose, we can just substitute de → d̄e, e.g. in (25) of Ottaviani & Porcelli 1995)

π

2
γ 2 = −πρs

Δ′ + ρ2
s d̄e

γ
. (10.14)

Naming γLD ∼ (2/π)1/3d̄1/3
e ρ2/3

s the solution obtained in the Δ′ → ∞ limit, which we
already recovered in previous sections, one sees that the opposite, small-Δ′ limit is
obtained when the condition

πρs

Δ′ � ρ2
s d̄e

γLD
⇔ Δ′ � 1

2ρ1/3
s d̄2/3

e
=⇒ Δ′ � Δ′

vy
(10.15)

is satisfied, where in the last passage, we have used the numerical result we previously
found in this wavelength limit, Δ′

vy
∼ ρ−1/3

s d̄−2/3
e . The rightmost condition of (10.15) is

consistent indeed with the constraints in (9.4), previously found via the heuristic estimates
discussed in § 10.2. This suggests that Δ′

vy
may provide a physical interpretation of the
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appearance of this characteristic scale length in boundary layer calculations, performed in
the framework of the two-fluid model we consider here.

This interpretation is however somewhat different from that provided by Ottaviani
& Porcelli (1995), and which was based on the previous boundary layer calculations
(Cowley et al. 1986; Pegoraro & Schep 1986; Porcelli 1991) performed by starting from a
charge density equation in which polarisation effects were taken into account through the
gyrokinetic particle response. In that modelling framework, the scale-length ρ1/3

s d̄2/3
e � δ1

was noted by Ottaviani & Porcelli (1995) to correspond to the distance from the neutral
line at which γLD becomes comparable to the phase-velocity k‖(x)ve

th = (k · B0(x)/B0)v
e
th,

and below which the isothermal electron closure would formally break down. As already
noted in the same work, however, the appropriateness of the isothermal condition, assumed
to be valid for the purpose of the boundary layer calculations, had been numerically
verified to a good extent in some previous works (Berk, Mahajan & Zhang 1991; Coppi
& Detragiache 1992) and, more recently, its validity has been supported by the numerical
studies of Perona, Eriksson & Grasso (2010). Relating the scale ρ1/3

s d̄2/3
e to the failure of

the isothermal closure is thus consistent with the interpretation provided in further – and
in part preceding– works based on a kinetic approach (Drake & Lee 1977; Cowley et al.
1986; Zocco & Schekochihin 2011). In these works, such a critical distance was shown
by heuristic arguments (see Drake & Lee 1977; Cowley et al. 1986, § V) to correspond
to the characteristic width of the current layer, determined by the balancing of the total
current generated by the parallel electron pressure gradients with the current generated
by the (reconnecting) parallel electric field. Instead, in § 8 and in Betar et al. (2020), we
have numerically proven the current sheet to be concentrated around the neutral line in a
region of width δ1. The subtle point here may be in the meaning which can be given to the
notion of ‘characteristic width of the current layer’, since it is true that, while the inflection
points around the peak of Jz,1 are numerically found to be located at a distance δ1 from the
neutral line (cf. definition in (8.3)), the profile of the inner solution (i.e. the solution found
in the ‘electron region’) extends beyond this distance. In particular, the matching with the
outermost non-ideal solution (i.e. the solution in the ‘ion region’) is not to be meant as a
matching in a single point, but rather as an asymptotic matching valid over an intermediate
layer, whose distance from the neutral line in the warm-electron regime can be of the order
of ρ1/3

s d̄2/3
e . This latter point of view is in agreement with the notion of ‘inner solution

width’, to which Zocco & Schekochihin (2011) make reference: the characteristic width of
the inner solution, which is named δin in the notation of their work, differs from the width
of the inner layer, which we have here named δ1 = δ, and satisfies δ1 < δin < δ2.

If we look in detail at the boundary layer analysis carried out by these latter authors in
the warm-electron regime, we see that the scalings they a posteriori obtained (cf. (B56)
and (B101) in the ‘Collisionless two fluid limit’ and ‘Resistive two fluid limit’ of that work)
for the normalisation scale δin, coincide in the large-Δ′ limit with the scalings of (Δ′

vy
)−1

that we have detailed at the end of § 10.3. In particular, for the regime that we can write as
ρs � d̄e, these authors identified the small- and large-Δ′ conditions, which we have here
generally expressed asΔ′δ1 � 1 andΔ′δ1 � 1, respectively, via the conditionsΔ′δin � 1
and Δ′δin � 1, instead. Using the correspondence δin → (Δ′

vy
)−1, these conditions would

map into Δ′ � Δ′
vy

and Δ′ � Δ′
vy

, the former of which is consistent with (9.4). It should
be however noted that the scale δin appears in the boundary layer analysis of Zocco &
Schekochihin (2011) as a consequence of a normalisation choice of the non-ideal equations
of their model ((B35)–(B36) therein), which differs with respect to the one we have
detailed in § 7: while the scalings of their outermost and innermost non-ideal layers are a
posteriori found to coincide with those of the scales δ2 and δ1 that we introduced in §§ 7.2.1
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and 7.2.2, these authors chose instead δin ≡ (
√

2ρsδ1)
1/2 as a normalisation scale of the

innermost equations (our δ1 mapping into δ of (B28) of their work), and they subsequently
ordered the terms of the tearing equations with respect to this spatial scale. The scalings
of the relevant quantities have been thus obtained there, via some heuristic ansatz on
the width of the integral at the left-hand side of the equivalent of (3.7), in the form in
which they obtained it (cf. (B46), therein). To evaluate the integral, which depends on
ϕ′′

1 (cf. (3.10)), the terms in the corresponding auxiliary equation ((B42) therein), which
are related to integrand via ϕ′′

1 = χ ′, have been so ordered in relation to the characteristic
width δin. This approach is at the basis of the ordering of the wavelength regime in terms of
the product Δ′δin, which differs from the ordering in terms of the product Δ′δ1, which we
have here adopted, instead. The coherence of the results obtained in the two approaches,
also emphasises the margin of arbitrariness in the choice of the normalisation scale, with
respect to which it is possible to define the width of the boundary layers and to perform
the integration and matching, after some appropriate approximations of the terms in the
equations are assumed on heuristic basis. This makes possible the interpretation of δin
as the width of the solution in the innermost equation, information which is not evident if
one follows instead the normalisation procedure we have adopted in this work. At the same
time, it should be noticed that the scale (Δ′

vy
)−1 seems to be not generally identifiable as the

δin obtained by Zocco & Schekochihin (2011): although the correspondence between the
scalings of δin obtained by these authors and the scaling of (Δ′

vy
)−1 that we have obtained

holds in the large-Δ′ limit, it fails in the small-Δ′ limits (cf. their (B54) and (B97) with
the scalings at the end of § 10.3).

In summary, while on the one hand, we note the agreement of the results obtained
by solving the boundary layer equations in the different models and with integration
techniques that rely on slightly different heuristic hypotheses, on the other hand, we
note that the appearance of the characteristic scale, which, in previous works, has been
interpreted in terms of inherently kinetic features, in the MHD model of § 2, can be instead
entirely related to ‘fluid-like’ features associated with the gradients of the velocity field
in the non-ideal region. It should be also noticed, in this regard, the care with which
conclusions drawn by heuristic estimates based on dimensional analysis must be dealt
with: although it is comforting that different models of tearing mode analysis yield the
same quantitative results, their physical interpretation is a more delicate issue, which
requires further insight based on the consistency of the specific hypothesis of each model
and therefore may not be univocal. In particular, the symmetry between the scaling laws
in the small- and large-Δ′ limits with respect to the substitutionΔ′ ↔ Δ′

vy
, which we have

detailed in tables 3–5, suggests that the quantityΔ′
vy

, in this modelling related to inherently
‘fluid’ features, play a general, important role in the tearing mode regimes, which may
deserve further investigations.

