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Introduction

H +
3 is probably the most abundant molecular ion in the interstellar medium. It plays an important role in the first steps of chemistry in space through the protonation reaction for the formation of ionic hydrides, [1][2][3][4][5][6] M + H + 3

→ M H + + H 2 → M H + 2 + H,
where M can be an atom or a molecule. H + 3 is very reactive. In many cases the above reactions are exothermic. For all these reasons, H + 3 is considered the universal protonator. 7,8 The ionic hydrides are also very reactive and trigger chemistry cycles of many space species. [1][2][3][4][5][6] H + 3 has many peculiar properties that make it particularly interesting as a benchmark system. It is formed by three identical fermions that separate ortho and para species according to nuclear spin. The ortho/para energy difference of ≈ 0.063 kcal/mole (≈ 22 cm -1 , ≈ 32 K) can be used as a thermometer in cold molecular clouds. 9 It has a high zero-point energy (ZPE), about 11.95 kcal/mole. This favors the deuteration process to form species, such as H 2 D + , which in turn are the major deuterators in space. Since deuteration usually takes place by tunneling through barriers, it is very slow. As a consequence, deuteration fractioning can be used as a clock to measure the age of molecular clouds. 9 The high ZPE of H + 3 is also responsible for important quantum effects.

The reaction, D + H + 3 → H 2 D + + H, is part of the family of M + H + 3 reactions. The D + H + 3 reaction has been recently studied experimentally. 10 This study measured a rate constant that decreases with decreasing temperature, becoming negligible below 100 K. These results are in distinct contrast with previous quasi-classical trajectory (QCT) calculations by Moyano et al., 11 who found a slowly decreasing rate constant with increasing temperature from 100 K to 1,500 K. By 100 K, the QCT rate constant is ∼3 orders of magnitude larger than the measured value. Because ZPE is not constrained during QCT trajectories, the difference may be due to the high ZPE of the H + 3 reactant unphysically flowing over the exchange reaction barrier of ≈ 0.15 eV (≈ 3.46 kcal/mole) in the QCT calculations.

This could make the QCT rate constant unphysically large at lower temperatures. When ZPE effects are properly taken into account with ring polymer molecular dynamics (RPMD) calculations for this reaction, 12 there is good agreement with rate constant measurements.

The RPMD method [13][14][15][16][17] is a path integral molecular dynamics approach that introduces many quantum effects, including ZPE and tunneling. RPMD is based on the fact that the canonical quantum mechanical partition function can be written exactly as a classical partition function of a ring polymer comprising N copies of the physical system coupled by harmonic springs, where N tends to infinity. RPMD, then, assumes that the purely classical rate coefficient in the extended ring polymer phase space is a good approximation of the exact quantum mechanical rate. For temperatures below 100 K, the RPMD calculations showed many trapped trajectories, where a D-H + 3 complex formed, with a very long lifetime.

For these trapped trajectories, it was not clear whether tunneling would eventually lead to products or not. These low temperatures are difficult to achieve experimentally because H + 3 is formed in discharges, producing internal excitation of the molecular ion. As a consequence, the experimental results need to be post-processed with theoretical models to extract meaningful rate constants. Tunneling at 100 K and below may play a role in the deuteration and ortho/para transformation of H + 3 , with enormous potential effects on astrophysical models used in interpreting astronomical observations.

The D + H + 3 reaction is therefore an excellent benchmark to develop methods for the study of the general M + H + 3 family of reactions. We note that there are very accurate potential energy surfaces (PES) available 18 for the D + H + 3 reaction. Furthermore, the D + H + 3 reaction shows important quantum effects. For scientific and practical reasons, D + H + 3 is an ideal system to test semiclassical methods based on QCT that build in quantum effects. The hope is that such methods could lead to inexpensive and accurate study of more complex reactions which include major quantum effects. QCT with Gaussian binning has been remarkably successful in matching measurements and quantum scattering results for reaction rates and product state distributions including the reactions: O( If so, how accurate and generally applicable can it be?

The paper proceeds as follows. In the next section, Methods, we discuss various forms of QCT with Gaussian binning, and define procedures used to generate the present "QCT in a quantum spirit" results. We also discuss the potential surfaces and details of the numerical parameters in the present QCT calculations. In the Results section, we present QCT results

for the energy dependent cross sections and temperature dependent rate constants for D + H + 3 → H 2 D + + H, focusing on capturing quantum ZPE effects with classical trajectories.

The Discussion section highlights the importance of proper Gaussian binning procedures and the generality of the present approach. It also gives conclusions and possible future work.

Methods

Quantum-corrected QCT treatment of the D + H + 3 reaction dynamics

Collisional system

We consider the reaction at the collision energy E between atom D and H 

E v (a 1 , a 2 , a 3 ) = 3 k=1 ω k a k + 1 2 , (1) 
where ω k is the vibrational quantum for the k th normal mode of H 2 D + . The H + 3 vibrational energy is given by the same expression without the acute accents. Since the vibrational actions rarely exceed 1 in the following simulations, Eq. 1 is expected to be quite accurate.

N T will be the total number of trajectories run, N the number of reactive trajectories, and

N ZP E the number of reactive trajectories leading to a vibrational energy lower than the product ZPE, E v (0, 0, 0), simply called E(0) in the following. We now consider the different procedures used further in this work to estimate the reactions probabilities.

