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We revise in detail and in a pedagogical way the analysis of the boundary layer theory
of warm tearing modes in slab, reduced MHD, when magnetic reconnection is driven
by electron inertia and/or resistivity, and ion-sound Larmor radius effects are included.
By comparison with the numerical solution of the corresponding eigenvalue problem we
interpret these results by means of a heuristic approach, which in the warm electron
regime we show to be in general not feasible without knowledge of the scaling of the
gradient of the magnetic flux function, differently from what happens in the cold-eletcron
regimes. We put in evidence a non-trivial relation between the first derivative of the
magnetic flux function and of the velocity parallel to the neutral line, evaluated in its
proximity, by thus providing insight to the multiple boundary layer analysis that Pegoraro
& Schep (1986) first showed to be required in warm-tearing regimes. In this way we also
suggest and justify a general operational definition of the reconnecting layer width and
we discuss the linear appearence of microscopic scales related to the gradients of the
eigenfunctions of the tearing modes.

1. Introduction

Magnetic reconnection is one of the chief processes of conversion between electro-
magnetic energy and particle kinetic energy in magnetised plasmas (see, e.g., (Biskamp
(2000); Yamada et al. (2010))). At the basis of extreme energy releasing phenomena
that naturally occur in space plasmas, such as solar flares, coronal mass ejections
or magnetic substorms, magnetic reconnection is of fundamental importance also in
magnetically confined thermonuclear fusion plasma experiments: in fusion devices like
tokamaks it can cause disruptions (see, e.g., (Wesson (1990)), that is, the sudden loss
of the magnetic confinement. This is usually due to magnetic island formation via
tearing-like instabilities, and can affect the transport of matter and energy. Among the
different scenarii, which have been devised since the first formulations of the “magnetic
reconnection” concept in the works by Giovanelli (1946); Hoyle (1949); Dungey (1950),
tearing-type modes (Furth. et al. (1963)) are the prototypical example of spontaneous
reconnecting instabilities, that is, of magnetic perturbations which grow exponentially in
time by inducing magnetic reconnection. Their “explosive” behaviour in time make them
the chief candidates for the explanation of several fast energy releasing events, which, both
in Nature and in laboratory plasmas, are attributed to magnetic reconnection processes.
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Their theoretical modelling is however not trivial, since the mathematics required to
solve the corresponding eigenvalue problem is complicated by some technical features
that make its integration typically more complex than that of most linear instabilities.
Notably, due to the multi-scale nature of the linear problem in which linear differential
operators intervene, a boundary layer integration procedure is required.

Since Furth’s remark (Furth. (1963, 1962)) of the relevance of electron inertia in
allowing magnetic reconnection and since the early model by Furth. (1962); Coppi (1964c,
1964a) for inertia-driven reconnecting instabilities, kinetic scale effects have attracted
increasing attention in the attempt to model the rapid magnetic reconnection phenomena
observed in low collisionality plasmas. After the seminal paper by Furth. et al. (1963), in
which the theory of resistive tearing mode has been first formulated, several attempts have
been made, in order to include collisionless and/or kinetic physics in the linear tearing
mode theory. Even if some works exist in which a full kinetic or girokinetic analytical
treatment has been considered (Laval et al. (1966); Coppi et al. (1966); Hazeltine &
Ross (1975); Drake & Lee (1977); Cowley et al. (1986); Daughton (1999); Daughton &
Karimabadi (2005); Zocco & Schekochihin (2011); Connor et al. (2012b)), the complexity
of the boundary layer analysis and of the heuristic assumptions on the ordering of the
different microscopic scales makes the identification of the different reconnection regimes
a quite difficult task, especially when two or more non-ideal MHD parameters enter in
the reconnection rate. This is true even in a relatively simple fluid description extended
to include non-ideal MHD effects.
For this reason, heuristic approaches have been developed in order to tackle the boundary
layer problem with a simplified dimensional-like analysis, based on estimations about the
characteristic gradients and about the balance of the terms of the linear equations. These
techniques have been succesfully used to recover the asymptotic scalings of the growth
rate and of the reconnection layer width in the purely resistive and purely inertial regimes
of reduced MHD (RMHD) instabilities. They are also often presented in textbooks on
magnetic reconnection as a “short-cut” procedure to obtain these results without carrying
out the full boundary layer integration of the eigenmodes. Providing an estimate of the
characteristic temporal and spatial scales of spontaneous reconnecting instabilities, and
comparing them with the values inferred from experimental meaures of reconnection
events occurring in laboratory or in Nature, are indeed among the elements of principal
interest, in this context. Heuristic methods based on dimensional analysis have also
proven to work for both small and large values of the ∆′ instability parameter (Ottaviani
& Porcelli (1995)) and for the fastest growing mode in a large aspect ratio current sheet
(Bhattacharjee et al. (2009); Comisso et al. (2013); Del Sarto et al. (2016)). Moreover,
they are generally used to obtain insight on the physics of the problem and on the
interpetation of some non-trivial results of the boundary layer analysis (see, e.g., (Drake
& Lee (1977); Cowley et al. (1986))). However, as we are going to discuss in this work,
heuristic methods “fail” to obtain the scalings first computed by Pegoraro & Schep (1986);
Porcelli (1991) with a boundary layer approach, when electron temperature effects are
included, unless some further careful assumptions are made, which are related to the
boundary layer decomposition of the spatial domain: whether be possible to develop
heuristc arguments which allow one to obtain these results without relying on further
information from boundary layer analysis (or from numerical integration of the linear
problem), is at the moment an open question.

One of the main purpose of this work is to revise in a tutorial way the linear analysis
of tearing-type modes in these regimes, by discussing their analytical solutions in the
coordinate space and by showing this way the advantages and limitations of heuristic-
type derivations. At the best of our knowledge, indeed, details of the analytical theory for
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this double-boundary layer approach have been seldom discussed in existing literature.
When this has occurred, the analysis was based on the solution of the eigenvalue problem
in the Fourier space (Pegoraro & Schep (1986)), or by using a different linear model
based on a reduced fluid-kinetic approach (Zocco & Schekochihin (2011)) and by taking
a somewhat different analytical approach based on perturbation methods to solve the
boundary layer equations that here we will tackle by direct integration, instead. It
should be nevertheless recalled that other analytical works on this subject exist. In
these, the boundary layer analysis of tearing modes is however complicated by further
ingredients related for example to the geometry of the magnetic equilibrium profile (see,
e.g., (Militello et al. (2004); Connor et al. (2012a); Zocco et al. (2020))) or to the inclusion
of full kinetic effects (see the references previously cited in this regard). Moreover, also
in the few works that addressed these subjects with different approaches with respect to
the one we develop here, most details of the complex analysis involved in the calculations
were often not reported and are difficult to track.

In order to simplify the analysis and to show in a pedagogical way the essential features
of the double boundary layer separation, we focus here on the limit of cold ions, which
allows us to take a fluid closure for the latter, differently from the semi-kinetic models
considered in practically all previous works, which already treated this problem (see, e.g.,
(Pegoraro & Schep (1986); Cowley et al. (1986); Pegoraro et al. (1989); Porcelli (1991);
Zocco & Schekochihin (2011))). In particular, we rely on the equations of the two-fluid
reduced-MHD model extended to include ion-sound Larmor radius effects, for which
different derivations exist (Zank & Matthaeus (1992); Schep et al. (1994); Bergmans
(2001); Del Sarto et al. (2006); Bian & Tsiklauri (2009)), which are based on two different
types of ordering between fluctuations of the ion density and of the guide field magnetic
component (cf. Appendix A). Several more recent and refined gyrofluid models exist,
which are based on the evolution of more than two scalar fields. However, the two-field
model we focus on, which has been used in several nonlinear studies of different magnetic
reconnection scenarii (see (Kleva et al. (1995); Cafaro et al. (1998); Grasso et al. (1999);
Bergmans & Schep (2001); Del Sarto et al. (2003); Wang et al. (2011)) to cite the earliest)
or even of turbulence (Milosevich et al. (2018)), contains the whole essential physics of
the problem. More specifically, it yields the same linear system to which all other, more
refined, cold-ion models converge in the isothermal electron limit.
In order to accomplish our pedagogical purpose, we then give a step-by-step presentation
of the boundary layer integration procedure in the coordinate space, with the aim of
maintaining it “self-contained”, that is, by trying to provide all the analytical tools useful
for the purpose (e.g., element of complex analysis), when they result necessary for the
algebra. By then comparing the analytical results with those obtained with a numerical
eigen-solver (Betar et al. (2020)) based on a multi-precision toolbox (Holoborodko
(2012)), we analyse the spatial behavior of the corresponding eigenfunctions and we
discuss the limitations and delicate points of heuristic estimations that are sometimes
used as a “quicker” alternative to full boundary layer calculations. Although the main
focus of this article is on the warm-electron regime we also consider, for comparison,
the cold-electron limit, in which a single boundary layer analysis suffices. In particular,
we consider in a unified way both the resistive and collisionless regimes, and we sepa-
rately address the cold- and warm-electon regimes. Each regime is associated to some
characteristic non-ideal parameter: the Lundquist number S−1 related to resistivity, the
electron skin depth de related to electron inertia in the collisionless limit, and the ion
sound Larmor radius ρs, related to the electron temperature.

We thus discuss the results of the boundary layer analysis, which yields the asymptotic
scaling (in terms of the non-ideal parameters ruling the reconnection process) of the
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growth rates and of some characteristic spatial scales associated to the eigenfunctions, as
well as the approximated profile of the latter in some regions of the domain of integration.
We then discuss the asymptotic estimates of the first derivatives of the current and
velocity field on the neutral line. We also provide (to the best of our knowledge, for the
first time) a formal quantitative definition of the reconnection layer width, which we
argue to be valid in all reconnection regimes and which is given in terms of numerically
measurable quantities that are related to the spatial profile of the eigenfunctions.

Then, in interpreting these quantities in terms of a heuristic approach, whose limita-
tions in the warm-electron case we point out, we put in evidence that the introduction
of the scale ρs makes appear in the collisionless large wavelength limit a further char-
acteristic “mixed” scale, which is smaller than de when ρs > de, since it scales like

∼ ρ−1/3
s d

4/3
e . Such a characteristic length, which in previous works (Porcelli (1991)) had

been already noted, is identifiable as the reconnecting layer width, in agreement both with
the operational definition here proposed and with previous works that already recognised
it as such (Zocco & Schekochihin (2011)).

By discussing the boundary layer results in the light of a heuristic dimensional-type
approach we also show a new, non-trivial relation between the first derivative of the
magnetic flux function and the first drivative of the parallel velocity, that holds close
to the neutral line. This velocity gradient displays characteristic scalings that depend
on the wavelength regime. Information about these scalings is a priori not evident, and
the analysis we provide on this subject at the end of this work suggests indeed that
such information can not be obtained via simple dimensional analysis, if not in the cold-
electron regimes. Nevertheless, introducing this scale length allows in any reconnection
regime the writing of the scaling laws in a way that results to be perfectly symmetric
between the small and large wavelength limit, provided the characteristic instability
parameter of the small wavelength limit (i.e, the ∆′ parameter of (Furth. et al. (1963)))
is replaced in the large wavelength limit by the gradient of the velocity (which we
have here called ∆′vy , by analogy). This fact, and the correspondence between some
characteristic scale length associated to this velocity gradient and scale lengths that in
other works based on a kinetic approach have been interpred in terms of inherently kinetic
features (Drake & Lee (1977); Cowley et al. (1986); Ottaviani & Porcelli (1993); Zocco &
Schekochihin (2011)), suggests that the role of this quantity in the tearing mode linear
dynamics deserve future investigation.

The structure of this article is as follows.

• In Sec. 2, we discuss the model equations and some general aspects of magnetic re-
connection which include: a brief historical review of the notion of magnetic reconnection
associated to that of magnetic topology and some general features of tearing modes and
of the magnetic structures they induce (§2.1); the notion of reconnection rate and its
relation with the growth rate of the eigenvalue problem (§2.2).
• In Sec. 3 we introduce the notion of boundary layer, we discuss its relevance to

tearing mode analysis and we outline the key points of the corresponding integration
strategy. Then we introduce the notion of instability parameter (∆′) and the way it
intervenes in the matching of the solutions between the ideal and non-ideal regions of the
domain (§3.1). We discuss the wavelength regimes of the eigenmode solution in terms of
the amplitude of ∆′, by pointing out similarities and differences between tearing modes
in slab and in cylindrical geometry (§3.2). In §3.3 we briefly review previous works in
which a boundary layer analysis similar to the one we develop here has been discussed.
• In Sec. 4 we address the boundary layer integration by starting from the ideal region,

where the hypotheses of ideal MHD hold, and we detail the integration procedure which
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allows the analytical evaluation of ∆′(k) in terms of the instability wavenumber k for a
specific equilibrium profile, which exemplifies a larger class of equilibria (4.1).
• In Sec. 5 we introduce the notions of “generalised” resitivity and electron inertia,

which allow a unified treatment of the resistive and collisionless case altogether, and we
discuss the combination of the two non-ideal parameters. We then discuss the strategy
for the identification of the integration layers in the non-ideal region via the general
approximations valid in the non-ideal region ( §5.1) and the criteria of normalisation
(§5.2). We then introduce the auxiliary function, useful for the integration of the bundary
layer problem in some regimes, by discussing its small and large wavelength limits (§5.3)
and then its normalisation (§5.4). Finally, we outline the criteria that may make one prefer
to perform the integration of the non-ideal equation by using the auxiliary equations
rather than the equations for the two scalar fields (§5.5).
• In Sec. 6 we solve the boundary layer problem in the cold-electron regimes. First we

find the solution in the large-∆′ limit (§6.1) and then in the small-∆′ limit (§6.2).
• In Sec. 7 we address the warm-electron regimes: after discussing the general form

of the equations in the non-ideal region (§7.1) we identify the two boundary layers of
interest in this case (§7.2) and then we outline the integration strategy that will be
pursued, by relying on the integral representation of hypergeometric functions (§7.3).
First we consider the solution in the large-∆′ (§7.4) and then in the small-∆′ limit
(§7.5).
• In Sec. 8 we address the problem of identifying the characteristic width of the recon-

necting layer by relying on further hypotheses of physical character and by starting from
the characteristic scales obtained from the boundary layer integration. After reviewing
different notions of reconnecting layer that have been adopted in literature, over the
years (§8.1), we propose an operational definition of its width, related to the distance
of the local maxima (or minima) of the current density from the neutral line, which
can be useful for both experimental and numerical application, and which is shown via
numerical integration to provide the same scalings of the inner layer width (§8.2). The
asymptotic scalings of further characteristic spatial scales associated to the derivatives
of the magnetic field and of the velocity profile on the neutral line are then estimated
and compared to the scalings of the reconnecting layer width in different regimes (§8.3).
• In Sec. 9 we address the problem of the heuristic derivation of the scaling laws of

tearing modes via dimensional analysis. After discussing the relevance and usefulness of
the approach and after having outlined its general hypotheses (§9.1), we apply it to the
“text-book” example of the cold-electron regimes, where its efficiency is well established
(9.3). Then we show and discuss its “failure” in the warm-electron regimes, where it
yields wrong estimates with respect to those obtained from the boundary layer analysis
(§9.3).
• In Sec. 10, starting from the physical insight brought by the analysis of the logical

points which may lead to the wrong dimensional estimates in the warm-electron regime,
we introduce a new characteristic scale length associated to the gradient of the velocity
component parallel to the neutral line and evaluated close to it: by analogy with the
instability parameter we call it ∆′vy (§10.1). We then postulate a further estimate for the
gradient of the magnetic flux function, which, depending on the reconnection regime, can
be related to ∆′vy (§10.2). After having shown the convergence of a numerical procedure
which allows the quantification of ∆′vy (§10.3) we show its relevance for the heuristic
estimates: they can now lead to the correct results −although in the warm electron regime
the procedure is not “closed”, since it is strongly suggested that the scale ∆′vy can not be
obtained by simple dimensional analysis− and they can be cast in a “symmetric form”,
in which the scalings in the large-∆′ limits mirror those of the small-∆′ limits provided
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the substitution ∆′ ↔ ∆′vy (§10.4). The significance of the inverse scale length ∆′vy is
further discussed by comparison with results obtained in previous works on boundary
layer calculations, in which a characteristic length displaying similar scalings in some
regimes had been already noted (§10.5).
• Conclusions follow in Sec. 11.
• Further technical details are reported in the Appendices. These include: calculations

related to the derivation of the model and a discussion of the relevant hypotheses
(Appendix A); a brief discussion of alternative definitions found in literature for the
notion of “reconnection rate”, which are not directly relevant to the problem we consider
here (Appendix B); a discussion on the general strategy of integration of the boundary
layer problem of tearing modes in the Fourier space, and a comparison of the equations we
have integrated with those appearing in previous works available in literature (Appendix
C); a didactical example of normalization of a differential equation (Appendix D); the
proof of convergence and linear independence of the solution found in Sec. 7.4 (Appendix
E); the detailed discussion of the logical steps, which allow one to generalise the heuristic
estimate discussed in Sec. 10.4 in terms of ∆′vy (Appendix F).

2. Model equations and linear problem: general features

We consider the reduced MHD limit, from now on RMHD, (Strauss (1976, 1977); Zank
& Matthaeus (1992)) and we consider the standard tearing equations in slab geometry
(∂/∂z = 0) for a strongly magnetized plasma whose guide field component is along the
z direction. Fluid incompressibility, valid for the bulk plasma at the leading E × B-
drift ordering and possibly with inclusion of drift-diamagnetic corrections (see Appendix
A), allows us to reduce the number of independent vector components and therefore to
consider a limited set of scalar quantities.

Choosing perturbations of the form† ∼ f(x)eiky+γt+c.c. we linearize the equations
around equilibria with an odd B0

y(x) component, which vanishes at x = 0, and with a
null in-plane fluid velocity at equilibrium, U0(x, y) = 0.
It can be shown that only two scalar fields are necessary. The relevant equations can be
then represented by the equation for one of the in plane components of B and by the
equation for one of the in-plane components of the fluid velocity. These can be cast in
the form of two coupled equations for the stream functions ψ and ϕ. Details about all
these features, and bibliographical references as well, are provided in Appendix A.
In particular, ψ(x, y, t) and b(x, y, t) are the normalized scalar functions defining the
magnetic field components, B = ∇ψ×ez + bez, whereas ϕ(x, y, t) is the stream function
for the in-plane E×B-drift velocity, U⊥ = −∇ϕ×ez, expressing the normalised gradient
of the electrostatic potential in RMHD. Here, the large guide field ordering allows us to
completely neglect the dynamics related to the scalar function b.

Labeling with indices “0” and “1” the equilibrium quantities and first order pertur-
bations, respectively, the linearisation is then performed around equilibria of the form
ψ(x, y, 0) ≡ ψ0(x), even with respect to x = 0, with φ(x, y, 0) = 0. Normalised as
indicated below and using, for simplicity of notation, the same symbols for the fields
defined in the coordinate space and for their Fourier transform with respect to the y
variable, the equations we will work with, read:

γ[ψ1−d2
e(ψ
′′
1−k2ψ1)]−ikϕ1(ψ′0−d2

eψ
′′′
0 ) = −ikρ2

s(ϕ
′′
1−k2ϕ1)ψ′0 +S−1(ψ′′1−k2ψ1), (2.1)

† Here we have already used knowledge of the fact that the eigenmodes we are considering
have low frequencies, so that ω/γ ∼ 0. This can be taken here as a verifiable heuristic assumption.



Microscopic scales of collisionless tearing modes 7

γ[ϕ′′1 − k2ϕ1] = ikψ′0(ψ′′1 − k2ψ1)− ikψ1ψ
′′′
0 . (2.2)

We can also cast Eqs.(2.1-2.2) in a matrix form (useful for the eigenvalue solution) as

γ

(
F 0
0 L

)(
ψ1

ϕ1

)
=

(
S−1L B
A 0

)(
ψ1

ϕ1

)
, (2.3)

where we have introduced the differential operators

L ≡ ∂2

∂x2
− k2, F ≡ 1− d2

eL, (2.4)

A ≡ ik(ψ′0L − ψ′′′0 ), B ≡ ik
[
(ψ′0 − d2

eψ
′′′
0 )− ρ2

sψ
′
0L
]
, (2.5)

C being the ρs = 0 limit of B.
The non-ideal parameters of the model are normalised to the reference scale length

L0. They correspond to the electron skin-depth, de, to the ion-sound Larmor radius, ρs
and to the Lundquist number S. The reference length L0 is chosen to be the equilibrium
shear length a of ψ0(x) at t = 0, whereas times are normalised to the reference Alfvén
time τA computed with respect to the in-plane equilibrium magnetic field component,
evaluated sufficiently far from the neutral line.

Several derivations exist of Eqs.(2.1-2.2). The parameter ρs, which violates the La-
grangian invariance of the parallel electron canonical momentum F ≡ ψ − d2

e∇2ψ, is
related to electron parallel compressibility effects Grasso et al. (1999). It is also considered
to be a Finite-Larmor-Radius (FLR) effect, since in a strong guide field limit it can be
shown to be due to a component of the non-isotropic electron pressure tensor that enters
in the equation of ψ via the diamagnetic drift component of the fluid electron velocity
(see Schep et al. (1994) and Appendix A).

2.1. Magnetic reconnection in tearing modes and formation of magnetic islands

A magnetic reconnection process is characterised by the formation of an X-point,
where initially distinct magnetic lines have connected thanks to non-ideal effects that
become important there where the gradients of the magnetic field components, i.e.
the components of the current density, are large enough. As a result of the magnetic
reconnection event, the plasma system typically relaxes to a final state of lower “potential
magnetic energy”, the diminished energy being converted into plasma kinetic and internal
energy and into electron acceleration. During this process, the “magnetic topology” in
the plasma changes since the connection of fluid elements is globally modified −see Fig.
1.

Non-ideal effects allow a local violation of the topological conservations implied by
ideal Ohm’s law (Cowling (1933); Alfvén (1942); Elsasser (1950a); Batchelor (1950);
Elsasser (1950b); Truesdell (1950); Lundquist (1951); Newcomb (1958)), which would
otherwise prevent initially distinct magnetic lines embedded in the plasma to intersect.
Mathematically speaking, this kind of conservation is a consequence of the fact that
Faraday-Ohm’s law in an ideal MHD plasma,

∂B

∂t
= ∇× (U ×B), (2.6)

is equivalent, thanks to a well known vector identity† combined with continuity equation
(Truesdell (1950)), to a vector expression that corresponds to the null Lie-derivative‡ of

† ∇× (U ×B) = U(∇ ·B)−B(∇ ·A) + (B ·∇)A− (A ·∇)B.
‡ See, e.g., (Dubrovin et al. (1991)) §III.23 for a definition of Lie derivative in tensor notation

in the coordinate representation and (Schouten (1989)), §II.8 for the Lie-derivative of tensor
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A

B

D

C

X-point

( II )

Figure 1. Cartoon schematizing three steps of a simplified 2D magnetic reconnection process
that emphasizes the notion of change of magnetic topology. Left frame, (I): two magnetic lines
connecting different pairs of fluid elements, A ↔ B, and C ↔ D, are twisted by the ideal fluid
motion so to locally generate strong spatial gradients, i.e. current densites. Center frame, (II): the
magnitude of the spatial gradients locally compensates the smallness of the non-ideal parameters
in generalised Ohm’s law, by thus allowing the relaxation of the topological constraints that in
the ideal limit forbid the intersection of initially distinct magnetic lines; an X-point is formed.
Right frame, (III): the magnetic reconnection process underwent at the X-point, by which
magnetic energy is dissipated and/or converted into other forms of plasma energy, makes other
magnetic configurations accessible to the plasma; the magnetic topology has globally changed,
as the magnetic lines now connect the pairs of fluid elements A ↔ D, and B ↔ C.

the vector field B/n dragged by the velocity field U : this directly implies the Lagrangian
invariance of magnetic lines from which a set of topological conservations follow, the
most famous of which go under the names of “(Cowling)-Alfvén theorem” (Cowling
(1933); Alfvén (1942)), “Woltjer invariants” Woltjer (1958) and “connection theorem”
(Newcomb (1958)) −see (Tur & Yanovsky (1993); Kuvshinov & Schep (1997); Del Sarto
et al. (2006)) and references therein for a more detailed discussion. This is mathematically
analogous to the set of topological conservations related to the fluid vorticity, which
were well known to follow from the inviscid vorticity equation in a barotropic fluid (see
Truesdell (1954)). In this context, the Alfvén theorem of magnetic flux conserivation
in an ideal MHD plasma is the mirror correspondent of the Helmholtz-Kelvin theorem
of vorticity conservation in ideal hydrodynamics¶ (Batchelor (1950); Elsasser (1950b);
Truesdell (1950); Axford (1984); Greene (1993)). In terms of the RMHD equations above,
the Lagrangian invariance of magnetic lines is expressed by the ideal limit (de = ρs =
S−1 = 0) of Eq.(2.1), although a finite ρs alone allows preservation of the ideal MHD
topological conservation, provided a redefinition of the stream function of the velocity
field U according to ϕ → ϕ − ρ2

s∇2ϕ (Pegoraro et al. (2004)). In particular, in the
collisionless regime, even the nonlinear evolution of tearing-type instabilties can be shown
to be ruled by the conservation of Lagrangian invariants whose existence is related to
the condition ρs 6= 0 (Cafaro et al. (1998); Grasso et al. (2001)).

The early notion of magnetic reconnection has been formalised by Dungey (1950,
1953) after the intuitions by Giovannelli and Hoyle. The former one first noted the
occurrence of solar flares in correspondence of regions of local inversion of the magnetic
field perpendicular to the Sun surface, and thus made the hypothesis that this could have
been a signature of a mechanism of conversion from the magnetic energy to the plasma
kinetic energy allowed by resistivity (Giovanelli (1946)); the second one conjectured
that the same may have occurred also in the terrestrial magnetotail (Hoyle (1949)).
Resistivity is one of the non-ideal effects capable of violating alone the Lagrangian

densities of arbitrary “weight” (cf.also (Lovelock & Rund (1989)), p. 105 for the notion of
“relative tensor”).
¶ We incidentally note that some formal similarities can be also recognised in the eigenmode

analysis of resistive tearing modes and of ideal instabilities in presence of viscosity in a
Kolmogorv hydrodinamic flow (Fedele et al. (2021)).
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invariance of B, so as the electron inertia, or the electron-electron viscosity, or a non-
zero out-of-plane component of the rotational of the divergence of the pressure tensors,
also are. All these non-ideal effects, together with other ones such as the Hall-term,
can be synthetically expressed with the vector Φε in generalised Ohm’s law, ε generally
indicating the infinitesimally small parameter weighting the non-ideal contribution† (we
use the same normalisation of Eqs. (2.1-2.2)):

E +U ×B = Φε (2.7)

Magnetic reconnection at least requires ∇×Φε 6= 0.
The first analytical model of magnetic reconnection was the well known Sweet-Parker

model (Sweet (1958); Parker (1957)), which assumes steady inflow condition in an X-
point: in this case resistive reconnection steadly occours in one point (the X-point)
of a static current sheet of finite elongation L and of large aspect ratio L/a, which
asymptotically scales as S, when the Lundquist number is defined with respect to the
current sheet thickness† a, as in Eq.(2.1) −see Fig. 2, top left frame. This steady
reconnection scenario has been then extended to the inertia-driven regime by Wesson
(1990), for applications to the sawtooth crash in tokamaks, and by Bulanov et al. (1992)
for applications to reconnection in the electron-MHD regime. Variations to this model, in
which a different choice of the boundary conditions around the reconnecting region has
been made and different rates of magnetic reconnection have been obtained, have been
done in subsequent works, starting from that of Petschek (1964) −see also (Vasyliunas
(1975)) and references therein.

Instead, the notion of tearing mode, the first example of spontaneous reconnecting
instability, has been formalised a few years later in the pioneristic work by Furth. et al.
(1963). In this case, the current sheet is assumed to have periodic boundary conditions
along the “resonant line” where the wave-vector of the linear perturbation is locally
orthogonal to the equilibrium magnetic field. That is, if B0(xs) ·k = 0, then the equation
x = xs defines a resonant line in 2D and a resonant surface in 3D. After a translation
of the reference amplitude of the sheared magnetic field component it can always be
assumed that the sheared equilbrium magnetic field is zero at x = xs, and changes sign in
its neighborhood: therefore, in slab geometry the resonant line is usually termed “neutral
line”. It can be seen from the energy principle that theB0(xs)·k = 0 condition minimises
the stabilising role played by Alfvénic perturbations: this is why rational surfaces (m,n) in
large aspect ratio tokamaks are candidate resonant surfaces for tearing-type instabilities‡.

† Although ideal Ohm’s law at the MHD scale takes the form of (2.7) with Φε = 0, note
that the dominant contribution to generalised Ohm’s law, obtained by summing Eqs.(A 7-A 8)
multiplied by the respective charge over mass of the species, comes from electron momentum
equation. That is, electrons fix the strongest “frozen-in” condition between the plasma flow
and the magnetic field, which, by neglecting all electron inertia, electron-electron viscosity and
electron-ion viscosity (i.e., reistivity), and electron-pressure anisotropy, is expressed by the “ideal
Hall-MHD Ohm’s law”: E+ue×B = 0 ⇔ E+ui×B = di(J ×B)/n. While at MHD scales,
where U ' ui, the frozen-in condition equally applies for both ions and electrons, at smaller
spatial scales the magnetic field can decouple from the ion fluid, but, as long as E+ue×B ' 0
(or, better, as long as E+ue×B ' ∇f) holds, magnetic lines are dragged by the electron fluid
flow. Note in this regard that Eq.(2.1) for the magnetic stream function ψ, corresponding to
the z-component of Ohm’s law, also expresses the variation of the z-component of the electron
canonical momentum (cf. Appendix A).
† When S is instead defined −let us call it SL − with respect to the current sheet length, L,

the scaling of the Sweet-Parker aspect ratio reads L/a ∼ S1/2
L .

‡ We recall that a rational surface in a tokamak is a magnetic surface characterised by
the condition q(r) = −m/n. In the large aspect ratio limit, i.e., the “cylindrical tokamak”
approximation, the safety factor reads q(r) = Bϕr/(BθR), where Bϕ and Bθ are respectively
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The harmonic perturbation along the neutral line direction (the wave-vector k of Eqs.(2.1-
2.2)) induces a sinusoidal modulation of the perturbed magnetic field lines that gives rise
to the characteristic “magnetic island” pattern: in this case a pair of X-points (at the
local minima of ψ1) delimit each magnetic island, and an elliptic point for the magnetic
field, called O-point (at the local maximum of ψ1), is at the center of the island −see Fig.
2, top right frame (see also (White (1983, 1986)) for a tutorial discussion about further
features of tearing mode analysis that go beyond the purpose of the present work). In
the lower frames of Fig. 2 other reconnection scenarii related to the merger of current
filaments (Syrovatskii (1966a); Biskamp & Welter (1980)) and to the “coalescence” of a
chain of magnetic islands (Finn & Kaw (1977); Longcope & Strauss (1993)) are shown
for comparison.

As tearing-type modes are linear instabilities, they grow exponentially in time, which
marks an important, fundamental difference with respect to the Sweet-Parker scenario:
the structure of the reconnecting current sheet is not static but is altered by the current
density associated to the tearing mode perturbation, which makes the magnetic island
grow in thickness until nonlinear saturation of the instability (see (Ottaviani et al. (2004))
and references therein for a survey of different saturation scenarii). This dynamics is
associated to hyperbolic patterns of the velocity field around both the X and O-points,
whereas only the hyperbolic flow in the X-point is required in the Sweet-Parker scenario.
The hyperbolic flow at the X-point is responsible of the well known quadrupole pattern
of the stream function of the velocity field†, and the elliptic and hyperbolic structure of
ψ, ϕ and of their derived fields near the critical points (X and O) fix the symmetries
of the eigenmode solutions. If the equilibrium magnetic profile is even with respect to
the neutral line, as it is typically assumed in analytical models for tearing modes (as
we will do here), the matrix operators of Eq.(2.3) commute with the parity operator
inducing the transformation x ↔ −x, which makes tearing modes have a fixed parity
in x. Keeping into account the parity in y associated to the harmonic perturbation, the
point symmetries of the ψ1 and ϕ1 fields near the critical points (X- and O-) for tearing
modes developing in an even magnetic equilibrium can be summarized as

X-point :

{
ψ even in x, even in y
ϕ odd in x, odd in y

O-point :

{
ψ even in x, even in y
ϕ odd in x, odd in y

(2.8)

These symmetries nonlinearly mix via the Poisson bracket operators, of which the terms
of Eqs.(2.1-2.2) are a rewriting, after linearisation (cf. Eqs.(A 1-A 2), Appendix A). A
local quadratic expansion of the eigenmodes near the critical points, which accounts
for these non-linear couplings, allows interesting insight in the early non-linear, local
dynamics of tearing-type instabilities (Pegoraro et al. (1995); Del Sarto et al. (2011)).