11. Summary and conclusions

We have reviewed the solution of the boundary layer problem for collisionless and
resistive tearing instabilities in slab geometry, in both the small- and large-Δ′ limits. The
calculations in the warm regime, in which two matching regions are required, have been
solved in the coordinate space by using the integral representation of hypergeometric
functions to integrate the differential equations of the boundary layer approach (§§ 6
and 7). To the best of our knowledge, this kind of analysis has not been presented
before, elsewhere, and in the present work, emphasis is put on a pedagogical derivation
of the results. In this way, we have recovered the results first obtained by Pegoraro &
Schep (1986), Pegoraro et al. (1989) and Porcelli (1991) in a Fourier representation.

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


82 H. Betar, D. Del Sarto, M. Ottaviani and A. Ghizzo

While developing this analysis, we have also been able to make a direct comparison
(§ 6) with calculations in the coordinate space that had been earlier performed in the
cold-collisionless regime and in the purely resistive regime of tearing modes, where a
single matching region is required (Furth et al. 1963; Coppi 1964c; Ara et al. 1978),
and with other calculations in the coordinate space that had been carried out in the
warm-collisionless regime in the presence of warm ions (Zocco & Schekochihin 2011).

Then, by making reference to the results of the boundary layer calculations, we have
been able to relate the inverse of the derivatives of the eigenfunctions evaluated on the
neutral line to specific scalings with respect to the non-ideal parameters, which had
not been noted before (§ 8.3). We have also shown the relation of the inverse of these
derivatives with the reconnecting layer width, δ, whose operational definition, which we
had previously verified in different reconnection regimes (Betar et al. 2020), we have here
discussed for the first time (§ 8). These characteristic length scales, which can be useful
for numerical diagnostics, are summarised in table 5.

We have interpreted in § 9 the results of the boundary layer analysis in light of heuristic
derivations for the scalings of the growth rate and for the characteristic width of the
reconnection layer, by following a dimensional analysis procedure that had been already
successfully used in previous works but only when ρs = 0. In this way, we have highlighted
in § 9.3 how the heuristic approach alone fails to provide the correct scaling when the
ion-sound Larmor radius is not negligible (ρs � d̄e).

Then, thanks to the operational definition we have given of δ, and by relying on both
the heuristic estimates and the numerical solutions of the eigenvalue problem, we have
shown a further non-trivial relation between the first derivative of ψ1, evaluated close to
the neutral line, and the gradients of the velocity component parallel to it (§ 10). We have,
in this way, introduced an inverse characteristic scale length which we have named Δ′

vy
,

because of its analogy with the classicalΔ′ parameter. Using this (inverse) scale length, we
have therefore shown, both analytically and numerically, that, for the purpose of heuristic
estimates, we can generally assume ψ ′

1|x=δ ∼ ψ1|x=δ/lc with lc = max{(Δ′)−1, (Δ′
vy
)−1} �

, δ. Knowing the asymptotic scaling of Δ′
vy

, an estimate of both δ and γ can be made in
any RMHD reconnection regime (§ 10.4) by just using dimensional analysis.

It is interesting to note that, from an experimental point of view, density fluctuations
n1 are easier to be measured than magnetic perturbations ψ1, and that the former can
be related to the fluid stream function perturbation via n1 ∼ ∇2ϕ. In general, then, the
estimate of the spatial gradients of ϕ1 from experimentally measured profiles of the density
may be more reliable than the evaluation of the spatial gradients of ψ1. In this context,
the characterisation of the large- and small-Δ′ limits we have provided in § 10 with
(10.6), or, more generally, the relation between the value of Δ′

vy
= (ϕ′′

1/ϕ
′
1)|x=δ ∼ Δ′

vy
/2

(cf. definition in (10.2)) and the scaling of δ or of the other scales detailed at the end of
§ 10.3, may be of interest.

Finally, we note that the introduction of the inverse scale Δ′
vy

makes the scaling laws in
the large-Δ′ limit mirror those in the small-Δ′ limit provided the substitution Δ′ ↔ Δ′

vy
.
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Appendix A. Derivation of the model equations for tearing modes in slab RMHD

Different derivations exist in the literature of the set of tearing equations we have
considered in this paper. For the inclusion of finite ion-sound Larmor radius effects in
a two-field model under the strong (infinite) guide field hypothesis, we direct the reader
for example to Schep et al. (1994), Kuvshinov, Pegoraro & Schep (1994), Bergmans (2001)
and Del Sarto et al. (2006). Here below, we repropose however their complete derivation,
with more details than in previous articles.

Despite the different procedures proposed over the years to obtain (2.1) and (2.2), it is
agreed that their nonlinear form reads

∂

∂t
(ψ − d2

e∇2ψ)+ [ϕ,ψ − d2
e∇2ψ] = ρ2

s [∇2ϕ,ψ] + S−1∇2ψ, (A1)

∂

∂t
(∇2ϕ)+ [ϕ,∇2ϕ] = [ψ,∇2ψ]. (A2)

The above equations have been written using the standard ‘Poisson’s bracket’ notation,
[ f (x, y, t), g(x, y, t)] ≡ ∂xf ∂yg − ∂yf ∂xg. Each bracket term can be thus related to a
convection term associated with one of the two scalar function involved, e.g.

[ f , g] = (∇f × ∇g) · ez = (ez × ∇f )︸ ︷︷ ︸
uf

·∇g. (A3)

Also note that in (2.1), the equilibrium contribution has been removed from the S−1∇2ψ

term for the sake of linear analysis, since, in the asymptotic limit S−1 � 1, the time scale
of resistive dissipation of the magnetic equilibrium is a posteriori found to be much longer
than that of the tearing-type instability.

The appropriateness of (A1) and (A2), and notably of the ρ2
s -related contribution, is

supported by comparison of the linear dispersion relation obtained in the collisionless
regime (η = ν = 0) with that obtained from the full Vlasov–Maxwell system in the
same geometry configuration, that is, B0 = B0

⊥ + B0
z ez and k = k⊥ + kzez: the dispersion

relation of shear kinetic-Alfvén waves (see e.g. Hasegawa & Uberoi 1982, pp. 19–21) is
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indeed recovered,

ω2 = cA,⊥k⊥

√
1 + k2ρ2

s

1 + k2d2
e

, (A4)

where cA,⊥ is the Alfvén velocity evaluated with the perpendicular magnetic component,
only. Also note that (A1) and (A2) can be combined to give an equation for the energy
conservation in the form

∂

∂t

∫ ∫ ⎛⎜⎝|∇ψ |2︸ ︷︷ ︸
EB

+ d2
e |∇2ψ |2︸ ︷︷ ︸

EJ

+ |∇ϕ|2︸ ︷︷ ︸
Ekin

+ ρ2
s |∇2ϕ|2︸ ︷︷ ︸

Eint

⎞⎟⎠ dx dy = 2S−1
∫ ∫

|∇2ψ |2 dx dy,

(A5)

where EB, EJ , Ekin, Eint stand for the energy contributions respectively related to the in-plane
magnetic field, to the current density (or electron kinetic energy), to the ion kinetic energy
and to the internal energy (in turn related to the electron thermal energy and to their
parallel compressibility along magnetic lines – see Grasso et al. 1999).

The difference among the ‘different’ RMHD models which lead to the same set of (A1)
and (A2) is in the weight that must be attributed to the different terms of the nonlinear
equations with respect to the expansion parameters that have been adopted.

Here below, we focus on the first derivation proposed by Pegoraro & Schep (1986)
and Schep et al. (1994); Kuvshinov et al. (1994) and that has been later re-discussed by
Bergmans (2001) and Del Sarto et al. (2006). In this framework, (A1) and (A2) can be
shown to follow from the z-component of the electron momentum equation, which gives
(A1), and from the charge continuity equation, which gives (A2), under the assumption
that ∇ = (∂x, ∂y, 0) and that the gradient of the equilibrium density, and of its fluctuations
as well, are smaller than the equilibrium quantity.