Computational details

All calculations used the benchmark H + 4 potential energy surface (PES) of Ref. 18 The PES was fit with more than 19000 ab initio points, calculated with the multi-reference configuration interaction method 24 with complete basis set extrapolation. The fit is based on a triatomic-in-molecules formalism that very accurately describes all di-and -triatomic fragments and long range interactions. Furthermore, a four-body term is added that accurately fits the ab initio points at intermediate and short distances. This PES has been used for the H 2 + H + 2 → H + 3 + H reaction, from 1 meV to 1 eV, 25 giving good agreement with previous 26 and more recent experiments at very low energies. 27 Three independent sets of quasi-classical trajectory (QCT) calculations were performed.

The first set examined the reaction, D + H + 3 (000, j = 0) → H 2 D + + H, where the reactant H + 3 was in its ground vibrational and rotational state, and the translational energy was set to the following values: 

Standard Binning

Standard Binning (SB) assigns unit statistical weights to each trajectory. The statistical contribution of (a 1 , a 2 , a 3 ) to product vibrational state (n 1 , n 2 , n 3 ) is thus

w SB n 1 n 2 n 3 (a 1 , a 2 , a 3 ) = δ ā 1 n 1 δ ā 2 n 2 δ ā 3 n 3 , (2) 
where ā is the nearest integer of a and δ kl is Kronecker delta, equal to 1 if k = l, 0 otherwise.

In other terms, w n 1 n 2 n 3 (a 1 , a 2 , a 3 ) is equal to 1 (0) if (a 1 , a 2 , a 3 ) belongs (does not belong) to the unit cube centered at (n 1 , n 2 , n 3 ). The probability that the products are formed in the vibrational state (n 1 , n 2 , n 3 ) is given by

P SB R (n 1 , n 2 , n 3 ) = N k=1 w SB n 1 n 2 n 3 (a 1k , a 2k , a 3k )/N T (3) 
and the total reaction probability by

P SB R = n 1 n 2 n 3 P R (n 1 , n 2 , n 3 ) = N /N T . (4) 
Action-based Gaussian Binning Classical-limit quantum mechanics applied to molecular collisions supports the idea that the statistical contribution of (a 1 , a 2 , a 3 ) to product quantum state (n 1 , n 2 , n 3 ) is better described by

w n 1 n 2 n 3 (a 1 , a 2 , a 3 ) = δ(a 1 -n 1 )δ(a 2 -n 2 )δ(a 3 -n 3 ) (5) 
than by the democratic weight, provided that the vibrational motion is non adiabatic along the trajectories leading to (a 1 , a 2 , a 3 ) (see Sec. 2.3 of Ref. 22 ). Eq. 5 complies with Bohr's condition of quantization since the trajectories contributing to the reactivity are those starting from and finishing with integer actions. In the numerical application of Eq. 5, the δ distributions are replaced by narrow Gaussian functions of the type

G(x) = exp(-x 2 / 2 ) √ π , (6) 
where is generally taken at 0.06. The full-width-at-half-maximum (FWHM) of the Gaussian is then of 10%. This procedure is commonly termed Gaussian binning (GB). The GB weight will be denoted by w GB n 1 n 2 n 3 (a 1 , a 2 , a 3 ).

In Fig. 1, the distributions of the vibrational actions and energy of the product H 2 D + are displayed for three values of the temperature. The vibrational action is computed through an analysis of the product motion as discussed in Ref., 21 using the harmonic approximation.

The product H 2 D + has three vibrational modes with harmonic energies of: ω 1 (a 1 )=9. show that the vibrational motion is strongly non adiabatic along reactive trajectories. The applicability conditions of the GB procedure are thus satisfied.

In contrast, the analogous distributions for non reactive trajectories, represented in Fig. 2,

show that the final vibrational actions are distributed close around 0 (left 3 subplots), and the final vibrational energy close around the H + 3 ZPE (right subplot; note the logarithmic scale of the probability axis). Consequently, the vibrational motion of H + 3 is nearly conserved throughout nonreactive encounters, i.e., the dynamics along non reactive paths are vibrationally adiabatic. On the other hand, the rotational motion is on average much more coupled with the translational motion than the vibrational one.

In Ref., 28 it is shown within the initial value representation of the semiclassical theory of molecular scattering that the previous nonreactive paths should be assigned unit weights provided that 3 or 4 rotational states are available to the final H + 3 , as is the case for most of the collision energies considered in the following. The first reason is that the vibrational modes of H + 3 are spectators and can be ignored in the assignement of statistical weights. The second reason is that using SB or GB in order to set a weight in terms of the final rotational state of the reformed H + 3 leads to nearly identical results when more than 3 or 4 rotational states are available. Much more details can be found in Sec. 2 of Ref. 28 Within our hybrid weighting where reactive paths are Gaussian weighted while non reactive paths are assigned unit weights, the expression of the population of (n 1 , n 2 , n 3 ) is given by

P GB R (n 1 , n 2 , n 3 ) = N k=1 w GB n 1 n 2 n 3 (a 1 , a 2 , a 3 ) N k=1 n 1 n 2 n 3 w GB n 1 n 2 n 3 (a 1 , a 2 , a 3 ) + N T -N , (7) 
N T -N being the number of nonreactive paths (in this expression, the upperscript GB only refers to the procedure used to weight reactive paths). The total reaction probability is deduced from the previous population by

P GB R = n 1 n 2 n 3 P GB R (n 1 , n 2 , n 3 ). ( 8 
)
Figure 1: Final H 2 D + vibrational action and energy distributions for the reactive event D + H + 3 (000) → H 2 D + + H. Left 3 subplots: vibrational action distributions at 200, 500, and 1,000 K; Right subplot: vibrational energy distributions at the same temperatures.