We conclude recalling that several effects, beside of the inclusion of further non-ideal
terms in Ohm’s law, have been considered, over the years, in the linear theory of tearing
modes in reduced MHD. These include the effect of flows parallel to the neutral line, which

the toroidal and poloidal component of the magnetic field and r and R are the minor and major
radius of the tokamak, respectively. It is easy to verify that the condition k(r) ·B(r) = 0 defines
a rational surface for k = m/(2πr)eθ + n/(2πR)eϕ.
† We incidentally note that this also provides a quite simple explanation (cf. (Del Sarto

et al. (2016)), App. A) of the quadrupole pattern associated to the out-of-plane magnetic field
component at the X-point, in the regime where Hall term is dominant in generalised Ohm’s
law (quadrupole structure which is often recognised as an experimental proxy of Hall-mediated
reconnection −cf., e.g., (Deng & Matsumoto (2001))): in this regime the Lagrangian invariance of
the magnetic field is expressed with respect to the electron flow (see Fruchtman (1991); Pegoraro
et al. (2004); Del Sarto et al. (2006)), which is in turn associated to the in-plane current density,
and therefore to the spatial modulation of the out-of-plane magnetic field.
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[h!]

non-uniform
rigid

displacement

Figure 2. Comparison of four reconnection scenarii. Top left frame: sketch of the steady
Sweet-Parker reconnection scenario. No particular hypotheses are done on the boundary
conditions of the reconnecting current sheet, whereas steadiness and a specific scaling of the
aspect ratio with non-ideal parameters like resistivity (i.e, L/a ∼ S−1, (Sweet (1958); Parker
(1957))) or electron inertia (Wesson (1990)) are required. The configuration does not represent
an instability: no distinction is made between equilibrium and perturbed quantities. Top
right frame: typical “magnetic island” configuration in the tearing-type reconnection. Periodic
boundary conditions along the neutral line are required and hyperbolic patterns of the velocity
field near the X- and O-points develop together with the island formation. The wave number
of oscillations of the mode fixes the number of magnetic islands which are generated. In the
linear stage, the island width is w ' δ � a. Lower frames: merger configuration (left) of two
undisplaced line currents (Syrovatskii (1966a); Biskamp & Welter (1980); Kleva et al. (1995)),
which resembles to a non-periodic version of the “coalescence instability” scenario (right). The
latter concerns a periodic structure constituted by magnetic islands in a chain (Finn & Kaw
(1977); Pritchett et al. (1979); Bhattacharjee et al. (1983)). In the displaced curent merger
case, the attraction of two parallel current filaments squeezes the magnetic field that piles up
and typically dissipates at the X-point: in this configuration one may rather speak of “magnetic
annihiliation” (cf., e.g., (Priest & Sonnerup (1975); Watson & Craig (1998); Gu et al. (2019))). In
the colaescence instability scenario, a somewhat similar process occours (an out-of-plane current
density being associated to the O-point of each island) once a non-rigid displacement along
the neutral line perturbs the periodic configuration by making the islands get closer, pairwise.
Similarly, a periodic 2D “paving” of magnetic cell-like structures of different shape (not shown
here) can be destabilised the same way by planar, non-rigid displacements (Longcope & Strauss
(1993)).
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can have a stabilising effect on the tearing mode instability (Bulanov & Sakai (1979);
Syrovatskii (1981); Faganello et al. (2010)), and which can also make the latter compete
with the Kelvin-Helmholtz instability (Hofmann (1974); Chen & Morrison (1990); Ofman
et al. (1991); Chen et al. (1997)) −cf. also (Einaudi & Rubini (1986); Wang et al. (1988);
Bettarini et al. (2006); Li & Ma (2012)) for a numerical linear study; the stabilising effect
of an in-plane magnetic field component orthogonal to the neutral line (see (Nishikawa
(1982); Somov & Verneta (1988, 1989))); the role of equilibrium density gradients, which
via the diamagnetic drift frequency gives a time-resonant character to the so-called
drift-tearing modes (Coppi (1965); Drake & Lee (1977); Coppi et al. (1979)). These
diamagnetic effects are particularly important in tokamaks, where they are related to
the rotation of tearing structures and contribute to the nonlinear or resonant coupling
of tearing modes with different mode numbers (see, e.g., (Hicks et al. (1984); Cowley &
Hastie (1988); Fitzpatrick et al. (1993))), but also influence their linear evolution and
stability threshold (see, e.g., (Mahajan et al. (1978, 1979); Migliuolo et al. (1991); Grasso
et al. (2001); Yu (2010))). In tokamaks also temperature gradients may induce, in the
framework of a gyrokinetic description, the onset of the so-called “micro-tearing” modes
(see, e.g., (Hazeltine & Ross (1975); Drake & Lee (1977); Gladd et al. (1980); Connor
et al. (1990))), which cause the formation of microscopic magnetic islands that can affect
turbulent transport (see (Doerk et al. (2011)) and foster stochastic fluctuations of the
magnetic field, which can in turn affect tearing modes (Carreras et al. (1981)) and the
magnetic confinement (see, e.g., Firpo (2015)). Also, we recall that the linear tearing
mode theory has been extended and adapted so to study modes simoultaneously and
interdependently occurring on two (or more), sufficiently close resonant surfaces, i.e., the
double- (or multiple-) tearing modes (Furth et al. (1973); Pritchett et al. (1980); Wang
et al. (2011)); or to include the so-called “neo-classical effects” related to pressure gradient
and toroidal curvature in tokamak plasmas. Although the latter effects are intrinsically
nonlinear, they can be self-consistently included in the study of the linear growth of
the so-called “neo-classical tearing” modes (NTMs, in specialised “jargon”): these are
modes developing out of a seed magnetc island (e.g., produced by previous tearing-type
instabilities which have saturated and have become stable) and which are driven by
the so-called “boot-strap current” (see, e.g., (Hahm (1988); Lütjens & Luciani (2002);
Wilson (2012))). Beside of the large number of works developed over the years on these
subjects, attention has been recently drawn also on the role that a background plasma
turbulence can have in driving the growth of NTMs (see, e.g., (Muraglia et al. (2009,
2011); Agullo et al. (2017a,b); Choi (2021)). These latter subjects are somewhat related
(see, e.g., (Brennan et al. (2002))) to the further topic of forced magnetic reconnection,
which has also been considered in the framework of tearing mode theory, by looking at
the way an external forcing affects the stability and growth of the linear modes (see, e.g.
(Hahm & Kulsrud (1985); Fitzpatrick (2008); Wang & Bhattacharjee (1997))). None of
these subjects is however of further concern to us, here: in the following we will focus
on the linear problem related to Eqs.(2.1-2.2) only, with respect to which each of these
ingredients would provide further elements of analytical complicacy that would lead us
beyond the purpose of this work.

2.2. Eigenvalue of the linear problem and reconnection rate in tearing-type modes

In literature, the notion of “reconnection rate”, let us name it as Rrc, formally refers
to the rate at which the magnetic flux changes over time close to the X-point during a
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magnetic reconnection event associated to it. In general we can write

Rrc ≡
1

ΦΩ(B)

dΦΩ(B)

dt
, ΦΩ(B) ≡

∫
Ω

B · dS, (2.9)

where Ω is the resonant surface, which in a planar configuration corresponds to the
surface generated by translation of the neutral line along the invariant coordinate (z in
the slab coordinate system we have chosen). If we assume the planar current sheet (or the
neutral line) to be static and along the y direction, then Ω = `y`z, where the extension
of the length `y depends on the specific reconnection process considered.

The way this rate is evaluated clearly depends on the reconnection scenario which
is considered. A few words on this topic are therefore useful, since the contrasting
terminology acquired on this subject by specialised literature dealing with different
reconnection scenarii (e.g., steady, Sweet-Parker-like, vs. tearing-type reconnection) can
be sometimes confusing (cf. also (Biskamp (2000)), p.54 for a brief discussion and, here,
Appendix B). This is especially important, since the reconnection rate is related to
the rate at which magnetic energy is converted into other forms of plasma energy and
therefore to the power released in the form of thermal energy and particle acceleration
during a reconnection event. This subject is at the basis of many open questions turning
around magnetic reconnection in both laboratory and astrophysical plasmas. These
subjects, still debated, concern for example: the model capable of accounting for the
short time scale of the sawtooth crash and of other reconnection-related distruptions in
tokamaks (see, e.g., (Porcelli et al. (1996); Wesson (1986, 2004); Boozer (2012); Jardin
et al. (2020))); a theoretical model of the fast release of energy during solar flares and
coronal mass ejections (see, e.g., (Shibata (1998); Cassak & Shay (2012); Aschwanden
et al. (2014, 2016); Janvier (2017); Aschwanden et al. (2019); Aschwanden (2020))); the
mechanism of energy release at the basis of X-rays and γ-ray emmisions (gamma-ray
bursts) in pulsars, magnetars and nebulae (see, e.g., (Lyutikov (2003); Tavani et al.
(2011); Uzdensky (2011)); the processes by which the kinetic and magnetic energy of the
photospheric plasma are likely to heat up the expanding solar wind by a factor ∼ 106

over the distance of just a solar radius, supposedly via reconnection in the turbulent
coronal plasma (see, e.g., (Leamon et al. (2000); Matthaeus & Velli (2011))); the energy
injected in the magnetosphere via solar wind-magnetosphere interactions and released
during geomagnetic storms (see, e.g., (Lakhina & Tsurutani (2016))), and the impact that
the ensuing space-weather perturbations may have on terrestrial biosphere and human
activity (see (National Research Council (2008)) and further more specific studies like,
e.g., (Gopalswamy (2016); Nelson (2016); Eastwood et al. (2018); Knipp et al. (2018))).
Regardless of whether the tearing mode theory be actually relevant and capable to explain
these phenomena or not, it should be noted that the comparison od theoretical estimates
of the reconnection rate with the characteristic time scales directly measured or inferred
from experiments or simulations, is probably the main criterion presently used to assess
the pertinence of tearing-type instabilities or of alternative magnetic reconnection models
for these energy releasing processes.

The operational definition by which the reconnected flux can be computed accord-
ing to (2.9) has been refined over time in different contexts, that also keep account
of observational difficulties related to issues encountered in both direct experimental
and numerical measurements (see (Parker (1957); Petschek (1964); Syrovatskii (1966a,
1966b); Bratenahl & Yeates (1970); Baum et al. (1971); Parker (1973); Schnack (1978);
Park et al. (1984); Chen et al. (1997); Hesse et al. (2005); Comisso & Bhattacharjee
(2016); Grasso et al. (2020))). For the purpose of the present discussion we here rely on
the formal definition: combination of (2.9) with Eq.(2.7) via Faraday’s law and Kelvin-
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Stokes theorem of circulation allows us to write

Rrc =
1

ΦS(B)

∫
Ω

(
∂B

∂t
−∇× (U ×B)

)
· dS = − c

ΦS(B)

∫
Ω

(∇×Fε) · dS, (2.10)

where the curl term in the first integral generally accounts for the evolution of the surface
over which the magnetic flux is calculated, as it is dragged by the bulk plasma velocity U .
If the surface over which the flux is evaluated is static, like it can be chosen in the Sweet-
Parker scenario or for non propagating tearing-like modes, that contribution is null. This
is the case we are interested in, in which we consider a non-evolving integration surface
along the neutral line, whose extension in the y direction depends on the reconnection
scenario considered, as it will be specified below. If, under this assumption, we specify
the surviving terms of the first integral of (2.10) for the slab geometry, RMHD variables
B = ∇ψ × ez + bez of Eqs.(2.1-2.2), we can write dS = dy dz ex and therefore

ΦΩ(B) =

∫
Ω

B · dS =

∫
Ω

Bx,1 dy dz =

∫
lz

dz

∫
ly

∂ψ1

∂y
dy. (2.11)

Thus, posing the X-point to lay on the line x = 0, we obtain

Rrc =

∫
ly
dy ∂2ψ1(0, y, t)/∂t∂y∫
ly
dy ∂ψ1(0, y, t)/∂y

. (2.12)

In the case of tearing modes, it is easy to see from the symmetries of the eigenmode
solutions (2.8) that it is appropriate to consider the integration interval in y not to have
the X-point in the middle (otherwise the spatial integral would vanish). For a single
tearing mode, the interval can be therefore taken to extend from the X-point to the
O-point (although each O-point is delimited by two X-points, the periodicity of the
configuration makes the numbering of X- and O-points be in correspondence 1:1). By
construction the eigenmode of the magnetic stream function has a separable dependence
on time and on space of the form† ψ1(x, y, t) = f(x, y)eγt. Hence, one immediately
obtains (the label TM standing for “tearing mode”):

RTM (k) = γ(k), (2.13)

that is, for a tearing-type instability of wavenumber k, the notions of reconnection rate
and of growth rate are equivalent. The quadratic dependence of the magnetic energy on ψ
(cf. Eq.A 5) trivially implies that, for a single tearing mode, the rate at which magnetic
energy EB =

∫
|∇ψ1|2 dx dy is converted into other forms of energy during the linear

stage of the instability is 2RTM = 2γ.
Of course, if several tearing modes are simoultaneously unstable, and/or if one or more

reconnection instabilities are in their nonlinear stage, the identificationRrc ↔ γ(k) is not
correct anymore, even if a dominant mode can be assumed to dominate the reconnection
process. In these cases, an evaluation of the global reconnection rate in a given volume,
more accurate at least from a numerical point of view, can be made by taking

Rrc '
1

2Ec

∣∣∣∣∂Ec∂t
∣∣∣∣ , (2.14)

where Ec is a component of the total energy (cf. Eq.(A 5)) involved in the reconnecting
process and the factor 1/2 accounts for the quadratic relation between the fields and

† In reality, although we are here anticipating the formal results we will discuss in the next
Sections, it is easy to very from the magnetic island shape that the solution is of the form
ψ1(x, y, t) = g(x) cos(ky)eγt, if y = 0 is taken in the O-point −cf. Fig.2, top right frame.
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the energy components. Usually Ec is the magnetic energy component EB , which in
most reconnection regimes (see, e.g. White (1983, 1986)) can be shown to provide
the “reservoir” of energy of the instability, which is “dissipated” (or, more generally,
converted into other forms) during the process. It should be however noted that in some
regimes of tearing-like instabilities, numerically studied by using “large” values of de/L0

(i.e. de/L0 . 1 but not asymptotically smaller than unity), the role of EB has been
observed to be played, instead, by the electron kinetic energy EJ =

∫
d2
e|∇2ψ1|2 dx dy

associated to the equilibrium current sheet (Del Sarto et al. (2005, 2006)). Also, the
increase of some kinetic energy component could be used for the estimate of Eq.(2.14),
if it assumed that the electromagnetic energy released during the reconnection event, is
dominantly transferred to particle heating and/or acceleration, or to radiation. This is
the way by which, for example, the reconnection rate of processes at basis of solar flares
and coronal mass ejections, or of the sawtooth cycle in tokamaks, is indirectly inferred
from observational measures.

Some alternative definitions of “reconnection rate”, provided in terms of local estimates
of quantities are also frequently used in literature. These further definitions, briefly out-
lined and discussed in Appendix B for comparison, are not of concern for the purpose of
this work, since they mostly deal with stationary reconnection or provide approximations
to the more accurate formula (2.13), valid in the case of interest to us.

We conclude this section with a note on the notion of “fast”, often used in literature for
models devised in the attempt of modelling the rapid reconnection processes observed in
Nature and in experiments, which display growth rates faster −in an asymptotic sense−
than those predicted by the early reconnection models (i.e., resistive Sweet-Parker and
resistive tearing modes). On the one hand, the notion of “fast” has changed over the
years, both depending on the specific reconnection context (space or laboratory) and on
the physical process allowing a relative increase of the reconnection rate (e.g., electron
inertia, the inclusion of the Hall-effect in Ohm’s law, the accounting for other non-
linear effects, 3D effects and secondary instabilities −see Appendices of (Del Sarto &
Ottaviani (2017)) for a short historical review on these subjects). On the other hand, it
is unlikely that a primary spontaneous tearing mode developing on a static current sheet
overtake values of order unity, when measured with respect to the normalisation time
τA defined as below Eqs.(2.4-2.5) −see (Pucci & Velli (2014)), (Del Sarto et al. (2018),
and Sec. IX of (Betar et al. (2020))) for more detailed discussions. It is however worth
noting that, for linear tearing modes, the normalised growth rate evaluated from (2.1-2.2)
typically becomes of the order of unity or, better, of some decimal fraction of it, when
the shear length becomes comparable to the microscopic non-ideal scales of interest: that
is, γτA ∼ O(10−1)− O(1), when some among de, ρs or (S−1/γ)1/2 become of the order
of O(a/10) − O(a). However, this also generally means that we are out of the limits
of applicability of the boundary layer theory (cf. Sec. 3, next −and note that we leave
aside, here, the open problem of discussing the validity of an extended fluid modelling at
these kinetic scales): in this case, the analytical estimates of γ(k), which we are going to
develop below, are not applicable and a numerical computation is instead required. See
Fig. 3 and Table 2 of (Del Sarto et al. (2011)) for an example in the collisionless limit.

3. Boundary layer approach for tearing modes: large- and small-∆′

regimes

In this Section, we start by describing the general strategy of integration with the
boundary layer approach to solve the eigenvalue problem (2.1-2.2). Then, we discuss
the ordering and the instability parameter, which defines the unstable spectrum of
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Figure 3. Growth rates of collisionless tearing modes numerically computed from Eqs. (2.1-2.2)
with the solver of (Betar et al. (2020)), for values of the non-ideal parameters at the limits of
(or beyond the) applicability of boundary layer theory, and for a wavelength ka ∼ O(1) (likely
value for modes on large aspect ratio current sheets having a microscopic thickness −condition
typically met, e.g., in MHD turbulence (see, e.g., Franci et al. (2016); Del Sarto & Pegoraro
(2017); Franci et al. (2022))). Note that once γ approaches unity, the effect of the non-ideal
parameters on the magnetic equilibrium ψ0 is not negligible anymore, and Eqs. (2.1-2.2) in the
resistive limit (not shown here) should be modified accordingly (cf. Appendix A). Left frame:
case of cold electrons. Right frame: case of warm electrons, for different values of de/a and for
values of ρs/a approaching one.

wavenumbers, and its consequences on the classification of different reconnection regimes
in both slab and toroidal geometries. Finally, we close the section by giving a brief review
on previous works using the boundary layer integration in the collisionless regime.

There are no exact analytical solutions available for the general eigenvalue problem of
Eqs.(2.1-2.2). Approximated analytical solutions can be obtained by using a boundary
layer approach as first shown for the purely resistive tearing by Furth. et al. (1963) in the
constant-ψ regime and by Coppi et al. (1976); Ara et al. (1978); Basu & Coppi (1981)
in the internal-kink regime. When kinetic-like effects are included, it is instead easier
to solve the boundary layer problem if calculations are performed after doing a Fourier
transform with respect to the variable x: this facilitates the analytical calculations since
it lowers the order of the differential equations in the “inner region”, as it has been first
shown by Pegoraro & Schep (1986); Pegoraro et al. (1989).

The boundary layer approach consists in solving the linear problem in distinct overlap-
ping regions. The number of regions depends on the non-ideal parameters that exist in the
problem. Moreover, in order for the boundary layer approach to be applied, it is necessary
that the normalised non-ideal parameters (e.g., ε = S−1, or ε = (de/a)2) be much smaller
than unity, i.e., ε � 1. This makes it possible to perform an asymptotic analysis by
expanding quantities in powers of ε, and also grants the scale separation between the
boundary layers, since the characteristic width of the innermost layers, where ideal-MHD
breaks down, is a posteriori found to scale with a multiplication of positive powers of
the parameters “ε” at play. Quantitatively speaking, comparison between theoretical
estimates and numerical integration of the boundary layer problem, indicates that the
condition ε� 1 typically means that the microscopic scales (cf. end of Sec. 2.2) related
to the non-ideal terms capable of breaking the ideal MHD conservation of the magnetic
topology be not larger than a fraction ∼ 10−1 of the equilibrium shear length a.

For example, for purely resistive or purely inertia-driven tearing modes in RMHD,
the linear problem is solved in two distinct regions and the solutions are asymptotically
matched in an intermediate layer, as shown in Fig.4 (left). In this case, the first region
is the “outer” region in which the plasma is assumed to be at ideal MHD force-balance
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Figure 4. Left frame: Sketch of the boundary layer decomposition for the calculation of the
tearing eigenmodes with asymptotic matching techniques, when a single boundary layer is
sufficient (case, e.g., of the resistive tearing first considered by Furth. et al. (1963)). The width
δ of the inner boundary layer is here the natural candidate for the width of the “reconnecting
layer”, although the latter is not formally defined, i.e., we can assume δ = δ1 (assumption we
will support in Sec. 8) with further arguments). Right frame: Sketch of the boundary layer
decomposition when two boundary layers are required (e.g., case of the warm collisionless
RMHD). Note that the reconnecting layer width, which we call δ, is, again, a priori not defined
but, as we will see (Sec. 8), further arguments can be found to identify it with the innermost
layer width, i.e., δ = δ1.

equilibrium at spatial scales of the order of L0 = a. The second region is the “inner”
one, in which a solution is sought for the differential equations while retaining the non-
ideal parameters in the limit x � 1 (i.e., x/L0 � 1 in dimensional coordinates). The
characteristic size of the inner region is identified to correspond to the reconnection layer
width (cf. Sec. 8), whose characteristic thickness we henceafter call δ, with δ → 0 as the
non-ideal parameters tend to zero. The inner region is therefore defined by the inequality
x/δ . 1.

Seen from the inner region, the convergence to some point in the outer domain is
expressed with the limit x/δ → ∞ with respect to the “stretched variable” x/δ. In
the matching layer, this limit should match the limit x/L0 → 0 (or, simply, x → 0 in
normalised units) for quantities evaluated in the outer region.

When more than one non-ideal parameters are involved in the problem, applying the
boundary layer approach becomes more difficult. This is due to the presence of at least
two boundary layers and therefore of two matching regions (cf. Fig. 4, right), whose
characteristic widths, i.e., the normalisation scales for the asymptotic matching, say δ2
and δ1, depend on the spatial scales of the problem in a non-trivial way. Moreover the
notion of “reconnection layer width”, which we keep on naming δ, in this case is not a
priori related to the width of one of the boundary layers, although, as we will see (Sec.
8), we can make it correspond to the extension of the innermost layer, δ1.

Operationally speaking, the integration of tearing mode equations by means of the
boundary layer approach, which we will detail in the next Sections, can be split in the
following sequence of steps:
• Solving the equations in the ideal MHD limit : this provides the solution in the outer

layer (the “outer solution”) and allows one to evaluate the instability parameter (the
so-called ∆′ parameter −see next), which identifies the range of wavenumbers that are
tearing-unstable and allows one to distinguish among different wavelength regimes of
reconnection −the constant-ψ or tearing regime, the large-∆′ or internal-kink regime, and
the fastest growing mode in a continuum wave-length spectrum of slab tearing modes.
• Considering the equations in the non-ideal region by assuming that the inverse

spatial gradients are small enough to make count the microscopic scales associated to
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the non-ideal parameters. This also allows some simplifications to the equations, related
to the fact that the nth derivative with respect to x dominates over the nth power of k.
• Establishing, on heuristic basis, an ordering among terms of the non-ideal equations

depending on the value of the non-ideal microscopic parameters. This allows one to dis-
tinguish different boundary layers (cf. Fig. 4, right) in which the non-ideal equations are
differently approximated. This task becomes more complex as more non-ideal parameters
are present, and is subordered to the consistency of the solutions a posteriori found after
integration in each sub-region (hence, the “heuristic” nature of the ordering of the terms
in the equations).
• Integrating the non-ideal equations in each sub-region, by taking the solution in

the next-most, outer domain as a boundary condition. For example, with reference to
the right frame of Fig. 4, the outer solution in the ideal region provides the boundary
condition in the matching layer II for the solution in the sub-domain |x| . δ2/2, which
in turn provides the boundary condition in the matching layer I for the solution in the
region |x| . δ1/2.
• Finally note that, in any case, constructing the global solution in the whole domain

in an explicit form is a not evident task and often it is not possible, since the integral
solutions in each non-ideal region may be not obtained in closed form. Nevertheless, it
is possible to obtain a quantitative estimate of the eigenvalues of the linear problem (i.e.,
the growth rate of the reconnecting mode) from the conditions on the solutions in the
non-ideal region. Similarly, other spatial scales of interest (which, by further arguments,
can be interpreted as corresponding, e.g., to the reconnecting layer width, δ −cf. Sec. 8)
can be quantitatively evaluated.

3.1. Orderings and instability parameter ∆′

In the present section we discuss the different orderings of the operators in the
eigenvalue problem, which will allow us to obtain the governing equations in different
regions of the domain, and we introduce the notion of ”instability parameter”.

In the outer, ideal MHD region the ordering of different operators in Eq.(2.3) is

γ ∼ 0, L ∼ 1, F ' 1, A ∼ 1, B = C = ikψ′0 ∼ 1. (3.1)

Solving the equations resulting from this ordering allows us to obtain the solution in the
outer region, ψout.

At the neutral line, the equilibrium magnetic field (shear field) vanishes and changes
its sign when reconnection occurs. Therefore, this field should be an odd function in the
vicinity of x = 0. Hence, ψ0, whose x-derivative represents the shear field B0

y(x), is an
even function. Moreover, close to the neutral line, ψ0(x) is continuous at least up to its
first derivative. We then expand it as Taylor series which, for symmetric tearing modes
in slab geometry, has nonzero coefficients only for even powers† of x,

ψ0(x)|x→0 ' C0 + C2x
2 + C4x

4 + ... (3.2)

Therefore, we can relate δ to the intensity of the equilibrium magnetic field and to the
gradient of the associated current density inside of the inner layer, when looked at from
the matching (or from the outer) region. So we write

ψ′0|x→0 ∼ ψ′′′0 |x→0 ∼ x|inner ' δ. (3.3)

† We note that condition (3.2) is too restrictive, in general, for slab tearing modes on magnetic
equilibria that are not symmetric with respect to the shear coordinate. An example is provided
by tearing modes in a cylinder, for which C1 = 0 but C3 6= 0 (Bertin (1982); Militello et al.
(2004, 2011)).
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Before going further, it must be noted that the inner layer width, δ, has not yet been
“defined”, here. As a quantity, it only explicitly appears in boundary layer calculations
as a normalisation scale for the differential equations in the non-ideal region, whose
boundaries are defined by the condition |x|/δ ∼ O(1). To date, indeed, no general
criterion exists to quantitatively define δ, whose estimation is made, when possible,
thanks to further hypothesis and heuristic ansatz (e.g., comparison with the characteristic
scales of the problem). In the present section we therefore assume δ to be simply defined
as the innermost layer width‡.

Unless a large aspect ratio current sheet is considered, for which an almost continuous
spectrum of wavenumbers can be destabilized that also allows k to be large, the further
ordering ∂x � k is assumed for x � 1. This implies the following orderings inside the
non-ideal region:

L ' ∂2
x, F = 1− d2

eL, A = −kδ(1− L) ∼ −kδL, B = ikδ
[
(1− d2

e)− ρ2
sL
]
. (3.4)

The corresponding equations are solved for the “inner” functions ψ1 = ψin and ϕ1 =
ϕin.

The matching with the outer solution is assumed as a boundary condition, to be
imposed across an intermediate matching layer where one must compare the asymptotic

series
∑
a

(in)
n (x/δ)n for (x/δ)� 1 and

∑
n a

(out)
n xn for x� 1 (we recall that all lengths

appear here as normalized to L0 = a), respectively representing the inner and outer
solutions −see Bender & Orszag (1978), §9. This translates in the condition

lim
x/δ→±∞

a(in)
m (x/δ)m ' lim

x→±0
a(out)
m xm

(for m that corresponds to
the leading term of the series).

(3.5)

Condition (3.5) is usually expressed in a looser notation as

lim
x/δ→±∞

ψin(x/δ) = lim
x→±0

ψout(x). (3.6)

Although (3.6) formally compares the two numerical values of the limits of the eigen-
functions solving the differential equations, in the following we will mean this expression
as a shortcut writing of Eq.(3.5), as it is usually done in tearing mode analysis.

The dependence on the outer solution becomes then explicit through the relation∫ +∞

−∞
ψ′′ind (x/δ) = ψout(0)∆′, (3.7)

which introduces the instability parameter (Furth. et al. (1963)) related to the disconti-
nuity which is met in the first derivative of ψout as x→ ±0,

∆′(k;ψ0) ≡ lim
ε→0

ψ′out(ε)− ψ′out(−ε)
ψout(0)

. (3.8)

In the expression above, ε > 0. Definition (3.8) enters in Eq. (3.6) as∫ +∞

−∞
ψ′′in d(x/δ) = ψ′in(+∞)− ψ′in(−∞) = ψ′out(+0)− ψ′out(−0) = ψout(0)∆′, (3.9)

where we have used the key fact that the outer solution ψout is continuous as x/L0 → 0
while this is generally not the case for its derivative ψ′out (as it is found a posteriori when
solving the inner equation for tearing-type modes).

‡ In Sec. 8 we will propose a quantitative general definition of δ, whose appropriateness in
the different regimes we will prove numerically by comparing it with theoretical estimates.
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The linear problem in the inner region is closed by combining equation (3.7) with the
relation that can be established between ψin and ϕin. According to the inner region
ordering, Eq.(2.2) becomes γϕ′′in = ikxψ′′in. Therefore,∫ +∞

−∞
ψ′′in d (x/δ) = −(iγ/k)

∫ +∞

−∞

ϕ′′in
x/δ

d (x/δ) . (3.10)

It must be however noted that when more than one non-ideal parameter is involved
and/or when the microscopic scale of variation of ψ and ϕ differ†, the matching procedure
above requires more care, as we are going to see in Sec. 7. In these cases more than two
boundary layers must be considered and the corresponding solutions must be matched
−see (Pegoraro & Schep (1986); Porcelli (1991); Bulanov et al. (1992)). These are
the cases for which heuristic estimations are difficult, since a different width must be
associated to each boundary layer (e.g., δ2 and δ1, with δ1 < δ2). In this kind of analysis
the width of each layer appears as the characteristic normalization scale, say lnorm, with
respect to which to consider the limits x/lnorm � 1 and x/lnorm � 1 while performing
the asymptotic matching in the intermediate region between the layers. In this sense must
be reinterpreted also the limit ε→ 0 of Eq.(3.8), which we should read as ε = |x|/lnorm
for lnorm = L0 = a. At the same time, also the relations between ∆′ and the spatial
gradients of ϕin expressed by combinations of Eqs. (3.7) and (3.10) become non-trivial,
as we will discuss in Sec. 10.

3.2. Small- and Large-∆′ limits in slab geometry and in tokamaks

For each eigenvalue problem in slab geometry, the numerical value of ∆′ depends both
on the choice of the magnetic equilibrium profile and on the value of k. A classification
of regimes of slab tearing modes can be generally done depending on the numerical
comparison of (∆′)−1 and of the innermost layer width, δ1, regardless of the number
of boundary layers involved. For simplicity of notation, we generically use for them the
symbol δ, although it is only later (Sec. 8) that we will provide some argument to identify
the “reconnecting layer width”. In particular, one speaks of small -∆′ limit for ∆′δ � 1
and of large-∆′ limit for ∆′δ � 1.

Once the scaling of δ on the non-ideal parameters involved is known, the large- and
small-∆′ limits in slab geometry can be made respectively correspond to the small and
large wavelength limits of the tearing dispersion relation, which for each reconnection
regime can be defined with respect to the comparison of kL0 = ka with powers of the
non-ideal parameters involved (as it has been discussed for example by Bulanov (2017)
for the purely resistive case).

In particular, since ∆′ defined through Eqs.(3.7-3.8) is, when analyitically obtained (cf.
example below −Sec. 4.1) a continuous function of the variable k, the large wavelength
limit can be postulated to correspond to a power-law dependence of the kind

lim
ka→0

∆′(ka) = (ka)−p, p > 0, (3.11)

where p depends on the initial equilibrium profile (Del Sarto et al. (2016); Pucci et al.
(2018); Betar et al. (2020)). While the limit above corresponds to ∆′ →∞, the marginal
stability condition a∆′(ka)→ 1 is approached as ka→ 1.

A fundamental difference between large- and small-∆′ tearing-type modes in tokamak
devices and their correspectives small- and large-k limits in slab geometry must be

† This happens, for example, in 2D electron-MHD (Bulanov et al. (1992)), where the fluid
stream function is related to the fluctuation b of the Bz magnetic component and an equation
for b replaces that for ϕ.
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however remembered, when the results of the two models are compared: in tokamaks
devices the wave vector is fixed by the resonant surface on which reconnection occurs,
and the large- or small-∆′ condition is therefore determined by the specific shape of
the unstable magnetic profile (sometimes in turn determined by some ideal instability,
which has previously occurred and which has modified the otherwise stable magnetic
configuration). In slab Cartesian geometry, instead, the transition between the small-
and large-∆′ limit occurs by moving along the k interval for a fixed, tearing-unstable
magnetic profile, and depending on the aspect ratio of the associated current sheet (see
Fig. 5).

We remark indeed that the distinction between small- and large-∆′ limits has been
historically introduced to characterise, in terms of the instability parameter ∆′ defined
by Furth. et al. (1963), two different types of unstable modes observed in tokamaks. In
tokamak physics, for positive values† of ∆′, a distinction is made between the tearing
mode or constant-ψ mode, first studied in the cylindrical geometry approximation by
Furth. et al. (1963) (and which formally corresponds to ∆′δ � 1) and the internal kink
mode or m = n = 1 non-ideal kink mode, first identified in cylindrical geometry by Coppi
et al. (1976) (and which formally has ∆′ =∞). In a cylindrical tokamak approximation
these two modes generally occur on different magnetic surfaces and for specific values
of the wave-numbers, and also display different relations between the eigenfunctions ϕ1

and ψ1: differently from the tearing mode, for which the fluid displacement ξ ≡ k2ϕ1/γ
is proportional to ∼ ψ1/x, the internal kink mode corresponds to a rigid displacement
ξ ∼ const of the plasma inside the inner region; more specifically, for the internal kink
mode ξ ∼ const in the whole subdomain r 6 rs, where rs is the radius of the resonant
surface, whereas ξ = 0 for r > rs (see, e.g., Porcelli (1987); Del Sarto & Ottaviani
(2017) for a more detailed discussion). It has been however shown by Ara et al. (1978)
that, thanks to the formal analogy between the two corresponding eigenvalue problems
in cylindrical and Cartesian geometry, the transition between the two types of modes can
be modeled in a slab geometry configuration by varying the value of the wave-number
for a fixed magnetic equilibrium and for fixed values of the non-ideal parameters. This
corresponds to a transition between the small- and the large-∆′ limits. In this context,
both the tearing (constant-ψ) mode and the internal-kink mode of tokamak physics
can be considered as examples of tearing-type modes when modeled in slab, Cartesian
geometry, In this case, a larger “free energy” can be associated to tearing-type modes in
the large-∆′ limit. This is the approach we take, here.