We start from the fluid equations for the species α, and we assume the ion pressure to
be negligible with respect to the electron temperature (i.e. we take the cold-ion limit). The
continuity and momentum equations can be written in dimensionless form, normalised to
the MHD scales, as

∂nα

∂t
+ ∇ · (nαuα) = 0, (A6)

d2
e

(
∂ue

∂t
+ ue · ∇ue

)
= −di

(
E + ue × B − J

S

)
− ρ2

s
∇ · Πe

ne
, (A7)

d2
i

(
∂ui

∂t
+ ui · ∇ui

)
= di

(
E + ui × B − J

S

)
. (A8)

Above, the ion skin depth di = de
√

mi/me has been further introduced and the pressure
tensor Πe has been normalised to the electron density times an electron reference
temperature. This, after normalisation to the MHD scales, makes the squared ion-sound
Larmor radius appear (normalised to the equilibrium shear length).

From now on, we will refer the symbol ⊥ to the components that are orthogonal to the
guide field direction (i.e. ez), that is, that lie on the (x, y)-plane. Note that this differs from
another notation, frequently used for example in tokamak geometry, in which the direction
‘parallel’ and ‘perpendicular’ are referred to the total magnetic field. The latter choice is
generally more appropriate for the most general RMHD modelling, which we recall has
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been first introduced by Strauss (1976, 1977) in toroidal geometry and then in the so-called
‘cylindrical tokamak’ approximation, by ordering the ratio between the toroidal and the
poloidal gradients to be comparable to the ratio between the poloidal and toroidal magnetic
components. Our choice of notation is here justified by the assumption of translation
invariance for the equivalent to the ‘toroidal’ component (i.e. ∂z = 0), corresponding to
the large guide field component too (cf. figure 5).

One of the two equations we will focus on is the z-component of Ohm’s law, which, for
reasons we will show next, is more convenient to rewrite in the form:

− Ez − d2
e

di

∂ue
z

∂t
− ue

⊥ ·
[

B × ez + d2
e

di
∇ue

z

]
= −S−1Jz + ρ2

s

di

∇ · Πe

ne
· ez. (A9)

The other one is the charge continuity equation (i.e. the sum over species of (A6)
multiplied by qα/nα), which, using the quasi-neutrality condition qene + qini = 0, we can
rewrite as

qeue
⊥ · ∇(ln ne)+ qiui

⊥ · ∇(ln ni)+ ∇ · (qeue
⊥+qiui

⊥) = 0. (A10)

The two equations above will be then specialised by approximating the fluid equations
in terms the expansion parameters:

εB ≡ |B0
⊥|

B0
z

, εm ≡ me

mi
. (A11)

The electromagnetic field components are written in terms of the scalar quantities of
interest as

B = B0
z∇ψ × ez︸ ︷︷ ︸

B⊥

+ B0
z (1 + b1)︸ ︷︷ ︸

B0
z +B1

z

ez, E = − ∇φ︸︷︷︸
E⊥

− 1
c
∂ψ

∂t
ez︸ ︷︷ ︸

Ez

. (A12)

Since we assume J = (c/4π)∇ × B, it follows ∇ · B = 0 and

J⊥= c
4π

∇ × bez, Jz = −cB0
z

4π
∇2ψ. (A13)

After normalisation to the MHD scales, the fluid stream function ϕ = φ/(cB0
z ) appears as

related to the electrostatic potential. Because of the uniform guide field hypothesis, the
scalar function b also coincides with the first-order perturbation of the Bz component.

We furthermore assume |B1
⊥| ∼ |B0

⊥| ∼ εBB0
z , whence it follows

∂

∂t
∼ cA,⊥

L0
∼ εB

B0
z

L0
, (A14)

and we assume the charged particle dynamics along z to be mostly due to the electrostatic
acceleration. This means that the ion velocity component along z, ui

z, is εm times smaller
than the electron velocity component, ue

z , which is instead comparable in amplitude to both
ue

⊥ and ui
⊥. This also means that Jz ≡ qiniui

z + qeneue
z = qeneue

z + O(εm). In normalised
units, J = ne(ui − ue), and therefore

ue
z = di

∇2ψ

ne
+ O(εm). (A15)

The idea is then to use these hypotheses combined with a strong guide field limit so
to consider the drift-ordering expansion for the uα⊥ fluid velocities. Using the standard
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procedure, we obtain from (A7) and (A8)) and (A12) the normalised velocity components:

ue
⊥ = ez × ∇ϕ + (ez × ∇ψ)ue

z − ρ2
s

di
ez × ∇ · Πe

ne
− S−1ez × J⊥︸ ︷︷ ︸

1st order

+ O(ε1/2
m ε2

B)︸ ︷︷ ︸
2nd order

, (A16)

ui
⊥ = ez × ∇ϕ − S−1ez × J⊥+O(εmεB)︸ ︷︷ ︸

1st order

− di

(
∂

∂t
∇ϕ + [(ez × ∇ϕ) · ∇]∇ϕ

)
︸ ︷︷ ︸

2nd order

+ O(ε3
B).

(A17)

The O(εmεB) neglected terms in (A17) are due to the (ez × ∇ψ)ui
z contribution of

the first-order drift-expansion. We note that the terms neglected in both equations are
comparable if we order εm ∼ ε2

B.
Equations (A1) and (A2)) follow then from substitution of (A16) and (A17)) into (A9)

and (A10) after a few further specific hypotheses. They are:

(i) the ordering B1
z/B

0
z = b ∼ ε2

B, which also implies |J⊥| ∼ ε2
B; and

(ii) the assumption that the anisotropic electron pressure components are given by the
first-order FLR corrections to a double adiabatic-type pressure tensor.

The original derivation had been obtained by Schep et al. (1994) in the strictly
collisionless limit, in which, in the geometry of interest to us, the pressure tensor
components including FLR ‘gyrofluid’ corrections can be written in dimensional units
as

Πe =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Pe
⊥ + Pe

⊥
Ωe

(
∂ue

x

∂y
+ ∂ue

y

∂x

)
Pe

⊥
Ωe

(
∂ue

y

∂y
− ∂ue

x

∂x

)
Pe

⊥
Ωe

(
∂ue

z

∂y

)
Pe

⊥
Ωe

(
∂ue

y

∂y
− ∂ue

x

∂x

)
Pe

⊥ − Pe
⊥
Ωe

(
∂ue

x

∂y
+ ∂ue

y

∂x

)
−Pe

⊥
Ωe

(
∂ue

z

∂x

)
Pe

⊥
Ωe

(
∂ue

z

∂y

)
−Pe

⊥
Ωe

(
∂ue

z

∂x

)
Pe

‖

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A18)

The components of matrix (A18) can be obtained by following a standard procedure
(see e.g. Thompson 1961; Roberts & Taylor 1962; MacMahon 1965 for the ion case and
Cerri et al. (2013) for a recent re-derivation for both species in the strictly collisionless
limit). We make the further hypothesis that

Pe
‖ � Pe

⊥ = neT0 (A19)

with T0 reference electron temperature (uniform in space and constant in time). Since
normalisation to the MHD reference quantities means that ue is normalised to cA,⊥ = diΩi
and spatial derivatives are normalised to 1/a, usingΩi/Ωe � εm, the combination of (A3),
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(A15), (A18) and (A19) gives:

ρ2
s

di

(∇ · Πe)

ne
· ez = εmdi

ρ2
s

ne

(
∂ne

∂x
∂

∂y

(∇2ψ

ne

)
− ∂ne

∂y
∂

∂x

(∇2ψ

ne

))
= εmdiρ

2
s

[
ln ne,

∇2ψ

ne

]
, (A20)

ρ2
s

di
ez × ∇ · Πe

ne
= ρ2

s

di
ez × ∇(ln ne)+ O

(
εmεB

∣∣∣∣∇ne

ne

∣∣∣∣) . (A21)

Note that, in (A21), FLR corrections contribute with terms ∼ εmεB smaller than the
isotropic diamagnetic drift term: comparison with the neglected terms of (A16) and (A17)
shows that they can be disregarded.