Energy-based Gaussian Binning

The drawback of GB is that the number of trajectories necessary to converge the calculations scales as a power equal to the number of product vibrational modes. GB calculations are thus usually unfeasible beyond two or three modes. Here, we have chosen to use the energy- 

w 1GB n 1 n 2 n 3 (a 1 , a 2 , a 3 ) = w SB n 1 n 2 n 3 (a 1 , a 2 , a 3 )exp   - E v (a 1 , a 2 , a 3 ) -E v (n 1 , n 2 , n 3 2E(0) 2   /( √ π ). (9) 
The reader may check that when Eq. 9 is applied to a diatomic molecule, its right-hand-side

reduces to w SB n 1 n 2 n 3 (a 1 , a 2 , a 3 )G(a -n ) ≈ G(a -n ), i.e.
, to the GB weight. Since the present procedure involves only one Gaussian per polyatomic fragment (with the possibility to use a single Gaussian for all the fragments), it is known as 1GB.

However, it was shown in Ref. 30 that Eq. 9 does not respect the normalization of the GB weight (see Eq. 5). The norm of the latter, given by the integral of w n 1 n 2 n 3 (a 1 , a 2 , a 3 ) with respect to (a 1 , a 2 , a 3 ) over the unit cube centered at (n 1 , n 2 , n 3 ), is obviously equal to 1. In contrast, the norm of 1GB weight given by Eq. 9 is generally different from 1. Now, the unit norm of the GB weight is imposed by classical-limit quantum mechanics. For the sake of rigour, we would thus like the 1GB weight to also have a unit norm. It is shown in Ref. 30 that the expression of the 1GB weight satisfying this requirement is

w 1GB n 1 n 2 n 3 (a 1 , a 2 , a 3 ) = w SB n 1 n 2 n 3 (a 1 , a 2 , a 3 )exp   - E v (a 1 , a 2 , a 3 ) -E v (n 1 , n 2 , n 3 ω 2   / √ π (10) 
where ω satisfies

ω = 4ω k ω l ω m 4ω l ω m -(ω k -ω l -ω m ) 2 (11) 
if ω k < ω l + ω m for the three cyclic permutations (k, l, m) = (1,2,3), (2,3,1), (3,1,2), or

ω = max(ω k , ω l , ω m ) (12) 
if ω k ≥ ω l + ω m for only one of this permutations. Unless otherwise stated, We will thus use Eqs. 10-12 instead of Eq. 9 in the 1GB calculations presented further in this work (we will see that the final results are quite different). P 1GB R (n 1 , n 2 , n 3 ) and P 1GB R are given by Eqs. 7 and 8, with 1GB weights substituted for GB ones.

Last but not least, we will strictly take into account the ZPE constraint in our calculations. The 1GB weight will thus be equal to zero whenever the vibrational energy

E v (a 1 , a 2 , a 3
) is lower than the ZPE (E(0)). This implies doubling the value of w 1GB 000 (a 1 , a 2 , a 3 )

if E v (a 1 , a 2 , a 3
) is larger than the ZPE in order to keep its norm equal to 1.

Zero-Point Energy corrected Standard Binning

The last method is as simple as the standard QCT method with standard binning (SB), but will prove to be far more accurate at low temperatures. This method simply amounts to the SB procedure, except the number of reactive trajectories where reaction products have less vibrational energy than their own ZPE, N ZP E , are ignored. Eqs. 3 and 4, then, become

P ZP E R (n 1 , n 2 , n 3 ) = N k=1 w SB n 1 n 2 n 3 (a 1k , a 2k , a 3k )Θ[E v (a 1 , a 2 , a 3 ) -E(0)] N T -N ZP E (13) 
and

P ZP E R = n 1 n 2 n 3 P R (n 1 , n 2 , n 3 ) = (N -N ZP E )/(N T -N ZP E ), (14) 
respectively. In Eq. 13, Θ(x) is the Heaviside function, equal to 1 (0) if x is positive (negative).

Results

Cross Sections

This section gives results for the energy dependent D + H + 3 (000) → H 2 D + + H exchange reaction cross section. Here, the reactant H + 3 is in its ground vibrational and rotational state, which helps isolate effects of particular weighting methods. Figure 3 shows the product H 2 D + vibrational, translational, and rotational energy distributions at collision energies of 1.e-3, 3.e-2 eV actions are similar and show that the vast majority of reactive trajectories have classical actions below zero. Going to 1.e-1 eV and 3.e-1 the action begins to grow above the zero line, so that by 3.e-1 the a 1 excited vibrational actions become significant. This threshold behavior between 3.e-1 and 0.1 eV collision energy mirrors the vibrational energy distributions in Figure 3. We note that the potential barrier of 0.144 eV (0.087 eV including ZPE) 12 is close to this threshold. 2) QCT G energy based Gaussian binning using Eq. 9, where the exponential argument de-nominator is (2E(0) ) 2 , 3) QCT Gω energy based Gaussian binning using Eqs. 10-12, where the exponential argument denominator is (ω ) 2 , including trajectories below the product ZPE, 4) QCT Gω2 energy based Gaussian binning using Eqs. 10-12, where the exponential argument denominator is (ω ) 2 , and where the weights for the product ground vibrational state, w 1GB 000 , are set to zero below the product ZPE, or multiplied by 2 above the product ZPE to keep the norm of w 1GB 000 equal to 1, 5) QCT zpha energy binning, Eqs. 13-14, using the harmonic approximation (ha) to compute the vibrational energy through the vibrational actions and ignoring trajectories below the product ZPE, 6) QCT zpe energy binning using Eqs. 13-14 using the product vibrational energy directly and ignoring trajectories below the product ZPE.