Another fundamental difference between tearing and internal kink modes in tokamaks,
on the one side, and tearing-type modes in slab geometry on the other side, is the fact
that in slab geometry it makes sense to identify a further wave-number “regime” that
is characterized by the condition ∆′δ ∼ 1 (see (Loureiro et al. (2007); Bhattacharjee
et al. (2009); Del Sarto et al. (2016); Betar et al. (2020))) at the varying of the non-ideal
parameters involved. This wave-length limit, which is met thanks to the possibility to
perform a “continuous” transition from ∆′δ � 1 to ∆′δ � 1, corresponds to the fastest
growing mode that can be destabilized in a periodic current sheet when a continuum
spectrum of wave-numbers is admitted (see Furth. et al. (1963), appendix D, and also
Biskamp (1982)). Its scaling is exemplified in Figure 6 for the case of purely resistive
tearing modes (i.e., de = 0, ρs = ν = 0 in Eqs.(2.1-2.2)) destabilised on an equilibrium
profile ψ0 = cos(x/a), whose ∆′(k) formula has been discussed in (Ottaviani & Porcelli

† We recall indeed that, even if ∆′ < 0, ideal instabilities (i.e., the “ideal kink mode”) can
also occur in a tokamak, depending on the value of the safety factor q −cf. Wesson (1990), §6.
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Figure 5. Scheme of the correspondence between linear reconnecting instabilities in the RMHD
slab geometry limit and in the RMHD “cylindrical tokamak” approximation, which is compatible
with the strong guide field assumption (Strauss (1976)). In the bottom frames we highlight
the fact that the slab geometry easily allows modelling both of tearing modes of different
wavenumber (centre frame) and of the double tearing mode, i.e., the tearing-like instability
simultaneously occurring on two sufficiently close resonant surfaces (Furth et al. (1973))), of
which we have shown here only the symmetric case (rightmost frame). Note however that we
have considered here the “cylindrical tokamak”, or “large aspect ratio tokamak” approximation,
in the strict limit of ∂/∂ϕ→ 0, which maps into the ∂/∂z → 0 assumption that we consider in
this article. In reality, the RMHD modelling also allows for inclusion of the neglected derivatives
with respect to the axis-symmetric coordinate ordered as ∂/∂ϕ ∼ ∂/∂z ∼ εB , in terms of
the ratio εB between the in-plane and the guide magnetic field components at equilibrium (cf.
Eq.(A 11) and discussion in the last paragraph of App. A).
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Figure 6. Dispersion relation of the purely resistive tearing as a function of ka (dots correspond
to numerically computed values), evaluated for the equilibrium ψ0 = cos(x/a). The smaller box
is a “zoom” of the plot for low values of γ, which correspond to the range of smaller values of
S−1 indicated in the caption. The dashed line corresponds to the fastest mode scaling, which
for ψ0 = cos(x/a) is γM ∼ S−1/2. This can be obtained by using in Eq.(24) of Del Sarto et al.
(2016) the value p = 2, which can be deduced from the ka � 1 limit of the corresponding
∆′(ka) formula (see Ottaviani & Porcelli (1993) or Eq.(8) of Ottaviani & Porcelli (1995)). An
8th-order accurate scheme has been here used for integration on a uniform grid by using the
solver discussed in Betar et al. (2020).

(1993, 1995)) and for which the scaling γM ∼ S−1/2 can be deduced (dashed line in the
figure).

When tearing modes are destabilised in a large aspect ratio, periodic current sheet, so
that also the ∆′δ ∼ 1 modes are excited, several magnetic islands emerge and mutually
interact during the nonlinear evolution, e.g., via the coalescence instability (cf. Sec. 2.1),
by moving along the neutral line. This dynamics is due to the superposition of several
unstable modes with different wavenumbers and growth rates, among which the fastest
mode is obviously the dominant one. In general, an aspect ratio L/a of the order of
∼ 20 is sufficient to grant the instability of a wavenumber sufficiently close to the fastest
growing mode Velli & Hood (1989) −see also Fig. 1 of Betar et al. (2020). In this scenario,
the “soliton-like” behaviour of magnetic islands, noted already by Biskamp (1982) in
his early simulations, has deserved them the name of “plasmoids” (see, e.g., Biskamp
& Welter (1989); Biskamp (1996); Shibata & Tanuma (2001); Loureiro et al. (2007);
Bhattacharjee et al. (2009)), by analogy with the similarly behaving “plasma blobs”,
also termed “plasmoid”, that have been identified and referenced in astrophysical plasma
literature since the end of the sixties (Cowling (1967)). Plasmoids structures displaying
“soliton-like” features, have been observed in space plasmas, in particular in magnetotail
reconnection processes (see, e.g., early works such as those by Hones (1979); Birn &
Hones Jr. (1981) or later works such as (Hautz & Scholer (1987); Scholer (1987)) and
also (Lin et al. (2008)), for a review of the usage of the term plasmoid in this context) and
−although in a different geometrical setting− they have been also observed in connection
to coronal mass ejections, arguably induced by reconnection processes in the solar corona
(see, e.g., early works such as (Pneuman (1983); Gosling & McComas (1987))). In this
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sense, in recent literature, the term “plasmoid regime” of reconnection (Uzdensky et al.
(2010); Huang & A. (2010); Comisso et al. (2018); Zhou et al. (2021)) is typically used
to identify both tearing reconnection in the ∆′δ ∼ 1 wavelength limit (cf. the early
numerical study by Biskamp (1986) on the instability of a Sweet-Parker current sheet
to tearing modes†) and the generation of magnetic islands in current sheets developed
as a consequence of a turbulent motion. Here the formation of “plasmoids” is observed,
either numerically (see Biskamp & Welter (1989); Biskamp & Bremer (1994); Wei et al.
(2000); Servidio et al. (2009, 2011); Wan et al. (2013); Franci et al. (2017) and several
more recent works) or by experimental measurements (see, e.g., Nishizuka et al. (2015);
Kumar et al. (2019); Yan et al. (2022)).

Interpreting the magnetic islands observed in current sheets developed by turbulence as
due to tearing mode instabilities, is an hypothesis which grounds on the assumption that a
standard Fourier representation can be used in a WKB-sense also for reconnecting modes
in a non-periodic, large aspect ratio current sheet. In this case, the fastest growing mode
can be assumed to be, in an asymptotic sense, the dominant reconnecting instability.
Although a proof of the correctness of this assumption for finite length current sheets
has not been provided, yet, this kind of approach attracted since the beginning much
attention in the context of both space plasmas (see, e.g., Cross & van Hoven (1971);
Van Hoven & Cross (1971)) and solar physics (see, e.g., Priest (1976); Velli & Hood
(1989)) and has been more recently considered for applications to secondary instabilities
to primary reconnection processes (see, e.g., Tajima & Shibata (1997); Tanuma et al.
(2001); Shibata & Tanuma (2001); Loureiro et al. (2005); Drake et al. (2006); Daughton
& Scudder (2006); Loureiro et al. (2007); Bhattacharjee et al. (2009); Landi et al. (2015);
Tenerani et al. (2015); Del Sarto et al. (2016); Del Sarto & Ottaviani (2017); Papini
et al. (2019b); Singh et al. (2019)) and to reconnection in turbulence (see, e.g., Pucci &
Velli (2014); Loureiro & Uzdensky (2016); Tenerani et al. (2016); Comisso et al. (2018);
Papini et al. (2019a); Tenerani & Velli (2020); Betar et al. (2020); Pucci et al. (2020);
Kowal et al. (2020); Schekochihin (2020); Franci et al. (2022)) in the context of the so-
called “turbulent (or turbulence mediated or turbulence driven) reconnection” scenario
(Matthaeus & Lamkin (1986); Strauss (1988); Loureiro et al. (2009); Matthaeus & Velli
(2011); Schekochihin (2020)) − not to be confunded with the study of “turbulent driven
magnetic island” in tokamaks (cf. end of Sec. 2.1). This topic is not of concern, here, where
we consider strictly periodic current sheets, only. We therefore address the interested
reader to the aforementioned references. A survey of the scalings of the fastest growing
mode in different reconnection regimes (among which the collisionless regimes we consider
in the following) for periodic current sheets can be found in (Betar et al. (2020)).

In the remainder of the article we just focus on the formal solution of the eigenvalue
problems in a slab current sheet in the ∆′δ � 1 and ∆′δ � 1 limits. In this regard
we note that, in a few cases, a closed form of the integral (3.7) has been provided: in
resistive and collisionless regimes, formulae involving integration in the Fourier space

† We recall in this regard that also the term “plasmoid instability” has been used in recent
literature, with reference to the tearing instability associated to the fastest growing mode, which
is destabilised on a Sweet-Parker current sheet, and for which a scaling γM ∼ S1/4 is obtained
(Tajima & Shibata (1997); Loureiro et al. (2007); Bhattacharjee et al. (2009)). The diverging
scaling with respect to a vanishing non-ideal parameter −otherwise impossible for a spontaneous
reconnecting instability− is here due to the fact that the fastest growing mode develops in this
case as a “secondary” reconnection process to a primary steady reconnection scenario (cf. Fig.
2): for S−1 = 0 the Sweet-Parker reconnection does not occur, by thus forbidding the onset
of the tearing modes. Due to the violently unstable nature of the tearing mode developing in
the Sweet-Parker scenario, the possibility to measure, in Nature, a steady, Sweet-Parker-like
reconnecting current sheet has been first questioned and discussed by Pucci & Velli (2014).
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have been provided by Pegoraro & Schep (1986); Pegoraro et al. (1989); Schep et al.
(1994); Basu & Coppi (1981); Porcelli (1991). These calculations provide the available
analytical formulae for the growth rates in the “internal-kink” and “constant-ψ” RMHD,
collisionless regimes.

Table 1 summarizes the known results of the boundary layer analysis for the regimes
of reconnection of interest in this article. The general dispersion relation for RMHD
tearing modes, from which the large- and small-∆′ limits can be obtained, has been
written as in (Del Sarto & Ottaviani (2017), Appendix C) in terms of a characteristic
scale length δL that coincides with the relevant layer width δ in the large- and small-∆′

regimes. In Sections 5-7, we will detail the analytical calculations that allow recovering
the relevant limits of these dispersion relations.

Finally, we draw attention to the fact that the definition (3.8) in a slab geometry
changes meaning as soon as the condition ∆′δ & 1 is achieved, since application of (3.11)
for ka � 1 and ∆′δ ∼ 1 formally implies a dependence of k on δ. In general, indeed,
(∆′)−1 becomes a microscopic scale as soon as ∆′L0 � 1, and for ∆′δ & 1 the condition
(∆′(k))−1 � δ is satisfied by a range of wave-numbers that depend on the non-ideal
parameters which define δ.

3.3. Boundary layer integration of collisionless tearing in previous literature

In the following we will discuss the method that can be used to find the analytical
solution of the boundary layer problem associated to the scalings of Table 1.

Differently from (Pegoraro & Schep (1986); Porcelli (1991)), who tackled the boundary
layer calculations in the Fourier space, we are going to address the integration in the
coordinate space: although a little more cumbersome, if one’s interest is limited to
obtaining the eigenvalue scaling alone, the analysis performed in the coordinate space
allows a more intuitive understanding of the physics of the problem. Moreover, it spares
one from the sometimes non trivial task of reversing the Fourier transform so to obtain
the eigensolutions in the coordinate space. To the best of our knowledge these kinds of
calculations in the coordinate space for the warm-electron regime (ρs & de) have never
been reported in literature, before.

Only in the work by Zocco & Schekochihin (2011) have some details of the analysis for
the double boundary layer integration in presence of two matching layers been discussed
in the coordinate space (see Appendix B therein). However, in that work, a different
analytical approach has been taken for the integration of a different analytical reduced-
MHD model including ion-FLR effects in the warm-collisionless regime. In particular,
starting from gyrokinetic equations, these authors derived a reduced model consisting
of three equations corresponding: to the scalar potential related to the E × B drift
velocity (ϕ), to the parallel component of the vector potential (A|| = −ψ), and to the
“reduced” electron distribution function (ge, therein), which accounts for the moments of
the electron distribution function, except for the density and the mean parallel velocity.
The equation describing the evolution of ge is there coupled to the other two equations via
the perturbation of the parallel electron temperature (δTe,||). In the linear limit the latter
can be written in terms of ϕ: this allowed the authors to obtain the customary system
of two slab-geometry tearing equations for ϕ and ψ, although modified with respect
to Eqs.(2.1-2.2) we consider here, because of the contribution of the gyrokinetic ion
operator that appears in the vorticity equation after integration of the ion gyrokinetic
equation (Pegoraro & Schep (1981)); this contribution clearly vanishes in the limit of
null ion temperature we are interested in. In this way, Zocco and Schekochihin looked for
asymptotic analytical solutions of the boundary layer problem in the coordinate space by
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RMHD “General” dispersion relation ∆′δ � 1 ∆′δ � 1

orderings

(
for Q =

γ

kde
, δL =

γ

kde
Q1/2de

)
δLD γLD δSD γSD

de � ρs ∆′δL = −π
8
Q
Γ [(Q− 1)/4]

Γ [(Q+ 5)/4]
de kde ∆′d2e (∆′)2kd3e

S−1 > ρ
1
2
s γ

1
4 Same as above for k−4/7× k6/7× k−2/3∆′1/3 k2/3∆′2/3

de → (Sγ)−1/2 ρ
−5/7
s S−4/7 ρ

4/7
s S−1/7 ×(ρsS)−2/3 ×ρ2/3s S−1/3

ρs > de 6= 0 ∆′δL = π
δ2L
deρs

 1

1− π

2

δ3L
deρ2s

Q3

 ρ
−1/3
s d

4/3
e kd

1/3
e ρ

2/3
s ∆′d2e ∆′kdeρs

ρ
1
2
s γ

1
4 � S−1 Same as above for k−1/3S−1/3 k2/3S−1/3 ∆′1/5× ∆′4/5×

for de → (Sγ)−1/2 (kS−2/5) k2/5S−3/5

Table 1. Known scalings available in previous literature as obtained from a boundary layer
analysis in the collisionless and resistive regimes. The general dispersion relation of (Porcelli
(1991); Ottaviani & Porcelli (1995)) for d2e � ρ2s and that of (Porcelli (1991); Comisso et al.
(2013)) for ρs > de 6= 0 are reported. In both cases we have adopted the notation used in (Del
Sarto & Ottaviani (2017), Appendix C), from which the small and large wavelength limits can
be obtained once δL → δ is assumed and some estimation is made for δ = δLD or δ = δSD. The
general dispersion relation valid in all wavelength limits of the cold-electron resistive regimes
(Ara et al. (1978)) and of the warm-electron resistive regimes (Pegoraro & Schep (1986)) is
not reported explicilty but it can be obtained from the collisionless cases previous substitution
de → (Sγ)−1/2. Note that, although available since the early solutions of the boundary layer
calculations, the scalings of δLD and of δSD we have reported here in the different regimes had not
been always pointed out in the related, reference works. These scalings correspond indeed to the
characteristic width of the innermost boundary layer (i.e., δ1) in each reconnection regime, but
the identification of the latter as the reconnecting layer width requires indeed further hypotheses
which are discussed in Sec.8.

identifying two distinct layers: the electron and the ion regions whose widths are defined
by the reconnection layer width δ and by the ion sound Larmor radius (ρs), respectively.
However, differently from the approach we are going to develop below, in which we
will look for a direct integration of the asymptotic solutions in the warm-collisionless
regime, these authors solved the linear equations in the two asymptotic regions for the
warm-collisionless regime by using perturbation methods (Zakharov & Rogers (1992)).
By matching the asymptotic solutions they then recovered the scaling laws first evaluated
in the Fourier space (Porcelli (1991)).

In the remainder of the article we will treat both the collisionless and resistive limits
in a unifyed way, by separately considering the warm (ρs & de) and cold (de � ρs)
regimes. Then, we will specify the results of the dispersion relation in each reconnection
regime. We will thus reobtain the resistive scaling laws first computed by Furth. et al.
(1963) in the cold-electron regime and by Pegoraro & Schep (1986) in the warm-electron
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regime, and the collisionless scaling laws first evaluated by Coppi (1964c, 1964a) in the
cold electron limit and by Porcelli (1991) in the warm one.

In Appendix C we make a brief review of previous works which have approached
boundary layer calculations in the Fourier space (included some more recent works which
explicitly made a comparison between eigenmode solutions in the real and in the Fourier
space −(Connor et al. (2012b))), and we compare some key points of that procedure with
the integration procedure that we follow in this work.

4. Boundary layer solution in the outer ideal region

We now turn our attention to solve the lineariezed equations in the ideal MHD region.
In the outer region and sufficiently far from the reconnection layer, a steady force

balance condition in ideal MHD can be assumed. Therefore, the terms weighted by the
non-ideal parameters can be neglected. In this case, using ψ1 = ψout, ϕ1 = ϕout, Eqs.(2.1-
2.2) become

ϕout = − iγ

kψ′0
ψout, (4.1)

ψ′′out =

(
k2 +

ψ
′′′

0

ψ′0

)
ψout. (4.2)

Eq.(4.1) says that ψ1 and ϕ1 have opposite spatial parity and are de-phased by π/2, i.e.
ψ1 ∼ cos(ky) vs. ϕ1 ∼ sin(ky) if y = 0 is assumed at an O-point.

It is also evident that solving Eq.(4.2) gives the outer solution (ψ1 = ψout) which is
uniquivocally determined by the equilibrium profile ψ0 and by k. Using Eq.(4.1), one can
so obtain also the eigenmodes ϕout. The number of inner regions depends instead on the
number of non-ideal parameters involved in the problem.

A class of magnetic equilibria of particular interest is provided by those fulfilling the
condition lim|x|→∞(ψ

′′′

0 /ψ
′
0) = constant, for which a quite general integration procedure

can be devised, as we are going to discuss in the specific example below.

4.1. A specific example of evaluation of ∆′(ψ0; k)

Having in mind the numerical results to be presented in the next sections, let us solve
the outer equations for the equilbrium profile

ψ′0(x) =
tanh(x)

cosh2(x)
, (4.3)

which is the one used in (Betar et al. (2020)) to obtain the scalings we will make
comparison to. This profile was first proposed in (Porcelli et al. (2002)). Substituting
the previous relation into Eq.(4.2), one finds

ψ′′out −
(
α2 − 12

cosh2(x)

)
ψout = 0, (4.4)

where α2 = k2+4, and ψ
′′′

0 /ψ
′

0 = 4−12/cosh2(x). Grasso first evaluated the corresponding
∆′, reported in (Porcelli et al. (2002)), by looking for a polynomial solution expressed in
powers of tanh(x) (Grasso (2017)). Here, we formally revise the problem, and we reduce
Eq.(4.4) to a Legendre-type equation that can be shown to be valid for different kinds of
equilibria, which we will discuss elsewhere.

First, we notice that limx→∞ cosh−2(x) = 0. This represents a main requirement if
one seeks to apply periodic boundary conditions on the problem by considering ψ0 as
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a periodic function in x with spatial period of infinite extension. Therefore, far enough
from the neutral line where the reconnection event takes a place, the hyperbolic term in
Eq.(4.4) can be neglected and Eq.(4.4) becomes

ψ′′f − α2ψf = 0, (4.5)

whose solution is

ψf (x) = Ae−αx, (4.6)

with A integration constant. One then expects the solution of Eq.(4.4) to take the form

ψout(x) = ψf (x)f(x) = Ae−αxf(x). (4.7)

Substituting the previous equation in Eq.(4.4) one obtains

f ′′ − 2αf ′ +
12

cosh2(x)
f = 0. (4.8)

Motivated by the fact that tanh′(x) = cosh−2(x), we perform the change of variables
z = tanh(x). Then, Eq.(4.8) for f(z) reads

(1− z2)f ′′ − 2(z + α)f ′ + 12f = 0, (4.9)

where the ”′” refers to the derivation with respect to z. The neutral line is now at
z = tanh(x) = 0. When α = 0, Eq. (4.9) becomes a Legendre equation of order three (we
recall that a Legendre equation of order p reads (1− z2)f ′′ − 2zf ′ + p(p+ 1)f = 0 −see
(Abramowitz & Stegun (1964), §8.1.1)). This equation has two regular singular points
occurring at z = ±1 (x → ±∞), and one of its two linearly independent solutions is a
polynomial of third degree. This reads

f = a+ bz + cz2 + dz3, (4.10)

where the coefficients can be found by substituting the polynomial solution into Eq.(4.9)
and equating to zero the coefficients with equal powers of z. After obtaining these
coefficients, using z = tanh(x) and Eq.(4.7), the outer solution of Eq.(4.2) becomes

ψout = Ae−α|x|
{

1 +
6α2 − 9

α(α2 − 4)
tanh(|x|) +

15

(α2 − 4)
tanh2(|x|) +

15

α(α2 − 4)
tanh3(|x|)

}
.

(4.11)
The equation in the outer region accepts both an even and an odd solution. The even
solution is the one required for tearing modes (the magnetic island shape is symmetric
with respect to the neutral line −cf. also Eqs. 2.8). This solution displays a discontinuity
in ψ′out at x = 0. Taking the limit of the first derivative of (4.11),

lim
x→±0

ψ′out = A

{
∓
√
k2 + 4± 6k2 + 15

k2
√
k2 + 4

}
, (4.12)

we obtain using Eq.(3.8)

∆′ = 2
−k4 + 2k2 + 15

k2
√
k2 + 4

. (4.13)

It follows that ∆′ > 0 when k ∈ [0,
√

5], which represents the spectrum of unstable
wavenumbers to tearing-type instabilities for the equilibrium profile given by Eq.(4.3).

The outer solution for the case in which the magnetic equilibrium is given by Harris’
profile ψ′0(x) = tanh(x) (Harris (1962)) can be obtained in the same manner, as already
noted by Furth. (1963) (§4, therein). In this case, the equivalent of Eq.(4.9) is a Legendre
equation of degree p = 2. Therefore, f(z) = a + bz, which leads to an even solution
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ψout(x) = ψ0e
−k|x|{k+ tanh(|x|)}. Following the same arguments as before, one recovers

the result ∆′ = 2(1/k− k), where the instability condition ∆′ > 0 is met when k ∈ [0, 1]
(Furth. et al. (1963)). The point we underline, here, is that the solution of the outer
equation and the evaluation of ∆′ by splitting the problem in Eqs.(4.5-4.6) can be in
principle used for a quite large class of magnetic equilibria.

As anticipated, the condition ∆′ > 0 determines the spectrum of unstable wave
numbers for a given equilibrium profile. This can be formally seen as related to the
change of concavity that the solution ψ1 must undergo while moving from the outer to
the inner region, in order for the singular eigenfunction obtained in the ideal-MHD limit
to become “regular”, thanks to the presence of non-ideal effects that allow reconnection
(Furth. et al. (1963)). In general, exponentially growing solutions of the linear problem
are obtained when ∆′ > 0 (cf. Fig. 7, next).

5. Equations in the non-ideal region

After having solved the linearized equations in the ideal MHD region, we are now
interested in finding their solutions in the non-ideal region. We thus being this section
by introducing a “generalised resistivity”, which allows us to cast the linear equations
in a unique form that can be applied to both the collisionless and resistive regimes. For
analytical purposes that will become evident in the following, in this Section we also
normalise the linear system with respect to an arbitrary characteristic length −say `
−, which will be later specified in each subdomain and in each regime. Then, we will
introduce an auxiliary function χ related to both scalar fields ψ1 and ϕ1, which allows
us to combine the inner layer equations into a single equation. It is this equation that, in
some reconnection regimes, will be later approximated in each subdomain of the boundary
layer approach and which will be solved analytically according to the strategy detailed
in Sec. 3.

For the analytical integration of the linear problem it is first useful to introduce a
parameter that includes both the resistive and inertia-related non-ideal terms in Ohm’s
law by thus highlighting their “almost symmetric” contributions in Eq.(2.1). This can be
equivalently done in terms of the “generalised resistivity”, as first suggested by Furth.
(1963) (§5 therein), which in the normalised units we use reads

S̄−1 ≡ S−1 + γd2
e, (5.1)

or in the form of a “generalised electron skin depth”, as done by† Porcelli (1991), by
expressing the Lundquist number in terms of the normalised electron-ion collision rate,
νei, as S−1 = d2

eνei/2, so to write

d̄2
e ≡ d2

e +
S−1

γ
= d2

e

(
1 +

1

2

νei
γ

)
. (5.2)

In either case, the second left hand side term and the last right hand side term of
Eq.(2.1) can be re-absorbed into a single contribution that formally accounts for both
resistive and inertial effects, the latter being therefore interpretable, in the form γd2

e, as
a “collisionless resistivity”. Using for example (5.2) we rewrite Eq. (2.1) as

γ[ψ1 − d̄2
e(ψ
′′
1 − k2ψ1)]− ikϕ1(ψ′0 − d2

eψ
′′′
0 ) = −ikρ2

s(ϕ
′′
1 − k2ϕ1)ψ′0. (5.3)

In the following, when we will analytically integrate the linear problem in the non-
ideal region, it will be more convenient to start from Eqs.(2.2) and (5.3), of which we will

† Note that in (Porcelli (1991)) the symbol ∆ has been used in place of the d̄e we adopt here.
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then take the appropriate collisional or collisionless limits. Specialising the parameters
S̄−1 or d̄e to the purely resistive or purely collisionless limits is meaningful for linear
tearing modes, because of the extremely narrow region of the parameter space in which
both S−1 and de appreciably contribute to the asympotic scalings (Betar et al. (2020)).
A transition from resistive to inertia-dominated regimes can instead be relevant to the
onset of secondary collisionless modes over primary resistive tearing modes (Del Sarto &
Ottaviani (2017)), provided the applicability of the WKB approximation we spoke of in
Sec. 3.2 for secondary tearing instabilities developing on finite length, large-aspect ratio
current sheets generated by the primary reconnection event. In this case, the possibility
of having a transition of regime depends on both the rescaling of the shear length and of
the magnetic field amplitude of reference (see Del Sarto et al. (2018)).

A further distinction will be made between the “cold” regime d̄2
e � ρ2

s (discussed in
Sec. 6) and the opposite “warm” regime ρ2

s � d̄2
e (discussed in Sec. 7). The reason why we

are going to treat the two cases separately is due to the fact that the normalization scales
that define the extent, in an asymptotic sense, of the innermost boundary layer domain
(i.e., δ1 of Fig. 4, right) turn out to be different, depending on whether ρs is negligible or
not with respect to de (or to (S−1/γ)1/2). The asymptotic scaling of the layer width, δ1,
also determines, via the matching conditions, the scalings of the reconnection rate γ. It
follows that the “cold” collisionless solution can not be obtained as a trivial limit ρs → 0
of the solution obtained for the “warm” case.

Operationally speaking, we will solve the inner equations using the generalised electron
skin depth of Eq.(5.3), so we will first formally recover the collisionless results of (Coppi
(1964c, 1964a); Porcelli (1991)). Then, we will comment about the correspondence of
these results with those obtained by Furth. et al. (1963); Coppi et al. (1976); Ara et al.
(1978); Pegoraro & Schep (1986); Pegoraro et al. (1989) when resistivity dominates over
electron inertia.

5.1. Differential equations in the non-ideal region

The fact non-ideal effects are important in a region which is microscopic with respect
to the equilibrium shear scale a, allows us to use (3.2) so to write ψ′0(x) ≈ 2xC2 =
xψ′′0 |x=0 ≡ xJ0, where we have named J0 ≡ ψ′′0 (x)|x=0 the value (normalised to B0 and
L0 = a) of the second derivative of the equilibrium flux function at the neutral line.
Using the ordering given by (3.4), Eqs.(5.2-2.1) become

γψ1 − γd̄e
2
ψ′′1 = ikJ0xϕ1 − ikJ0ρ

2
sxϕ

′′
1 , (5.4)

γϕ′′1 = ikJ0xψ
′′
1 . (5.5)

It can be noted that a direct comparison between the relative weight of the parameters

d̄e
2

and ρ2
s in Eq.(5.4) can be done after eliminating ϕ′′1 in (5.4) via Eq.(5.5). Doing so,

Eq.(5.4) takes the form

γψ1 = ikJ0xϕ1 + γ

(
d̄e

2
+ ρ2

s

k2J2
0

γ2
x2

)
ψ′′1 . (5.6)

The coefficient multiplying ψ′′1 at right hand side of Eq.(5.6) can be read as a gen-
eralised, space-dependent, “Lundquist number”, i.e., it can be assimilated to a space-
dependent resistivity/conductivity†. In order to have magnetic reconnection, i.e., in order

† In more complex reconnection models based on a gyrokinetic modelling and including
also ion-FLR effects, it can be shown (Cowley et al. (1986); Zocco & Schekochihin (2011))
that the generalized conductivity, which rules the collisionless reconnection process inside the
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to allow for the existence of tearing-type unstable modes, the coefficient d̄e
2

must be non-
null since ρ2

s alone does not allow the relaxation of the topological constraints forbidding
the intersection and breaking of initially distinct magnetic lines (cf. Sec. 2.1). Once

established the importance of the d̄e
2

term in the non-ideal region, one sees that the
condition for which the last term in parenthesis of Eq.(5.6) is negligible in a subdomain
of the integration domain, even for a non vanishing value of ρs, is

ρ2
s

d̄e
2 �

(
γ

kxJ0

)2

. (5.7)

This assumption will be later done in some regimes and will be heuristically verified.

5.2. Normalisation and distinction of the boundary layers

More in general, in order to solve the system (5.4-5.5) with the boundary layer
approach, further hypotheses are done about the relative magnitude of the different
contributions inside of the inner layer, and some auxiliary function (traditionally noted
as χ) relating ϕ1 to ψ1 via Eq.(5.5) is introduced, depending on the ∆′-regime, so to
bring the system to a single ordinary differential equation. In each regime, appropriate
normalization of the spatial scales can be therefore chosen so to better identify the
extension of the sub-intervals of the inner region, where some term dominates over or is
negligible with respect to the others. This is why, in the following, in the reconnection
regimes and ∆′ limits which will be of interest, at each time we will perform several
changes of variable based on different normalization choices.

This is a in important step in the boundary layer procedure, since it is at this level that
one introduces the layer widths δ1 or δ2 (cf. Figs. 4), although only implicitly: in practice,
a “stretched” coordinate is introduced by referring the coordinate x to a characteristic
length, say `, which replaces x in different subdomains of the non-ideal region. It is when
the limits |x|/` � 1 or |x|/` � 1 will be taken for the purpose of finding solutions of
the differential equations within the boundary layer approach, that the length ` will be
identified as the layer width, e.g., δ2 or δ1. Also note that the length ` may initially depend
on some unknown parameter like the eigenvalue γ: its scaling, and therefore that of `
and subsequently that of the layer width it corresponds to, will be therefore determined
a posteriori, from the conditions on the solutions obtained by integrating and matching
the equations for small and large values of these stretched variables. Note that, since the
initial choice of each length scale ` is essentially arbitrary, it must be a posteriori verified
for consistency that, asymptotically, δ1 � δ2 � 1 (when both δ2 and δ1 are expressed in
units of L0 = a).

It is also worth stressing that the identification of each boundary layer is subordered to
the identification of the negligibility of some term of the non-ideal equations. This means
that we must have knowledge of the relative ordering of the non-ideal parameters at play†,

innermost layer dominated by electron dynamics, takes a rational-polynomial form of the kind

σe = a+b(x/δ1)

c+d(x/δ1)2+e(x/δ1)4
, where δ1 is the innermost reconnecting layer width and a, b, c, d and e

are coefficients that depend on the plasma parameters. This form has been used in (Connor et al.
(2012b)) to obtain, via Fourier-space integration, a general dispersion relation encompassing
drift-tearing modes, kinetic Alfvén modes and the internal kink mode at low values of the
plasma β parameter.
† For example, had we wanted to include viscosity, a third scale length −let us say λν −

would have appeared. If the hypothesis λν � ρs & d̄e had been fulfilled, one could have a
priori expected three subdomains in the non-ideal region: one where ν alone dominates, one
where both ν and ρs in principle dominate, and one where all three non-ideal parameters are
in principle important. Then, one should evaluate if, in the two innermost regions, specific
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or, if this is not the case, specific assumptions must be done on them by separately
considering the different possible combinations, until in each case the “thinnest” sub-
domain is this way singled out: this is the innermost region where the eigenmode solution
must be first integrated by imposing the boundary conditions from outside.

As an example of general interest for the calculations that we are going to develop
next, we can consider a normalisation of Eqs.(5.4-5.5) to an arbitrary length `, which we
will specify later, in each case examined. This will also let us get rid of some “superflous”
parameters in the equations. We thus define

ζ =
x

`
, G =

γ

k`J0
, ϕ̃1 = −i γ

k`J0
ϕ1(ζ), ψ̃1 = ψ1(ζ), (5.8)

which allow us to re-write (5.4-5.5) as:

ψ̃1 −
(
d̄2
e

`2
+
ρ2
s

`2
ζ2

G2

)
ψ̃′′1 = − ζ

G2
ϕ̃1, (5.9)

ϕ̃′′1 = ζψ̃′′1 , (5.10)

where both functions ϕ̃1 and ψ̃1 depend now on ζ.
We note that G depends on γ, which generally makes both quantities complex numbers:

they are real for usual tearing-type instabilities, which in absence of diamagnetic effects
related to equilibrium density gradients do not propagate; instead, they are purely
imaginary if the magnetic profile is stable. Because of this feature in the following it
will be useful to perform some integration in the complex plane.

Also note that, if ` = 1 (in units of L0 = a), then in dimensional units we can write
G = γτ0/(ka), where γτ0 expresses the growth rate of the unstable mode measured
with respect to the “natural time-scale” τ0 ∼

√
mn0/(4π)(c/J0), which equals here the

transition time of a shear Alfvén wave across the shear length a (cf. (Betar et al. (2020))).
Therefore, G|`=1 � 1 in an asymptotic sense, as long as the wave number is fixed and
then ka is unordered with respect to γτ0. If, instead, the scale ` is microscopic, the
ordering of G with respect to unity must be a posteriori evaluated.

5.3. Auxiliary function “χ” and large- and small-∆′ limits

The strategy by which the inner equations are integrated depends on mathematical
features that we are going to discuss in detail in each specific regime and wavelength limit,
on which they depend (see also Sec. 5.5). In general, some approximations and hypotheses
are required, since they allow us to combine Eqs.(5.9-5.10) into a single equation. An
integration strategy which is particularly efficient, especially in the large-∆′ limit, consists
in casting the equations for ψ̃1 and ϕ̃1 into an equation for an auxilairy variable, even
with respect to ζ, which is typically noted χ(ζ), after the notation first chosen for it by
Coppi et al. (1976); Ara et al. (1978):

χ(ζ) ≡ ζψ̃′1(ζ)− ψ̃1(ζ). (5.11)

This is directly connected to Eq.(5.10), of which it is an integral. Indeed, we have

ϕ̃′′1(ζ) = χ′(ζ) =⇒ ϕ̃′1(ζ) = χ(ζ)− lim
ζ→∞

χ(ζ) = χ(ζ)− χ∞. (5.12)

conditions can be satisfied so that the the dominant contribution of one or two non-ideal terms
alone can be isolated: this possibly refines further the subdomains of interest for the purpose of
the integration. It at this level that we finally define the boundary layers, with respect to which
the matching conditions will be fixed.
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In the last passage we have named χ∞ the value of χ(ζ) as ζ →∞. Note that in boundary
layer calculations, when ` will be identified as δ2 or δ1, the limit ζ → ∞ for which χ∞
is defined must be taken in the matching layer outside of the innermost layer but still
inside the non-ideal region, i.e. for δ1 � x� 1 (in units of L0 = a): since ϕ̃′1 represents
the y−component of the velocity, it approaches zero as ζ → ∞ inside the ideal region.
Determining the asymptotic behaviour of χ∞ at both limits of the unstable wavelength
spectrum is important since the scaling laws of the eigenvalue problem depend on it
(Ara et al. (1978)). In practice, depending on whether χ∞ is zero or not, the differential
equation for χ is homogeneous or not (see Eq.(5.19) below). These topics are discussed in
the remainder of this Section, by considering for simplicity the case of a single boundary
layer (i.e., assuming ` = δ1).