We can now rewrite (A9) without collisions as

∂

∂t

(
ψ − d2

e
∇2ψ

ne

)
+ ue

⊥ · ∇
(
ψ − d2

e
∇2ψ

ne

)
= εmdiρ

2
s

[
ln ne,

∇2ψ

ne

]
. (A22)

From substitution of (A21) into (A16), we get, using d2
e = εmd2

i ,

ue
⊥ · ∇

(
ψ − d2

e
∇2ψ

ne

)
=

[
ϕ,ψ − d2

e
∇2ψ

ne

]
− ρ2

s

di
[ln ne, ψ]

+ εmdiρ
2
s

[
ln ne,

∇2ψ

ne

]
+ O(ε3

B)+ O(ε1/2
m ε2

B). (A23)

Note the presence of a [ln ne,∇2ψ/ne] term, identical to that of (A21), which is here
due the diamagnetic drift contribution in the convection term ue

⊥ · ∇ue
z of the electron

momentum equation. We can then write

∂

∂t

(
ψ − d2

e
∇2ψ

ne

)
+

[
ϕ,ψ − d2

e
∇2ψ

ne

]
= ρ2

s

di
[ln ne, ψ] + O(ε3

B)+ O(ε1/2
m ε2

B). (A24)

The exact cancellation of the bracket terms proportional to εmdiρ
2
s is known as

‘gyroviscous (or, better ‘gyrofluid’) cancellation’ (see Roberts & Taylor 1962). The terms
involved are however at least ε1/2

m smaller than the other ones, even when de and ρs are
left unordered with respect to εB or εm. Equation (A1) in the collisionless limit is finally
recovered once we use continuity equations for ions and quasi-neutrality. From (A6), the
continuity equation for ions can be rewritten as

∂

∂t
ln ni + [ϕ, ln ni] = di

∂

∂t
∇2ϕ + di[ϕ,∇2ϕ] + O(ε3

B). (A25)

Only the first-order E × B term of (A17) survives as a contribution to the convection
term ui

⊥ · ∇ ln ni, since we can heuristically order |∇ ln ni| ∼ εB. Equation (A25) leads us
to solve d(ln ni)/dt = di d(∇2ϕ)/dt, of which we can take the solution ln ni = di∇2ϕ that
verifies the heuristic hypothesis about the ordering of the spatial gradient of ln ni. From
quasi neutrality, we finally write

ln ne = di∇2ϕ, (A26)

which brings (A24) to the form (A1) once we approximate ne � n0 (i.e. ne � 1 in
normalised units) in the left-hand side gradients of ∇2ψ/ne.
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The equation for ∇2ϕ is finally obtained from (A10) using the same approximation of
the density ne. Such equation follows from combining (A25) with the electron continuity
equation, which, using (A16), reads

∂

∂t
ln ne + [ϕ, ln ne] + di

[
ψ,

∇2ψ

ne

]
+ O(ε3

B) = O(ε1/2
m ε2

B). (A27)

Note that the [ψ,∇2ψ/ne] contribution comes from the only non-null divergence term of
(A16), that is, from ∇ · ((ez × ∇ψ)ue

z).
When collisions are included, the +S−1∇2ψ contribution is recovered at the right-hand

side of (A22) and (A23). In principle, the pressure tensor (A18) should be modified so
as to include ‘gyroviscous’ corrections. These are provided, for example, by the model of
Braginskii (1958). However, as long as the cold ion limit is formally assumed, so as to get
rid of the ion temperature contribution, the corrections to the components of Πe due to
electron-ion viscosity are εm smaller than S−1, and thus are also negligible in (A18). The
last, further contribution we should care about is an additional +S−1∇2b ∼ O(S−1ε2

B) term
at the right-hand side of (A25), which comes from the divergence of the −S−1ez × J⊥ term
of ion drift velocity, (A17). This term is negligible under the further assumption S−1 � di.
It must be noted that the latter choice is consistent with the fact that this two-field set of
equations correspond to the extended MHD model in which the Hall term is neglected.

The quantitative comparison between the derivation here presented and that suggested
by Kleva et al. (1995), Wang & Bhattcharjee (1995) and Bian & Tsiklauri (2009), in which
the ρ2

s -related Poisson bracket is interpreted as associated with the Hall-term contribution
in Ohms’ law – see also Del Sarto et al. (2006) and appendices of Del Sarto et al. (2016)
– will be discussed elsewhere.

We finally recall that although in this modelling we assumed, since the beginning, strict
translational invariance along z, i.e. ∂/∂z = 0, the RMHD modelling in a strong guide
field, large aspect ratio tokamak with toroidal coordinates (r, θ, ϕ) allows for the inclusion
of the derivatives along ϕ that are ordered ∂/∂ϕ ∼ εB∂/∂θ , i.e. kϕ ∼ εBkθ (Strauss 1976,
1977). This maps into a Cartesian ‘extended-slab’ RMHD modelling that includes the
derivatives along z as corrections of order εB with respect to the perpendicular derivatives,
i.e. ∂/∂z ∼ εB∂/∂y or kz ∼ εBky (see, e.g. Matthaeus & Lamkin 1986 or Biskamp 2000,
p. 17). In the simplest, cold-electron limit, these corrections lead to further terms +∂ϕ1/∂z
and +∂∇2ψ1/∂z on the right-hand side of (A1) and (A2), respectively. The role of
these terms, as well as of further ρ2

s -related contributions linked to the parallel electron
compressibility in the nonlinear evolution of tearing modes with different helicities, has
been first investigated in an extended version of model equations (A1) and (A2) by Grasso
et al. (2004) and Borgogno et al. (2005).

Appendix B. About alternative definitions of the reconnection rate

In the literature, alternative quantitative definitions exist, which, for historical reasons,
are typically associated with the term ‘reconnection rate’, although they have been
formulated under the hypothesis of steady reconnection. In the notation and geometry
choice we make here, this alternative estimate of the reconnection rate can be written as

Rsteady = 1
L0

Ux|at some x 
=0
near X-point. (B1)

This definition originates from the Sweet–Parker model (Parker 1957), in which the rate
at which the magnetic flux is reconnected, normalised with respect to the reference length
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L0, is estimated as the component of the velocity U perpendicular to the neutral line such
that

(UxBy)|at some x 
=0
near X-point = Fz|at some x 
=0

near X-point . (B2)

This relation holds in the neighbourhood of the neutral line under steadiness assumptions,
for which the out-of-plane component of the electric field (Ez), which in planar
reconnection is completely inductive (i.e. Ez = −∂ψ/∂t), is zero – cf. (2.7). In this case,
the velocity Ux gives the rate per unit length L0 at which the magnetic field lines are pushed
and merged at the X-point.

Quantitative estimates of Rsteady can be obtained by arguments relying on the continuity
of the flow, which relate the velocity Ux, at which the magnetic field is dragged to the X
point, to the velocity Ux at which, after reconnection has occurred, the field is transported
out of it, along the neutral line (UxL � Uya – cf. figure 2a). These arguments also require
a force balance condition implying that the upstream velocity Uy, evaluated close to the
neutral line and sufficiently far from the X-point, is of the order of the Alfvén velocity
evaluated with respect to By: these arguments allow one to relate Ux|near X-point to the
dissipation mechanism given by Fz (Parker 1957; Petschek 1964; Parker 1973; Park et al.
1984; Wesson 1990).