Several things are worth noting about the Gaussian weighting methods, QCT G , QCT Gω , and QCT Gω2 . For the H 2 D + product using the harmonic frequencies, 2E(0)= 23.34 kcal/mole, while ω=10.48 kcal/mole, where Eq. 11 applies. These difference are large and will make the weights quite different between QCT G on the one hand and QCT Gω and QCT Gω2 on the other. Furthermore, we can expect that at lower collision energies and temperatures, there will be further differences between QCT Gω which includes trajectories below the product zero-point and QCT Gω2 which does not. It should also be noted that as approaches zero, trajectories only having vibrational energy equal to a quantized value are selected, and the results approach a quantum limit. However, the number of these trajectories becomes smaller as well, and statistical uncertainties become large. For the present problem, the QCT G energy based Gaussian binning using Eq. 9 allowed enough reactive trajectories at low values to extrapolate the weights to zero , following Ref. 23 The other energy based Gaussian weighting methods, QCT Gω and QCT Gω2 , especially at the lower collision velocities and temperatures addressed here, did not have sufficient trajectories at low for an extrapolation to zero . Therefore, for the QCT Gω and QCT Gω2 binning methods, a value of =0.12 was used, which corresponds to a Gaussian FWHM = 0.2. Ideally with extrapolation to =0, we expect the QCT Gω2 method to be the best approximation to the quantum result. We expect that with sufficient statistics, extrapolation to =0.0 may change the cross sections and rate constants by up to a factor of 2 at the lowest collision energies and temperatures, and less so as the collision energy and temperature increase. Finally, we note that Gaussian binning can also be applied to the rotational actions. Because the rotational state spacings are much smaller than the vibrations, we expect that the energy ranges examined here will populate many rotational levels. Rotational binning should have a modest effect. At lower energies and when rotation levels are state selected, the effects may be more pronounced.

It is instructive to examine how the Gaussian weights for methods 2)-4) change with the width . Figure 5 shows the number of trajectories with a weight value greater than 0.5 times its maximum possible value, 1/(π 0.5 ) (see Eqs. ( 9) and ( 10)), for each of the Gaussian weighting methods versus at 0.03 eV and 0.1 eV collision energies. (Note the one exception is that 0.5 times 2/(π 0.5 ) is used for the QCT Gω2 method product ground vibrational state (000), due to the doubling of this weight.) As approaches 0.0, and the Gaussian weights approach a δ function at integer quantum numbers, these values tend to 0.0. The number of Gaussian weight trajectories greater than half its maximum grows as the Gaussian width, , increases, and the different weighting methods diverge, with QCT G > QCT Gω > QCT Gω2 .

QCT G is normalized such that for a given , its width is larger than the QCT Gω and QCT Gω2 widths, so the number with weight greater than half its maximum is always largest. The QCT Gω results include trajectories below the product ZPE, while the QCT Gω2 results do not. Removing the trajectories near the zero-point but below it cuts down the number of trajectories with a weight greater than half its maximum to a large degree, especially at 3.e-2 eV collision energy. Because of differences in normalization, for a given value of , the QCT G weight will usually be different than the QCT Gω and QCT Gω2 weights. As approaches zero, the QCT Gω and QCT Gω2 converge toward the same value, as expected. But for non-zero widths, they begin to diverge as the QCT Gω result includes more trajectories below the ZPE. The number of these trajectories grows more quickly with than the number of trajectories near the zeropoint but having more than the ZPE. We also show the summed QCT zpe and QCT zpha values plotted at =0.12 for convenience. The QCT zpe and QCT zpha total weights cluster around the QCT Gω2 values at =0.12, with the QCT zpha usually the lowest weight. This is consistent with the idea that all these are estimates of the number of product trajectories above the zero-point value. We have found that the harmonic approximation for the vibrational action often undershoots true action. This results in more trajectories with energy below the ZPE, so that usually the weights QCT zpe are larger than QCT zpha . We can make the further observation that in the energy regime here, the number of reactive trajectories is much smaller than the number of non-reactive trajectories. Because the reactive probability has the general form G weight /(G weight +N T -N ZP E ) and G weight is small compared to N T -N ZP E , the reactive probability to an approximation varies as G weight /(N T -N ZP E ). Examining the weights in Fig. 5 we can see that for larger , the QCT G results will be a factor of 4 or more larger than QCT Gω and QCT Gω2 at lower energies. For smaller values of , these differences become smaller. The variation in the Gaussian weights with will mirror the variation in the probabilities, cross sections, and rate constants.

As a further illustration of the differences in weighting methods, the rightmost panel of Figure 5 shows the Gaussian weights, Eq. 6, versus the product vibrational energy with =0.06 for the 4 lowest vibrational levels of H 2 D + , using weigting methods 2)-4), QCT G , QCT Gω and QCT Gω2 , respectively. Each vibrational level weight is independent of the others.