5.3.1. Asymptotic estimate of χ∞ in the small-∆′ limit

In the case of the small-∆′ limit and when x → 0, according to the definition of χ(ζ)
and to the matching condition limζ→∞ ψ̃1(ζ) ∼ limx→0 ψout(x), one finds

χ∞ = lim
ζ→∞

χ(ζ) ∼ lim
x→0

xψ′out(0)− ψout(0) ' −c0, (constant-ψ ordering) . (5.13)

In this case we have used the “constant-ψ” approximation (Furth. et al. (1963)), i.e., the
fact that in the small-∆′ regime the inner solution tends to a constant value ψ1(0) when
it approaches the innermost region. Such constant value is approximatively obtained
already from the x → 0 limit of the outer solution ψout(x), so that in this wavelength
limit we can write limx→0 ψout(x) = c0.

The constant-ψ ordering can be assumed and heuristically verified after integration of
the eigenmode problem for the single boundary layer limit (cf. (Furth. et al. (1963); White
(1983))), and in the small-∆′ regime it can be shown to be equivalent to the condition
δ1∆

′ � 1. In this case we can also estimate limx→0 xψ
′
1(x) ∼ limx→0 x∆

′ψout(x) ∼
δ1∆

′c0, where in the last passage we have (over)estimated limx→0 x by the extent of the
innermost layer width: owing to the ∆′δ1 � 1 condition, the last passage of Eq.(5.13) is
thus justified, whence one deduces

χ∞ = −c0, for δ1∆
′ � 1. (5.14)

5.3.2. Asymptotic estimate of χ∞ in the large-∆′ limit

In the large-∆′ limit for x → 0, instead, one finds that χ∞ = 0. This has been first
discussed in (Coppi et al. (1976); Ara et al. (1978)), where it has been shown that the
vanishing of χ(ζ) far out from the resonant region (equivalent to the innermost layer in our
notation) is consistent with the rigid plasma displacement that characterises the internal
kink mode in a cylindrical tokamak: in the notation and slab geometry assumption we
use in this work, this corresponds to write ϕ̃1(ζ) = −γζ for |ζ| 6 1 and ϕ̃1(ζ) = 0 for
|ζ| > 1 (cf. also (Porcelli (1987); Del Sarto & Ottaviani (2017))), whence the condition
χ∞ = 0 immediatly follows by direct comparison with definition (5.12). An alternative
way to look at the consistency of this result is to consider the Taylor expansion of the
outer solution given by Eq.(4.7):

ψout(x) ∼ c0 + c1|x| =⇒ ψout ∼ c0 + c1|x| =⇒ ∆′ ∼ 2c1
c0
. (5.15)

This solution formally holds in the outmost matching layer, where the instability param-
eter ∆′ is defined by neglecting non-ideal effects, i.e. by taking the limit x → 0 of the
eigenmode in the ideal region. Therefore, the use of limx→0 ψout(x) to match the solution
limζ→∞ ψ1(ζ) is a priori not always justified. This however is not the case of the large-∆′
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Figure 7. Profile of the eigenfunction ψ1 in the purely resistive regime, computed via the
numerical solver of (Betar et al. (2020)) for S−1 = 10−5 and k = 10 (green curve), k = 1.7
(orange curve) and k = 0.1 (blue curve). These three values are respectively exemplificative of:
the stable regime (∆′ = −19.19 < 0; green curve), of the small-∆′ wavelength limit (∆′ = 3.2766;
red curve) and of the large-∆′ wavelength limit (∆′ = 48.9; blue curve). In the stable case
(∆′ < 0) the eigenfunction does not change concavity as x approaches the neutral line, whereas
for the unstable tearing-type solutions obtained for ∆′ > 0, the value c0 ≡ limx→0 ψ1(x)
decreases approaching zero as the value of ∆′(k) increases approaching +∞.

limit, in which it can be a posteriori shown, from heuristic arguments (see (Ottaviani &
Porcelli (1995)) for the “cold” reconnection regime) or by numerical integration, that the
discontinuity in the derivative of ψout occurs in a position which gets progressively closer
to the neutral line, as more as the numerical value of ∆′(k) increases (cf. also Sec. 8-10).
In this limit, using therefore limζ→∞ ψ̃1 ' limx→0 ψout(x) combined with Eq.(5.15) in
the definition (5.11), one finds

lim
ζ→∞

χ(ζ) ∼ c1|x| − c0 − c1|x| = −c0 ∼
c1
∆′
. (5.16)

The fact that c0 → 0 as ∆′ increases, is shown in Fig. (7), where the spatial profile of
ψ1, obtained after numerical integration of the purely resistive regime (for S−1 = 10−5)
is shown for the values of ∆′(k) = −19.19 (green curve), ∆′(k) = 48.9 (blue curve)
and ∆′(k) = 3.2766 (orange curve), evaluated using Eq.(4.13) for k = 10, 0.1 and 1.7,
respectively. Thus, in the large-∆′ limit where ∆′ →∞, Eq.(5.16) implies that

χ∞ = 0, for ∆′ →∞. (5.17)

The fact that condition ∆′ → ∞ can be replaced by ∆′ larger than the inverse of some
characteristic scale length will be discussed later, in Sec. 10. As already anticipated (Sec.
3.2), this condition can be generally read as ∆′δ1 � 1.

5.4. Auxiliary equation for the function χ(ζ) in the non-ideal region

Definitions (5.11-5.12) can be used to cast Eq.(5.9) in an equation for χ(ζ). For
analytical convenience, i.e., in order to facilitate the substitution of variables, it is
preferable to evaluate the derivative of Eq.(5.9) after it has been divided by ζ. After
opportunely regrouping the terms of the equation so obtained, the result reads

(ζψ̃′1 − ψ̃1)− d̄2
e

`2
(ζψ̃′′′1 + ψ̃′′1 − 2ψ̃′′1 )− 1

G2

ρ2
s

`2
ζ2 (ζψ̃′′′1 + ψ̃′′1 ) = − 1

G2
ζ2ϕ̃′1, (5.18)
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which can be rewritten as(
d̄2
e

`2
+
ρ2
s

`2
ζ2

G2

)
χ′′ − 2

d̄2
e

`2
χ′

ζ
−
(

1 +
ζ2

G2

)
χ = − ζ

2

G2
χ∞. (5.19)

In the following we will take different limits of this equation, depending on the tearing
regime and wavelength limit considered. We emphasize that, in order to give to the
right hand side term χ∞ of Eq.(5.19) the geometrical (and physical) meaning we have
previously discussed in terms of the boundary layer theory, the length ` must correspond
to the layer width, δ2 or δ1 (depending on whether we are in the case of Figs.4), to which
the solution ψout obtained in the ideal region is matched.

5.5. Wavelenght limit and choice of integration via the equations for χ or for ψ and ϕ

The choice of performing the integration by using Eqs.(5.4 -5.5) for ψ1 and ϕ1, rather
than (5.19) for χ, clearly depends on analytical convenience. In general we note that
this choice can be biased by the ease by which the boundary conditions imposed by
the solution obtained in the outer, ideal region, are “transferred” to the solution in
the innermost region. The asymptotic matching generally poses some constraints on
the integration constants in each subdomain, but it is easy to see that, operationally
speaking, these conditions take different and quite “appealing” forms in the small- and
large-∆′ limits, depending on whether one looks at the equation for ψ1 or at the auxiliary
equation, for χ, respectively. In particular:

• In the small-∆′ limit, it is usually more convenient to perform the integration on
the equation for ψ1, for which the boundary conditions imposed from the ideal region are
directly implemented by making explicit the dependence on ∆′ via Eqs.(3.7,3.10). In this
case, the constraint imposed by the solution ψout in the ideal region can be directly used
on the integration of the innermost equation in the form of the constant-ψ condition.
Indeed, if we define c0 ≡ limx→0 ψout(x) and we heuristically assume the constant-ψ
condition to be valid, the latter implies that ψ1 ' c0 both in the innermost region
|x| 6 δ1 and in the possible intermediate region δ1 < |x| 6 δ2. Therefore, also when two
boundary layers are present, the constant-ψ condition can be directly implemented in
the integration of the innermost equation, by thus practically allowing one to “bypass”
the procedure of matching between the solutions in the ideal and the in intermediate
region, and then between the solutions in the intermediate and in the innermost region
(at least for the purpose of establishing the dispersion relation, i.e., to find the asymptotic
scalings of the eigenvalue). However, as the matching occurs in the boundary layer with
the ideal region, it is generally more conveninent to maintain the normalisation to the
intermediate layer width, also when two layers are present. This approach will be used
in Sec. 6.2 and 7.5.
• In the large-∆′ limit, it is instead usually more convenient to perform the integration

on the auxiliary equation, since in this case the constraint imposed by the outer solution
ψout on the solutions in the non-ideal region is simply expressed as χ∞ = 0 (cf. Sec.
5.3.2). From an operational point of view, this realises the matching between the ideal
and the intermediate region. The dispersion relation is therefore directly obtained by
solving the non-ideal equation for χ∞ = 0, in case a single boundary layer is present, or
by matching the innermost solution and the intermediate solution (both sought under
the constraint χ∞ = 0), if two boundary layers are present. This approach will be used
in Sec. 6.1 and 7.4.
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6. Solutions in the inner region: cold regime

Let us first discuss the reconnection regime with both cold electrons and ions. The
linear problem has been first solved in the small-∆′ wavelength limit by Furth. et al.
(1963) in the resistive regime and by Coppi (1964c, 1964a) in the inertial regime, using
boundary layer calculations in the coordinate space. Solution of the linear problem in
the large-∆′ wavelength limit has been first provided in the resistive regime by Coppi
et al. (1976) and has been extended in the collisionless regime by Porcelli (1991). In this
latter work, the calculations in the Fourier space with which Pegoraro & Schep (1986)
also recovered the resistive results of (Furth. et al. (1963)) and (Coppi et al. (1976)) have
been extended to the purely collisionless regime. We will come back to these more recent
works relying on the integration in the Fourier space in the next Section 7, where we will
discuss the “warm” reconnection regime including FLR effects related to parallel electron
compressibility (i.e., a kind of diamagnetic effect).

The reason for which we start from the case of cold species, is that from the point of
view of the boundary layer theory the “cold” regime in which we neglect ρs-related terms
in Eqs.(2.1-2.2) is both conceptually and analitically simpler than the “warm” tearing
regime (cf. Figs. 4). Since we consider the cold limit d̄2

e � ρ2
s which encompasses the

case ρs = 0, in order to ensure convergence of the solution with the ρs = 0 limit we
assume the validity of the condition (5.7) in the whole integration domain. We can verify
a posteriori its validity, once the eigenvalue problem is solved.

We also mention here that the analytical results we are going to obtain below have

been numerically verified in (Betar et al. (2020)) to be valid for d̄e
2
> ρ2

s/100, i.e., for
d̄e & ρs/10.

6.1. Solution for d̄2
e/ρ

2
s � 1: large-∆′ limit

Assuming heuristically the validity of (5.7) we neglect the second term in paranthesis
in Eq.(5.9). The restriction to the large ∆′-limit, in which condition (5.17) holds, suggests
us to make use of the auxiliary function χ(ζ) defined by (5.11), which leads us to consider
the appropriate limit of Eq.(5.19):

χ′′ − 2

ζ
χ′ − `2

d̄2
e

(
1 +

ζ2

G2

)
χ = 0. (6.1)

The structure of the equation suggests us to take ` ≡ d̄e as normalisation length to be
used in the definitions of Eqs.(5.8). This means that we postulate

δ1 = d̄e, (6.2)

which, at least for d̄e = de, is evidently consistent with the asymptotic condition δ1 � 1.
A solution to Eq.(6.1) can be sought in the form

χ1 = e−αζ
2

. (6.3)

Substituting it in Eq.(6.1) yields

2α = 1, 4α2 =
1

G2
. (6.4)

Using the first of Eqs.(5.8) and combining the two conditions above, gives

γ = kd̄eJ0. (6.5)

This result can be specialised both to the fully collisionless (d̄2
e = d2

e) and to the fully
collisional (d̄2

e = S−1/γ) internal-kink regime. We recall in this regard that numerical
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analysis (Betar et al. (2020)) confirms that the parameter space interval where both
inertial and resistive effects non-negligibly combine is very narrow, so that tearing modes
can be usually considered either as fully collisionless or as fully resistive.

In the collisionless limit we thus recover the result of (Porcelli (1991)):

γ = kdeJ0 δ1 ∼ de. (6.6)

In the resistive case, Eqs.(6.6) specialise to the result of (Coppi et al. (1976)):

γ = k
2
3 J

2
3
0 S
− 1

3 , δ1 ∼ k−
1
3 J
− 1

3
0 S−

1
3 . (6.7)

Substitution of the results (6.6-6.7) for x ∼ δ1 in Eq.(5.7) makes it equivalent to the
condition ρ2

s/d̄
2
e � 1 we started from, thus verifying a posteriori its correctness.

The scalings (6.6-6.7), contrary to those of the large-∆′ limit of the warm-collisionless
regime, can be obtained using a heuristic-type derivation based on dimensional estimates,
as we are going to prove in Sec.(9.3).

Finally, some words about the second solution of Eq.(6.1), which we have neglected,
since it can be shown that it is not of interest to the tearing instability problem. To this
purpose, we can look for a solution of the form χ2(ζ) = u(ζ)χ1(ζ). Substituting χ = χ2

in (6.1) and using the fact that χ1 already solves it, one obtains after a little algebra

u′′χ1 + 2u′
(
χ′1 −

χ1

ζ

)
+ uχ′′1 = 0. (6.8)

Further substitution of (6.3) into the equation above yields

u′′ −
(

4αζ +
2

ζ

)
u′ = 0, (6.9)

which, defining w = u′, can be brought to a directly integrable form:

dw

w
= 4αζdζ +

2dζ

ζ
=⇒ w(ζ) = w0 ζ

2e2αζ2 , (6.10)

w0 being a constant of integration. Specialising the result for α = 1/2, integrating w once
to find u and then substituting the result in χ2 = uχ1, one obtains

χ2 = i

√
π

2
erf

(
iζ√

2

)
e−

ζ2

2 + ζ, (6.11)

which is odd and unbounded when ζ → ∞. Therefore, for our purposes the solution χ2

can be disregarded, since its spatial parity is not compatible with that of tearing modes
(i.e., it is not compatible with the formation of X-points).

6.2. Solution for d2
e/ρ

2
s � 1: small-∆′ limit

In the small-∆′ limit the boundary layer analysis mirrors that of the paper by Furth.
et al. (1963), if the resistive limit d̄2

e → S−1/γ is considered. In general, regardless of
the form of d̄e, we can here use the “constant-ψ” approximation stating that ψ̃1(ζ)→ c0
as ζ → 0 (cf. Eq.(5.15)). However, instead of using the auxiliary equation (5.19), in this
case it is more convenient to consider Eq.(5.9) in which ψ̃′′1 has been eliminated by using
(5.10) since, after combination with the constant-ψ limit, this yields an equation for the
function ϕ̃1(ζ) that can be brought to an integrable form more easily than the equation
for χ(ζ) :

ϕ̃′′1 −
ζ2

G2

`2

d̄2
e

ϕ̃1 = c0
`2

d̄2
e

ζ. (6.12)
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Note that in this equation the length ` is so far left unspecified. In practice, at this
stage of the calculations, it can be taken ` = 1, which would be still consistent with the
constant-ψ limit with respect to which the subsitution ψ̃1(0) ' c0 has been done. The
identification of a proper normalisation length defining the boundary layer width can
be done after a further change of variable that leads Eq.(6.12) to an integrable form in
which the boundary layer integration can be more easily performed. Eq. (6.12) for ` = 1
can be indeed brought to the form

Φ′′ − z2Φ = z (6.13)

after the change of variables and coordinates†:

z =
(
Gd̄e

)− 1
2 ζ, Φ =

(
d̄e
G3

) 1
2
(
ϕ̃1

c0

)
. (6.14)

In the limit d̄2
e → S−1/γ Eq.(6.13) is that of the resistive tearing mode studied by Furth.

et al. (1963), whose solution has been provided by Basu & Coppi (1976); Coppi et al.
(1976) and Ara et al. (1978) (cf. Eqs.(III.26-III.27) and Appendix A in the latter) in the
closed integral form:

Φ = −1

2
z

∫ 1

0

(1− t2)−
1
4 e−

1
2 tz

2

dt. (6.15)

The scaling of the eigenvalue γ and its dependence on the amplitude of the instability
parameter ∆′ can be made explicit by comparing the eigenfunction Φ(z) to ϕ1(x/δ2) in
the matching condition expressed by Eq.(3.7), which also allows us to identify the layer
width δ2: combining Eq.(3.7) and (3.10) (where we re-introduce the quantity J0) yields

ψout(0)∆′ = −i γ
kJ0

∫ +X̄′

−X̄′

ϕ′′1(x′)

x′
dx′, (6.16)

where ∆′ is defined by Eq.(3.8), x′ = x/δ1 and X̄ ′ = X̄/δ1 is indicative of some point of
the matching region such that δ1 � X̄ � 1 in units of L0 = a. Connection with Eq.(6.13)
follows from noticing that Eq.(6.14) implies:

d2ϕ̃1

dζ2

∣∣∣∣
`=1

= c0

(
1

d̄eG3

)∣∣∣∣ 12
`=1

(
dz

dζ

)2
d2Φ

dz2
= c0

(
G
d̄3
e

)∣∣∣∣ 12
`=1

d2Φ

dz2
. (6.17)

This authorises us to identify

x′ =
x

δ1
−→ z =

x

(Gd̄e)|
1
2

`=1

, −i γ
kJ0

d2ϕ(x′)1

dx′2
−→ c0

(
G
d̄3
e

)∣∣∣∣ 12
`=1

d2Φ

dz2
, (6.18)

which now fixes the boundary layer width to be

δ1 = (Gd̄e)
∣∣ 12
`=1

=

√
γd̄e
k
, (6.19)

whose consistency with the condition δ1 � 1 must be verified once G|`=1 is explicitly
obtained. Substituting then ψout(0) ' limζ→0 ψ̃1(ζ) = c0 and using (6.18) makes
Eq.(6.16) become

∆′ =

(
G
d̄3
e

)∣∣∣∣ 12
`=1

∫ +Z̄

−Z̄

Φ′′

z
dz, (6.20)

† The normalisation of this equation is detailed in App. D as a didactical example of how to
generally proceed to find the normalisation coefficients of a differential equation.
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where Z̄ = X̄/(Gd̄e)|1/2`=1. The integral in the previous equation is convergent, let us call

its value I ≡
∫ +∞
−∞̄ (Φ′′/z)dz '

∫ Z̄
−Z̄(Φ′′/z)dz. Then, using the definition (5.8) for ` = 1,

one obtains

γ = kd̄3
e(∆

′)2

(
J0

I2

)
. (6.21)

In the inertia-dominated regime, d̄e = de, one recovers the well known result by Coppi
(1964c, 1964a), later re-obtained by Porcelli (1991):

γ = k(∆′)2de
3

(
J0

I2

)
, δ1 =

∆′d2
e

I
. (6.22)

In taking the resistive limit, d̄e = (S−1/γ)1/2, one obtains instead the classical result by
Furth. et al. (1963), later recovered by Pegoraro & Schep (1986):

γ = k
2
5 (∆′)

4
5S−

3
5

(
J0

I2

) 2
5

, δ1 =
k−

2
5 (∆′)

1
5S−

2
5

(J0I2)
2
5

. (6.23)

In both cases (6.22-6.23) the asymptotic condition δ1 → 0 as de → 0 or S−1 → 0 is
verified.

7. Solutions in the inner region: warm electron regime

Let us now consider the boundary layer problem in the “warm” reconnecting regime,
by limiting our attention to the case of cold ions, consistently with Eqs.(2.1-2.2).

Extending the analysis to include ion temperature effects related to FLR corrections in
the fluid description of these low frequency modes is possible, but generally it requires to
rely on reduced models (i.e., “gyrodfluid” models), in which the ion response related to
the separation between the motion of particles and of gyrocenters is obtained by starting
from the gyrokinetic Vlasov equation. Fluid models of reconnection, in which this has
been done, typically differ because of the way the gyrokinetic operator is approximated
and because of the number of scalar fields that are retained in the description (see, e.g.,
(Pegoraro & Schep (1981, 1986); Pegoraro et al. (1989); Porcelli (1991); Schep et al.
(1994); Loureiro & Hammett (2008)) for essentially two-field models, and, e.g. (Aydemir
(1992); Zakharov & Rogers (1992); Dorland & Hammett (1993); Smolyakov et al. (1995);
Pogutse et al. (1998); Waelbroeck et al. (2009); Zocco & Schekochihin (2011); Waelbroeck
& Tassi (2012); Connor et al. (2012b); Tassi et al. (2016)) for other gyrofluid models
retaining more than two scalar fields). A common feature of linear tearing analysis build
on these gyrofluid models, as well as on other descriptions retaining kinetic features at
a more fundamental level (see (Drake & Lee (1977); Cowley et al. (1986); Rogers et al.
(2007))), is the “symmetric” way by which ion and electron temperature effects enter in
the dispersion relation in regimes where an estimate of the growth rate of tearing-type
modes is analytically available†. In regimes of the parameter space that go beyond the
applicability of the analytical predictions by Pegoraro & Schep (1986); Pegoraro et al.
(1989); Porcelli (1991), a departure from the symmetry between ρs and ion-Larmor-
radius effects associated to the parameter ρi = ρs

√
Ti/Te has been numerically observed

in the growth rate of the internal-kink mode (Del Sarto et al. (2011)). Dealing with these
subjects would include some complicacy about the build of the linear model, which are

† This symmetry is expressible via the formal substitution ρ2s → ρ2s + ρ2i in the dispersion
relations which we are going to discuss in the remainder of this work.
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unnecessary with respect to the purpose of the present work. This is why we neglect
them, here.

We therefore start from Eqs. (5.4-5.5). Since the problem has now two characteristic
spatial scales, namely d̄e and ρs, the identification of the two boundary layers will require
us to perform two subsequent normalisations and approximations of the terms of the
aforementioned equations. Since we are now restricting to the parameter range where ρ2

s

is not negligible with respect to d̄2
e, we can assume ρ2

s & d̄2
e. A natural choice for choosing

a first normalisation scale defining the “largest” non-ideal region of interest, is therefore
to pose ` = ρs. We note that identifying this as a boundary layer width or not, is a
further logical step, whose appropriateness depends on the kind of approximations of the
equations and integration strategies that can be possibly performed with respect to the
stretched variable x/ρs. This is what we are going to discuss below.

Also note that, for economy of symbols −let us say− in this Section we will use some
symbols used in the changes of variables of previous Sec.6 with a different definition that
will be given in each specific case (this will concern in particular the definition of ζ, G
and the use of the “.̃..” to label some normalised quantities).

7.1. Equations in the non-ideal region for ρs & de

As we enter the non-ideal region from the ideal one, when x < 1, the first non-ideal
characteristic scale that is encountered under the hypotheses previously done is ρs > de.
This is the first scale length with respect to which we can try to identify a boundary layer:
aiming to single out a subdomain in the x� 1 range where only ρs possibly matters, we
start by fixing ` = ρs in Eqs.(5.8), so that Eqs.(5.9-5.10) become

ψ̃1 −

(
d̄2
e

ρ2
s

+
ζ̃2

G̃2

)
ψ̃′′1 = − ζ̃

G̃2
ϕ̃1, ϕ̃′′1 = ζ̃ψ̃′′1 , (7.1)

with

ζ̃ =
x

ρs
, G̃ =

γ

kρsJ0
, ϕ̃1 = −iG̃ϕ1(ζ̃), ψ̃1 = ψ1(ζ̃). (7.2)

The auxiliary equation (5.19) specialises to:(
d̄2
e

ρ2
s

+
ζ̃2

G̃2

)
χ̃′′ − 2

d̄2
e

ρ2
s

χ′

ζ̃
−

(
1 +

ζ̃2

G̃2

)
χ̃ = − ζ̃

2

G̃2
χ̃∞. (7.3)

Eq.(7.3) can be shown to be equivalent to Eq.(B42) of (Zocco & Schekochihin (2011)),
although the latter has been obtained from a four field system which also accounts for
the dynamics of the reduced electron guiding center contribution and for the parallel
electron temperature perturbation (ge and δT||,e, respectively, therein). These authors,
too, solved the boundary layer problem in the coordinate space, but −also because of the
different system of equations they started from− they took a different path with respect
to the one we take here, in which we tackle the integration of the inner equation directly
in the different wave length limits of interest. In this sense, the comparison between the
boundary layer integration procedure of the aforementioned article and the one we are
going to outline here is not immediate, although possible, since some different operational
assumptions in the definition of the boundary layers and in the analytical technique of
integration have been used in that work and in the present one†.

Note that, so far, the boundary layers have not been yet identified, here.

† In their work, Zocco & Schekochihin (2011) identified two non-ideal integration regions
where ion physics and electron physics were respectively dominating. In these two regions they
sought the solutions of their auxiliary equation, from which they computed the magnetic flux
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7.2. Boundary layers in the non-ideal region for ρ2
s/d

2
e � 1

We now specialise the condition ρs & de by making the assumption ρ2
s/d̄

2
e � 1,

which requires a sufficiently large scale separation between d̄e and ρs > d̄e. Note that
this is henceforth the strongest assumption about the relative ordering of the non-ideal
parameters at play, which is done in this analysis for tearing modes in the warm electron
regime. Nevertheless, the quantitative results obtained in this way are usually applied
also for ρs & d̄e: numerical calculations in a wide interval of the parameter space (Betar
et al. (2020)) suggest that the condition ρs > d̄e/10 can be assumed for the validity of
the results we are going to obtain below. In the interval ρs/10 . d̄e . 10ρs a transition
from power-law scalings of the cold limit of Sec. 6 to those of the warm limit that we are
going to discuss here is observed.

7.2.1. Outermost boundary layer

Assuming ρ2
s/d̄

2
e � 1, Eqs.(7.1) become

ψ̃1 −
ζ̃2

Ḡ2
ψ̃′′1 = − ζ̃

Ḡ2
ϕ̃1, ϕ̃′′1 = ζ̃ψ̃′′1 (7.4)

and Eq.(7.3) reads

χ̃′′ −

(
1 +
G̃2

ζ̃2

)
χ̃ = −χ̃∞. (7.5)

These equations must be assumed to be valid in an interval where spatial scales are
comparable to ρs but larger than d̄e, that is, d̄e/ρs . ζ̃ � 1, where the first inequality
is meant in the sense discussed above. Therefore, restriction to this interval formally
corresponds to take d̄e = 0 in Eq.(5.4). The integration of Eqs.(7.8) and the matching
of their solutions with ψout of the ideal region via Eqs. (3.5-3.6) formally identifies the
outmost boundary layer of width

δ2 = ρs. (7.6)

7.2.2. Innermost boundary layer

Of course, since the formation of the X-point via reconnection requires d̄e 6= 0, a
second, innermost boundary layer can be defined in a region where both scales d̄e and
ρs matter. The width δ1 of this second boundary layer does not necessarily correspond
to the scale d̄e (if it were so, the condition δ1 � δ2 would require d̄e � ρs, which
is an even stronger restriction than that defining the validity of Eq.(7.6)). In order to
identify this inner boundary layer we can look back to Eqs.(7.1,7.3) or to Eqs.(5.9-
5.10,5.19) and notice that the two terms in parentheses, in which there is an explicit
dependence on both ρs and d̄e, are comparable (regardless of the definition of ` and G) if
(ζρs)

2/(Gd̄e)2 ∼ 1. In dimensional units this means xkρsJ0/(γd̄e) ∼ 1, which suggests us

function ψ in the electron and ion region (A||,e and A||,i in their notation, respectively, which
in this work map into the solution ψ that we will compute in the innermost and outermost
non-ideal regions) by assuming in the large- and small wavelength limit some heuristic orderings
(a posteriori verified) in terms of ∆′ and what they named “reconnection region” (δin, in their
notation). As we will later discuss (Sec. 8), the characteristic width of their “reconnection
region”, δin differs from that of the innermost boundary layer that we are going ot identify (δ1),
but in some regimes it can be interpreted in the light of a further characteristic scale length,
which we will introduce in Sec. 10 (namely, what we will call (∆′vy )−1). In the following we are
going to adopt an integration procedure based on the integral representation of hypergeometric
functions, whereas, in their work, (Zocco & Schekochihin (2011)) used a perturbative method
to obtain a closed form solution for A||,e.
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to introduce the normalisation scale ` = γd̄e/(kρsJ0). Using then in Eqs.(5.9-5.10) the
change of coordinates and variables expressed by

ζ =
x

`
=
xkρsJ0

γd̄e
, G =

ρs
d̄e
, ϕ1 = −iGϕ1(ζ), ψ1 = ψ1(ζ), (7.7)

we write

ψ1 −
d̄2
e

`2
(
1 + ζ2

)
ψ′′1 = − ζ

G2
ϕ1, ϕ′′1 = ζψ′′1 . (7.8)

Using the definition of G in Eq.(7.7) and the fact that ρ2
s/d̄

2
e � 1, one sees that in this

interval ζϕ1/G2 ∼ ζ2ψ1d̄
2
e/(J

2
0 )ρ2

s � ψ1 so that Eqs.(7.8) can be approximated as

ψ1 −
d̄2
e

`2
(
1 + ζ2

)
ψ′′1 = 0, ϕ′′1 = ζψ′′1 , (7.9)

and with the same normalisation, Eq.(7.3) (or Eq.(5.19)) becomes

(1 + ζ2)χ′′ − 2

ζ
χ′ − `2

d̄2
e

χ = −ζ2χ∞. (7.10)

Note that in the definitions above we have used the same symbols for `, G and ζ,
previously introduced in Eqs.(5.8), since the different regime of interest here should not
induce any confusion with those symbols used in previous Sec. 6. Also note that, in order
to avoid unnecessary burdens to notation in the following calculations, we have used for
ψ1(ζ) and ϕ1(ζ) the same symbol that we use everywhere else for ψ1(x) and ϕ1(x). This,
also, should not ingenerate any confusion as the argument of the function will be later
specified in the few cases where the two meanings could be confunded.

Later in this Section, we will proceed with the integration of these solutions and with
their matching. It is therefore reasonable to postulate the innermost layer width to be

δ1 =
γd̄e
kρsJ0

, (7.11)

which we will later show to be the case, indeed, although we remind that the identification
δ1 → ` formally requires us to a posteriori verify that δ1 � ρs � 1. From now on we will
therefore write δ1 defined by (7.11) in place of ` defined by (7.7).

7.3. Integration strategy in the warm electron regime for ρ2
s/d̄

2
e � 1

We can now better establish the integration strategy for this problem, which has been
generally outlined at the end of Sec. 3. We have identified three overlapping spatial
intervals of the integration domain in which different limits of the eigenvalue equations
hold. For practical reasons these can be identified in terms of the variable ζ̄ introduced
in Eqs.(7.1-7.2).
• The innermost region x 6 δ1, where δ1 = γd̄e/(kρsJ0), to be yet quantified, and

Eqs. (7.9-7.10) are valid. This integration domain applies for ζ̃ � 1, i.e., for x� ρs.
• The intermediate region δ1 � x 6 δ2 where δ2 = ρs and Eqs. (7.4-7.5) hold. This

integration domain applies for ζ̃ ∼ 1, i.e. for δ1 � x� a.
• The outer region valid for x such that δ2 � x, whose governing equations are those

of ideal MHD. Here (4.2) be used. This integration domain applies for ζ̃ � 1, i.e. for
x ∼ a.

Two matching regions can be therefore identified:
-) In the interval δ1 < x < δ2 the solution χ(ζ) of Eq.(7.10) is matched with solution

χ̃(ζ̃) of Eqs.(7.5) according to limζ→∞ χ(ζ) = limζ̃→0 χ̃(ζ̃).
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-) In the interval δ2 < x < a the solution χ̃(ζ̃) of Eq.(7.5) (corresponding to ψ̃1(ζ̃) and
ϕ̃1(ζ̃) of Eqs.(7.4)) is matched with the solutions ψout(x) and ϕout(x) of Eqs.(4.1-4.2)
according to limζ̃→∞ ψ̃1(ζ̃) = limx→0 ψout(x) and limζ̃→∞ ϕ̃1(ζ̃) = limx→0 ϕout(x).

Notice that the matching conditions also generally depend on the wavelength range,
that is, on the value of ∆′, which rules the solution in the ideal region. This can influence
the integration strategy, as outlined in Sec. 5.5.

Before solving Eqs.(7.1) or (7.3) in both the inner and the outer regions, and then
matching the corresponding solutions to obtain the general solution of the problem, it
is useful to discuss (see Sec. 7.3.1, below) a general method that can be used to solve
equations having the form of (7.9). This methos is based on the integration in the complex
plane via representation by means of hypergometric functions.

7.3.1. Solution of the equation in the innermost interval (x� δ1) via integral
representation of hypergeometric functions

Eq.(7.9) is a second-order ordinary differential equations that in the complex plane has
three singular points at ζ = ±i and ζ =∞. Therefore, employing some transformations,
it can be written in the standard form of a hypergeometric equation. This suggests one to
look for the solution of Eqs.(7.9-7.10) in terms of hypergeometric functions. Inspired by
the integral representation of hypergeometric functions, we can thus look for a solution
of (7.9) of the form

ψ1 =
1

2πi

∮
C

F (s)(1 + ζ2)sds, (7.12)

where C is a closed contour in the complex plane which starts at −∞ of the real axis,
goes around the singularities of the function F (s) (it will turn out that these singularities
are given by an infinite number of simple poles of F (s)), and then returns back to −∞.
This representation will allow us to employ the residue theorem which states that ψ1

equals to the sum of residues enclosed by the contour C. The second derivative of ψ1

becomes

ψ′′1 =

∮
C

2s(2s− 1)F (s)(1 + ζ2)s−1ds−
∮
C

4s(s− 1)F (s)(1 + ζ2)s−2ds. (7.13)

Shifting the operator in the second term by taking s′ = s+ 1, Eq.(7.13) reads

ψ′′1 =

∮
C

2s(2s− 1)F (s)(1 + ζ2)s−1ds−
∮
C

4s(s+ 1)F (s+ 1)(1 + ζ2)s−1ds. (7.14)

Substituting the previous relation in Eq.(7.9) one obtains an expression stating that the
integral of (1+ζ2)s times a function of s equals zero. A sufficient condition for its validity
is to set to zero the function of s, which reads:

[2s(2s− 1)− (δ1/d̄e)
2]F (s)− 4s(s+ 1)F (s+ 1) = 0. (7.15)

To get an insight on the form of F (s), let us write F (s + k) in terms of F (s) by using
(7.15). After a little algebra, we obtain

F (s+ 1) =
(s− α

2 )(s− β
2 )

s(s+ 1)
F (s) (7.16)

where α = 1
2 − ν, β = 1

2 + ν, and ν = (1/4 + (δ1/d̄e)
2)

1
2 . Then,

F (s+ j) =
(s− α

2 )j(
s−β

2 )j

(s)j(s+ 1)j
F (s) (7.17)
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where

(q)j ≡ q(q + 1) · · · (q + j − 1) =
Γ (q + j)

Γ (q)

is the so-called “Pochhammer symbol” defined in terms of the Γ -function (see
(Abramowitz & Stegun (1964)), §6.1.22). Motivated by the form of Eq.(7.17) one
can look for a function F (s) expressed as a combination of Gamma functions, that is,

F (s) =
Γ (s+ a)Γ (s+ b)

Γ (s+ c)Γ (s+ d)
. (7.18)

If by comparison with (7.17) we choose c = 0, and d = 1, Eq.(7.15) becomes(
a+ b+

1

2

)
s+ ab+

(
δ1

2d̄e

)2

= 0. (7.19)

The previous equation should be satisfied for any value of s. Therefore, one obtains

a+ b+
1

2
= 0, ab+

(
δ1

2d̄e

)2

= 0, (7.20)

which has the following solutions

a = −α
2
, b = −β

2
, α =

1

2
− ν, β =

1

2
+ ν, ν =

(
1

4
+
δ2
1

d̄2
e

) 1
2

. (7.21)

Here a and b are real numbers because (δ1/d̄e)
2 is also a real number, whence it is evident

that the singularities of F (s) are points on the real axis. Using Eq.(7.21), F (s) reads

F (s) =
Γ (s− α

2 )Γ (s− β
2 )

Γ (s)Γ (s+ 1).
(7.22)

One sees that F (s) has two series of simple poles at

s =
α

2
−m, s =

β

2
−m, m = 0, 1, 2, 3, ... (7.23)

It is also clear that the previous poles are associated with two series of residues. The
first one is obtained by taking the limit s = α/2−m in the evaluation of the residue of
F (s)(1 + ζ2)s,

ψα = Resα ≡
∞∑
m=0

lim
s→α

2−m

[
(s+m)Γ (s− α

2
)
] Γ (−ν −m)(1 + ζ2)

α
2−m

Γ ( 5
4 −

ν
2 −m)Γ ( 1

4 −
ν
2 −m)

=

∞∑
m=0

(−1)m

m!