Note that in the tearing mode scenario the reference length L0 is a macroscopic
quantity associated with the shear length a of the magnetic equilibrium, i.e. L0 = a. In
the first astrophysical applications of the steady reconnection scenario, instead, in which a
distinction between equilibrium and perturbed quantities is not required, the macroscopic
reference length was usually assumed to be of the order of the current sheet length L,
i.e. L0 = L � a, since the shear length a of the magnetic field By(x) associated with
the reconnecting current sheet was, in those contexts, a microscopic quantity. Thus, an
alternative definition of ‘reconnection rate per unit length L’ is often met in the literature.
This was defined by Petschek (1964) analogously to the Alfvénic Mach-number, from
which it takes the symbol, as

Mrec = Uy|near X-point

Ux|far from X-point
� Uy|near X-point

cA(L)
, (B3)

where cA(L) is the Alfvén velocity evaluated in terms of By, measured sufficiently far from
the neutral line along the neutral line x = 0, in a region where ideal MHD is valid. In the
steady reconnection scenario, this definition is practically equivalent to (B1).

Finally, a further alternative definition of the reconnection rate is also often adopted,

R̃rec = 1
E‖

dE‖
dt

∣∣∣∣
X-point

, E‖ ≡ E · B
B

. (B4)

We conclude by noting that while no ambiguity exists for the evaluation of the
reconnection rate in the tearing-type instabilities with fixed wavenumber on which we
are interested in this work, the situation becomes of course more complex in experimental
contexts or in nonlinear numerical simulations of reconnection processes, especially if
several reconnection sites (X-points) are simultaneously present and dynamically evolve
in time. In those cases, estimates based on local measures like those provided by (2.13),
(B3) and (B4) are of course more appealing for practical reasons. Their use for getting
numerical values to be compared with scalings predicted by specific reconnection models
should be however handled with care, since the way precision issues are determined in
the measurement of numerical or experimental values is often unlikely to be sufficient to
discriminate between a reconnection scenario or the other, e.g. in assessing the regime
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of reconnection events secondary to primary ones. Conversely, theoretical arguments
supporting the existence or not of some specific regime are likely to provide a more
accurate guide for the operational definition of reconnection rate that should be adopted in
each case (cf. reference quoted just before (2.10)).

Appendix C. Integration of the boundary layer equation via Fourier transformation

Tackling the integration of tearing modes in the Fourier space with respect to the
variable x is particularly useful since the overall order of the differential equations results is
lowered (note that ψ0 ∼ x → d/dkx, whereas ψ(N)

1 →∼ kN
x ψ̂1). This approach is possible

since the eigenfunctions we seek are bounded at each time with respect to the x variable.
Also note that Fourier representation is quite natural in the mathematical treatment of the
gyrokinetic operator in the Vlasov–Poisson equation which, at some level of the analysis,
must be treated when FLR effects of electrons and/or of ions are included. However, while
the integration in the Fourier space may be more efficient, from an analytical point of
view, for obtaining the dispersion relation and the asymptotic scalings of γ and δ ∼ δ1, it
has the drawback of requiring further analysis – not always trivial – for the computation
of the eigenfunction profile in closed form in the coordinate space (i.e. the inverse Fourier
transforms of the eigenfunctions integrated in the kx-space must be evaluated).

C.1. A brief historical review on the boundary layer approach to tearing-type equations
in the Fourier space

Fourier analysis was probably first applied to integrate interchange-type eigenmodes of
MHD-type equations by Coppi (1964b), and was used in the tearing mode problem
by Ara et al. (1978) to find approximate solutions of the inner equations from which
to estimate the weight of ion–ion viscosity in the dispersion relation via a variational
approach. A more detailed Fourier approach to tearing-type equations has been developed
by Pegoraro & Schep (1981) to model low-frequency modes in toroidal tokamak geometry.
This approach, which has been later used in several other specific reconnection models,
consists in performing the Fourier transformation with respect to the stretched variable ζ
of (5.9) and (5.10), and then combining the inner-layer equations forψ1 and ϕ1 into a single
equation forψ1. The integration of the tearing-type equations including FLR effect of both
ions (for which a continuity equation was derived from a gyrokinetic one) and electrons
(of which the isothermal limit was taken) has been first detailed by Pegoraro & Schep
(1986), using the ballooning representation, and then, starting from a different kinetic
model and using a somewhat different approach, by Cowley et al. (1986). The technique
detailed by Pegoraro & Schep (1986) has been further used for the internal m = 1 kink
mode in high-β regimes (Pegoraro et al. 1989). Relying on the same type of analysis,
Porcelli (1991) derived the scaling laws for the collisionless regime in which magnetic
reconnection occurs due to finite electron inertia and in combination with FLR effects.
The Fourier analysis was also applied to investigate the scaling laws of the collisionless
reconnection instabilities occurring in high frequency fluid regimes where ions form a
neutralising background (Bulanov et al. 1992; Attico, Califano & Pegoraro 2000, 2001).
The integration of tearing-type modes in Fourier space was then extended to other regimes
in which electron temperature gradients at equilibrium are admitted and finite electron
β effects are included, while a full gyro-kinetic model is taken for describing the ion
response: motivated by the operational regime of large-size tokamaks, which is expected to
fall in the semi-collisional regimes where the width of the semi-collisional region is much
smaller that the ion Larmor radius and finite β-effects are expected to play an important
role, Connor et al. (2012b) investigated tearing-type instabilities in low−β and high-β
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regimes and the transition between them by relying on integration in the Fourier-space. In
doing so, these authors also made a comparison of the solutions they obtained with those
previously found in the coordinate space by Cowley et al. (1986). Here, solutions of tearing
equations in the semi-collisional limit were obtained by starting from a full kinetic model
and by performing an expansion of the eigenfunctions in powers of the ratio between
the integration layer width over the ion Larmor radius. The technique used by Connor
et al. (2012b) is analogous to the boundary layer approach discussed by Pegoraro & Schep
(1981, 1986): using the fact that the dynamics of ions decouples from that of electrons
at a distance of the order of the ion gyro-radius, the system of equations in each region
was first transformed into a single equation for the current density in the Fourier space.
Then, for the low−β regime, the current density equation for ions was solved by Connor
et al. (2012b) in Fourier space, while that for electrons was solved in real space. These
solutions were made to match each other at some intermediate layer, while the solution in
the ion region was also required to match that in the ideal MHD region, located far from
the resonance surface. The technique to find the solution in the ion and electron regions
consisted in expanding and matching the current density in powers of β. This method
leads to a general dispersion relation that extends that of previous models by including four
branches: the ion drift mode, the drift tearing mode, and other two branches corresponding
to the kinetic Alfvén waves which couple to drift tearing modes for finite values of β.

C.2. Comparison of the analysis of §§ 4–6 with the Fourier approach
In the analysis of §§ 4–6, we have considered the low−β regime with isothermal electrons,
no equilibrium density fluctuations and cold ions, which rules out the coupling with drift
modes while the coupling with kinetic Alfvén waves is restricted to the branch described
by (A4). It is easy to show the essential points of the Fourier approach of Pegoraro & Schep
(1986) discussed above, by making a direct comparison with the equations discussed in
§§ 4–6 by Fourier transforming (5.9) and (5.10), and to combine them together so as to
write a single equation for the Fourier components of the current density. To this purpose,
let us first define Fourier transform for a function f (ζ ) as

f̂ =
∫ +∞

−∞
f (ζ )eiqζ dζ, ζ = x

σ
, q = kxσ, (C1)

where we have re-called the definition of the stretched variable, and therefore the relation
of the ‘stretched’ Fourier coordinate q with kx, the standard Fourier-conjugate wavenumber
of x. For the scale σ , we have used the same notation of Porcelli (1991). In the notation
adopted throughout the present manuscript, it would read indeed δ1 or δ2. Multiplying
(5.9) and (5.10) by eiqζ and integrating from −∞ to +∞ while using the definition (C1),
one obtains respectively

q2

Ĝ2

d2ψ̂1

dq2
−

(
1 + q2

Ĝ2

)
ψ̂1 = −id2

e
d ˆ̃ϕ
dq
, ˆ̃ϕ = −i

dψ̂1

dq
. (C2)

Taking the derivative of the second equation in (C2) with respect to q and substituting the
results in the former, one finds(

d2
e + q2

Ĝ2

)
d2ψ̂1

dq2
−

(
1 + q2

Ĝ2

)
ψ̂1 = 0. (C3)

This equation represents an eigenvalue problem for the eigenfunction ψ̂1. For analytical
convenience, it is however useful to transform it in an eigenvalue problem for the current
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density Ĵ1 = q2ψ̂1. After this substitution, one obtains

(
d2

e Ĝ2 + q2
) d2

dq2

(
Ĵ1

q2

)
− (q2Ĝ2 + 1)Ĵ1 = 0. (C4)

This is the cold-ion limit of (3) of Porcelli (1991). The equivalence is evident once
the following correspondence between variables and parameters of the aforementioned
reference and those of §§ 4–6 are established: Γ = γ , Δ2 = d2

e(1 + S−1/γ ) → d2
e , and

ρτ = (ρ2
s + ρ2

i )
1/2 → ρs.