In vibrational action space, the norms of the QCT Gω and QCT Gω2 weights are 1.0, but they are generally different from 1.0 for QCT G . We plot the weights on a vibrational energy scale here to show how the QCT G weight is substantially wider than QCT Gω and QCT Gω2 in the vibrational energy space. We see that the QCT Gω2 weight for the (000) level is zeroed below the product ZPE and doubled above it to give a norm of 1. From these plots of the weighting functions, for low collision energies and temperatures when the product (000) level dominates and a large number of trajectories have actions below the zero-point, we therefore expect the cross section values to have the order QCT G > QCT Gω > QCT Gω2 . 1.e-2 eV collision energy. We believe the QCT zpe and QCT Gω2 methods to be the most accurate and we will focus on them in the remaining discussion. The QCT zpe method is likely more accurate than QCT zpha because the latter method performs a separation of the vibrational motion into modes and computes the action of each mode to get the vibrational energy. The separation of the vibrational motion can be problematic, especially for lowfrequency modes or highly excited modes, and prone to numerical bias. The QCT zpe method computes the product vibrational energy directly without the need to separate the mode motion, and so is less prone to inaccuracy. The cost of using the methods, QCT zpha and QCT zpe , is that the rate constant or cross section use essentially standard binning weights, Eq. ( 13). QCT Gω2 builds in ZPE effects and properly normalized Gaussian weighting of vibrational products. Provided there are sufficient statistics, QCT Gω2 should give the best accuracy for rate constants to specific final vibrational states. The Figure 6 (right) shows the Boltzmann distribution of collision speeds from 100-1,500 K, the energy range of the RPMD results. This temperature range samples collision energies from ∼1.e-3 eV to 3.e-1 eV, the same range where the QCT zpe and QCT Gω2 results diverge dramatically from the QCT standard binning results. Therefore we expect that the temperature dependent rate constants for QCT zpe and QCT Gω2 weighting to be much lower than the standard binning QCT results.

Rate Constants

D + H + 3 (000) exchange

This section gives results for the temperature dependent D + H + 3 (000) → H 2 D + + H exchange reaction rate constants. As discussed in the Methods section, the rate constants here and elsewhere are all computed independently of the previous cross section results, with improved statistics and with trajectories directly sampling Boltzmann temperature distributions for The energy constraints relax as the temperature increases so that by 1,000 K they are much more evenly distributed.

Figure 9 shows the number of trajectories with a weight value greater than half its maximum for each of the weighting methods versus the Gaussian width parameter at 200, 500, and 1,000 K. Figure 9 also shows the corresponding summed Gaussian weight versus as well as the summed QCT zpha and QCT zpe values plotted at =0.12 for convenience. As with the cross section results, the total weights have the ordering QCT G > QCT Gω > QCT Gω2 , with QCT G being substantially larger than QCT Gω and QCT Gω2 total weights. As tends to zero, the QCT Gω and QCT Gω2 differences become smaller as their effective functional forms become the same. As with the cross sections, the QCT zpha and QCT zpe total weights cluster around the QCT Gω2 values at =0.12, with the QCT zpha usually the lowest weight. This section presents results of temperature dependent rate constant calculations, where the reactant H + 3 has been prepared in its (100) and (001) vibrational states. For J=0, these states have energies of 9.09 and 7.21 kcal/mole, respectively, above the ground state. 18 (Because the (010) and (001) H + 3 states are degenerate, their rate constants and product energy distributions are assumed to be identical.) Figure 10 Figure 11 shows the probabilities of product vibrational action for D + H + 3 (100) → H 2 D + + H and D + H + 3 (001) → H 2 D + + H at 200, 500, and 1,000 K. As with the product vibrational energies, there is a weak temperature dependence, with most of the probability above the approximate ZPE diagonal red line, even at 200 K. We note that at 1,000 K there is substantial probability outside the product (000) ground state action, mostly in the a 1 mode. The vibrational actions suggest that the corresponding rate constants will be largely temperature independent, with vibrational excitation of the products. The data shows that the rate constants are large, about ∼5.e-10 cm 3 /sec, starting from 200 K and staying relatively constant with temperature. This contrasts with the rate constants for D + H + 3 (000) → H 2 D + + H from the previous section, also shown in the Table for completeness, which start at small values and increase by several orders of magnitude in the same temperature range. Reactant vibrational excitation at lower temperatures promotes the reaction very effectively.

Table 1: Rate constants in cm 3 /sec for D + H + 3 → H 2 D + + H. Numbers in parentheses after each entry give the statistical uncertainty as a percentage, so that for example (2) would be 2%. 

T(K) QCT QCT G QCT Gω QCT Gω2 QCT zpha QCT zpe D + H + 3 ( 
) 500 6.4872e-10(<1) 1.3207e-09( 

Boltzmann weighted rate constants

In this section, we combine the results of the previous two sections and present Boltzmann weighted, fully thermal rate constants versus temperature for D + H + 3 → H 2 D + + H, comparing to previous fully thermal QCT and RPMD results. The fully thermal rate constant, R, is taken to be a Boltzmann weighted average of the rate constants in Table 1: R = w(000)•R(000) + w(100)•R(100) + w(010)•R(010) + w(001)•R(001), where the (000) for example denotes the ground reactant vibrational state H + 3 (000), and we take the weights and rate constants of the H + 3 (010) and H + 3 (001) to be equal to each other. Because they are so large and mostly independent of temperature, the contributions of R(100), R(010), and R(001) are non-negligible at 500 K and above, with w(000) = 0.9985, 0.9403 0.8160, for 500, 1000, and 1,500 K respectively. The weights are obtained using the vibrational states from Ref. 31 Figure 12 shows the fully thermal rate constant versus temperature using standard binning QCT, QCT Gω2 and QCT zpe as well as previous results from Ref. 12 for fully thermal RPMD reactive (RPMDdir) and RPMD trapped (RPMDtra) rate constants. All calculations use the same potential surface, and the present QCT standard binning results compare well to the previous QCT standard binning results. The QCT weighted results, QCT Gω2 and QCT zpe , track the benchmark RPMDdir results fairly well except at 200 K and below, where they overshoot. However, the QCT weighted results build in most of the dramatic rise of the rate constant with temperature. In particular, the simple QCT zpe approach tracks the benchmark RPMDdir results over most of the temperature range fairly well.