Γ (−ν −m)

Γ ( 5
4 −

ν
2 −m)Γ ( 1

4 −
ν
2 −m)

(1 + ζ2)
α
2−m,

(7.24)

where the limit in the previous equation is obtained using the property Γ (s+1) = sΓ (s),
which leads to

lim
s→−m

(s+m)Γ (s) = lim
s→−m

(s+m)
Γ (s+ 1)

s

= lim
s→−m

(s+m)
Γ (s+m+ 1)

s(s+ 1)....(s+m− 1)(s+m)
=

(−1)m

m!
. (7.25)
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The second series of the residues can be calculated taking the limit s = β
2 −m. Then,

ψβ = Resβ =

∞∑
m=0

(−1)m

m!

Γ (ν −m)

Γ ( 5
4 + ν

2 −m)Γ ( 1
4 + ν

2 −m)
(1 + ζ2)

β
2−m. (7.26)

Therefore, using the residue theorem (
∮
C
f(z)dz = 2πi

∑
z∈C Res[f(z)]), and substituting

in Eq.(7.12), ψ1 becomes

ψ1 = ψα + ψβ (7.27)

We recall that this solution is valid as long as x� δ2, i.e., x� ρs.
The same result could be found by using Frobenius method (see, e.g., (Bender & Orszag

(1978)), §3.3) by assuming a power series solution of the form ψ1 =
∑∞
m=0 gm(1+ζ2)λ−m:

after substituting ψ1 in Eq.(7.9) and using g0 6= 0, the indicial equation leads to λ1 = α
2

and λ2 = β
2 , where α and β are given by Eqs.(7.21). The coefficients gm for both λ1 and

λ2 can be found by equating the coefficients of the powers of ζ to zero. In this way, one
obtains again Eqs. (7.24-7.27).

A discussion about both the convergence and the independence of solutions (7.24) and
(7.26) is in Appendix E.

7.4. Solution of the auxiliary equation for ρ2
s/d

2
e � 1: large-∆′ limit

We now solve the auxiliary equation (7.10) in the large-∆′ limit. Its detailed analytical
investigation becomes essential in this wavelength limit since, as we will see in Sec.(9.3),
the “standard” heuristic derivation here (surprisingly) fails to recover the correct scaling
laws.

In this wavelength limit the solution of the auxiliary equation in the innermost region
can be matched directly to the solution obtained in the outermost non-ideal region by
setting χ∞ = 0, as discussed in Sec. 5.5. From this matching we will obtain the scaling
laws for both the growth rate and the reconnecting layer width.

7.4.1. Solution in the innermost layer x 6 δ1

We can solve Eq.(7.10) by following the same line of thought used to solve Eq.(7.9),
as described in Sec. 7.3.1: we thus assume a solution of the form

χ(ζ) =
1

2πi

∮
C

G(s)(1 + ζ2)sds. (7.28)

After calculating the first and second derivative of (7.28) with respect to ζ, and substi-
tuting them into Eq.(7.10), one obtains the condition

[2s(2s− 1)− (δ1/d̄e)
2]G(s)− 4(s+ 1)2G(s+ 1) = 0. (7.29)

By noticing the similarity of the previous relation with Eq.(7.15), we look for a G(s) of
the form

G(s) =
Γ (s+ a)Γ (s+ b)

Γ 2(s+ 1)
=
F (s)

s
. (7.30)

We recall that previous equation has been written by assuming c = d = 1 in (7.18), and
this allows us to eliminate the (s + 1)2 coefficient in Eq.(7.29). In (7.30) we have also
used Γ 2(s+ 1) = sΓ (s)Γ (s+ 1). This choice leads us again to Eq.(7.20), and therefore,
to the same values for a and b which are given by Eq.(7.21), meaning that both (7.18)
and (7.30) have the same infinite series of poles, as it can be expected from the definition
of χ expressed by (7.28). Therefore, the general solution of Eq.(7.10) reads

χin(ζ) = χα(ζ) + χβ(ζ), (7.31)
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where

χα(ζ) =

∞∑
m=0

(−1)m

m!

Γ (−ν −m)

Γ 2( 5
4 −

ν
2 −m)

(1 + ζ2)
α
2−m, (7.32)

χβ(ζ) =

∞∑
m=0

(−1)m

m!

Γ (ν −m)

Γ 2( 5
4 + ν

2 −m)
(1 + ζ2)

β
2−m. (7.33)

We close the discussion in this section by noticing that the leading terms in Eq.(7.31)

are (1 + ζ2)
α
2 and (1 + ζ2)

β
2 . Therefore, we can look for an approximate asymptotic

solution of the form

χin(ζ) ≈ χapprin (ζ) = A(1 + ζ2)
α
2 +B(1 + ζ2)

β
2 + C. (7.34)

where A, B, and C are constants. Their values will be estimated by matching the solutions
in the different regions and by applying the constraints at ζ = 0, which we are going to
obtain in Sec. 7.4.2. Note that for limit ζ →∞ Eq.(7.34) can be further approximated:

χin(ζ) ≈ χapprin (ζ) = Aζα +Bζβ + C. (7.35)

7.4.2. Constraints at the origin

Any solution of the auxiliary equation must satisfy the constraints below, that follow
from the definition of χ(ζ) (Eq.(5.11)) and from Eq.(7.9) at ζ = 0:

ψ′′1 (0) =
δ2
1

d̄2
e

ψ1(0) = χ′′(0) = − δ
2
1

d̄2
e

χ(0), (7.36)

ψiv1 (0) =
δ2
1

d̄2
e

ψ′′1 (0)− 2
δ2
1

d̄2
e

ψ1(0) = −2

(
1− 1

2

δ2
1

d̄2
e

)
ψ′′1 (0) = −2

δ2
1

d̄2
e

(
1− 1

2

δ2
1

d̄2
e

)
ψ1(0),

(7.37)

χiv(0) = 3ψiv1 (0) = −6

(
1− 1

2

δ2
1

d̄2
e

)
ψ′′1 (0) = −6

(
1− 1

2

δ2
1

d̄2
e

)
χ′′(0) = 6

δ2
1

d̄2
e

(
1− 1

2

δ2
1

d̄2
e

)
χ(0).

(7.38)
These expressions will be later used in the asymptotic matching, so to determine the free
coefficients in the expression of χaprrin in Eq.(7.34).

7.4.3. Solution in the intermediate region, δ1 � x 6 δ2

In this region we look for a solution χ̃(ζ̃) of Eq.(7.3). Being interested in the large-∆′

limit, we can pose χ̃∞ = 0. Eq.(7.3) then becomes the homogeneous equation

χ̃′′ −

(
1 +
G̃2

ζ̃2

)
χ̃ = 0, (7.39)

where ”′” refers to the derivative with respect to ζ̃ = x/ρs. This equation belongs to
the family of modified Bessel equations (see (Abramowitz & Stegun (1964)), §9.6.1). In
fact, it can be transformed into the standard modified Bessel equation via the change of
variable χζ̃ = ζ̃

1
2u(ζ̃) that leads to

ζ̃2u′′ + ζ̃u′ −
(
ζ̃2 + ν2

)
u = 0, (7.40)

where ν is given by the last of Eqs.(7.21). The only solution of the previous equation that
is bounded when ζ̃ →∞ (or equivalently, when x→∞) is the modified Bessel function
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of the second kind, that is, u(ζ̃) = Kν(ζ̃). Therefore Eq.(7.39) has the solution

χ̃mid(ζ̃) = ζ̃
1
2Kν(ζ̃), (7.41)

the label “mid” standing for the intermediate region domain δ1 � x 6 δ2 where it is
defined. Its asymptotic behavior as ζ̃ → 0 is given by

χ̃apprmid ≡ lim
ζ̃�1

χ̃out(ζ̃) = lim
ζ̃�1

ζ̃
1
2Kν(ζ̃) = lim

ζ̃�1
ζ̃

1
2

(π
2

) I−ν(ζ̃)− Iν(ζ̃)

sin(πν)

∼ 2ν

Γ (1− ν)
ζ̃α − 2−ν

Γ (1 + ν)
ζ̃β ,

(7.42)

where we used relation §9.6.2 of (Abramowitz & Stegun (1964)). Here α and β are once
more given by Eq.(7.21), and Iν(ζ̃) is the modified Bessel function of the first kind,

Iν(ζ̃) ≡

(
ζ̃

2

)ν ∞∑
m=0

(
ζ̃2

4

)m
m!Γ (ν +m+ 1)

. (7.43)

7.4.4. Matching of solutions: scaling laws and eigenfunctions

The scaling laws for both the growth rate γ and the width of the innermost layer, δ1,
are obtained from matching the solutions in the innermost and intermediate regions of
the domain. This formally closes the eigenvalue problem.

In order to accomplish this, we start by estimating the second and the fourth derivative
of χapprin (ζ) at ζ = 0. Then we will apply the constraints at the origin written in

Sec. 7.4.2 and the condition limζ→∞ χ(ζ) = limζ̃→0 χ̃(ζ̃), that is, limζ→∞ χapprin (ζ) =

limζ̃→0 χ̃
appr
mid (ζ̃), so to obtain the equations that will allow us to find A, B, and C, and,

finally, the scaling laws.
First of all, from the matching of Eq.(7.42) with Eq.(7.35), we obtain

A =
2ν

Γ (1− ν)

(
δ1
ρs

)α
, B = − 2−ν

Γ (1 + ν)

(
δ1
ρs

)β
. (7.44)

Taking the second and the fourth derivatives of χapprin (we here omit “appr” to simplify
the notation), one finds

χin(0) = A+B + C, (7.45)

χ′′in(0) = Aα+Bβ, (7.46)

χivin(0) = 6Aα
(α

2
− 1
)

+ 6Bβ

(
β

2
− 1

)
. (7.47)

Then, using the constraint on the second derivative given by Eq.(7.36) and Eq.(7.46),

C = −A

(
1 + α

(
d̄e
δ1

)2
)
−B

(
1 + β

(
d̄e
δ1

)2
)
. (7.48)

The constraints on the fourth derivative (7.38) and on Eq.(7.47) instead lead to

Aα

(
α−

(
δ1
d̄e

)2
)

+Bβ

(
β −

(
δ1
d̄e

)2
)

= 0. (7.49)
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Combining the previous equation with Eq.(7.44), one obtains

− A

B
=
β
(
β −

(
δ1/d̄e

)2)
α
(
α−

(
δ1/d̄e

)2) = 22ν

(
δ1
ρs

)−2ν
Γ (1 + ν)

Γ (1− ν)
, (7.50)

where we used α − β = −2ν. For small values of
(
δ1/d̄e

)
, Eq.(7.21) gives ν ≈ 1/2,

α ≈ −
(
δ1/d̄e

)2
, and β ≈ 1, therefore Eq.(7.50) becomes

1

2

(
d̄e
δ1

)4
(

1−
(
δ1
d̄e

)2
)

= 2
Γ ( 3

2 )

Γ ( 1
2 )

(
ρs
δ1

)
. (7.51)

Using Γ (3/2) = Γ (1/2)/2 =
√
π/2 and

(
δ1/d̄e

)2 � 1 (to be verified a posteriori), the
equation above implies

δ1 ∼ ρ
− 1

3
s d̄

4
3
e (7.52)

whence, using the definition (7.11), one obtains

γ ∼ kρ
2
3
s d̄

4
3
e . (7.53)

Specialising Eqs.(7.52-7.53) to the purely resistive regime, d̄e = (S−1/γ)1/2, one recovers
the result of (Pegoraro & Schep (1986)) for the growth rate (cf. Eq.(33) therein and also
Eq.(20) in (Pegoraro et al. (1989))) and of (Zocco & Schekochihin (2011)) for δ1 (cf. δη
in Eq.(B100), therein),

γ ∼ k 6
7 ρ

4
7
s S
− 1

7 , δ1 ∼ k−
4
7 ρ
− 5

7
s S−

4
7 . (7.54)

Specialising the same equations to the purely collisionless regime, d̄e = de, one recovers
instead the result of (Porcelli (1991)) for both for the growth rate (Eq.(8), therein)
and for the innermost layer width (quantity σ, defined therein above Eq.(7); see also
(Bhattacharjee et al. (2005))),

γ ∼ kρ
2
3
s d

1
3
e , δ1 ∼ ρ

− 1
3

s d
4
3
e . (7.55)

In both the purely resistive and the collisionless case, the conditions δ2
1 � d̄2

e and δ1 �
δ2 ∼ ρs we had previously heuristically assumed, are a posteriori verified.

Finally, by looking at the definition of χ, it is obvious that ψ1 ≈ χapprin when x � δ1,
since xψ′1 ∼ xψ1/δ1 � 1. Therefore, substituting the values of ν, α, β, G, and δ1 in
Eq.(7.34), one obtains for the inner layer

lim
x�δ1

ψ1 '
21/2

Γ (1/2)

(
δ1
ρs

)−δ21/d̄2s (
1 +

x2

δ2
1

)−δ21/d̄2s
− 2−1/2

Γ (3/2)

(
δ1
ρs

)(
1 +

x2

δ2
1

) 1
2

+

(
δ1
ρs

)(
1 +

d̄2
s

δ2
1

)
, (7.56)

Integrating Eq.(5.12), and using Eq.(7.34), one finds, for x� δ1,
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Figure 8. Profiles of ψ1 (blue), χapprin of Eq.(7.45) (black-dashed), and xψ′1 (orange) in the
reconnection layer around the neutral line: these profiles are obtained by numerical integration
of the complete eigenvalue problem and should be compared to the approximated analytical
solutions (7.56-7.57). The width of reconnection layer evaluated as it will be specified in Sec.
7 is δ = δ1 ' 10−6. The physical parameters of the numerical integration performed with the
solver of (Betar et al. (2020)) in the large-∆′ limit are shown in the figure.
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where (
r
m

)
b

=
r(r − 1) · · · (r −m+ 1)

m!
=

(r)m
m!

(7.58)

is the usual binomial coefficient, generalized for real values of the argument r.
Notice that for x 6 δ1, the dominant term in Eq.(7.57) is the one with m = 0.

Therefore, to the lowest order, ϕ can be approximated as ϕ ∼ x. Fig.8 shows the spatial
profile od ψ1, χapprin , and xψ′1 in blue, black, and orange colors, respectively, in a sub-
interval of the integration domain. These profiles have been computed numerically by
solving the eigenvalue problem for ψ1 and ϕ1 with the solver of (Betar et al. (2020)) and
using the definitions (7.35). We can this way numerically verify that χaprrin ≈ ψ1 within
the innermost layer with |x| � δ1, in agreement with the previous discussion.

The eigenfunctions (7.56-7.57) agree with the behaviour of the perturbed current
density profile provided by Pegoraro & Schep (1986) in the inner layer for the warm
resistive regime (d̄e = (S−1/γ)1/2), which had been already numerically verified in (Betar
et al. (2020)).

7.5. Solution of the linear equations for ρ2
s/d

2
e � 1: small-∆′ limit

In the small-∆′ limit we use again the constant-ψ approximation, as we already did in
the integration of the cold-electron limit, in Sec. 6.2. Fig. 9 shows the appropriateness of
this assumption also in the warm-electron regime: it displays the profile of ψ1 numerically
computed with the eigenvalue solver of (Betar et al. (2020)) in the collisionless regime
for de = 2 × 10−2, ρs = 5 × 10−3, and for a value of k = 1.7, which corresponds to
∆′(k) = 3.3 and δ1 ' 2.4× 10−6 (evaluated according to definition (8.3) −see later).

Therefore, we write ψ1 = c0 in the whole non-ideal region and, as discussed in Sec. 5.5,
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Figure 9. Spatial profile of ψ1, numerically computed with the eigenvalue solver of (Betar et al.
(2020)) in the collisionless regime for a choice of the parameters de = 2× 10−2, ρs = 5× 10−3,
and for a value of k = 1.7. These values correspond to ∆′(k) = 3.3 and to δ = δ1 ' 2.4× 10−6,
evaluated according to definition (8.3) introduced next. The smaller box inserted at the top
hand right corner of the figure shows a zoom of the solution inside the innermost layer of width
∼ δ = δ1, in which the appropriateness of the constant-ψ1 condition is put in evidence.
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Figure 10. Comparison of the spatial profiles of the terms ρ2s/(d̄
2
eG̃2) × ζ̃2ϕ̃′′1 (blue curve), of

ρ2s/(d̄
2
eG̃2)× ζ̃2ϕ̃1 (orange curve), and of ϕ̃1 (green curve) of Eq.(7.59), in a region of the domain

with width |x| < δ2 = ρs. The parameters of the numerical integration performed with the
eigen-solver of (Betar et al. (2020)) in the small-∆′ limit are shown in the top of the figure. The
value of δ = δ1 in the bottom right corner has been evaluated according to definition (8.3).

this allows us to more conveniently perform the integration by looking at the equations for
ψ1 and ϕ1 rather than to the auxiliary equation. In this way, Eqs.(7.1) can be combined
in the form (

1 +
ρ2
s

d̄2
e

ζ̃2

G̃2

)
ϕ̃′′1 =

ρ2
s

d̄2
e

ζ̃2

G̃2
ϕ̃1 + c0

ρ2
s

d̄2
e

ζ̃, (7.59)

The results of Sec. 8.3 in the small-∆′ cold-electron limit are recovered by neglecting
the ρ2

s ζ̃
2ϕ̃′′1/(d̄

2
eG̃2) contribution in the left-hand-side term of Eq.(7.59). Its presence, here,

makes appear an intermediate matching region also in this wavelength limit.
This can be seen in Fig.10, where the results of a numerical integration performed in the

small-∆′ limit of the warm collisionless regime (d̄e = de) with the solver of (Betar et al.

(2020)), are shown. The blue curve corresponds to the ρ2
s ζ̃

2ϕ̃′′1/(d̄
2
eG̃2) term in Eq.(7.59).

Its strong variation close to the neutral line is concentrated in a narrow region much
smaller than δ2 = ρs, which is of the order of δ1 (evaluated from the numerically computed
eigenfunction, as it will be discussed in Sec. 8). The green curve corresponds instead to
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the ϕ̃′′1 term in Eq.(7.59), i.e., to the first left-hand side contribution between parentheses,
whereas the orange curve corresponds to the first term on the right-hand side of Eq.(7.59),

ρ2
s ζ̃

2ϕ̃1/(d̄
2
eG̃2). This term can be neglected with respect to the one corresponding to the

blue curve. For completeness, the contribution of the last right hand side term of (7.59),
c0ρ

2
s ζ̃

2/d̄2
e, is shown as the black, dashed line. From the comparison of these contributions,

one verifies the appropriateness of the hypotheses justifying Eqs.(7.4).
Thus, an intermediate region, corresponding to the interval δ1 < |x| . δ2 of Sec. 7.2.1

can be recognised: here Eqs.(7.4) hold, which we can combine in the form

ζ̃2ϕ̃′′1 = ζ̃ϕ̃1 + c0Ḡ2. (7.60)

However, as discussed in Sec. 5.5, it is not necessary here to first perform the integration
of Eq.(7.60), since the constant-ψ condition holds in this case also in the innermost
region.

7.5.1. Matching and scalings in the non-ideal region x� 1

Combining Eqs. (7.8) is in practice equivalent −except for the chosen normalisation−
to neglecting the ∼ ζ̃2ϕ̃1/ term in Eq. (7.59). Using the latter, where, we recall, lengthts
are normalised to ρs, we write

ϕ̃′′1 = c0
ρ2
s

d̄2
e

ζ̃

1 + ρ2
s ζ̃

2/(d̄2
eG̃2)

. (7.61)

The equivalent of Eq.(3.10), obtained after integration of the second of Eqs.(7.1) (cf. it
also with Eq.(6.16)) reads ∫ +Z̃

−Z̃
ψ̃′′1 dζ̃ =

∫ +Z̃

−Z̃

ϕ̃′′1

ζ̃
dζ̃, (7.62)

where Z̃ = X/ρs � 1 is a matching point in the interval δ1 � X � δ2 in units of
L0 = a. Use of Eq.(3.9) allows one to establish the matching conditions with the outer

solution by making explicit the dependence on ∆′: writing therefore
∫ +Z̃

−Z̃ ψ̃′′1 = c0∆
′ and

substituting (7.61) in (7.62) one obtains

c0∆
′ =

∫ +Z̃

−Z̃

ϕ̃′′1
ζ̃
dζ̃ = c0

ρ2
s

d̄2
e

∫ +Z̃′

−Z̃′

dζ̃

1 + %2ζ̃2
= c0

ρ2
s

%d̄2
e

arctan(%ζ̃)
∣∣∣+Z̃
−Z̃

, (7.63)

where % ≡ ρs/(d̄eG̃). Taking the asymptotic limit Z̃ →∞ and using arctan(%̄ζ̃)|+∞−∞ = π,
Eq.(6.16) reads

c0∆
′ = c0π

ρ2
sG̃
d̄e

=⇒ γ =
√
πJ0kρsd̄e∆

′ =⇒ δ1 ∼ ∆′d̄2
e, (7.64)

where in the last passage we have used the definition (7.11) of δ1 = γd̄e/(kρsJ0). We can
thus explicate the scalings above in the purely collisionless and purely resistive limits. In
the former, taking d̄e = de, one obtains

γ ∼ J0k∆
′ρsde, δ1 ∼ ∆′d2

e, (7.65)

that is, the result of (Porcelli (1991)) (cf. discussion between Eqs.(8) and (9), therein).
Taking instead d̄e = S−1/2γ−1/2, one obtains

γ ∼ J2/3
0 (k∆′)2/3ρ2/3

s S−1/3, δ1 ∼ J−1/3
0 k−2/3(∆′)1/3ρ−2/3

s S−2/3, (7.66)
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that is, the result first obtained by Pegoraro & Schep (1986) for the growth rate (cf.
Eq.(39), therein) and by Zocco & Schekochihin (2011) for δ1 (which maps into δη of
Eq.(B.96), therein).

7.5.2. Approximated eigenmodes in the non-ideal region x� 1

Approximated expressions for the eigenmodes can be obtained by integrating Eq.(7.61)
twice, and by calculating the second of these integrals by parts: one finds the following
approximate formula for the eigenfunction ϕ̃1(x/δ2) in a spatial interval x . δ2 ' ρs
that covers the whole non-ideal region:

ϕ1(x) ' c0δ
3
1

2d̄2
e

{(
x

δ1

)
ln

(
1 +

(
x

δ1

)2
)

+ 2 arctan

(
x

δ1

)
− 2

(
x

δ1

)}
. (7.67)

Substituting Eq.(7.67) into Eq.(7.61), using the second of Eqs.(7.8) and integrating twice
by parts, gives an approximated expression for ψ1:

ψ1(x) ' c0 +
c0δ

2
1

d̄2
e

{(
x

δ1

)
arctan

(
x

δ1

)
− 1

2
ln

(
1 +

(
x

δ1

)2
)}

. (7.68)

From the expressions above it is straightforward to find closed forms for both the magnetic
field components and the current density perturbations, using their definitions Bx(x) ≡
kψ1, By(x) ≡ −∂ψ1/∂x, and Jz(x) ≡ −δ2ψ1/∂x

2 and Eq.(7.68). These lead to

Bx(x) = −k sin(ky)ψ1(x), By(x) = −kδ1c0
d̄2
e

arctan

(
x

δ1

)
(7.69)

Jz(x) = − c0
d̄2
e

1

1 +

(
x

δ1

)2 (7.70)

In the appropriate limits, this equation corresponds to Eq.(74) of (Pegoraro & Schep
(1986)) and to Eq.(31) of (Betar et al. (2020)).

8. Operational definition of the reconnecting layer width, δ, and
other microscopic scales related to the eigenmodes

We have seen (Sec.6-7) that the boundary layer calculations allow one to determine
the asymptotic scaling of the width of the layers, where approximate solutions of the
eigenfunctions can be analytically evaluated. These characteristic widths appear as
normalisation scales δ1 and δ2, which, although sometimes can be seen as “natural”,
being suggested by the comparison of some terms in the equations (as in the cases
we previously considered), are a priori arbitrary and are essentially determined by the
algebra. Recognising some of these scales as identificative of the reconnecting layer width,
requires instead further insight (and hypothesis) of physical nature.

This is the subject we discuss in this section, where we are going to provide an
operational definition allowing the measurement of the reconnecting layer width, δ, which
is in agreement with previous theoretical assumptions (i.e., theoretical definitions based
on some physical insight that have been used in previous literature), and which can be
useful for both numerical and experimental quantitative estimates. The appropriateness
of this definition is then shown by direct comparison with boundary layer calculations of
Sec.6-7 and by numerical verification of its asymptotic scaling.

By analysing some local properties of the derivatives of the eigenfunctions close or
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on the neutral line, we also identify the asymptotic scalings of some microscopic scales,
which are associated to the inverse of these spatial gradients. The relevance of these
scale lengths will be shown again by comparison between the results of the boundary
layer calculations and the numerical results.

To this purpose we use the adaptive multi-precision solver discussed in (Betar et al.
(2020)), which had been specifically developed to address the generalized eigenvalue
problem in a slab periodic box of dimension [−Lx/2, Lx/2], for k assigned. This solver
uses a compact finite difference scheme of tunable precision for the derivatives on a
non-uniform grid along the x-direction. The use of a non-uniform grid and of tunable
precision in the calculation allow us to resolve the inner layer even for microscopic,
realistic values of the non-ideal parameters: the grid spacing in the inner layer can be
so chosen to be much smaller than in the outer layer in order to save computing time
without loosing accuracy. In that work we verified the numerical scalings predicted by
boundary layer calculations in different reconnection regimes. Although the scalings in
the small-∆′ regime are insensitive of the magnetic equilibrium profile, this is not the
case for the large-∆′ limit, as it had been already noted in a series of works by (Cross
& van Hoven (1971); Van Hoven & Cross (1971, 1973b, 1973a)): in both (Betar et al.
(2020)) and in the present article the numerical results refer to the equilibrium profile
(4.3) in a numerical box with Lx = 4π.

8.1. Notions of reconnecting layer and estimates of its width in previous literature

The reconnecting layer width δ, meant as the extension of the interval around the
neutral line, where the reconnection process takes place and is mostly localised, is not per
se unequivocally defined via boundary layer calculations. Its identification requires further
ansatz based on physical assumptions. Because of this, in most of the early reference
papers about boundary layer calculations performed in the warm fluid-electron regime,
the notion of “reconnecting layer width” has not been explicilty used (cf. (Pegoraro &
Schep (1986); Pegoraro et al. (1989); Porcelli (1991))). In this context, an early notion
of “layer width”, identifiable as δ, has been just used in some kinetic models for tearing
modes (cf. (Drake & Lee (1977); Mahajan et al. (1978, 1979); Cowley et al. (1986))).
In particular, in some of these works (Drake & Lee (1977); Cowley et al. (1986)) it
has been referenced as the “electron layer width”, because of its identification with the
microscopic region dominated by electron dynamics, in contrapposition to the broader
“ion layer width”, where non-ideal effects are important, but at scales larger than those
of electrons. In this sense, δ has been made actually correspond to the innermost layer
width, which we have named δ1 (the “ion layer” being practically correspondent to δ2).
This identification, which also agrees with the assumption made in cold-electron regimes
(practically since the first work of (Furth. et al. (1963)) −cf. also (Ottaviani & Porcelli
(1995))) where a single non-ideal layer can be identified, has been made more explicit
in later works (Bhattacharjee et al. (2005); Zocco & Schekochihin (2011); Connor et al.
(2012b)).

The physical argument which is at the basis of the identification δ → δ1, and which has
been more or less explicitly stated in different works on tearing mode analysis, grounds
on the idea that it is the innermost subdomain, which contains the essential non-ideal
physics allowing the reconnection process. For example, for ρs > d̄e, the non-ideal region
extending up to x/ρs ∼ 1 is not of interest in this sense, coherently with the fact that
ρs does not allow, per se, the onset of tearing instabilities: it is only in the innermost
layer of width δ1, that both electron inertia (de) or resistivity (S−1) and ion-sound FLR
effects (ρs) are important. Because of this, δ1 is the natural candidate to be identified as
the characteristic microscopic region where magnetic lines dragged there by the flow can
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intersect, by thus violating the frozen-in condition. And since this can not occur as long
as magnetic lines are frozen in the electron flow (cf. footnote of comment to Eq.2.7), this
layer is arguably dominated by electron physics, whence the appropriateness of naming
it “electron layer”.

Alternative, yet similar expressions have been frequently used in literature, in order to
characterise the layer where the electron frozen-in condition is violated. In this regard it
is worth mentioning the “dissipation region (or layer)”, named this way with reference to
the dissipation of magnetic flux in resistive reconnection (see, e.g., among many others,
(Parker (1973); Mandt et al. (1994); Shay et al. (1998))), and the probably even more
common expression, “(electron) diffusion region”. Introduced with initial reference to the
resistive magnetic diffusion in Sweet-Parker-like steady reconnection processes −see, e.g.,
(Sonnerup (1973); Vasyliunas (1975))−, the latter expression is currently used to identify
the reconnecting layer in any reconnection processes, and thus also in all regimes of
tearing-type modes (see, e.g., (Drake & Kleva (1991); Hesse et al. (1999); Le et al. (2013))
and several more other works, especially connected to astrophysical plasma research). All
these notions fit with the idea of identifying the extension of the reconnecting layer with
that of the reconnecting current sheet. In practically all works on magnetic reconnection
explicitly touching the subject, the scale length δ is more or less explicitly assimilated
also to the characteristic width of the “(reconnecting) current layer (or sheet)”.

However, in spite of the vast scientific literature, spanning almost seven decades, which
addresses the subject of characterising the reconnecting layer in different reconnection
scenarii and regimes, no precise and generally acquired operational definition seems to
exist for it. Identifying the reconnecting region and measuring the spatial profile of
physical quantities inside of it, is a crucial element for the modelling of reconnection
processes observed in Nature or in experiments (cf., e.g., (Bratenahl & Yeates (1970);
Yamada et al. (1997); Vaivads et al. (2004); Yamada et al. (2010))). Even identifying
its position and extension from masurements may be a non-trivial task, and indeed
specific proxies are sought for this purpose, in different reconnection regimes (e.g., the
quadrupolar pattern of the magnetic field for Hall-reconnection, etc.). And also when
reconnection is known or is expected to occur because of tearing-type modes, for which
quite accurate analytical estimates are available, quantitative information on δ obtained
from measurements can give insight on important features of the reconnection process
(we will dedicate the last two Sections 9-10 of this work to this point and to the
heuristic interpretation of the boundary layer calculation). Moreover, once compared with
theoretical estimates, this quantitative information can give indication on the dominant
non-ideal effects at play. We recall indeed that the scale δ1 obtained from boundary layer
calculations is not “trivial” (cf. Sec. 9-10, next): for example, in the large-∆′ limit of the
ρs > d̄e regime, we have seen the scale δ1 to be asymptotically smaller than both d̄e and
ρs. At the same time, despite this information was avilable since the first boundary layer
calculations performed in the Fourier space in the warm electron regime, its interpretation
in physical terms has not been univocal: while practically all early works agreed on
recognising the non-ideal ion region to have extension of the order of ρs, the width of
the current layer has been instead differently identified, on the basis of slighlty different
physical arguments, often depending on further hypotheses or heuristic estimates. For
example, the current width in the linear, large-∆′, warm-collisionless regime has been
also estimated to be larger than de (see, e.g., (Drake & Kleva (1991); Ottaviani & Porcelli
(1995)), on the basis of the heuristic arguments developed in (Drake & Lee (1977); Cowley
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et al. (1986)) and then re-discussed† in (Zocco & Schekochihin (2011)), or of the order
of ∼ de (see, e.g., (Grasso et al. (1999))), based on the simple argument that de is the
characteristic scale related to the reconnection process in collisionless regimes (see, e.g.
(Vasyliunas (1975))).

From all these argument follows the interest in seeking a priori estimates of δ, which
can be of general acceptance and do not ground on boundary layer calculations but can
be directly implemented by starting from experimental or numerical data.

In the context of nonlinear numerical simulations of tearing mode reconnection, differ-
ent examples of the estimate of δ have been proposed, in literature. Sometimes, δ has been
identified in terms of the global profile of the eigenmode superposed on the equilibrium
function. For example, Ali et al. (2014) have measured the width of the current sheet
as the distance between the local minima of Jz,1(x, y0) + Jz,0(x) with respect to the
coordinate x, and for y0 that corresponds to the ordinate of the X-point. The current
layer width has been also identified (Tenerani et al. (2015)) by evaluating the distance
between the local minima of what here we would name‡ Bx,1(x, y0) ∼ ψ1(x) cos(k(y−y0)).
In the nonlinear simulations of (Papini et al. (2019b)), instead, the reference value for δ
has been taken by evaluating the full width (with respect to, let us say, the x coordinate)
at half maximum of the total current Jz minus its average background value, that is, δ
has been evaluated as the width at half height of a local estimation of Jz,1(x).