Here, we do not discuss further the solution of (C4), since it represents a specific case
of the equation already solved by Pegoraro & Schep (1981, 1986) and further used by
Pegoraro et al. (1989), Porcelli (1991), Attico et al. (2000, 2001) and Connor et al. (2012b).

Appendix D. An example of renormalisation of a differential equation

Consider (6.12) that we rewrite here for convenience as

ϕ̃′′
1

c0
− A

BC
ζ 2 ϕ̃1

c0
= A

B
ζ, (D1)

where

A ≡ �2, B ≡ d̄2
e , C ≡ G2. (D2)

As an example, let us consider the case in which also the scale � is non-trivial (i.e.
� 
= 1). From the point of view of physical dimensions, (6.12) and (D1) are already
written in dimensionless form but we want to check if it is possible to bring them to
the ‘cleaner’ form of (6.13), after further renormalisation of quantities. Suppose then to
multiply (D1) by AaBbCc, where a, b, c are here numerical coefficients to be determined a
posteriori. Estimating, just for the purpose of dimensional analysis, ϕ̃′′

1 ∼ ϕ̃1/ζ
2, we obtain

the following system:

AaBbCc

(
ϕ̃1

c0

)
ζ−2 ∼ 1, Aa+1Bb−1Cc−1

(
ϕ̃1

c0

)
ζ 2 ∼ 1, Aa+1Bb−1Ccζ ∼ 1. (D3)

The choice of fixing all right-hand side coefficients equal to a number is made possible by
the fact that the number of independent conditions is equal to or larger than the number of
unknown coefficients a, b, c: the parameters A,B and C can be thus completely absorbed
in the redefinition of ζ and ϕ̃1/c0. This is the case also when the scale � is absent, i.e. when
� = A = 1. When the number of parameters is larger than the number of constraints, some
further parameter(s) corresponding to a dimensional combination(s) of powers of A,B, . . .
will appear in the renormalised equations. The system above can be therefore solved to find
that the values of the sought coefficients are a = −3/4, b = 3/4, c = −1/4. This means
that we can define

z ≡ Aa+1Bb−1Ccζ = A1/4B−1/4C−1/4ζ,

Φ ≡ A−a−1B−b+1C−c−1

(
ϕ̃1

c0

)
= A−1/4B1/4C−3/4

(
ϕ̃1

c0

)
.

⎫⎪⎬⎪⎭ (D4)

For � = 1, this corresponds to (6.13).
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FIGURE 17. The region where the solutions ψα and ψβ diverge is here displayed in a grey
colour inside two lobes that join each other at ζ = 0. Outside these two lobes, both series

converge.

Appendix E. Convergence and independence of the solutions of the hypergeometric
form of the inner equation

We here discuss some technical details about the solutions ((7.25) and (7.27)) of
the innermost equation, which we have obtained by evaluation of the residues of its
hypergeometric form.

E.1. Convergence of ψα and ψβ
Following the ratio test of sequences for the coefficients of (1 + ζ 2)s, one finds
limm→∞ gm+1/gm = 1, meaning that the power series (7.25) and (7.27) converge when
‖1 + ζ 2‖ > 1. This region covers all the complex plane, except when ζ = 0. In the
complex plane, the boundary corresponding to the convergence radius ‖1 + ζ 2‖ = 1 is
given by

(1 + ζ 2
R − ζ 2

I )
2 + 4ζ 2

Rζ
2
I = 1, (E1)

which is a curve forming two lobes joining at ζ = 0 and intersecting the ζR = 0 axis at
ζI = √

2, while the maximum width of the lobes occur at ζR = ±1/2 and ζI = ±√
3/2.

The region inside the lobes of figure 17 represents the divergence region, which includes
the singular points at ζI = ±i.

E.2. Linear independence of ψα and ψβ
It is not difficult to prove that the two solutions given by (7.25) and (7.27) are linearly
independent in the domain of convergence, say Dα,β , where both ψα and ψβ are defined.
One way to prove this is to show that their Wronskian is non-zero everywhere in Dα,β .
An easier way to proceed is to investigate the independence of the leading terms in both
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series. Taking m = 0, (7.25) and (7.27) become

ψα,0 = Γ (−ν)
Γ

(
5
4

− ν

2

)
Γ

(
1
4

− ν

2

) (1 + ζ 2)α/2, ψβ,0 = Γ (ν)

Γ

(
5
4

+ ν

2

)
Γ

(
1
4

+ ν

2

) (1 + ζ 2)β/2.

(E2)

The coefficients in the two previous relations are non-zero. Therefore, if α 
= β, then
ψα,0 and ψβ,0 are linearly independent, and so are ψα and ψβ . However, if α = β, then
ν = 0. Using the definition of the Γ function for positive and negative arguments, this
means that the growth rate γ is purely imaginary. Therefore, in this case, the configuration
is stable to tearing-type modes, which is not a case of interest here.

Another interesting remark related to (7.25) and (7.27) is that they are even functions
with respect to ζ . Due to this symmetry, we expect that there is also an odd solution
with respect to ζ which will be obviously linearly independent of the even solutions. The
existence of this additional solution would apparently raise a paradox, because we would
now have three independent solutions: the two independent even solutions ψα and ψβ ,
and one odd solution, whereas a second-order ODE cannot have more than two linearly
independent solutions. This apparent paradox can be solved by observing that going from
ζ = 0+ to ζ = 0− in the complex plane by passing through ζ = 0 is not possible for any
of the two series, because both ψα and ψβ diverge there. Therefore, one should follow
one of the lobes drawing the boundary of the divergence region in the complex plane (see
figure 17), that is, one of the lobes encircling the singularities at ζ = ±i. Thus, to construct
this solution, one can use a linear combination of the two series. This combination can be
obtained using the integral representation and by choosing a path Cα (or Cβ , alternatively)
that goes around the poles associated with the exponent α (or β) by thus avoiding those of
β (or α).

Appendix F. Heuristic estimation of the scaling laws by making use of the inverse
gradient scale lc and of Δ′

vy

Here we discuss the logical steps of a unified heuristic procedure which would make it
possible to deduce the correct scalings in any regime and wavelength limit among those
considered in this work, were the scaling of Δ′

vy
be always deductible: in any regime, we

obtain a scaling law, which is symmetric with respect to that of the small-Δ′ limit prior
to the substitution of Δ′ ↔ Δ′

vy
. The proposed procedure, however, is ‘self-consistent’ in

all regimes with the exception of the large-Δ′, warm-electron limit, where the scaling
of Δ′

vy
appears to be a priori non-deducible via dimensional analysis. To facilitate the

identification and presentation of the logical steps of the proposed heuristic procedure,
they are summarised as statements and formulae in tables 3–5.

In particular, in table 3, we recall the approximated linear equations, definitions and
general constraints we rely upon, as well as the conclusions that can be drawn for them
regardless of the reconnection regime considered.