Figure 12: Fully thermal rate constant versus temperature with QCT, QCT Gω2 , and QCT zpe methods as well as previous results from Ref. 12 We note that the RPMDtra result was obtained by counting very-long lived trajectories (>1.e-9 seconds) that had become trapped with all four atoms still bound together in a complex. It was proposed that some of these trajectories eventually quantum tunneled to products and contribute to the experimentally measured rates. The present QCT calculations see no evidence of such long-lived trajectories at low temperatures, with the longest lived complexes of ∼1.e-12 seconds at 1.e-3 eV collision energy. We believe this may be due to ZPE resctrictions in RPMD lowering the number of available channels compared to QCT.

Furthermore, we note that when trapping is high, the RPMD calculations become time consuming and the statistics become poorer. It also possible that trapping could be caused by spurious resonances. [32][33][34] Figure 13 shows an expanded view of the higher temperature region of Figure 12, in three separate plots with the QCT, QCT Gω2 and QCT zpe weighting results shown against the RP-MDdir results of Ref., 12 for clarity. We also show the contribution of the H + 3 (000) state to the fully thermal solid line results for each of the weighting methods. At temperatures above 500 K, the contributions of the excited vibrational H + 3 states to the fully thermal result are significant and bring the QCT Gω2 and QCT zpe results closer to the fully thermal RPMDdir result. These results suggest that the rapid increase in the RPMDdir rate constants above 500 K is due mainly to the contributions of the vibrationally excited H + 3 vibrational states.

Detailed quantum scattering calculations and/or measurements which can isolate the contributions of the H + 3 vibrational ground and excited states to the fully thermal rate constant would help confirm this picture.

Figure 13: Expanded view of the rate constant results of Figure 12, with the contribution of the H + 3 (000) state shown as dotted lines.

To illustrate their differences, Figure 14 shows the rate constant versus temperature for the three Gaussian weighting methods, QCT G , QCT Gω , and QCT Gω2 . At the highest temperatures the QCT Gω and QCT Gω2 are similar and diverge as the temperature decreases.

At lower temperatures, the (000) product state becomes more important as products have limited internal energy. The QCT Gω weighting at lower temperatures increasingly includes product (000) vibrational state trajectories which have energies below the product ZPE, making the rate constant larger than QCT Gω2 which does not include these trajectories. At higher temperatures, the QCT G rate constant is consistently larger than the QCT Gω and QCT Gω2 rate constants. This is due to differences in normalization of the weighting functions.

The effectively wider QCT G Gaussian width includes many trajectories that the narrower QCT Gω and QCT Gω2 weighting do not. At lower temperatures, where the product vibrational energy is more constrained, this difference becomes less important. By 100 K, the important difference of the methods is that QCT Gω2 does not include products with vibrational energy below the ZPE, making the rate constant very small. As shown in Figure 9, at 200 K and below, the number of trajectories with a weight value greater than half its maximum for the QCT Gω and QCT Gω2 methods is small and the statistics are relatively poor. Accuracy at these lower temperatures will require at least an order of magnitude more trajectories.

Figure 14: Rate constant versus temperature for the three Gaussian weighting methods, QCT G , QCT Gω , and QCT Gω2 .

Figure 15 shows the predicted product H 2 D + vibrational state distributions at 1,000 K and 1,500 K for standard binning, QCT, and Gaussian binning, QCT Gω2 . Both methods use vibrational state populations obtained from the harmonic approximation of the vibrational actions following Ref. 21 The thermal distributions are normalized so that their sum is 1.0. We also show the contribution of the reactant H + 3 (000) state to the thermal distributions. For clarity, each H 2 D + product vibrational state has a single bar with two colors, either black=QCT or red=QCT Gω2 . For a given final vibrational state, the total bar height corresponds to the topmost color value, while the bottom color has the lesser value. So for example, the 1500 K thermal dsitribution shows the (100) QCT Gω2 result to be 0.094, while the QCT result is 0.052. We also show the results in Table 2 for 6 of the final H 2 D + vibrational states, along with their statistical uncertainty. The uncertainties are smaller for the standard binning method, which weights each trajectory the same. The statistical uncertainties can be significant for the higher energy vibrational states, especially for the H + 3 (000) contribution which have lower probabilities.

In all cases, the product H For all cases, the vibrational state distributions do not follow a simple Boltzmann distribution, with the higher energy (100) dominating and the lower energy (001) mode (18.13 kcal/mole) being suppressed. This reflects the distribution of vibrational actions, shown earlier, where the excited state probability was mostly in the a 1 (100) mode direction. In general, for the fundamental excited modes, the QCT Gω2 results show more vibrational excitation than QCT. The QCT Gω2 result suppresses product (000) trajectories whose vibrational action leads to products below the ZPE. The QCT result includes these trajectories as ground vibrational state products. The vertical scale in Fig. 15 is clipped just above 0.1, but in all cases, QCT has a larger (000) H 2 D + product amount than QCT Gω2 , as shown in in Table 2.

If the vertical scale were extended, a black QCT bar would extend above the red smaller bar for the (000) states. At 1,000 K the amount of product vibrational excitation decreases significantly, but may still be measurable for the fundamental vibrations.

Figure 15: Product H 2 D + vibrational state distributions at 1,000 K and 1,500 K for the QCT and QCT Gω2 methods.