8.2. Operational definition of the reconnecting layer width, δ, and its scalings

Here we propose a quantitative, operational definition for the measurement of δ, which
differs with respect to the ones previously suggested in the way we estimate the current
layer width, at least for tearing-type reconnection. We start indeed by noting that, in
agreement with the well known identification “reconnecting layer ↔ current sheet”, this
layer can be identified as the region around the neutral line in which the current density
related to the perturbation is concentrated. In our notation this current density is Jz,1 =
−∇2ψ1. Inside of this region a velocity field is also concentrated, corresponding to an
outflow parallel to the neutral line outwardly directed from the X-point, which is a
hyperbolic point of the flow (see sketch in Fig.11). In the notation used here, such a
velocity field is vy,1 = −ϕ′1.

The profiles of Jz,1(x) and of vy,1(x) close to the neutral line (cf. Fig. 12) are
qualitatively analogous, so that both their respective characteristic “thicknesses” could
be taken as candidates for δ. Therefore, by referring to the eigenfunctions only, we here
consider the distance from the neutral line of the local maxima (or minima) of the gradient
of the current density (J ′z) and to the distance from the neutral line of the local maxima
(or minima) of the vorticity (ϕ′′). Since these two distances can in principle differ, we
respectively name them δψ and δϕ:

δψ : J ′′z,1
∣∣
x=δψ

= ψiv1
∣∣
x=δψ

= 0, δϕ : v′′y,1
∣∣
x=δφ

= ϕ′′′1 |x=δϕ
= 0. (8.1)

As shown in Figure 12, δψ and δϕ can be easily calculated once the profile of the
corresponding eigenfunction has been computed.

† The distinction between current layer width and reconnecting layer width, which these
authors do, is a subtle point on which we will come back later, at the end of Sec. 10.5.
‡ It can be noted that the estimate of Tenerani et al. (2015) relates to the numerical evaluation

we later give of the inverse scale length D′ (cf. Eq.(10.10) and Fig.14) rather than of δ. In the
context of the aforementioned work this is however coherent since in the simulations of (Tenerani
et al. (2015)) the instability of a large aspect ratio current sheet is studied, where a fastest
growing mode exists (as evidenced already by Furth. et al. (1963)) for which ∆′ ∼ 1/δ (cf.
(Loureiro et al. (2007); Bhattacharjee et al. (2009); Del Sarto et al. (2016); Betar et al. (2020)).
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Figure 11. Sketch of the hyperbolic pattern of the velocity field associated to linear
perturbations around the X-point. The yellow stripe represents the reconnecting layer in the
vicinity of the neutral line, where a current sheet Jz,1 of width ∼ δ is concentrated (the width
of the magnetic island, instead, may well trespass the width of this region, during its nonlinear
evolution −cf. caption of Fig.2). Note that the estimate vx,1 ∼ γδ, with vx,1 = −ikϕ1, holds
inside of this region, whereas the vy,1 = ϕ′1 component changes of sign on the neutral line and
therefore displays a strong gradient across the ∆x ' δ interval.
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Figure 12. Examples of evaluation of the half-width of the current layer as the distance of
the local maxima (minima) of ψ′′′1 = −J ′z,1 (left) and of ϕ′′1 (right) from the neutral line (the
parameters of the numerical calculation are indicated on top of the figures.

A numerical scan performed in the whole parameter range of the regimes considered in
(Betar et al. (2020)), indicates that δψ and δϕ approximatively display the same asymp-
totic scaling, as shown in Fig.13, as an example, for the warm-collisionless reconnection
regime. We can so write δψ ∼ δϕ, even if a proportionality factor not much different from
unity is present (for example we measured δϕ ' 2δψ in warm collisionless RMHD with
ρs/de ' 10), which seems to display a weak dependence on the non-ideal parameters
involved, at least in the parameter range we have numerically investigated.

Based on the coherence with the numerical results, that show the correspondence of
the scalings of δ1 with those of δψ in all the reonnection regimes considered (also when
electron-eletcron viscosity is inlcuded −see (Betar et al. (2020))),

we identify δ as twice the distance from the neutral line of the inflection point of Jz.
(8.2)

Accordingly, we propose to operationally define the layer width, as

δ ≡ δψ ∼ δ1. (8.3)
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Figure 13. Scalings of δϕ (left frames) and δψ (right frames) calculated using the definitions
given by Eq.(8.1). The scalings, shown on the different frames, prove that these two quantities
follow the same scaling laws.

The symbols δSD and δLD can be therefore used to indicate δ ≡ δψ ∼ δ1 in the small-
and large-∆′ regimes.

8.3. Further micro-scales related to the gradients of the eigenmodes on the neutral line

A further ensemble of characteristic spatial scales of the system is provided by the
normalized derivatives of the eigenfunctions evaluated on the neutral line. These can be
shown to be related to combinations of powers of the non-ideal parameters and of δ1.
We define:

δ
(N)
ψ ≡

∣∣∣∣∣ψ(N)
1

ψ1

∣∣∣∣∣
− 1
N

x=0

, N = 2, 4, 6, ..., (8.4)

where N is the order of the derivative with respect to the shear variable x.
These length scales can be related to the local expansion of the eigenfunctions in a

neighborhood of x = 0. Using the fact that both ψ1 and vy,1(x) = ϕ′1(x) are even and
are continuous at least up to the third derivative with respect to x, we can write:

ψ1(x) ' c0

1± 1

2

(
x

δ
(2)
ψ

)2

± 1

4!

(
x

δ
(4)
ψ

)4

± ...

 . (8.5)

vy(x) = ϕ′1(x) ' q0

1 ± 1

2

(
x

δ
(2)
vy

)2

± 1

4!

(
x

δ
(4)
vy

)4

± ...

 . (8.6)

Note that the coefficients of Eq.(8.6) are related to those of Eq.(8.5). Using indeed
dϕ1(ζ)/dζ = ζdψ1(ζ)/dζ−ψ1(ζ)−χ∞ (cf. Eqs.(5.11-5.12) for ζ = x/δ1, whence dx/dζ =
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δ1, and keeping into account the normalization of ϕ1(ζ), i.e., ϕ1(ζ) = Aϕ1(x) with
A = −iγ/(kδ1J0) in the cold-electron regime and A = −iρs/d̄e in the warm-electron
regime, one obtains

dϕ1

dx
=

x

Aδ1

dψ1

dx
− ψ1

Aδ1
− χ∞
Aδ1

. (8.7)

Direct substitution of Eqs.(8.5-8.6) into Eq.(8.7) and comparison of equal powers of x
yields:

q0 ∼ −
c0
Aδ1
− χ∞
Aδ1

, δ(N)
vy ∼

(
1 +

χ∞
c0

) 1
N

(N − 1)
1
N δ

(N)
ψ . (8.8)

Using then (5.14) and (5.17), we can write

q0 ∼
O(∆′δ1)

Aδ1
for ∆′δ1 � 1, q0 ∼ −

c0
Aδ1

for ∆′δ1 � 1. (8.9)

Notice that the first of Eqs.(8.9) is of scarce utility, here, since not accurate enough: the
estimate (5.14), which identifies χ∞ ∼ −c0 by neglecting possible corrections roughly
estimable as being of the order of ∼ O(∆′δ1), can not be indeed used for the present
calculations, as it would always yield vy(0) = 0. This does not generally agree with the
analytical results of the boundary layer calculations in the small-∆′ limit (cf., e.g., the top
right frame of Fig. 14, next, obtained via numerical integration of the eigenvalue problem).
Therefore, when needed, depending on the reconnecting regime and wavelength limit
considered next, we will rely on a more accurate estimate obtained from the boundary
layer solution found in the case of interest.

The scalings of some of the length scales δ
(N)
ψ are easily found to be related to those

of δ1 (and hence of δ ∼ δψ). This can be proven analytically. A possibility, quite
generally applicable, consists in combining Eqs.(2.1-2.2) by using ϕ0(0) = 0 with the
local expansion

ψ0(x) ' C0 +
C2

2
x2 +

C4

4!
x4 +O(x4), (8.10)

and in differentiating the eigenfunctions the number of times which is needed. Note the
correspondence C2 = J0 in the notation used in previous Sections. The sought scalings
can be obtained by balancing the dominant terms of the equations while taking the limit
x→ 0, and by using the scalings of γ and δ1 obtained from boundary layer calculations.
An alternative procedure consists in the direct evaluation of these derivatives from the
approximated eignemode solutions close to the neutral line, once they are obtained by
integration of the boundary layer problem.

Here below (Sec. 8.3.1), we use the second procedure to compute δ
(2)
ψ and the former

to obtain δ
(4)
ψ .

8.3.1. Asymptotic scalings of δ
(2)
ψ and of δ

(4)
ψ

The scalings that can be obtained for δ
(2)
ψ and δ

(4)
ψ in the different regimes are

summarised in Table 2.
The estimate of δ

(2)
ψ is of interest, since it provides a direct estimate of the peak

amplitude of the current density on the neutral line during the linear stage of the tearing

mode evolution. According to the values in Table 2, Jz|x=0 ' c0/d̄e. Also the scale of δ
(2)
vy

is of potential interest, since it gives the characteristic curvature with respect to x of the

velocity profile vy(x) on the neutral line. While, according to Eqs.(8.8-8.9), δ
(2)
vy ∼ d̄e in

the large-∆′ limit, in the small-∆′ limit its value is typically asymptotically smaller, since



Microscopic scales of collisionless tearing modes 59

Length
Cold regimes Warm regimes

collisionless resistive collisionless resistive
scale ∆′δ1 � 1 ∆′δ1 � 1 ∆′δ1 � 1 ∆′δ1 � 1 ∆′δ1 � 1 ∆′δ1 � 1 ∆′δ1 � 1 ∆′δ1 � 1

δ
(2)
ψ de (Sγ)−

1
2 de (Sγ)−

1
2

δ
(4)
ψ

√
deδSD

√
deδLD

δ
− 1

2
SD

(Sγ)
1
4

δ
− 1

2
LD

(Sγ)
1
4

√
deδSD

√
deδLD

δ
− 1

2
SD

(Sγ)
1
4

δ
− 1

2
LD

(Sγ)
1
4

Table 2. Scaling of the spatial scales associated to the second and fourth order derivative of
ψ1(x), evaluated on the neutral line x = 0 in different reconnection regimes and wave-length
limits. In each regime, δSD and δLD are those of Table 1 and correspond to the different values
of δ1 evaluated in Sec.6-7.

it depends on the estimate of (1 + χ∞/c0) � 1 (cf., e.g., Eq.(8.21) next, for the cold-
electron limit). These estimates are likely to be relevant for the study of the stability of
the Bickley jet (Bickley (1937)) related to the vy(x) velocity component, which, especially
in the cold collisionless, large-∆′ regimes, nonlinearly develops along the neutral line and
for d2

e � ρ2
s leads to a turbulent regime via the onset of secondary Kelvin-Helmholtz

instabilities (Del Sarto et al. (2003, 2006)). A similar feature had been observed also in
early nonlinear simulations of the collisionless internal-kink mode in cylindrical geometry
(Biskamp & Sato (1997)) and had motivated dedicated studies of the stability of Bickley
jet in presence of a background magnetic field aligned to it (Biskamp & Sato (1997)). The
destabilisation via Kelvin-Helmholtz of Bickley jet developing during the nonlinear stage
of the collisionless reconnection process has been confirmed also in nonlinear simulations
of tearing modes in three-dimensional geometry (Grasso et al. (2007, 2009, 2020)).

The estimate of δ
(4)
ψ is also of interest, since it intervenes in the modelling of the

nonlinear current sheet evolution, which in the purely collisionless regime has been shown
to shrink exponentially in time (Ottaviani & Porcelli (1993, 1995)).

Below we separately evaluate δ
(2)
ψ and of δ

(4)
ψ so to prove the scalings reported in the

Table.

8.3.2. Asymptotic scalings of δ
(2)
ψ

The scaling of δ
(2)
ψ follows from Eqs.(2.1), which, in the purely collisionless limit, both

“cold” and “ warm ”, implies the conservation of the electron canonical momentum on
the neutral line because of (8.10): ∂t(ψ − d2

e∇2ψ)|x=0 = 0. The result can be formally
extended to the resistive regime by relying again on the generalized electron skin depth
d̄e. More precisely, regardless of the value of ρs, we obtain from Eq.(2.1)

δ
(2)
ψ =

d̄e√
1 + k2d̄2

e

' d̄e, (8.11)
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since in both the large- and small-∆′ regimes, purely resistive or purely inertial, k2d̄2
e � 1.

The above expression can be can also approximatively written as

ψ′′1
ψ1

∣∣∣∣
x=0

' 1

d̄2
e

=⇒ δ
(2)
ψ ' d̄e. (8.12)

The corresponding scalings in Table 2 descend from (8.12), after the relevant parameter
and wavelength limits are considered.

8.3.3. Asymptotic scalings of δ
(4)
ψ

In order to evaluate δ
(4)
ψ we should differentiate the solutions ψ1 obtained in each

reconnection regime and wavelength limit. Save for the warm electron, large-∆′ limit,
where the last equality of (7.37), immediately gives

∣∣(d4ψ1/dζ
4)/ψ1

∣∣
ζ=0

' 2δ2
1/d̄

2
e +

O
(
δ4
1/d̄

4
e

)
, whence δ

(4)
ψ can be rapidly evaluated by using ζ = x/δ1 and then δ1 = dx/dζ,

in all other cases some more algebra is required. It is therefore interesting to look if it
is possible to address all the regimes and cases in a unified way. To this purpose we can
combine Eq.(8.10) and (8.5-8.6) with the limit x → 0 of the second order derivative of
Eq.(2.1) and of the first order derivative of Eq.(2.2) with respect to x. Having introduced
once more d̄e so to treat the inertial and resistive cases all together, we obtain:

γ
(
(1 + k2d̄2

e)ψ
′′
1 − d̄2

eψ
iv
1

)
|x=0 ' i2C2k

(
ρ2
sϕ
′′′
1 − ϕ′1

)
|x=0, (8.13)

γϕ′′′1 |x=0 ' ik (C2ψ
′′
1 − C4ψ1) |x=0. (8.14)

Combining them and using (8.6),

γ2
(
(1 + k2d̄2

e)ψ
′′
1 − d2

eψ
iv
1

)
|x=0 ' −2C2k

2ρ2
s(C2ψ

′′
1 − C4ψ1)|x=0 − i2C2kγq0. (8.15)

Finally, using (8.12)

− d̄4
e

1 + k2d̄2
e

ψiv1
ψ1

∣∣∣∣
x=0

' −1− 2(C2)2 k2

1 + k2d̄2
e

ρ2
s

γ2
+ 2C2

k2

1 + k2d̄2
e

d̄2
e

γ2

(
ρ2
sC4 − i

γq0

kc0

)
.

(8.16)
At this point we specialise the result to the cold and to the electron limits.

Cold-electron limit
In the cold limit ρs = 0, using A = −iγ/(kδ1J0), q0 ∼ −c0/(Aδ1) or ∼ −2c0/(Aδ1) (cf.
Eqs.(8.9)) we can so distinguish two cases.

-) One case is for k2d̄2
eδ1/γ

2 ∼ de � 1, which corresponds to the large-∆′ limit,
in which we obtain the scaling∣∣∣∣ψiv1ψ1

∣∣∣∣
x=0

' 1

d̄4
e

=⇒ δ
(4)
ψ ' d̄e ∼ δ1 ∼

√
d̄eδLD. (8.17)

-) The second case is for kd̄2
eq0/(c0γ)� 1, which is true in the small-∆′ limit, for

which γd̄e/k ∼ δ2
1 (cf. Eq.(6.19), but for which a better estimate of q0 as given

by the first of Eqs.(8.9) must be found. To this purpose we can directly use the
solution found for Φ(z) = (d̄ek

3J3
0/γ

3)1/2ϕ1(x(kJ0)1/2/(γd̄e)
1/2) from boundary

layer calculations performed in this regime (Sec. 6.2). We first take the derivative
of (6.15):

dΦ

dz
= −1

2

∫ 1

0

(1− t2)−
1
4 e−

1
2 tz

2

dt+ z2

∫ 1

0

t(1− t2)−
1
4 e−

1
2 tz

2

dt. (8.18)
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Since z ∝ x, we can evaluate Q0 ≡ Φ′(z)|z=0 and then relate it to q0 = ϕ′1(x)|x=0.
From (8.18) we obtain

Q0 = −1

2

∫ 1

0

dt

(1− t2)
1
4

= −
∫ π

4

0

√
1− 2 sin2(u) du = −E

(π
4
|2
)
, (8.19)

where in the last passage we have made the changes of variables of integration
t = sin θ and u = θ/2 and where E is the incomplete elliptic integral of second
kind (see (Gradshteyn & Ryzhik (2015)), (8.2) in §8.111). Using Eq.(6.14), we thus
find

q0 = i
c0γ

kd̄eJ0
Q0 = −i c0γ

kd̄eJ0
E
(π

4
|2
)
. (8.20)

Finally, using Eq.(6.21), one finds

q0 = −i
c0
(
∆′d̄e

)2
I2

E
(π

4
|2
)

(8.21)

This leads to

ψiv1
ψ1

∣∣∣∣
x=0

' −i2C2

I2
E
(π

4
|2
) k∆′

γ
, (8.22)

that is, ∣∣∣∣ψiv1ψ1

∣∣∣∣
x=0

' 1

∆′d̄3
e

=⇒ δ
(4)
ψ '

√
d̄eδSD. (8.23)

Warm-electron limit
In the warm limit ρs > d̄e we can assume instead the first term of (8.22) to be always
dominant at r.h.s and grater than unity, so to write

ψiv1
ψ1

∣∣∣∣
x=0

' 2C2
2

k2

γ2

ρ2
s

d̄4
e

. (8.24)

Using finally the definition (7.11) we obtain, in both the small- and large-∆′ limits,∣∣∣∣ψiv1ψ1

∣∣∣∣
x=0

' 1

d̄2
eδ

2
1

=⇒ δ
(4)
ψ '

√
d̄eδ1. (8.25)

Specialising d̄e in the purely inertial or purely resistive regime and taking the relevant
scalings in the large-∆′ allows us to complete the Table 2 above.

9. Heuristic derivation of the scaling laws of tearing modes

In previous sections, we obtained the growth rate scaling law by analytically solving the
eigenvalue problem in the warm and cold collisionless regimes. To solve the equations, we
expanded the equilibrium profile around the neutral line using Taylor series. Therefore,
despite the cumbersome analysis developed to find them, the eigenfunctions so obtained
are merely approximations and not “exact” solutions of the problem. It is also evident
the complexity of the boundary layer approach, which leads to differential equations of
hypergeometric nature.
A complementary approach is possible, which in some cases, as we are going to see, allows
the estimate of the scalings of both the growth rate and of the reconnecting layer width
by providing some more physical insight about the analytical assumption made in the
boundary layer formalism. This method is based on some heuristic orderings of the terms
in the inner layer equations, and on balancing these terms together to obtain the scaling
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laws via dimensional analysis −see (Drake & Lee (1977); Cowley et al. (1986)) for an
application to kinetic tearing, (Betar et al. (2020)) for an application to the cold resistive
and viscous-resistive regimes, (Drake & Kleva (1991)) for an application to secondary
instabilities to a primary tearing-type mode. Although it has been not detailed, this
approach has been also used to get the collisionless scalings of tearing modes in (Ottaviani
& Porcelli (1995)). An analogous approach is at the basis of the available theoretical
estimates of the scalings of the reconnecting rate in the whistler-mediated reconnection
scenario (Mandt et al. (1994)) and of the reconnecting rate in Hall-MHD reconnection
(Biskamp et al. (1995, 1997)). Heuristic ansatz on the scaling of the gradients of the
tearing eigenfunction have revealed to be useful also for quantitative estimates −which
have been numerically verified a posteriori− about the time and spatial behaviour of
the reconnecting current sheet during its nonlinear, collisionless evolution (Ottaviani &
Porcelli (1993, 1995)). More in general, heuristic estimates are of fundamental importance
to allow insight on the physical interpretation of less evident analytical results (see, e.g.,
(Drake & Lee (1977); Cowley et al. (1986)) for tearing modes, (Grasso et al. (1999)) for
the interpretation of the physical meaning of ρs in reduced MHD reconnection).
While this heuristic method, with some variations, is frequently presented in textbooks
as a shortcut procedure to find the scalings of the cold-electron, resistive tearing mode
(see, e.g., (Biskamp (2000)), §4.1.1; (Schnack (2009)), Lecture 34; (Boyd & Sanderson
(2003)), §5.3.1, to give some examples), its application can not be clear when more than
one boundary layer exists, as it is in the case of warm-electron tearing modes. Discussing
this point is therefore of general interest: this is what we are going to do in this Section,
where we compare the heuristic approach to the boundary layer analysis presented in
previous sections. In particular, we are going to show that further information is required
to get consistent results from the heuristic analysis in order to get the correct scalings
when ρs & d̄e. From preliminary analysis, this information appears not to be immediately
available from a priori arguments. This suggests that the heuristic approach should be
carefully handled, when electron temperature effects (and, more in general, FLR effects)
are included, since it could lead to incorrect estimates, as we are going to show below.

9.1. General hypotheses in the heuristic approach to the scaling estimate

Let us first outline the general hypotheses, which allow one to recover the correct scaling
laws by dimensional analysis in the text-book like examples of the purely resistive and
of the purely inertial tearing mode analysis.
We first re-write the eigenvalue equations for x� 1 (i.e., x/a� 1 in dimensional units),
in the non-ideal region

ψ1 − i
kx

γ
J0ϕ1 = d̄2

eψ
′′
1 +

ρ2
s

γ2
k2x2J2

0ψ
′′
1 , (9.1)

ϕ′′1 = −ikx
γ
J0ψ

′′
1 , (9.2)

where Eq.(9.2) was used to express the second term on right-hand side of Eq.(9.1), and
resistivity has been included in the parameter d̄2

e.
The usual heuristic estimations, as they have been successfully used for both the purely
collisionless and purely resistive regimes, are based on the idea that:

1) There is a characteristic scale, say lc, for the gradient of ψ1, which we are going
to quantitatively define in the following. It allows one to estimate ψ′1 ∼ ψ1/lc at
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some point x in the neighborhood of the neutral line.

2) A single characteristic microscopic scale exists for both the first derivative of
ψ′1 and ϕ1: this corresponds to the inner layer width, δ, which we operationally
define according to Eq.(8.3), (this can be proven via numerical integration of the
equations −see later).

3) We can generally assume δ 6 lc.

We then add a further assumption that can be a posteriori verified (also numerically),
and somewhat generalizes the examples for which the heuristic approach has been
sucessfully applied, in the past:

4) lc is the largest characteristic scale length in the matching layer with the ideal-
MHD solution. That is, in a neighborhood of the neutral line we write the estimates

ψ′1 ∼
ψ1

lc
, ψ′′1 ∼

ψ1

δlc
. (9.3)

The two characteristic scales that naturally appear when a distinction has been made
between the large-∆′ and small-∆′ limits, are (∆′)−1 and δ. Accordingly, in the small-∆′

limit, lc = (∆′)−1 with ∆′δ � 1, while in the large-∆′ limit lc = δ and ∆′δ � 1. This
argument suggests the following scalings (Ottaviani & Porcelli (1995)),

ψ′′1
ψ1
∼ 1

δ2
for (∆′δ � 1),

ψ′′1
ψ1
∼ ∆′

δ
for (∆′δ � 1). (9.4)

Note that, differently from (8.12), where the ratio ψ′′1/ψ1 is evaluated exactly on the
neutral line (x ≡ 0), in the estimates of Eqs.(9.4) it is evaluated in the neighborhood of
the line (i.e., x ' 0).
After approximating x ∼ δ in the inner layer, Eq.(9.2) gives

ϕ′′1 ∼
kδ

γ
J0ψ

′′
1 , (9.5)

which is true in all tearing regimes. All further estimates rely on assumptions about the
relative ordering between the terms of the equations. In what follows, we will discuss
the derivation of the scaling laws in the different regimes by using this method: it will
prove to be successful in the cold-collisionless limit but we will see that it fails in the
warm-collisionless regime.

9.2. Heuristic derivation of the scaling laws in the cold-electron regime (ρ2
s � d̄2

e)

In these regimes we can take ρs = 0. Therefore, the second term on the right-side hand
of Eq.(9.1) vanishes.
For reasons of “economy of thought” and of convenience about the generalisability of
the heuristic approach, which will be discussed next (cf. comments on Eq.(10.4), in Sec.
10.1), we now follow a procedure, which, although practically equivalent to the ones
that can be found in classical textbook examples, slightly differs from most of them, as
far as some ansatz are concerned: in particular, we are not going to make use of the
estimate ϕ′′1 ∼ ϕ1/δ

2
1 , otherwise typically used, and which can be verified to be valid in

the cold-electron regimes.
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We then start by balancing the remaining terms of Eqs.(9.1-9.2). This leads us to

ψ1 ∼ d̄2
eψ
′′
1 ϕ1 ∼

γ

kδJ0
ψ1, ϕ1 ∼

γd̄2
e

kδJ0
ψ′′1 . (9.6)

Differentiating twice the second of (9.6) and using (9.5) one gets

γ ∼ kδJ0, (9.7)

which is valid for both wave-length limits and in both the collisionless and resistive
regimes. Substituting Eq.(9.4) in the first of (9.6), one obtains

δ ∼ d̄e for (∆′δ � 1), δ ∼ d̄2
e∆
′ for (∆′δ � 1). (9.8)

It can be noticed that, looking at the physical aspects, the first of conditions (9.6) is the
result of the balance between the two terms directly involved in the process of energy
conversion that is related to magnetic reconnection: the magnetic potential ψ1 on the
one side, and, on the other side, the electron kinetic energy d2

eψ
′′
1 in the collisionless limit

or the energy dissipated by Ohm’s law in the resistive limit, S−1ψ′′1 .
At this point it is convenient to treat the purely inertial and the purely collisionless case
separately.

-) Collisionless case.
Substituting d̄e → de and (9.8) into Eq.(9.7) yields

γ ∼ J0kde for ∆′δ � 1, γ ∼ J0k(∆′)2d3
e for ∆′δ � 1. (9.9)

The corresponding scalings of the width of the reconnecting layer read

δ ∼ de for ∆′δ � 1, δ ∼ ∆′d2
e for ∆′δ � 1. (9.10)

These are the scaling laws of (Porcelli (1991)) that we have analytically obtained
in Sec.6.
-) Resistive case.
Substituting instead d̄e → S−1/2/γ1/2 and proceeding as above yields the scalings
of (Furth. et al. (1963); Coppi et al. (1976)) (see also (Ottaviani & Porcelli (1995))),
which we have also already obtained in Sec. 6:

γ ∼ J2/3
0 k2/3S−1/3 for ∆′δ � 1, γ ∼ J2/5

0 k2/5(∆′)4/5S−3/5 for ∆′δ � 1).
(9.11)

δ ∼ J−1/3
0 k−1/3S−1/3 for ∆′δ � 1, δ ∼ J−2/5

0 k−2/5(∆′)1/5S−2/5 for ∆′δ � 1.
(9.12)

9.3. Heuristic derivation of the scaling laws in the warm-electron regime (ρs & d̄e)

If we now follow an analogous approach in the warm-collisionless regime, problems arise
suggesting some (or all) of the hypotheses made at points (1-3) and in Eqs.(9.3-9.5) to
not be correct. Let us see why.
In this regime, the second term on the right-hand side of Eq.(9.1) does not vanish.
Therefore, it is expected that this term will be of the same order of the first right hand
side term at the boundary of the inner layer (i.e., at |x| ' δ). Balancing these two terms
yields

γ

kJ0
∼ ρs
d̄e
δ. (9.13)

Balancing the first left hand side terms of Eq.(9.1) one estimates ψ1 ∼ d̄2
eψ
′′
1 . For the

small-∆′ limit, one has ψ′′1/ψ1 ∼ ∆′/δ ∼ 1/d̄2
e, meaning δ ∼ ∆′d̄2

e. Therefore, for the
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∆′δ � 1 limit, one obtains

γ ∼ J0k∆
′ρsd̄e, δ ∼ ∆′d̄2

e. (9.14)

These scaling laws for γ and δ are identical to those given by Eq.(7.64) which we
analytically derived in Sec. 7.5. That is, they allow us to recover the small-∆′ limit
of the scalings of (Pegoraro & Schep (1986)).
Following the same line of thought to find the scaling laws of the large-∆′ limit, one
would expect, as discussed in Sec. 9, that the largest scale lc equals δ since this time
δ � (∆′)−1. Therefore, ψ1 ∼ d̄2

eψ
′′
1 gives δ ∼ d̄e, which differs from the scaling (7.52).

Proceeding with this argument, after substituting δ ∼ d̄e in Eq.(9.13), the scaling γ ∼ kρs
is obtained. This, also, differs from the scaling law obtained analytically in Eq.(7.53) and
which, instead, has been numerically verified (Betar et al. (2020)). No numerical evidence
in the range ρs & d̄e has been found of the scalings δ ∼ d̄e and γ ∼ kρs. Also note that
γ ∼ kρs does not display any explicit dependence on d̄e, which contains the non-ideal
parameters that allow magnetic reconnection (and which should make γ → 0 as d̄e → 0).
We therefore conclude the scalings δ ∼ d̄e and γ ∼ kρs to be wrong.
This implies that the generalisability of the heuristic approach to the warm regimes is not
evident and further information about the estimates of the relevant quantities is needed.
Even if this problem is not solved, yet, and a closed set of equations for the heuristic
estimates is not available when ρs & d̄e, in the next subsection we investigate this
possibility by introducing a new characteristic scale-length of the system associated to
the gradient of the velocity component paallel to the neutral line, and which we postulate
to be related to the gradient of the magnetic flux function at the boundaries of the “outer
region”: although so far we must rely on its numerical estimate, we are going to show that
this allows us to use a heuristic-type approach to get the correct scaling laws of the growth
rate and of the inner layer width in all reconnection regimes here considered. In this sense,
introducing this scale length at least allows us to generalise the heuristic procedure to
warm-electron regimes, although this generalisation remains so far incomplete, due to the
lack of a procedure apt to a priori estimate this scale length. Moreover, the asymptotic
scaling of this quantity can be shown to correspond to that of a characteristic scale length,
which in both (Porcelli (1991)) and (Zocco & Schekochihin (2011)) has been obtained as
a normalization length in boundary layer integration procedure. In these works it had
been related to the width > δ1 of the domain sub-interval in which the solution of the
innermost equation is valid in the large-∆′ limit.

10. An ansatz about the “generalisation” of the heuristic estimates:
the role of the velocity gradient in the non-ideal region

A critical ingredient of the previous analysis is the estimate of the characteristic length,
lc, related to the first derivative of the magnetic stream function in the non-ideal region.
Let us focus on the ρs & d̄e regime where heuristic estimates display problems. Using
ψ1 ∼ d̄2

eψ
′′
1 and Eq.(9.13), we see that the scale length lc enters in the estimates of the

growth rate and of the reconnecting layer width as:

γ ∼ J0
kρsd̄e
lc

, δ ∼ d̄2
e

lc
. (10.1)

In both the collisionless and resistive regimes, the correct estimates are recovered in the
small-∆′ limit when lc ∼ (∆′)−1, whereas they are incorrect in the large-∆′ limit if we
assume lc ∼ δ. This suggests looking for another reasonable estimate for lc, in this case.
The strategy we pursue here is therefore to look for a third “effective” scale length for
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lc, different from ∆′ and δ, that would allow us to recover the correct scaling from
Eqs.(10.1) in the large-∆′ limit, and to verify its relevance and appropriateness by means
of numerical calculations.

10.1. Velocity gradient in the innermost non-ideal region

The likely candidate we propose for an alternative definition of lc, is the inverse of the
logarithmic jump in the component of the derivative of the fluid velocity parallel to the
neutral line and evaluated at x = ±δ, which we name ∆′vy , in (loose) analogy with the
usual ∆′ defined for the magnetic stream-function ψ1:

∆′vy ≡
v′y(δ)− v′y(−δ)

vy(δ)
=

ϕ′′1(δ)− ϕ′′1(−δ)
ϕ′1(δ)

. (10.2)

It must be noted that in Eq. (10.2) we have used the “whole” eigenfunction ϕ1, differently
from what happens in the definition of ∆′, in which only the “outer” eigenfunction ψout
is involved. This fact is important for the numerical computation of both ∆′vy and ∆′, as
it will be discussed in Sec. 10.3. Definition (10.2) and the identification δ = δ1 means that
1/∆′vy represents the characterstic scale length of the velocity gradient at the boundary
of the innermost layer, i.e., the “electron diffusion region”.
Evaluating Eq.(9.2) at x = δ and x = −δ and using the definition (10.2), we obtain

γ∆′vyϕ
′
1|x=δ = ikδJ0 (ψ′′1 |x=δ + ψ′′1 |x=−δ). (10.3)

Using the fact that ψ′′1 (δ) = ψ′′1 (−δ) and assuming the validity of condition (9.3) at x = δ
we find

γϕ′1
kψ1

∣∣∣∣
x=δ

=
2iJ0

lc∆′vy
. (10.4)

Eq.(10.4) expresses a constraint on the product lc∆
′
vy which depends on the scaling of

γ, and on the profiles of vy = ϕ′1 and of ψ1. It should be noted that in the cold-electron
regimes, the correct scalings can be obtained via heuristic approach usings the hypothesis
ϕ′′1 |x'δ ∼ ϕ1/δ

2
1 (see, e.g., (Biskamp (2000)), §4.1.1). Should this assumption be always

correct, the scaling lc ∼ (∆vy )−1 ∼ δ1 would be always obtained in the large-∆′ limit
regardless of the reconnection regime, but this estimate does not allow us to recover
the correct scalings when ρs & d̄e. On the other hand, although so far the asymptotic
scaling of ∆′vy is not known, considering the results that we have found to be valid in the
cold-electron regimes we can expect that, at least for ρs = 0 and in the large-∆′ limit,
the quantity ∆′vy be related to (actually, “be proportional to the inverse of”) δ1.