Finally, in table 5, we consider the cold-tearing regimes (ρs = 0), both collisionless and
resistive, by showing how the heuristic approach that takes Δ′

vy
into account works and

still provides the good scalings. Although having introduced the new scale Δ′
vy

makes
the heuristic procedure slightly longer than the one discussed in § 9.3, it allows one
to appreciate the ‘symmetry’ between Δ′ in the small-Δ′ limit and Δ′

vy
in the large-Δ′

limit also in these cold-electron regimes. More importantly, and differently from the
warm-reconnection regimes, it becomes manifest that for ρs = 0, it is possible to close

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


Microscopic scales of collisionless tearing modes 95
G

en
er

al
hy

po
th

es
es

an
d

co
nd

iti
on

s
fo

ra
he

ur
is

tic
-t

yp
e

ap
pr

oa
ch

A
pp

ro
xi

m
at

io
n

[T
4.

E
1]

ψ
1

−
ik γ

xJ
0ϕ

1
�

d2 e
ψ

′′ 1
−

ik
J 0 γ
ρ

2 s
xϕ

′′ 1
+

S−
1

γ
ψ

′′ 1

E
qu

at
io

ns
[T

4.
E

2]
ϕ

′′ 1
�

−
ik

J 0 γ
xψ

′′ 1

D
efi

ni
tio

ns
[T

4.
D

1]
δ

:
ψ
(i
v
)

1
(δ
)
=

0

[T
4.

D
2]

l c
:

ψ
′ 1(
δ
)
∼
ψ

1(
δ
)

l c

[T
4.

D
3]

Δ
′ v y

≡
ϕ

′′ 1
(δ
)
−
ϕ

′′ 1
(−
δ
)

ϕ
′ 1(
δ
)

=
2ϕ

′′ 1
(δ
)

ϕ
′ 1(
δ
)

[T
4.

C
1]

γ
ϕ

′ 1
kψ

1

∣ ∣ ∣ ∣ x=
δ

∼
2

l c
Δ

′ v y
(f

ro
m

T
4.

E
2,

T
4.

D
2–

T
4.

D
3)

C
on

st
ra

in
ts

[T
4.

C
2a

]
γ
ϕ

′′ 1
kψ

1

∣ ∣ ∣ ∣ x=
δ

∼
O
(1
)

[T
4.

C
2b

]
γ
ϕ

′ 1
kψ

1

∣ ∣ ∣ ∣ x=
δ

∼
O
(1
)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

H
yp

ot
he

se
s

[T
4.

H
1]

l c
∼

m
ax

{(Δ
′ )−

1 ,
(Δ

′ v y
)−

1 }
�
δ

[T
4.

H
2]

ψ
′′ 1
(δ
)
∼
ψ

1(
δ
)

l c
δ

R
es

ul
ts

1
[T

4.
R

1a
]

l c
∼

O
(1
)
⇒

l c
∼
(Δ

′ )−
1

�
(Δ

′ v y
)−

1
[T

4.
R

1b
]

l c
∼
(Δ

′ v y
)−

1
�
(Δ

′ )−
1

(f
ro

m
T

4.
C

2a
,T

4.
D

3
T

4.
C

1
an

d
T

4.
H

1)
(f

ro
m

T
4.

C
21

an
d

T
4.

C
b)

T
A

B
L

E
3.

St
ar

tin
g

eq
ua

tio
ns

,d
efi

ni
tio

ns
an

d
as

su
m

pt
io

ns
ba

se
d

on
ge

ne
ra

lc
on

st
ra

in
ts

th
at

w
e

ta
ke

fo
rt

he
he

ur
is

tic
-t

yp
e

ap
pr

oa
ch

in
al

lr
ec

on
ne

ct
io

n
re

gi
m

es
.E

qu
at

io
ns

[T
4.

E
1–

T
4.

E
2]

ar
e

th
e

ei
ge

nm
od

e
eq

ua
tio

ns
((

2.
1)

an
d

(2
.2

))
in

w
hi

ch
w

e
ha

ve
as

su
m

ed
k

to
be

ne
gl

ig
ib

le
w

ith
re

sp
ec

tt
o

th
e

in
ve

rs
e

sc
al

e
of

th
e

sp
at

ia
lg

ra
di

en
ts

of
th

e
ei

ge
nf

un
ct

io
ns

.E
qu

at
io

ns
[T

4.
D

1–
T

4.
D

3]
ar

e
th

e
op

er
at

io
na

ld
efi

ni
tio

ns
w

e
ha

ve
gi

ve
n

in
§§

8,
9

an
d

10
of

δ
,l

c
an

d
Δ

′ v y
,r

es
pe

ct
iv

el
y.

E
qu

at
io

ns
[T

4.
C

1,
T

4.
C

2]
an

d
[T

4.
H

1]
re

pr
es

en
tf

ur
th

er
co

nd
iti

on
so

n
th

e
pa

ra
m

et
er

st
ha

tm
us

tb
e

fu
lfi

lle
d

re
ga

rd
le

ss
of

th
e

re
co

nn
ec

tio
n

re
gi

m
e:

[T
4.

C
1]

is
a

co
ns

tr
ai

nt
th

at
fo

llo
w

s
fr

om
[T

4.
E

2]
an

d
de

fin
iti

on
s

[T
4.

D
2–

T
4.

D
3]

;c
on

di
tio

ns
[T

4.
C

2a
]a

nd
[T

4.
C

2]
co

rr
es

po
nd

to
(1

0.
9)

th
at

w
e

ha
ve

di
sc

us
se

d
in

th
e

te
xt

;c
on

di
tio

n
[T

4.
H

1]
co

rr
es

po
nd

s
to

th
e

an
sa

tz
(1

0.
5)

di
sc

us
se

d
in

th
e

te
xt

.E
qu

at
io

ns
[T

4.
R

1a
]a

nd
[T

4.
R

1b
]

ar
e

tw
o

im
m

ed
ia

te
co

nc
lu

si
on

s
th

an
ca

n
be

dr
aw

n
an

d
al

lo
w

us
to

sp
ec

if
y

hy
po

th
es

is
[T

4.
H

1]
in

th
e

sm
al

l-
an

d
la

rg
e-
Δ

′ l
im

its
,r

es
pe

ct
iv

el
y.

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


96 H. Betar, D. Del Sarto, M. Ottaviani and A. Ghizzo

W
ar

m
-r

ec
on

ne
ct

io
n

re
gi

m
es

w
ar

m
-c

ol
lis

io
nl

es
s

re
gi

m
e

w
ar

m
-r

es
is

tiv
e

re
gi

m
e

H
yp

ot
he

si
s

2
[T

5.
H

2]
kδ γ

ϕ
1

ψ
1
Δ

′ v y
∼

2 ρ
2 s

(ψ
1

∼
k2 ρ

2 s

γ
2

x2 ψ
′′ 1

in
T

4.
E

1,
us

in
g

T
4.

E
2)

H
yp

ot
he

se
s

3
[T

5.
H

3a
]

l c
δ

∼
d2 e

[T
5.

H
3b

]
γ

l c
δ

∼
S−

1

(ψ
1

∼
d2 e
ψ

′′ 1
in

T
4.

E
1)

(ψ
1

∼
S−

1

γ
ψ

′′ 1
in

T
4.

E
1)

R
es

ul
t2

[T
5.

R
2]

γ
∼

kρ
s

( δ l c

) 1/2
(f

ro
m

T
4.

C
1

an
d

T
5.

H
2)

R
es

ul
t3

[T
5.

R
3a

]
γ

∼
kρ

s
d e l c

[T
5.

R
3b

]
γ

∼
k2/

3 ρ
2/

3
s

S−
1/

3

l2/
3

c

(f
ro

m
T

5.
H

3a
,T

5.
R

2)
(f

ro
m

T
5.

H
3b

,T
5.

R
2)

R
es

ul
t4

[T
5.

R
4a

]
[T

5.
R

4b
]

[T
5.