Discussion

Below 1,000 K, standard QCT binning rate constants begin to diverge from benchmark quantum RPMD rate constants. By 100 K, the standard QCT binning rate constant is more than 3 orders of magnitude larger than the RPMD rate constant, pointing to large quantum effects. We have shown that standard QCT with Gaussian binning and proper normalization, QCT Gω2 , which compensates for zero-point effects, corrects a large part of this difference down to ∼200 K. Furthermore, the simple technique of counting only reactive trajectories with vibrational energy above the product ZPE, QCT zpe , matches the RPMD Gaussian binning method. This is defined by Eqs. 10-12 and two more constraints: 1) the weight will be zero when the vibrational energy E v (a 1 , a 2 , a 3 ) is lower than the ZPE (E(0)), and 2) the value of w 1GB 000 (a 1 , a 2 , a 3 ) will be doubled if E v (a 1 , a 2 , a 3 ) is larger than the ZPE in order to keep its norm equal to 1. Provided there are sufficient statistics, the weight should be determined by extrapolating the Gaussian width, , to zero. If the vibrational actions are not available and/or statistics are poor so that a meaningful Gaussian width needs to be greater than ∼0.1, the simple method of ignoring the reactive trajectories with vibrational energy below the product zero-point is recommended, QCT zpe , Eqs. ( 13)- (14).

Analysis of product vibrational actions and energy distributions shows that zero-point effects for the energy dependent cross sections and temperature dependent rate constants go through a threshold near ∼0.1 eV and ∼500 K. Below these thresholds, a significant fraction of the reactive trajectories are below the zero-point products. The zero-point effects are only apparent in the vibrational ground state process: D + H + 3 (000) → H 2 D + + H. We have found that vibrational excitation of the reactant H + 3 is extremely effective in creating products above the zero-point in our classical trajectory calculations, even at low temperatures. For this reason, the large rate constants of vibrationally excited H + 3 contribute significantly to the thermal rate constant, at 500 K and above.

The present QCT in a quantum spirit rate constants start to diverge from the RPMD constants below ∼200 K. Accuracy at these temperatures may require much tighter energy conservation and a much larger number of trajectories for adequate statistics as the rate constants become extremely small. Certainly as part of ongoing work, more trajectories are needed for accurate extrapolation to =0 width for the Gaussian weighting method, QCT Gω2 . More trajectories would also improve the statistical accuracy of the predicted H 2 D + vibrational state distributions.

We expect that quantum tunneling, not accounted for in our QCT calculations, is playing a role at lower temperatures. The contribution from tunneling can be built into the present QCT results through an analysis of the transition state and the reaction path, which we plan for future work. We do not observe the very long-lived collision complexes (>1.e-9 seconds) seen in the RPMD calculations, which may contribute to tunnelling. One reason QCT may not observe the long-lived complexes is the following simple argument. The complex lifetime can be approximated as τ = 2πhρ(E)/N (E), where ρ(E) is the density of states of the complex and N (E) is the number of open channels at the variational transition state.

Because RPMD considers quantum effects, including ZPE, the number of open channels N (E) in the RPMD calculations is much smaller than in standard QCT, where all energies are available. In addition, we should stress that when trapping is high, statistics for the direct reaction become poorer because the RPMD calculations become time consuming.

In addition, the trapping could be attributted to spurious resonances, appearing when the normal mode frequency of the beads are similar to those of the complex. [32][33][34] 

22 kcal/mole, ω 2 (b 2 )

 2222 =6.89 kcal/mole, and ω 3 (b 2 )=7.25 kcal/mole. The actions of the two lowest energy, b 2 modes are averaged. For each plot, the sum of the probabilities is 1.0 and the intensities are on a log10 scale to see finer detail. In these plots a red box outlines the ground vibrational state action, a blue circle shows zero action, and a red diagonal line containing the point (0,0) has been drawn for comparison. In general, the plane corresponding to the the ZPE is defined by ω 1 a 1 + ω 2 a 2 + ω 3 a 3 = 0. Because the ω 2 and ω 3 modes are close in energy, to simplify the analysis we average their vibrational actions into an averaged b 2 action. Because the b 2 modes are not equivalent, the action=0.0 red diagonal line in the plot only approximates zero vibrational action, but it serves as a convenient reference for trajectories that are above and below the product ZPE. The vibrational energy distributions on the rightmost plot are computed directly from the product vibrational energy and for reference, the H 2 D + ZPE of 10.88 kcal/mole is shown with a dashed vertical line. As the temperature increases from 200 K, where there are few trajectories with a total action above zero, the number of reactive trajectories above zero vibrational action increases. By 1,000 K, there are significant number of trajectories above zero action with several showing product vibrational excitation. Since the actions of the reagent ion H + 3 are initially set at 0-its vibrational energy being thus equal to the ZPE (∼ 12 kcal/mol)-the distributions clearly

Figure 2 :

 2 Figure 2: Final H + 3 vibrational action and energy distributions for the non reactive event D + H + 3 (000) → D + H + 3 . Left 3 subplots: vibrational action distributions at 200, 500, and 1,000 K; Right subplot: vibrational energy distributions at the same temperatures

Figure 4

 4 Figure 4 shows the distribution of the classical vibrational actions for the H 2 D + product at 4 collision energies, following the procedures and notation of Fig. 1. The 1.e-3 eV and
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 3 Figure 3: Product H 2 D + vibrational, translational, and rotational energy distributions.

Figure 4 :

 4 Figure 4: Distribution of the classical vibrational actions for the H 2 D + product.

Figure 5

 5 Figure 5 also shows the corresponding summed Gaussian weight (1GB weight) versus .
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 5 Figure 5: (top left and top center) Number of trajectories with a weight value greater than half its maximum versus the width , (bottom left and bottom center) total weights versus the width , (right) Gaussian weights with =0.06 (FWHM=0.1) versus product vibrational energy for the 4 lowest vibrational levels of H 2 D + .