10.2. A heuristic generalisation of the definition of the scale lc

Based on the remarks above, we heuristically postulate the definition:

lc ∼ max{(∆′)−1, (∆′vy )−1}, (10.5)

which we will later show (Sec. 10.4) to be indeed consistent with all other definitions
and hypotheses, and thus, arguably correct†. According to this heuristic definition, in

† It can be a posteriori verified that the results would have been equally consistent
even if we had developed the arguments which follow using the alternative definition
lc ∼ max{(D′)−1, (∆′vy )−1}, based on the further inverse scale length D′, which we introduce

below, in Eq. (10.10), and whose scaling we numerically compute later, in different regimes.
Definition (10.5) has been chosen, here, since ∆′ is always a priori known, whereas the evaluation
of D′, too, requires a numerical integration of the boundary layer problem.
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the small-∆′ limit we expect lc ∼ (∆′)−1 � (∆′vy )−1, whereas in the large-∆′ limit we

expect lc ∼ (∆′vy )−1 � ∆′. From (10.5) the transition between the two limits is therefore
ruled by the asymptotic scaling of the ratio γϕ′1/(kψ1). In particular, regardless of the
reconnection regime (resistive or collisionless, warm or cold) we must have

γϕ′1
kψ1

∣∣∣∣
x=δ

∼ ∆′

∆vy

� 1 (for∆′δ � 1),
γϕ′1
kψ1

∣∣∣∣
x=δ

∼ O(1) (for∆′δ � 1). (10.6)

The first of conditions (10.6) can be however a posteriori refined and re-formulated as a
condition on the ratio (γϕ′′1)/(kψ1), which reads

γϕ′′1
kψ1

∣∣∣∣
x=δ

∼ O(1) (for∆′δ � 1). (10.7)

This condition follows from Eq.(9.2) combined with the second of Eqs.(9.3) and from
the knowledge we have about the scalings of δ and γ in terms of lc: using the estimates
lcδ ∼ d2

e and lcδ ∼ S−1/γ that we obtain by specialising d̄e to the collisionless and
resistive regimes, respectively, we obtain:

γϕ′′1
kψ1

∣∣∣∣
x=δ

∼ δ

d2
e

(collision-less),
γϕ′′1
kψ1

∣∣∣∣
x=δ

∼ γδ

S−1
(resistive). (10.8)

Eq.(10.9) is then verified in all reconnection regimes once we substitute the relevant
known scalings we have already evaluated from boundary layer theory into Eqs.(10.8).
Also, using the definition of ∆′vy of Eq.(10.2), the two equations (10.8) result to be
compatible with the second of (10.6). In conclusion, we can therefore write the constraints

γϕ′′1
kψ1

∣∣∣∣
x=δ

∼ O(1)

γϕ′1
kψ1

∣∣∣∣
x=δ

∼ ∆′

∆vy

� 1

(for∆′δ � 1),
γϕ′1
kψ1

∣∣∣∣
x=δ

∼ O(1) (for∆′δ � 1). (10.9)

These conditions can be taken to be generally discriminating for the transition from the
small- to the large-∆′ scaling relations in any reconnection regimes.
It must be however emphasized that, while both Eqs.(10.6) and Eqs.(10.8) are self-
consistently deduced from the specific hypotheses we have made so far, Eq.(10.7) must
be heuristically assumed, since, although a priori reasonable and compatible with the first
of conditions (10.6), it does not follow from the other hypotheses but it is just verified
once the scalings of γ and δ are found.
The discussion and the analysis we are going to develop next (Sec. 10.4) seems to suggest
that accomplishing this latter task in the context of the heuristic derivation be not
feasible. Nevertheless, we will numerically prove the correctness of the hypotheses (1-3)
of Sec. 9 and we will show that definitions (10.4-10.5) are consistent with the estimates of
the correct scalings, provided the scaling of ∆′vy is known. In doing so, we will elucidate
(cf. App. E) the logical points of the heuristic approach in the different tearing regimes
by pointing out when an a priori self-consistent estimate can be done or not, and, in
the second case, which information is missing. Before doing so, we need however to first
discuss how to numerically evaluate ∆′vy , which must be compared with the numerical
value of ∆′ and of δ, the latter of which has been already discussed in Sec. 8. This is
what we are going to do in Sec. 10.3.
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10.3. Numerical evaluation of ∆′ and ∆′vy
Let us first look at a numerical procedure that allows us to quantify the inverse scale
lenghts ∆′ and ∆′vy defined by Eq.(3.8) and Eq.(10.2), respectively.
Of course, because of definition Eq.(3.8), the values of ∆′ are always independent of
the non-ideal parameters. The numerical evaluation of ∆′(k) becomes therefore trivial
whenever an analytical formula that depends only on k and on the equilibrium profile
can be obtained (cf. Eq.(4.13)).
Then, for the evaluation of ∆′vy , the definition (10.2) may be operationally used, although
it is procedurally quite demanding: it requires to compute first the eigenfunction ϕ1, then
its first and second derivative, and then to evaluate them at x = δ, value which can be
numerically obtained by using definition (8.3) and by following the procedure sketched
in Fig. 12.
It is however possible to “speed up” the calculation of the scalings of both ∆′ and ∆vy ,
by relying on an alternative numerical procedure.
This procedure mimicks the numerical evaluation of ∆′ that is made possible only in
the small-∆′ limit, thanks to the geometrical interpretation that can be given of the
instability parameter in terms of a local expansion of the outer solution (Furth. et al.
(1963)): we recall that by using ψout ≈ c0 + c1|x| as |x| → 0, then ∆′ = 2c1/c0 (cf. Sec.
5.3.1-5.3.2). These two coefficients can be evaluated by measuring the value of ψout and
of the slope of the tangent to ψout close to x = 0.
This idea can be borrowed so to evaluate analogous quantities defined with respect
to the total solutions ψ1 and ϕ1: noting that, graphically speaking, both ψ1 and ϕ′1
still display a linear behaviour with respect to x as x → δ, both in the small- and
large-∆′ limits, we write ψ1|x→δ ≈ c0 + c1|x| and vy|x→δ = ϕ′1|x→δ ≈ q0 + q1|x|. Note
that these approximations are consistent with the local expansions (8.5-8.6), which are
valid, instead, for x � δ. Therefore, once the corresponding eigenfunctions have been
numerically computed, at |x| ∼ δ we can evaluate (see Fig.14)

D′ ≡ 2
c1
c0
, ∆′vy = 2

q1

q0
. (10.10)

In particular, due to the smallness of δ, the coefficients c1, c0 and q0, q1 can be numerically
computed as shown in Fig.14, by measuring the values of ψ1 and ϕ1 and of the peak values
of their derivatives close to x = 0.
We have verified that the scalings obtained for ∆′vy in this way agree with those directly
computed by first evaluating δ and by then using definition (10.2), as shown in Fig.14
on the top-right and bottom frames, an that D′ = ∆′ in the small-∆′ limit.

Fig. 15 displays the scaling laws of (D′)−1, (∆′vy )−1, and δ, numerically computed
according to the operational definitions given by Eqs.(10.10) and (8.3), respectively, in
the cold collisionless regime at ρs = 0: the different characteristic lengths are shown on
the left frame of Fig. 15 for the large-∆′ limit, and on the right frame for the small-∆′

limit. Fig.16 shows the corresponding scaling laws for the tearing modes in the warm-
collisionless regimes at ρs 6= 0. The dependence of (D′)−1, (∆′vy )−1, and δ on the electron
skin depth (de) is in the left-hand-side frames, the dependence on the ion-sound Larmor
radius (ρs) is in the right-hand-side frames; both the large-∆′ limit (top frames) and the
small-∆′ limit (bottom frames) are considered.
Numerical results prove that, as it could be expected, D′ of Eq.(10.10) coincides with the
definition of ∆′ only in the small-∆′ limit, where we can indeed state that ψ1(x)|x→δ+ '
ψout(x)|x→δ+ (cf. Figs. 15, right frame, and Figs. 16, bottom frame). In this limit D′ can
be therefore taken as an accurate estimate of ∆′, in spite of the fact that the latter is
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Figure 14. Top-left frame: Example of numerical evaluation of the coefficients c0 and c1 of
Eq.(10.10), once the profile of ψ1(x) and of its derivatives ψ′1(x) have been computed for |x| > δ
in a neighborhood of x = δ. Top-right frame: analogous example of evaluation of q0 and q1 of
Eq.(10.10) from ϕ′1 and ϕ′′1 , calculated once the eigenfunction ϕ1 has been computed; in this
example ∆′vy ≈ 73.82. Bottom frame: a zoomed version of the top-right frame in which the

inner region, here of width δ ≈ 0.00184 (computed according to the method outlined in Sec. 8),
is shaded in light-blue color. All the values required to estimate ∆′vy using Eq.(10.2) are here

shown; it is this way obtained ∆′vy ≈ 74.48, in excellent agreement with the result computed
with the alternative method sketched in the top right-hand-side frame.

formally defined by evaluating the derivatives of ψout at a distance from the neutral line
much larger than δ. This is made possible by the fact that in this large wave-length limit
the outer solution must match the inner one in an overlapping region that gets sufficiently
close to |x| = δ. That is, the constant-ψ hypothesis holds in the whole non-ideal region,
down to the innermost layer.
Different is the result in the large-∆′ limit: in the cold-collisionless regime (D′)−1 displays
the same asymptotic scaling of δ, except for a numerical factor (cf. Fig.15, left frame),
and these scaling laws are the same as for (∆′vy )−1; in the warm-collisionless regime,

instead, both (D′)−1 and (∆′vy )−1 display the same asymptotic scalings (D′)−1 ∼
(∆′vy )−1 ∼ ρ

1/3
s d

2/3
e (Figs. 16, top frames) which are non-trivial, since they differ from

δ−1
LD ∼ ρ

1/3
s d

4/3
e . Analogous results, not shown here, are found in the warm-resistive,

large-∆′ limit, in which, for these quantities, we obtain also an explicit dependence on

k: (D′)−1 ∼ (∆′vy )−1 ∼ k−2/7ρ
−1/7
s S−2/7 and δ ∼ k−4/7ρ

−5/7
s S−4/7.
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Figure 15. Examples of scaling laws of D′, ∆′vy (cf. Eqs.(10.10)) and δ with respect to de, for

ρs = 0. The large-∆′ limit is in the left frame, the small-∆′ in the right frame. The values of
D′ and ∆′vy are computed numerically according to the procedure sketched in Fig. 14. In the

small-∆′ limit the values of ∆′, obtained from Eq.(4.13), coincide with the orange line in the
right frame.
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Figure 16. Examples of scaling laws of D′, ∆′vy (cf. Eqs.(10.10)) and δ for ρs 6= 0. Top frames

correspond to the large-∆′ limit, whereas bottom frames correspond to the small-∆′ limit. The
values of D′ and ∆′vy are computed numerically according to the procedure sketched in Fig. 14.

Notice that D′ and δ are independent of ρs in the small-∆′ limit (cf. bottom-right frame). In
the small-∆′ limit the values of ∆′ obtained from Eq.(4.13) coincide with the blue lines in the
bottom frames.

For summary we recall here the scalings of ∆′vy that have been numerically obtained in
the different regimes:

∆′vy ∼ δ
−1
SD (warm/cold and collisionless/resistive regimes at small-∆′);

∆′vy ∼ δ
−1
LD (cold and collisionless regimes at large-∆′);
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∆′vy ∼ ρ
− 1

3
s d

− 2
3

e (warm-collisionless regime at large-∆′ );

∆′vy ∼ k
− 2

7 ρ
1
7
s S−

2
7 (warm-resistive regime at large-∆′ ).

10.4. Role of ∆′vy in heuristic-type estimates

It is easy to verify that combining estimates (10.1) with definition (10.5) and with the
scalings numerically obtained for ∆′vy , the correct scaling laws obtained in Sec. 6-7 can
be recovered in both the warm-collisionless and warm resistive regimes.
This is discussed in detail in Appendix F, in which the logical steps of the procedure are
singled out and identified, by thus providing insight on the physical interpretation of the
analytical results of the boundary layer calculations. In particular, the main hypotheses
on which this (partial) heuristic approach relies and the corresponding results in all
collisionless regimes, both “warm” and “cold”, are summarised in Tables 3-5 of the
Appendix, where the logical steps of the procedure are presented as statements and
formulae.
The main result of this analysis are two:

• Introducing the scale length ∆′vy and postulating the definition (10.5) makes it
possible to obtain the scaling laws, which are in principle correct in all regimes
and wavelength limit; however, in the large-∆′ warm electron regime the procedure
results to be not “closed”, in the sense that the estimation of the scaling law of
∆′vy seems to be not possible by simple dimensional analysis.
• Quite interestingly, using definition (10.5), the scaling laws of all reconnection
regimes can be cast in a form which is perfectly symmetric in the small- and
large-∆′ limit, with respect to the substitution ∆′ ↔ ∆′vy .

These results, on the one hand, suggest to us that introducing the inverse scale length
∆′vy is a promising ingredient in the attempt to extend the heuristic-type analysis. On
the other hand, however, finding the further constraint that makes it possible to obtain
a priori all the sought algebraic scalings without resorting to numerical analysis and by
mere dimensional analysis seems an elusive task. The logical steps identified in the Tables
of Appendix F, as well as some further insight on the interpretation of the boundary layer
results, which follows from the heuristic approach and which we are going to discuss below
(Sec. 10.5), could imply the heuristic analysis to be intrinsically not applicable in some
regimes. This problem becomes manifest, in particular, in the large-∆′ limit when ρs 6= 0,
in which the scaling of ∆′vy is a non-trivial power law combination of the scales ρs and

d̄e. Nevertheless, the coherence of the results summarised in Tables 3-5 supports the
consistency of the heuristic “ansätze” we have made so far.
In particular, the logical steps identified in Tables 3-5 show that the difference between
the warm and cold regimes lies in the balance condition ψ1 ∼ ikxϕ1/γϕ1, which is valid
in the cold regimes only (hypothesis [T6.H2] of Table 5), and which is replaced by the
balance expressed by hypothesis [T5.H2] of Table 4 when ρs 6= 0. Condition [T6.H2]
expresses indeed the validity of Eq.(4.1), in turn related to the inverse scale ∆′, down to
the boundary layer at the frontier with the innermost region: this means that the newly
introduced scale (∆′vy )−1 is redundant in this regime with respect to δ and ∆′−1 (as, on
the other hand, it was evident already from the heuristic-type approach discussed in Sec.
9.3). We have indeed seen from the numerical results summarised at the end of Sec.10.3
that the scaling of (∆′vy )−1 turns out to always coincide with that of δ. Such a “closure”
condition for ∆vy is lost at ρs 6= 0, when hypothesis [T6.H2] is replaced by hypothesis

[T5.H2], which leads to the general constraint γ ∼ kρs(δ/lc)
1/2: here a value different
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from that of δ or (∆′)−1, with respect to which the transition from the small- to the
large-∆′ limits is measured, is in principle admitted for lc.

10.5. Significance of the inverse spatial scale ∆′vy : coherence with boundary layer
calculations and comparison with previous works

Some insight about the physical significance of the characteristic spatial scales associated
to ∆′vy is obtained from comparison of their scalings with identical asymptotic scalings
which can be obtained from some boundary layer results available in previous literature
(Pegoraro & Schep (1986); Cowley & Hastie (1988); Porcelli (1991); Zocco & Schekochihin
(2011)) and from related works discussing the implications of these results (Ottaviani &
Porcelli (1995); Grasso et al. (1999)).
Combination of Eq.(10.5) (i.e., hypothesis T4.H1) with hypotheses T5.H3 or T6.H3
allows the identification of the small- and large-∆′ limits, say ∆′δ ≷ 1, expressed in
each reconnection regime in terms of lc and thus in terms of ∆′vy :

∆′δ ≷ 1 ⇔


∆′de ≷ max

{
1

∆′de
,

1

∆′vyde

}
(collisionless)

∆′S−1 ≷ max

{
γ

∆′
,
γ

∆′vy

}
(resistive)

(10.11)

In this regard, it is interesting to compare, e.g., the conditions for the warm collisionless
case with the similar conditions that in (Grasso et al. (1999)) have been written (cf.
Eq.(17) and paragraphs below Eq,(18) therein) as

∆′de > min

{
1,

(
de
ρs

)1/3
}
, ∆′de < 1, (10.12)

based on the results of the boundary layer calculations in the Fourier representation by
Porcelli (1991) (cf. conditions on “λH ≡ −π/∆′” in between Eqs.(7) and (9) therein).
Substitution of the scalings numerically found for ∆′vy in Sec.10.3 for ρ2

s � d2
e into the

collisionless condition of (10.11) give

∆′de > max

{
1

∆′de
,

(
ρs
de

)1/3
}
, ∆′de < max

{
1

∆′de
, ∆′de

}
, (10.13)

(large-∆′) (small-∆′)

which are indeed compatible with conditions (10.12), once (∆′de)
2 < 1 is deduced from

the second of Eqs.(10.13) in the small-∆′ limit and therefore ∆′de < 1 is assumed, with
∆′de ∼ 1 fixing the threshold value also for the first inequality of (10.13).
In this regard, we notice that the non-trivial characteristic scale length associated to
the asymptotic scaling, which we have numerically found for ∆′vy in the large-∆′, warm
electron limit, naturally emerges from the boundary layer analysis developed by Pegoraro
& Schep (1986); Porcelli (1991): here the general dispersion relation encompassing both
the small- and large-∆′ limits can be written in terms of d̄e as (to this purpose we can
just substitute de → d̄e, e.g. in Eq.(25) of (Ottaviani & Porcelli (1995)))

π

2
γ2 = −πρs

∆′
+
ρ2
sd̄e
γ

. (10.14)

Naming γLD ∼ (2/π)1/3d̄
1/3
e ρ

2/3
s the solution obtained in the ∆′ → ∞ limit, which
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we already recovered in previous Sections, one sees that the opposite, small-∆′ limit is
obtained when the condition

πρs
∆′
� ρ2

sd̄e
γLD

⇔ ∆′ � 1

2ρ
1/3
s d̄

2/3
e

=⇒ ∆′ � ∆′vy (10.15)

is satisfied, where in the last passage we have used the numerical result we previously

found in this wave-length limit, ∆′vy ∼ ρ
−1/3
s d̄

−2/3
e . The rightmost condition of Eq.(10.15)

is consistent indeed with the constraints (9.4), previously found via the heuristic estimates
discussed in Sec. 10.2. This suggests that ∆′vy may provide a physical interpretation of the
appearence of this characteristic scale length in boundary layer calculations, performed
in the framework of the two-fluid model we consider here.
This interpretation is however somewhat different from that provided in (Ottaviani
& Porcelli (1995)), and which was based on the previous boundary layer calculations
(Pegoraro & Schep (1986); Cowley et al. (1986); Porcelli (1991)) performed by starting
from a charge density equation in which polarization effects were taken into account
through the gyrokinetic particle response. In that modelling framework, the scale-length

ρ
1/3
s d̄

2/3
e � δ1 was noted by Ottaviani & Porcelli (1995) to correspond to the distance

from the neutral line at which γLD becomes comparable to the phase-velocity k||(x)veth =
(k ·B0(x)/B0)veth, and below which the isothermal electron closure would formally break
down. As already noted in the same work, however, the appropriateness of the isothermal
condition, assumed to be valid for the purpose of the boundary layer calculations, had
been numerically verified at good extent in some previous works (Berk & Mahajan (1991);
Coppi & Detragiache (1992)) and, more recently, its validity has been supported by the

numerical studies of (Perona et al. (2010)). Relating the scale ρ
1/3
s d̄

2/3
e to the failure of

the isothermal closure is thus consistent with the interpretation provided in further −and
in part preceding− works based on a kinetic approach (Drake & Lee (1977); Cowley et al.
(1986); Zocco & Schekochihin (2011)). In these works such critical distance was shown
by heuristic arguments (see (Drake & Lee (1977)) and (Cowley et al. (1986)), Sec. V) to
correspond to the characteristic width of the current layer, determined by the balancing
of the total current generated by the parallel electron pressure gradients with the current
generated by the (reconnecting) parallel electric field. Instead, in Sec. 8 and in (Betar
et al. (2020)), we have numerically proven the current sheet to be concentrated around
the neutral line in a region of width δ1. The subtle point, here, may be in the meaning
which can be given to the notion of “characteristic width of the current layer”, since it
is true that, while the inflection points around the peak of Jz,1 are numerically found
to be located at a distance δ1 from the neutral line (cf. definition (8.3)), the profile of
the inner solution (i.e. the solution found in the “electron region”) extends beyond this
distance. In particular, the matching with the outermost non-ideal solution (i.e., the
solution in the “ion region”) is not to be meant as a matching in a single point, but
rather as an asymptotic matching valid over an intermediate layer, whose distance from

the neutral line in the warm electron regime can be well of the order of ρ
1/3
s d̄

2/3
e . This

latter point of view is in agreement with the notion of “inner solution width”, which
Zocco & Schekochihin (2011) make reference to: the characteristic width of the inner
solution, which is named δin in the notation of their work, differs from the width of the
inner layer, which we have here named δ1 = δ, and satisfies δ1 < δin < δ2.
If we look in detail at the boundary layer analysis carried out by these latter authors in the
warm electron regime, we see that the scalings they a posteriori obtained (cf. Eqs.(B56)
and (B101) in the “Collisionless two fluid limit” and “Resistive two fluid limit” of that
work) for the normalization scale δin, coincide in the large-∆′ limit with the scalings of
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(∆′vy )−1 that we have detailed at the end of Sec.10.3. In particular, for the regime that we

can write as ρs & d̄e, these authors identified the small- and large-∆′ conditions, which we
have here generally expressed as ∆′δ1 � 1 and ∆′δ1 � 1, respectively, via the conditions
∆′δin � 1 and ∆′δin � 1, instead. Using the correspondence δin → (∆′vy )−1 these
conditions would map into ∆′ � ∆′vy and ∆′ � ∆′vy , the former of which is consistent
with Eq.(9.4). It should be however noted that the scale δin appears in the boundary layer
analysis of (Zocco & Schekochihin (2011)) as a consequence of a normalisation choice of
the non-ideal equations of their model (Eqs.(B35-B36) therein), which differs with respect
to the one we have detailed in Sec. 7: while the scalings of their outermost and innermost
non-ideal layers are a posteriori found to coincide with those of the scales δ2 and δ1
that we introduced in Sec. 7.2.1-7.2.2, these authors chose instead δin ≡ (

√
2ρsδ1)1/2 as a

normalisation scale of the innermost equations (our δ1 mapping into δ of Eq.(B28) of their
work), and they subsequently ordered the terms of the tearing equations with respect
to this spatial scale. The scalings of the relevant quantities have been thus obtained,
there, via some heuristic ansatz on the width of the integral at left hand side of the
equivalent of Eq. (3.7), in the form in which they obtained it (cf. Eq.(B46), therein).
In order to evaluate the integral, which depends on ϕ′′1 (cf. Eq.(3.10)), the terms in the
corresponding auxiliary equation (Eq.(B42) therein), which are related to integrand via
ϕ′′1 = χ′, have been so ordered in relation to the characteristic width δin. This approach
is at the basis of the ordering of the wavelength regime in terms of the product ∆′δin,
which differs from the ordering in terms of the product ∆′δ1, which we have here adopted,
instead. The coherence of the results obtained in the two approaches, also emphasizes
the margin of arbitrariety in the choice of the normalisation scale, with respect to which
it is possible to define the width of the boundary layers and to perform the integration
and matching, after some appropriate approximations of the terms in the equations are
assumed on heuristic basis. This makes it possible the interpretation of δin as the width
of the solution in the innermost equation, information which is not evident if one follows
instead the normalization procedure we have adopted in this work. At the same time it
should be noticed that the scale (∆′vy )−1 seems to be not generally identifiable as the
δin obtained by (Zocco & Schekochihin (2011)): although the correspondence between
the scalings of δin obtained by these authors and the scaling of (∆′vy )−1 that we have
obtained holds in the large-∆′ limit, it fails in the small-∆′ limits (cf. their Eqs.(B54,B97)
with the scalings at the end of Sec.10.3, here).
In summary, while on the one hand we note the agreement of the results obtained
by solving the boundary layer equations in the different models and with integration
techniques that rely on slightly different heuristic hypotheses, on the other hand we
note that the appearance of the characteristic scale, which, in previous works has been
interpreted in terms of inherently kinetic features, in the MHD model of Sec. 2 can be
instead entirely related to “fluid-like” features associated to the gradients of the velocity
field in the non-ideal region. It should be also noticed, in this regard, the care with which
conclusions drawn by heuristic estimates based on dimensional analysis must be dealt
with: although it is conforting that different models of tearing mode analysis yield the
same quantitative results, their physical interpretation is a more delicate issue, which
requires further insight based on the consistency of the specific hypothesis of each model
and therefore may not be univocal. In particular, the symmetry between the scaling laws
in the small- and large-∆′ limits with respect to the substitution ∆′ ↔ ∆′vy , which we
have detailed in Tables 3-5, suggests that the quantity ∆′vy , in this modelling related to
inherently “fluid” features, play a general, important role in the tearing mode regimes,
which may deserve further investigations.
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11. Summary and conclusions

We have reviewed the solution of the boundary layer problem for collisionless and
resistive tearing instabilities in slab geometry, in both the small- and large-∆′ limits.
The calculations in the warm regime, in which two matching regions are required, have
been solved in the coordinate space by using the integral representation of hypergeometric
functions to integrate the differential equations of the boundary layer approach (Sec. 6
and Sec. 7). To the best of our knowledge this kind of analysis has not been presented
before, elsewhere, and in the present work emphasis is put on a pedagogical derivation
of the results. In this way we have recovered the results first obtained by Pegoraro &
Schep (1986); Pegoraro et al. (1989); Porcelli (1991) in a Fourier representation. While
developing this analysis, we have also been able to make a direct comparison (Sec. 6)
with calculations in the coordinate space that had been earlier performed in the cold
collisionless regime and in the purely resistive regime of tearing modes, where a single
matching region is required (Furth. et al. (1963); Coppi (1964c); Ara et al. (1978)), and
with other calculations in the coordinate space that had been carried out in the warm
collisionless regime in presence of warm ions (Zocco & Schekochihin (2011)).
Then, by making reference to the results of the boundary layer calculations, we have
been able to relate the inverse of the derivatives of the eigenfunctions evaluated on the
neutral line to specific scalings with respect to the non ideal parameters, which had not
been noted before (Sec. 8.3). We have also shown the relation of the inverse of these
derivatives with the reconnecting layer width, δ, whose operational definition, which we
had previously verified in different reconnection regimes (Betar et al. (2020)), we have
here discussed for the first time (Sec. 8). These characteristic length scales, which can be
useful for numerical diagnostics, are summarised in table 5.
We have interpreted (Sec. 9) the results of the boundary layer analysis in the light of
heuristic derivations for the scalings of the growth rate and for the characteristic width
of the reconnection layer, by following a dimensional analysis procedure that had been
already successfully used in previous works but only when ρs = 0. In this way we have
highlighted (Sec. 9.3) how the heuristic approach alone fails to provide the correct scaling
when the ion sound-Larmor radius is not negligible (ρs & d̄e).
Then, thanks to the operational definition we have given of δ, and by relying on both
the heuristic estimates and the numerical solutions of the eigenvalue problem, we have
shown a further non-trivial relation between the first derivative of ψ1, evaluated close
to the neutral line, and the gradients of the velocity component parallel to it (Sec.
10). We have in this way introduced an inverse characteristic scale length which we
have named ∆′vy , because of its analogy with the classical ∆′ parameter. Using this
(inverse) scale length we have therefore shown, both analytically and numerically, that,
for the purpose of heuristic estimates, we can generally assume ψ′1|x=δ ∼ ψ1|x=δ/lc with
lc = max{(∆′)−1, (∆′vy )−1} &, δ. Knowing the asymptotic scaling of ∆′vy , an estimate of
both δ and γ can be made in any RMHD reconnection regime (Sec. 10.4) by just using
dimensional analysis.
It is interesting to note that, from an experimental point of view, density fluctuations
n1 are easier to be measured than magnetic perturbations ψ1, and that the former can
be related to the fluid stream function perturbation via n1 ∼ ∇2ϕ. In general, then,
the estimate of the spatial gradients of ϕ1 from experimentally measured profiles of
the density may be more reliable than the evaluation of the spatial gradients of ψ1. In
this context, the characterization of the large- and small-∆′ limits we have provided
in Sec. 10 with equations (10.6), or, more generally the relation between the value of
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∆′vy = (ϕ′′1/ϕ
′
1)|x=δ ∼ ∆′vy/2 (cf. definition (10.2)) and the scaling of δ or of the other

scales detailed at the end of Sec. 10.3, may be of interest.
Finally, we note that the introduction of the inverse scale ∆′vy makes the scaling laws in
the large-∆′ limit mirror those in the small-∆′ limit previous the substitution ∆′ ↔ ∆′vy .
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Appendix A. Derivation of the model equations for tearing modes in
slab RMHD

Different derivations exist in literature of the set of tearing equations we have considered
in this paper. For the inclusion of finite ion-sound Larmor radius effects in a two-field
model under the strong (infinite) guide field hypothesis we address the reader for example
to (Schep et al. (1994); Kuvshinov et al. (1994); Bergmans (2001); Del Sarto et al. (2006)).
Here below, we repropose however their complete derivation, with more details than in
previous articles.
Despite the different procedures proposed over the years to obtain equations (2.1-2.2), it
is agreed that their nonlinear form reads

∂

∂t
(ψ − d2

e∇2ψ) + [ϕ,ψ − d2
e∇2ψ] = ρ2

s[∇2ϕ,ψ] + S−1∇2ψ, (A 1)

∂

∂t
(∇2ϕ) + [ϕ,∇2ϕ] = [ψ,∇2ψ]. (A 2)

The above equations have been written using the standard “Poisson’s bracket” notation,
[f(x, y, t), g(x, y, t)] ≡ ∂xf∂yg − ∂yf∂xg. Each bracket term can be thus related to a
convection term associated to one of the two scalar function involved, e.g.

[f, g] = (∇f ×∇g) · ez = (ez ×∇f)︸ ︷︷ ︸
uf

·∇g. (A 3)

Also note that in Eq.(2.1) the equilibrium contribution has been removed from the
S−1∇2ψ term for the sake of linear analysis, since, in the asymptotic limit S−1 � 1, the
time scale of resistive dissipation of the magnetic equilibrium is a posteriori found to be
much longer than that of the tearing-type instability.
The appropriateness of Eqs.(A 1-A 2), and notably of the ρ2

s-related contribution, is
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supported by comparison of the linear dispersion relation obtained in the collisionless
regime (η = ν = 0) with that obtained from the full Vlasov-Maxwell system in the same
geometry configuration, that is B0 = B0

⊥ + B0
zez and k = k⊥ + kzez: the dispersion

relation of shear kinetic-Alfvén waves (see e.g., Hasegawa & Uberoi (1982), p.19-21) is
indeed recovered,

ω2 = cA,⊥k⊥

√
1 + k2ρ2

s

1 + k2d2
e

, (A 4)

where cA,⊥ is the Alfvén velocity evaluated with the perpendicular magnetic component,
only. Also note that Eqs.(A 1-A 2) can be combined to give an equation for the energy
conservation in the form

∂

∂t

∫ ∫ |∇ψ|2︸ ︷︷ ︸
EB

+ d2
e|∇2ψ|2︸ ︷︷ ︸
EJ

+ |∇ϕ|2︸ ︷︷ ︸
Ekin

+ ρ2
s|∇2ϕ|2︸ ︷︷ ︸
Eint

 dx dy = 2S−1

∫ ∫
|∇2ψ|2dx dy,

(A 5)
where EB , EJ , Ekin, Eint stand for the energy contributions respectively related to the
in-plane magnetic field, to the current density (or electron kinetic energy), to the ion
kinetic energy and to the internal energy (in turn related to the electron thermal energy
and to their parallel compressibility along magnetic lines −see Grasso et al. (1999)).
The difference among the “different” RMHD models which lead to the same set of
Eqs.(A 1-A 2) is in the weight that must be attributed to the different terms of the
nonlinear equations with respect to the expansion parameters that have been adopted.

Here below we focus on the first derivation proposed by Pegoraro & Schep (1986) and
Schep et al. (1994); Kuvshinov et al. (1994) and that has been later re-discussed by
Bergmans (2001) and Del Sarto et al. (2006). In this framework, Eqs.(A 1-A 2) can be
shown to follow from the z-component of the electron momentum equation, which gives
Eq.(A 1), and from the charge continuity equation, which gives Eq.(A 2), under the
assumption that ∇ = (∂x, ∂y, 0) and that the gradient of the equilibrium density, and of
its fluctuations as well, are smaller than the equilibrium quantity.

We start from the fluid equations for the species α, and we assume the ion pressure to be
negligible with respect to the electron temperature (i.e., we take the cold ion limit). The
continuity and momentum equations can be written in dimensionless form, normalized
to the MHD scales, as

∂nα

∂t
+ ∇ · (nαuα) = 0. (A 6)

d2
e

(
∂ue

∂t
+ ue ·∇ue

)
= −di

(
E + ue ×B − J

S

)
− ρ2

s

∇ ·Πe

ne
(A 7)

d2
i

(
∂ui

∂t
+ ui ·∇ui

)
= di

(
E + ui ×B − J

S

)
(A 8)

Above, the ion skin depth di = de
√
mi/me has been further introduced and the pressure

tensor Πe has been normalized to the electron density times an electron reference
temperature. This, after normalization to the MHD scales makes appear the squared ion
sound Larmor radius (normalized to the equilibrium shear length).

From now on we will refer the symbol ⊥ to the components that are orthogonal to the
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guide field direction (i.e., ez), that is, that lie on the (x, y)-plane. Note that this differs
from another notation, frequently used for example in tokamak geometry, in which the
direction “parallel” and “perpendicular” are referred to the total magnetic field. The
latter choice is generally more appropriate for the most general RMHD modelling, which
we recall has been first introduced by Strauss (1976, 1977) in toroidal geometry and then
in the so-called “cylindrical tokamak” approximation, by ordering the ratio between
the toroidal and the poloidal gradients to be comparable to the ratio between the
poloidal and toroidal magnetic components. Our choice of notation is here justified by
the assumption of translation invariance for the equivalent to the “toroidal” component
(i.e., ∂z = 0), corresponding to the large guide field component, too (cf. Fig. 5).