R
4c

]
[T

5.
R

4d
]

γ
∼

kΔ
′ ρ

sd
e

γ
∼

kΔ
′ v y
ρ

sd
e

γ
∼
(k
Δ

′ )2
/
3 ρ

2/
3

s
S−

1/
3

γ
∼
(k
Δ

′ v y
)2
/
3 ρ

2/
3

s
S−

1/
3

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(f
ro

m
T

4.
R

1a
)

(f
ro

m
T

4.
R

1b
)

(f
ro

m
T

4.
R

1a
)

(f
ro

m
T

4.
R

1b
)

R
es

ul
t5

[T
5.

R
5a

]
[T

5.
R

5b
]

[T
5.

R
5c

]
[T

5.
R

5d
]

δ
∼
Δ

′ d
2 e

δ
∼
Δ

′ v y
d2 e

δ
∼
(k
ρ

sS
)−

2/
3 Δ

′1/
3

δ
∼
(k
ρ

sS
)−

2/
3 Δ

′1/
3

v
y

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(δ
is

fo
un

d
by

re
ve

rs
in

g
T

5.
R

2
fo

rt
he

re
le

va
nt

va
lu

e
of

l c
an

d
γ

:
δ

∼
(γ
/
(k
ρ

s)
)2

l c
)

T
A

B
L

E
4.

C
om

bi
ni

ng
th

e
hy

po
th

es
es

an
d

re
su

lts
re

po
rt

ed
in

ta
bl

e
2

w
ith

hy
po

th
es

es
[T

5.
H

2–
T

5.
H

3]
th

at
ar

e
sp

ec
ifi

c
of

th
e

w
ar

m
re

gi
m

es
,i

t
is

po
ss

ib
le

to
de

du
ce

in
a

se
lf

-c
on

si
st

en
tw

ay
th

e
se

to
f

eq
ua

tio
ns

[T
5.

R
2–

T
5.

R
5]

.I
tm

us
tb

e
em

ph
as

is
ed

,h
ow

ev
er

,t
ha

tt
he

sy
st

em
of

co
nd

iti
on

is
no

t
cl

os
ed

in
th

e
la

rg
e-
Δ

′ r
eg

im
e

an
d

ad
di

tio
na

li
nf

or
m

at
io

n
ab

ou
tΔ

′ v y
is

re
qu

ir
ed

to
ob

ta
in

th
e

co
rr

es
po

nd
in

g
sc

al
in

g
la

w
s.

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


Microscopic scales of collisionless tearing modes 97
C

ol
d-

re
co

nn
ec

tio
n

re
gi

m
es

co
ld

-c
ol

lis
io

nl
es

s
re

gi
m

e
co

ld
-r

es
is

tiv
e

re
gi

m
e

H
yp

ot
he

si
s

2
[T

6.
H

2]
kδ γ

ϕ
1

ψ
1

∼
O
(1
)

(ψ
1

∼
ik γ

xϕ
1

in
T

4.
E

1)

H
yp

ot
he

se
s

3
[T

6.
H

3a
]

l c
δ

∼
d2 e

[T
6.

H
3b

]
γ

l c
δ

∼
S−

1

(ψ
1

∼
d2 e
ψ

′′ 1
in

T
4.

E
1)

(ψ
1

∼
S−

1

γ
ψ

′′ 1
in

T
4.

E
1)

C
on

st
ra

in
t3

[T
6.

C
3]

l c
+
δ

l c
δ

∼
kδ γ

ϕ
′ 1
ψ

1
(ψ

′ 1
∼

ik γ
(x
ϕ

1)
′ an

d
T

4.
D

2,
T

6.
H

2)

C
on

st
ra

in
t4

[T
6.

C
4]

Δ
′ v y

∼
1 δ

((
ψ

1 x
)′′

∼
ik γ
ϕ

′′ 1
an

d
T

4.
D

2,
T

4.
H

2)

C
on

st
ra

in
t5

[T
6.

C
5]

γ
2

∼
2

k2 δ
3

l c
+
δ

(f
ro

m
T

6.
C

3,
T

4.
C

1
us

in
g

T
6.

C
4)

R
es

ul
ts

2
[T

6.
R

2a
]

γ
∼

kδ
3/

2 Δ
′1/

2
fo

rδ
Δ

′ �
1

(T
6.

C
5

an
d

T
4.

R
1a
)

[T
6.

R
2b

]
γ

∼
kδ

fo
rδ
Δ

′ �
1

(T
6.

C
5,

T
4.

R
1b

,T
6.

C
5)

R
es

ul
ts

3
[T

6.
R

3a
]

[T
6.

R
3b

]
[T

6.
R

3c
]

[T
6.

R
3d

]

γ
∼

kΔ
′2 d3 e

γ
∼

kΔ
′2 v y

d3 e
γ

∼
(k
Δ

′2 )
2/

5 S−
3/

5
γ

∼
(k
Δ

′2 v y
)2
/
5 S−

3/
5

∼
kd

e
∼

k2/
3 S−

1/
3

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(f
ro

m
T

4.
R

1a
)

(f
ro

m
T

4.
R

1b
)

(f
ro

m
T

4.
R

1a
)

(f
ro

m
T

4.
R

1b
)

R
es

ul
t4

[T
6.

R
4a

]
[T

6.
R

4b
]

[T
6.

R
4c

]
[T

6.
R

4d
]

δ
∼
Δ

′ d
2 e

δ
∼
Δ

′ v y
d2 e

δ
∼

k−
2/

5 Δ
′1/

5 S−
2/

5
δ

∼
k−

2/
5 Δ

′1/
5

v
y

S−
2/

5

∼
d e

∼
k−

1/
3 S−

1/
3

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(Δ
′ δ

�
1)

(δ
is

fo
un

d
by

re
ve

rs
in

g
T

6.
C

5
us

in
g

T
6.

H
3a

,b
fo

rt
he

re
le

va
nt

va
lu

e
of
γ
)

T
A

B
L

E
5.

C
om

bi
ni

ng
th

e
hy

po
th

es
es

an
d

re
su

lts
re

po
rt

ed
in

ta
bl

e
2

w
ith

hy
po

th
es

es
[T

6.
H

2]
an

d
[T

6.
H

3]
th

at
ar

e
sp

ec
ifi

c
of

th
e

co
ld

re
gi

m
es

,i
ti

s
po

ss
ib

le
to

de
du

ce
in

a
se

lf
-c

on
si

st
en

tw
ay

th
e

se
to

f
eq

ua
tio

ns
[T

6.
C

3]
–[

T
6.

R
4]

.N
ot

e
th

at
,i

n
th

is
ca

se
,t

he
se

to
f

co
nd

iti
on

s
is

cl
os

ed
al

so
in

th
e

la
rg

e-
Δ

′ r
eg

im
e

th
an

ks
to

[T
6.

H
2]

,w
hi

ch
le

ad
s

to
th

e
co

ns
tr

ai
nt

[T
6.

C
4]

th
at

se
ts

th
e

sc
al

in
g

of
Δ

′ v y
to

be
th

e
sa

m
e

of
δ
−1

.A
ll

sc
al

in
gs

ca
n

be
th

is
w

ay
a

pr
io

ri
de

te
rm

in
ed

w
ith

ou
tr

es
or

tin
g

to
nu

m
er

ic
al

ca
lc

ul
at

io
ns

.

https://doi.org/10.1017/S0022377822001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001088


98 H. Betar, D. Del Sarto, M. Ottaviani and A. Ghizzo

the system of heuristic conditions also in the large-Δ′ limit, so as to determine a priori the
corresponding scaling of Δ′

vy
, which here always results to be the same of δ.

In table 4, we specialise the results to the warm-tearing regimes (ρs 
= 0), both
collisionless and resistive: in each regime, we report the further ansatz required to get
the sought scalings in both the small- and large-Δ′ limits. The ‘symmetry’ of the scalings
written in the small-Δ′ limit in terms of Δ′ with respect to the scaling written in the
large-Δ′ limit in terms of Δ′

vy
can be in this way appreciated, although the system of

equations is not closed in the large-Δ′ limit and we must rely on additional information
(e.g. numerical calculations performed by following the procedure detailed in previous
§ 10.3) to explicitly evaluate Δ′

vy
.
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