Figure 6 (

 6 Figure 6 (left) shows the resulting cross sections for the reaction D + H + 3 (000) → H 2 D + + H as a function of collision energy for the 6 weighting methods discussed above, and the standard binning results (see left panel of Fig. 6) from Ref., 12 labelled QCT Bulut . The statistical errors in the present results vary from ∼30% for the QCT zpha at 1.e-3 eV to about 1% for all methods at 1.0 eV. The present QCT and QCT Bulut results use the same potential surfaces and should be equivalent. We find they are within 10-20% of each other. The QCT results show an increasing cross section with decreasing collision energy, reaching very large values at 1.e-3 eV. In contrast, as the collision energy decreases from 0.3 eV several of the weighting method results decrease by orders of magnitude, with the QCT zpha ∼3 orders of

Figure 6 :

 6 Figure 6: (left) Cross sections for D + H + 3 (000) → H 2 D + + H as a function of collision energy. (right) Boltzmann speed distributions.

Figure 8

 8 Figure8shows the two-dimensional correlated product energy distributions for D + H + 3 (000) → H 2 D + + H exchange at 200, 500, and 1,000 K. The probabilities are shown on a log10 scale, and their sum is 1.0. At 200 K, energy constraints are evident in that the product energy does not go above ∼15 kcal/mole in any of the two correlated directions.

Figure 7 :

 7 Figure 7: Product H 2 D + vibrational, translational, and rotational energy distributions at temperatures of 100, 200, 300, 500, 1000, and 1500 K. For reference, the H 2 D + ZPE of 10.88 kcal/mole is shown with a dashed vertical line.

Figure 8 :

 8 Figure 8: Two-dimensional correlated product energy distributions for D + H + 3 (000) → H 2 D + + H exchange at 200, 500, and 1,000 K.

Figure 9 :

 9 Figure 9: (top) Number of trajectories with a weight value greater than half its maximum and (bottom) summed Gaussian weight for each of the weighting methods versus the Gaussian width parameter at 200 (left), 500 (middle), and 1,000 K (right).

D + H + 3 (

 3 100) exchange and D + H + 3 (001) exchange

  shows the vibrational, translational, and rotational energy distributions for D + H + 3 (100) → H 2 D + + H and D + H + 3 (001) → H 2 D + + H at 200, 500, and 1,000 K. The vibrational distributions at all temperatures peak well above the ZPE of the product H 2 D + (10.88 kcal/mole), with the higher energy tail increasing from ∼23 kcal/mole at 200 K to 30 kcal/mole at 1,000 K. The translational and rotational energy distributions are weakly dependent on temperature, peaking near ∼2.5 kcal/mole with tails extending to ∼15.0 kcal/mole.

Figure 10 :

 10 Figure 10: Vibrational, translational, and rotational energy distributions for D + H + 3 (100) → H 2 D + + H and D + H + 3 (001) → H 2 D + + H at 200, 500, and 1,000 K.

Figure 11 :

 11 Figure 11: Product vibrational action distributions for D + H + 3 (100) → H 2 D + + H and D + H + 3 (001) → H 2 D + + H at 200, 500, and 1,000 K.
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  + 3 in the internal ground state. The vibrational actions (a 1 , a 2 , a 3 ) of H + 3 are thus all equal to 0 before the collision. Eventually, the reaction leads either to H + H 2 D + , of vibrational actions (a 1 , a 2 , a 3 ),

or back to D + H + 3 . For sufficiently small oscillations of H 2 D + around its equilibrium geometry, the vibrational energy of H 2 D + satisfies the standard expression

Table 1

 1 

presents the rate constants for D + H + 3 (100) → H 2 D + + H and D + H + 3 (001) → H 2 D + + H at several temperatures for the 6 different weighting methods discussed earlier.

Table 2 :

 2 H 2 D + product vibrational distributions for several final states. The sum of the populations over all the final states equal 1.0 for the thermal entries. The H + 3 (000) entries give its contribution to the thermal results. Numbers in parentheses after each entry give the statistical uncertainty as a percentage, so that for example (2) would be 2%. down to ∼300 K. Provided that the product vibrational classical actions can be determined and adequate statistics obtained, we recommend the QCT Gω2

	(000)	(010)	(001)	(100)	(110)	(101)
		QCT	Thermal	T=1500		
	8.6379e-01(< 1) 2.5287e-02(6) 8.6537e-03(11) 5.1792e-02(5) 1.9015e-02(7) 2.1135e-02(7)
		QCT Gω2	Thermal	T=1500		
	8.2084e-01(5)	4.5429e-02(10) 6.5031e-03(11) 9.4327e-02(6) 1.3925e-02(19) 1.3850e-02(19)
		QCT	H + 3 (000)	T=1500		
	5.8736e-01(1)	1.0426e-02(18) 2.9131e-03(35) 2.6064e-02(11) 7.5126e-03(22) 7.3593e-03(22)
		QCT Gω2	H + 3 (000)	T=1500		
	5.7310e-01(9)	1.9616e-02(38)	∼0	3.4542e-02(27) 6.3225e-03(66) 6.0893e-03(68)
		QCT	Thermal	T=1000		
	9.5824e-01(< 1) 8.2695e-03(11) 1.7533e-03(20) 2.2124e-02(8) 3.2325e-03(15) 5.5095e-03(14)
		QCT Gω2	Thermal	T=1000		
	9.3621e-01(5)	2.3390e-02(21) 3.8513e-03(54) 3.1448e-02(14)	∼0	3.9538e-03(53)
		QCT	H + 3 (000)	T=1000		
	8.2390e-01(< 1) 3.8321e-03(27)	∼0	1.2908e-02(15)	∼0	2.6220e-03(33)
		QCT Gω2	H + 3 (000)	T=1000		
	7.9347e-01(7)	1.4975e-02(40)	∼0	1.2477e-02(42)	∼0	∼0
	results extremely well				
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The present QCT in a quantum spirit approach predicts product H