One of the two equations we will focus on is the z-component of Ohm’s law, which, for
reasons we will show next, is more convenient to rewrite in the form:

− Ez −
d2
e

di

∂uez
∂t
− ue⊥ ·

[
B × ez +

d2
e

di
∇uez

]
= −S−1Jz +

ρ2
s

di

∇ ·Πe

ne
· ez. (A 9)

The other one is the charge continuity equation (i.e. the sum over species of Eqs.(A 6),
respectively multiplied by qα/nα), which, using the quasi-neutrality condition qene +
qini = 0, we can rewrite as

qeue⊥ ·∇(lnne) + qiui⊥ ·∇(lnni) + ∇ · (qeue⊥ + qiui⊥) = 0. (A 10)

The two equations above will be then specialized by approximating the fluid equations
in terms the expansion parameters:

εB ≡
|B0
⊥|

B0
z

, εm ≡
me

mi
. (A 11)

The electromagnetic field components are written in terms of the scalar quantities of
interest as

B = B0
z∇ψ × ez︸ ︷︷ ︸

B⊥

+B0
z (1 + b1)︸ ︷︷ ︸
B0
z+B1

z

ez, E = − ∇φ︸︷︷︸
E⊥

− 1

c

∂ψ

∂t
ez︸ ︷︷ ︸

Ez

. (A 12)

Since we assume J = (c/4π)∇×B, it follows ∇ ·B = 0 and

J⊥ =
c

4π
∇× bez, Jz = −cB

0
z

4π
∇2ψ. (A 13)

After normalization to the MHD scales, the fluid stream function ϕ = φ/(cB0
z ) appears

as related to the electrostatic potential. Because of the uniform guide field hypothesis,
the scalar function b also coincides with the first order perturbation of the Bz component.
We furthermore assume |B1

⊥| ∼ |B0
⊥| ∼ εBB0

z , whence it follows

∂

∂t
∼ cA,⊥

L0
∼ εB

B0
z

L0
, (A 14)

and we assume the charged particle dynamics along z to be mostly due to the electrostatic
acceleration. This means that the ion velocity component along z, uiz, is εm times smaller
than the electron velocity component, uez, which is instead comparable in amplitude to
both ue⊥ and ui⊥. This also means that Jz ≡ qiniu

i
z + qeneu

e
z = qeneu

e
z + O(εm). In

normalized units, J = ne(ui − ue), and therefore

uez = di
∇2ψ

ne
+O(εm). (A 15)
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The idea is then to use these hypotheses combined with strong guide field limit so to
consider the drift-ordering expansion for the uα⊥ fluid velocities. Using the standard
procedure, we obtain from Eqs.(A 7-A 8) and (A 12) the normalized velocity components:

ue⊥ = ez ×∇ϕ+ (ez ×∇ψ)uez −
ρ2
s

di
ez ×

∇ ·Πe

ne
− S−1ez × J⊥︸ ︷︷ ︸

1st order

+ O(ε1/2
m ε2

B)︸ ︷︷ ︸
2nd order

.

(A 16)

ui⊥ = ez ×∇ϕ− S−1ez × J⊥ +O(εmεB)︸ ︷︷ ︸
1st order

− di
(
∂

∂t
∇ϕ+ [(ez ×∇ϕ) ·∇]∇ϕ

)
︸ ︷︷ ︸

2nd order

+O(ε3
B).

(A 17)
The O(εmεB) neglected terms in Eq.(A 17) are due to the (ez ×∇ψ)uiz contribution of
the first order drift-expansion. We note that the terms neglected in both equations are
comparable if we order εm ∼ ε2

B .

Equations (A 1-A 2) follow then from substitution of Eqs.(A 16-A 17) into Eqs.(A 9-A 10)
after a few further specific hypotheses. They are:

• the ordering B1
z/B

0
z = b ∼ ε2

B , which also implies |J⊥| ∼ ε2
B ;

• the assumption that the anisotropic electron pressure components are given by
the first order FLR corrections to a double adiabatic-type pressure tensor.

The original derivation had been obtained by Schep et al. (1994) in the strictly collision-
less limit, in which, in the geometry of interest to us, the pressure tensor components
including FLR “gyrofluid” corrections can be written in dimensional units as:

Πe =



P e⊥ +
P e⊥
Ωe

(
∂uex
∂y

+
∂uey
∂x

)
P e⊥
Ωe

(
∂uey
∂y
− ∂uex

∂x

)
P e⊥
Ωe

(
∂uez
∂y

)
P e⊥
Ωe

(
∂uey
∂y
− ∂uex

∂x

)
P e⊥ −

P e⊥
Ωe

(
∂uex
∂y

+
∂uey
∂x

)
−P

e
⊥
Ωe

(
∂uez
∂x

)
P e⊥
Ωe

(
∂uez
∂y

)
−P

e
⊥
Ωe

(
∂uez
∂x

)
P e||


(A 18)

The components of matrix (A 18) can be obtained by following a standard procedure
(see e.g. (Thompson (1961); Roberts & Taylor (1962); MacMahon (1965)) for the ion
case and (Cerri et al. (2013)) for a recent re-derivation for both species in the strictly
collisionless limit). We make the further hypothesis that

P e|| ' P
e
⊥ = neT 0 (A 19)

with T 0 reference electron temperature (uniform in space and constant in time). Since
normalization to the MHD reference quantities means that ue is normalized to cA,⊥ =
diΩi and spatial derivatives are normalized to 1/a, using Ωi/Ωe ' εm, the combination
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of Eqs.(A 3), (A 15) and (A 18-A 19) gives:

ρ2
s

di

(∇ ·Πe)

ne
· ez = εmdi

ρ2
s

ne

(
∂ne

∂x

∂

∂y

(
∇2ψ

ne

)
− ∂ne

∂y

∂

∂x

(
∇2ψ

ne

))
= εmdiρ

2
s

[
lnne,

∇2ψ

ne

]
, (A 20)

ρ2
s

di
ez ×

∇ ·Πe

ne
=

ρ2
s

di
ez ×∇(lnne) + O

(
εmεB

∣∣∣∣∇ne

ne

∣∣∣∣) . (A 21)

Note that, in Eq.(A 21), FLR corrections contribute with terms ∼ εmεB smaller than
the isotropic diamagnetic drift term: comparison with the neglected terms of (A 16-A 17)
shows that they can be disregarded.

We can now rewrite Eq.(A 9) without collisions as:

∂

∂t

(
ψ − d2

e

∇2ψ

ne

)
+ ue⊥ ·∇

(
ψ − d2

e

∇2ψ

ne

)
= εmdiρ

2
s

[
lnne,

∇2ψ

ne

]
. (A 22)

From substitution of Eq.(A 21) into Eq.(A 16) we get, using d2
e = εmd

2
i ,

ue⊥ ·∇
(
ψ − d2

e

∇2ψ

ne

)
=

[
ϕ,ψ − d2

e

∇2ψ

ne

]
− ρ2

s

di
[lnne, ψ]

+εmdiρ
2
s

[
lnne,

∇2ψ

ne

]
+O(ε3

B) +O(ε1/2
m ε2

B). (A 23)

Note the presence of a [lnne,∇2ψ/ne] term, identical to that of (A 21), which is here
due the diamagnetic drift contribution in the convection term ue⊥ ·∇uez of the electron
momentum equation. We can then write

∂

∂t

(
ψ − d2

e

∇2ψ

ne

)
+

[
ϕ,ψ − d2

e

∇2ψ

ne

]
=

ρ2
s

di
[lnne, ψ] +O(ε3

B) +O(ε1/2
m ε2

B). (A 24)

The exact cancellation of the bracket terms proportional to εmdiρ
2
s is known as “gyro-

viscous (or, better “gyrofluid”) cancellation” (see Roberts & Taylor (1962)). The terms

involved are however at least ε
1/2
m smaller than the other ones, even when de and ρs

are left unordered with respect to εB or εm. Eq.(A 1) in the collisionless limit is finally
recovered once we use continuity equations for ions and quasi-neutrality. From Eq.(A 6),
the continuity equation for ions can be rewritten as:

∂

∂t
lnni + [ϕ, lnni] = di

∂

∂t
∇2ϕ+ di[ϕ,∇2ϕ] +O(ε3

B). (A 25)

Only the first order E×B term of Eq.(A 17) survives as a contribution to the convection
term ui⊥ ·∇ lnni, since we can heuristically order |∇ lnni| ∼ εB . Eq.(A 25) leads us to
solve d(lnni)/dt = did(∇2ϕ)/dt, of which we can take the solution lnni = di∇2ϕ that
verifies the heuristic hypothesis about the ordering of the spatial gradient of lnni. From
quasi neutrality we finally write

lnne = di∇2ϕ, (A 26)

which brings Eq.(A 24) to the form (A 1) once we approximate ne ' n0 (i.e., ne ' 1 in
normalized units) in the left hand side gradients of ∇2ψ/ne.

The equation for ∇2ϕ is finally obtained from (A 10) using the same approximation of
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the density ne. Such equation follows from combining Eq.(A 25) to electron continuity
equation, which, using (A 16), reads

∂

∂t
lnne + [ϕ, lnne] + di

[
ψ,
∇2ψ

ne

]
+ O(ε3

B) = O(ε1/2
m ε2

B). (A 27)

Note that the [ψ,∇2ψ/ne] contribution comes from the only non-null divergence term
of (A 16), that is, from ∇ · ((ez ×∇ψ)uez).

When collisions are included, the +S−1∇2ψ contribution is recovered at r.h.s. of
Eqs.(A 22) and (A 23). In principle, the pressure tensor (A 18) should be modified so
to include “gyroviscous” corrections. These are provided, for example, by Braginskii
(1958)’s model. However, as long as the cold ion limit is formally assumed, so to get rid
of the ion temperature contribution, the corrections to the components of Πe due to
electron-ion viscosity are εm smaller than S−1, and thus are also negligible in (A 18). The
last, further contribution we should care about is an additional +S−1∇2b ∼ O(S−1ε2

B)
term at r.h.s. of (A 25), which comes from the divergence of the −S−1ez × J⊥ term of
ion drift velocity, (A 17). This term is negligible under the further assumption S−1 � di.
It must be noted that the latter choice is consistent with the fact that this two-field set
of equations correspond to the extended MHD model in which Hall term is neglected.
The quantitave comparison between the derivation here presented and that suggested by
Kleva et al. (1995); Wang & Bhattcharjee (1995); Bian & Tsiklauri (2009), in which the
ρ2
s-related Poisson bracket is interpreted as associated to Hall-term contribution in Ohms’

law −see also (Del Sarto et al. (2006)) and Appendices of (Del Sarto et al. (2016))− will
be discussed elsewhere.
We finally recall that, although in this modelling we assumed since the beginning
strict translational invariance along z, i.e. ∂/∂z = 0, the RMHD modelling in a strong
guide field, large aspect ratio tokamak with toroidal coordinates (r, θ, ϕ) allows for the
inclusion of the derivatives along ϕ that are ordered ∂/∂ϕ ∼ εB∂/∂θ, i.e., kϕ ∼ εBkθ
(Strauss (1976, 1977)). This maps into a Cartesian “extended-slab” RMHD modelling
that includes the derivatives along z as corrections of order εB with respect to the
perpendicular derivatives, i.e. ∂/∂z ∼ εB∂/∂y or kz ∼ εBky (see, e.g., Matthaeus &
Lamkin (1986) or Biskamp (2000), p.17). In the simplest, cold electron limit, these
corrections lead to further terms +∂ϕ1/∂z and +∂∇2ψ1/∂z at right hand side of
Eq.(A 1) and (A 2), respectively. The role of these terms, as well as of further ρ2

s-related
contributions linked to the parallel electron compressibility in the nonlinear evolution of
tearing modes with different helicities has been first investigated in an extended version
of model equations (A 1-A 2) by Grasso et al. (2004); Borgogno et al. (2005).

Appendix B. About alternative definitions of the reconnection rate

In literature alternative quantitative definitions exist, which, for historical reasons, are
typically associated to the term “reconnection rate”, although they have been formulated
under the hypothesis of steady reconnection. In the notation and geometry choice we
make here, this alternative estimate of the reconnection rate can be written as

Rsteady =
1

L0
Ux|at somex 6=0

near X-point. (B 1)

This definition originates from the Sweet-Parker model (Parker (1957)), in which the
rate at which the magnetic flux is reconnected, normalised with respect to the reference
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length L0, is estimated as the component of the velocity U perpendicular to the neutral
line such that

(UxBy)|at somex 6=0
near X-point = Fz|at somex 6=0

near X-point. (B 2)

This relation holds in the neighbourhood of the neutral line under steadiness assump-
tions, for which the out-of-plane component of the electric field (Ez), which in planar
reconnection is completely inductive (i.e., Ez = −∂ψ/∂t), is zero −cf. Eq.(2.7). In this
case the velocity Ux gives the rate per unit length L0 at which the magnetic field lines
are pushed and merged at the X-point.
Quantitative estimates of Rsteady can be obtained by arguments relying on the continuity
of the flow, which relate the velocity Ux, at which the magnetic field is dragged to the X
point, to the velocity Ux at which, after reconnection has occurred, the field is transported
out of it, along the neutral line (UxL ' Uya −cf. Fig.2, top left frame). These arguments
also require a force balance condition implying that the upstream velocity Uy, evaluated
close to the neutral line and sufficiently far from the X-point, is of the order of the Alfvén
velocity evaluated with respect to By: these arguments allow one to relate Ux|near X-point to
the dissipation mechanism given by Fz, (Parker (1957); Petschek (1964); Parker (1973);
Park et al. (1984); Wesson (1990)).
Note that in the tearing mode scenario the reference length L0 is a macroscopic quantity
associated to the shear length a of the magnetic equilibrium, i.e., L0 = a. In the
first astrophysical applications of the steady reconneciton scenario, instead, in which a
distinction between equilibrium and perturbed quantities is not required, the macroscopic
reference length was usually assumed to be of the order the current sheet length L,
i.e. L0 = L � a, since the shear length a of the magnetic field By(x) associated to
the reconnecting current sheet was in those contexts a microscopic quantity. Thus, an
alternative definition of “reconnection rate per unit length L” is often met in literature.
This is defined Petschek (1964) analogously to the Alfvénic Mach-number, from which it
takes the symbol, as

Mrec =
Uy|near X-point

Ux|far from X-point

' Uy|near X-point

cA(L)
, (B 3)

where cA(L) is the Alfvén velocity evaluated in terms of By, measured sufficiently far
from the neutral line along the neutral line x = 0, in a region where ideal MHD is valid.
In the steady reconnection scenario this definition is practically equivalent to (B 1).
Finally, a further alternative definition of the reconnection rate is also often adopted,

R̃rec =
1

E||

dE||

dt

∣∣∣∣
X−point

, E|| ≡
E ·B
B

. (B 4)

We conclude by noting that while no ambiguity exists for the evaluation of the recon-
nection rate in the tearing-type instabilities with fixed wave number on which we are
interested in this work, the situation becomes of course more complex in experimental
contexts or in nonlinear numerical simulations of reconnection processes, especially
if several reconnection sites (X-points) are simoultaneously present and dynamically
evolve in time. In those cases, estimates based on local measures like those provided by
Eqs.(2.13,B 3-B 4) are of course more appealing for practical reasons. Their use for getting
numerical values used to be compared with scalings predicted by specific reconnection
models should be however handled with care, since the way precision issues in the
measurement of numerical or experimental values is often unlikely to be sufficient to
discriminate between a reconnection scenario or the other, e.g. in assessing the regime
of reconnection events secondary to primary ones. Conversely, theoretical arguments



Microscopic scales of collisionless tearing modes 83

supporting the existence or not of some specific regime, is likely to provide a more
accurate guide for the operational definition of reconnection rate that should be adopted
in each case (cf. reference quoted just before Eq.(2.10)).

Appendix C. Integration of the boundary layer equation via Fourier
transformation

Tackling the integration of tearing modes in the Fourier space with respect to the variable
x is particularly useful since the overall order of the differential equations results this

way lowered (note that ψ0 ∼ x → d/dkx, whereas ψ
(N)
1 →∼ kNx ψ̂1). This approach is

possible since the eigenfunctions we seek are bounded at each time with respect to the
x variable. Also note that Fourier representation is quite natural in the mathematical
treatment of the gyrokinetic operator in the Vlasov-Poisson equation, which at some
level of the analysis must be treated, when FLR effects of electrons and/or of ions are
included. However, while the integration in the Fourier space may be more efficient, from
an analytical point of view, for obtaining the dispersion relation and the asymptotic
scalings of γ and δ ∼ δ1, it has the drawback of requiring further analysis −not always
trivial− for the computation of the eigenfunction profile in closed form in the coordinate
space (i.e., the inverse Fourier transforms of the eigenfunctions integrated in the kx-space
must be evaluated).

C.1. A brief historical review on the boundary layer approach to tearing-type equations
in the Fourier space

Fourier analysis was probably first applied to integrate interchange-type eigenmodes of
MHD-type equations by Coppi (1964b), and was used in the tearing mode problem by Ara
et al. (1978), in order to find approximate solutions of the inner equations from which
to estimate the weight of ion-ion viscosity in the dispersion relation via a variational
approach. A more detailed Fourier approach to tearing-type equations has been developed
by Pegoraro & Schep (1981) to model low frequency modes in toroidal tokamak geometry.
This approach, which has been later used in several other specific reconnection models,
consists in performing the Fourier transformation with respect to the stretched variable
ζ of Eqs.(5.9-5.10) and then to combine the inner-layer equations for ψ1 and ϕ1 into
a single equation for ψ1. The integration of the tearing-type equations including FLR
effect of both ions (for which a continuity equation was derived from gyrokinetic one) and
electrons (of which the isothermal limit was taken) has been first detailed by Pegoraro
& Schep (1986), using the ballooning representation, and then, starting from a different
kinetic model and using a somewhat different approach, by Cowley et al. (1986). The
technique detailed in (Pegoraro & Schep (1986)) has been further used for the internal
m = 1 kink mode in high-β regimes (Pegoraro et al. (1989)). Relying on the same
type of analysis, Porcelli (1991) derived the scaling laws for the collisionless regime in
which magnetic reconnection occours due finite electron inertia and in combination with
FLR effects. The Fourier analysis was also applied to investigate the scaling laws of the
collisionless reconnection instabilities occurring in high frequency fluid regimes where ions
form a neutralizing background (Bulanov et al. (1992); Attico et al. (2000, 2001)). The
integration of tearing-type modes in Fourier space was then extended to other regimes
in which electron temperature gradients at equilibrium are admitted and finite electron
β effects are included, while a full gyro-kinetic model is taken for describing the ion
response: motivated by the operational regime of large size tokamaks, which is expected
to fall in the semi-collisonal regimes where the width of the semi-collisional region is much
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smaller that the ion Larmor radius and finite β-effects are expected to play an important
role, Connor et al. (2012b) investigated tearing-type instabilities in low−β and high-β
regimes and the transition between them, by relying on integration in the Fourier-space.
In doing so, these authors also made a comparison of the solutions they obtained with
those previously found in the coordinate space by Cowley et al. (1986). Here, solutions
of tearing equations in the semi-collisional limit were obtained by starting from a full
kinetic model and by performing an expansion of the eigenfunctions in powers of the ratio
between the integration layer width over the ion Larmor radius. The technique used by
Connor et al. (2012b) is analogous to the boundary layer approach discussed in (Pegoraro
& Schep (1981, 1986)): using the fact that the dynamics of ions decouples from that of
electrons at a distance of the order of the ion gyro-radius, the system of equations in
each region was first transformed into a single equation for the current density in the
Fourier space. Then, for the low−β regime, the current density equation for ions was
solved by Connor et al. (2012b) in Fourier space, while that for electrons was solved in
real space. These solutions were made match each other at some intermediate layer, while
the solution in the ion region was also required to match that in the ideal MHD region,
located far from the resonance surface. The technique to find the solution in the ion and
electron regions consisted in expanding and matching the current density in powers of β.
This method leads to a general dispersion relation that extends that of previous models
by including four branches: the ion drift mode, the drift tearing mode, and other two
branches corresponding to the kinetic Alfvén waves which couple to drift tearing modes
for finite values of β.

C.2. Comparison of the analysis of Sec. 4-6 with the Fourier approach

In the analysis of Sec. 4-6 we have considered the low−β regime with isothermal electrons,
no equilibrium density fluctuations and cold ions, which rules out the coupling with drift
modes while the coupling with kinetic Alfvén waves is restricted to the branch described
by Eq.(A 4). It is easy to show the essential points of the Fourier approach of (Pegoraro
& Schep (1986)) discussed above, by making a direct comparison with the equations
discussed in Sec. 4-6 by Fourier transforming Eqs.(5.9) and (5.10), and to combine them
together so to write a single equation for the Fourier components of the current density.
To this purpose, let us first define Fourier transform for a function f(ζ) as

f̂ =

∫ +∞

−∞
f(ζ)eiqζdζ, ζ =

x

σ
, q = kxσ, (C 1)

where we have re-called the definition of the stretched variable, and therefore the
relation of the “stretched” Fourier coordinate q with kx, the standard Fourier-conjugate
wavenumber of x. For the scale σ we have used the same notation of (Porcelli (1991)).
In the notation adopted throughout the present manuscript it would read indeed δ1 or
δ2. Multiplying Eq. (5.9) and Eq. (5.10) by eiqζ and integrating from −∞ to +∞ while
using the definition Eq.(C 1), one obtains, respectively,

q2

Ĝ2

d2ψ̂1

dq2
−
(

1 +
q2

Ĝ2

)
ψ̂1 = −id2

e

d ˆ̃ϕ

dq
, ˆ̃ϕ = −idψ̂1

dq
. (C 2)

Taking the derivative of the second equation (C 2) with respect to q and substituting the
results in the former, one finds(

d2
e +

q2

Ĝ2

)
d2ψ̂1

dq2
−
(

1 +
q2

Ĝ2

)
ψ̂1 = 0. (C 3)
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This equation represents an eigenvalue problem for the eigenfunction ψ̂1. For analytical
convenience it is however useful to transform it in an eigenvalue problem for the current
density Ĵ1 = q2ψ̂1. After this substitution one obtains(

d2
eĜ2 + q2

) d2

dq2

(
Ĵ1

q2

)
− (q2Ĝ2 + 1)Ĵ1 = 0, (C 4)

This is the cold-ion limit of Eq.(3) of Porcelli (1991). The equivalence is evident once
the following correspondence between variables and parameters of the aforementioned
reference and those of Sec. 4-6 is established: Γ = γ, ∆2 = d2

e(1 + S−1/γ) → d2
e, and

ρτ = (ρ2
s + ρ2

i )
1
2 → ρs.

Here, we do not discuss further the solution of Eq.(C 4), since it represents a specific case
of the equation already solved by Pegoraro & Schep (1981, 1986) and further used in
(Pegoraro et al. (1989); Porcelli (1991); Attico et al. (2000, 2001); Connor et al. (2012b)).

Appendix D. An example of renormalisation of a differential equation

Consider Eq.(6.12) that we rewrite here for convenience as

ϕ̃′′1
c0
− A

BC
ζ2 ϕ̃1

c0
=
A

B
ζ, (D 1)

where

A ≡ `2, B ≡ d̄2
e, C ≡ G2. (D 2)

As an example, let us consider the case in which also the scale ` is non trivial (i.e.,
` 6= 1). From the point of view of physical dimensions, Eqs.(6.12,D 1) are already
written in dimensionless form but we want to check if it is possible to bring them to the
“cleaner” form of Eq.(6.13), after further renormalisation of quantities. Suppose then to
multply (D 1) by AaBbCc, where a, b, c are here numerical coefficients to be determined
a posteriori. Estimating, just for the purpose of dimensional analysis, ϕ̃′′1 ∼ ϕ̃1/ζ

2, we
obtain the following system:

AaBbCc
(
ϕ̃1

c0

)
ζ−2 ∼ 1, Aa+1Bb−1Cc−1

(
ϕ̃1

c0

)
ζ2 ∼ 1, Aa+1Bb−1Ccζ ∼ 1. (D 3)

The choice of fixing all right hand side coefficients equal to a number is made possible by
the fact that the number of independent conditions is equal or larger than the number of
unknown coefficients a, b, c: the parameters A,B and C can be thus completely absorbed
in the redefinition of ζ and ϕ̃1/c0. This is the case, also when the scale ` is absent,
i.e., when ` = A = 1. When the number of parameters is larger than the number of
constraints, some further parameter(s) corresponding to adimensional combination(s) of
powers of A,B, ... will appear in the renormalised equations. The system above can be
therefore solved to find that the values of the sought coefficients are a = −3/4, b = 3/4,
c = −1/4. This means that we can define

z ≡ Aa+1Bb−1Ccζ = A1/4B−1/4C−1/4ζ,

Φ ≡ A−a−1B−b+1C−c−1

(
ϕ̃1

c0

)
= A−1/4B1/4C−3/4

(
ϕ̃1

c0

)
. (D 4)

For ` = 1 this corresponds to Eqs.(6.13).
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Figure 17. The region where the solutions ψα and ψβ diverge is here displayed in a gray color
inside two lobes that join each other at ζ = 0. Outside thes two lobes, both series converge.

Appendix E. Convergence and independence of the solutions of the
hypergeometric form of the inner equation

We here discuss some technical details about the solutions (7.24,7.26) of the innermost
equation, which we have obtained by evaluation of the residues of its hypergeometric
form.

E.1. Convergence of ψα and ψβ

Following the ratio test of sequences for the coefficients of (1 + ζ2)s, one finds
limm→∞ gm+1/gm = 1, meaning that the power series (7.24) and (7.26) converge
when ||1 + ζ2|| > 1. This region covers all the complex plane, except when ζ = 0. In the
complex plane, the boundary corresponding to the convergence radius ||1 + ζ2|| = 1 is
given by

(1 + ζ2
R − ζ2

I )2 + 4ζ2
Rζ

2
I = 1, (E 1)

which is a curve forming two lobes joining at ζ = 0 and intersecting the ζR = 0 axis at
ζI =

√
2, while the maximum width of the lobes occur at ζR = ±1/2 and ζI = ±

√
3/2.

The region inside the lobes of Fig.(17) represents the divergence region, which includes
the singular points at ζI = ±i.

E.2. Linear independence of ψα and ψβ

It is not difficult to prove that the two solutions given by Eq.(7.24) and Eq.(7.26) are
linearly independent in the domain of convergence, say Dα,β , where both ψα and ψβ are
defined. One way to prove this is to show that their Wronskian is non-zero everywhere in
Dα,β . An easier way to proceed, is to investigate the independence of the leading terms
in both series. Taking m = 0, Eq.(7.24) and Eq.(7.26) become

ψα,0 =
Γ (−ν)

Γ ( 5
4 −

ν
2 )Γ ( 1

4 −
ν
2 )

(1 + ζ2)
α
2 , ψβ,0 =

Γ (ν)

Γ ( 5
4 + ν

2 )Γ ( 1
4 + ν

2 )
(1 + ζ2)

β
2 . (E 2)

The coefficients in the two previous relations are non-zero. Therefore, if α 6= β then ψα,0
and ψβ,0 are linearly independent, and so are ψα and ψβ . However, if α = β, then ν = 0.
Using the definition of the Γ function for positive and negative arguments, this means
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that the growth rate γ is purely imaginary. Therefore, in this case, the configuration is
stable to tearing-type modes, which is not a case of interest, here.
Another interesting remark related to Eq.(7.24) and Eq (7.26) is that they are even
functions with respect to ζ. Due to this symmetry, we expect that there is also an odd
solution with respect to ζ which will be obviously linearly independent of the even
solutions. The existence of this additional solution would apparently rise a paradox,
because we would now have three independent solutions: the two independent even
solutions ψα and ψβ , and one odd solution, whereas a second-order ODE cannot have
more than two linearly independent solutions. This apparent paradox can be solved
by observing that going from ζ = 0+ to ζ = 0− in the complex plane by passing
through ζ = 0 is not possible for any of the two series, because both ψα and ψβ
diverge, there. Therefore, one should follow one of the lobes drawing the boundary
of the divergence region in the complex plane (see Fig.(17)), that is, one of the lobes
encircling the singularities at ζ = ±i. Thus, in order to construct this solution, one
can use a linear combination of the two series. This combination can be obtained using
the integral representation and by choosing a path Cα (or Cβ , alternatively) that goes
around the poles associated with the exponent α (or β) by thus avoiding those of β (or α).

Appendix F. Heuristic estimation of the scaling laws by making use
of the inverse gradient scale lc and of ∆′

vy

Here we discuss the logical steps of a unified heuristic procedure which would make
it possible to deduce the correct scalings in any regime and wavelength limit among
those considered in this work, were the scaling of ∆′vy be always deductible: in any
regime we obtain a scaling law, which is symmetric with respect to that of the small-∆′

limit previous the substitution ∆′ ↔ ∆′vy . The proposed procedure, however, is “self-
consistent” in all regimes with the exception of the large-∆′, warm-electron limit, where
the scaling of ∆′vy appears to be a priori non deducible via dimensional analysis. In
order to facilitate the identification and presentation of the logical steps of the proposed
heuristic procedure, they are summarised as statements and formulae in Tables 3-5.
In particular, in Table 3 we recall the approximated linear equations, definitions and
general constraints we rely upon, as well as the conclusions that can be drawn for them
regardless of the reconnection regime considered.
In Table 4 we specialise the results to the warm-tearing regimes (ρs 6= 0), both collisionless
and resistive: in each regime we report the further ansatz required to get the sought
scalings in both the small- and large-∆′ limits. The “symmetry” of the scalings written
in the small-∆′ limit in terms of ∆′ with respect to the scaling written in the large-∆′

limit in terms of ∆′vy can be this way appreciated, although the system of equations is not
closed in the large-∆′ limit and we must rely on additional information (e.g., numerical
calculations performed by following the procedure detailed in previous Sec. 10.3), in order
to explicitly evaluate ∆′vy .
Finally, in Table 5, we consider the cold tearing regimes (ρs = 0), both collisionless
and resistive, by showing how the heuristic approach that takes ∆′vy into account works
and still provides the good scalings. Although having introduced the new scale ∆′vy
makes the heuristic procedure slightly longer than the one discussed in Sec. 9.3, it allows
one appeciate the “symmetry” between ∆′ in the small-∆′ limit and ∆′vy in the large-
∆′ limit also in these cold eletron regimes. More importantly, and differently from the
warm-reconnection regimes, it becomes manifest that for ρs = 0 it is possible to close
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General hypotheses and conditions for a heuristic-type approach

Approximated [T4.E1] ψ1 −
ik

γ
xJ0ϕ1 ' d2eψ′′1 −

ikJ0
γ

ρ2sxϕ
′′
1 +

S−1

γ
ψ′′1

equations [T4.E2] ϕ′′1 ' −
ikJ0
γ

xψ′′1

Definitions
[T4.D1] δ : ψ

(iv)
1 (δ) = 0

[T4.D2] lc : ψ′1(δ) ∼ ψ1(δ)

lc

[T4.D3] ∆′vy ≡
ϕ′′1 (δ)− ϕ′′1 (−δ)

ϕ′1(δ)
=

2ϕ′′1 (δ)

ϕ′1(δ)

[T4.C1]
γϕ′1
kψ1

∣∣∣∣
x=δ

∼ 2

lc∆′vy
(from T4.E2, T4.D2-T4.D3)

Constraints [T4.C2a]
γϕ′′1
kψ1

∣∣∣∣
x=δ

∼ O(1) [T4.C2b]
γϕ′1
kψ1

∣∣∣∣
x=δ

∼ O(1)

(∆′δ � 1) (∆′δ � 1)

Hypotheses [T4.H1] lc ∼ max{(∆′)−1, (∆′vy )−1} & δ

[T4.H2] ψ′′1 (δ) ∼ ψ1(δ)

lcδ

Results 1 [T4.R1a] lc ∼ O(1)⇒ lc ∼ (∆′)−1 & (∆′vy )−1 [T4.R1b] lc ∼ (∆′vy )−1 & (∆′)−1

(from T4.C2a, T4.D3 T4.C1 and T4.H1) (from T4.C21 and T4.Cb)

Table 3. Starting equations, definitions and assumptions based on general constraints that
we take for the heuristic-type approach in all reconnection regimes. Eqs.[T4.E1-T4.E2] are
the eigenmode equations (2.1,2.2) in which we have assumed k to be negligible with respect
to the inverse scale of the spatial gradients of the eigenfunctions. Eqs.[T4.D1-T4.D3] are the
operational definitions we have given in Sec. 8, 9 and 10 of δ, lc and ∆′vy , respectively. Equations

[T4.C1,T4.C2] and [T4.H1] represent further conditions on the parameters that must be fulfilled
regardless of the reconnection regime: [T4.C1] is a constraint that follows from Eq.(T4.E2) and
definitions [T4.D2-T4.D3]; conditions [T4.C2a] and [T4.C2] correspond to equations (10.9) that
we have discussed in the text; condition [T4.H1] corresponds to the ansatz (10.5) discussed in
the text. Eqs.[T4.R1a] and [T4.R1b] are two immediate conclusions than can be drawn and
allow us to specify hypothesis [T4.H1] in the small- and large-∆′ limits, respectively.

the system of heuristic conditions also in the large-∆′ limit, so to determine a priori the
corresponding scaling of ∆′vy , which here always results to be the same of δ.

REFERENCES

Abramowitz, M. & Stegun, I. 1964 Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables. New York: Dover Ed.

Agullo, O., Muraglia, M., Benkadda, S., Poyé, A., Dubuit, N., Garbet, X. & Sen, A
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Warm reconnection regimes

warm-collisionless regime warm-resistive regime

Hypothesis 2 [T5.H2]
kδ

γ

ϕ1

ψ1
∆′vy ∼

2

ρ2s

(
ψ1 ∼

k2ρ2s
γ2

x2ψ′′1 in T4.E1, using T4.E2

)

Hypotheses 3
[T5.H3a] lcδ ∼ d2e [T5.H3b] γlcδ ∼ S−1(

ψ1 ∼ d2eψ′′1 in T4.E1
) (

ψ1 ∼
S−1

γ
ψ′′1 in T4.E1

)

Result 2 [T5.R2] γ ∼ kρs
(
δ

lc

) 1
2

(from T4.C1 and T5.H2)

Result 3 [T5.R3a] γ ∼ kρs
de
lc

[T5.R3b] γ ∼ k
2
3 ρ

2
3
s
S−

1
3

l
2
3
c

(from T5.H3a, T5.R2) (from T5.H3b, T5.R2)

Result 4 [T5.R4a] [T5.R4b] [T5.R4c] [T5.R4d]

γ ∼ k∆′ρsde γ ∼ k∆′vyρsde γ ∼ (k∆′)
2
3 ρ

2
3
s S
− 1

3 γ ∼ (k∆′vy )
2
3 ρ

2
3
s S
− 1

3

(∆′δ � 1) (∆′δ � 1) (∆′δ � 1) (∆′δ � 1)
(from T4.R1a) (from T4.R1b) (from T4.R1a) (from T4.R1b)

Result 5 [T5.R5a] [T5.R5b] [T5.R5c] [T5.R5d]

δ ∼ ∆′d2e δ ∼ ∆′vyd
2
e δ ∼ (kρsS)−

2
3∆′

1
3 δ ∼ (kρsS)−

2
3∆
′ 1
3
vy

(∆′δ � 1) (∆′δ � 1) (∆′δ � 1) (∆′δ � 1)
(δ is found by reversing T5.R2 for the relevant value of lc and γ: δ ∼ (γ/(kρs))

2lc)

Table 4. Combining the hypotheses and results reported in Table 2 with hypotheses
[T5.H2-T5.H3] that are specific of the warm regimes, it is possible to deuce in a self consistent
way the set of equations [T5.R2-T5.R5]. It must be emphasized, however, that the system of
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