
HAL Id: hal-03809724
https://hal.science/hal-03809724

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chemical reaction thresholds according to classical-limit
quantum dynamics

L. Bonnet, C. Crespos, M. Monnerville

To cite this version:
L. Bonnet, C. Crespos, M. Monnerville. Chemical reaction thresholds according to classical-limit
quantum dynamics. The Journal of Chemical Physics, 2022, 157 (9), pp.094114. �10.1063/5.0101311�.
�hal-03809724�

https://hal.science/hal-03809724
https://hal.archives-ouvertes.fr


Chemical reaction thresholds according to

classical-limit quantum dynamics.

L. Bonnet,∗,† C. Crespos,∗,† and M. Monnerville∗,‡

† Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France

‡ Univ. Lille, CNRS, PHLAM, UMR 8523, 59655 Villeneuve dAscq, France

E-mail: claude-laurent.bonnet@u-bordeaux.fr; cedric.crespos@u-bordeaux.fr;

maurice.monnerville@univ-lille.fr

1



Abstract

Classical-limit quantum dynamics is used to explain the origin of the quantum

thresholds of chemical reactions from their classical dynamics when these are vibra-

tionally nonadiabatic across the interaction region. The study is performed within the

framework of an elementary model of chemical reaction that mimics the passage from

free rotation of the reagents to bending vibration at the transition state to free rotation

of the products.

1 Introduction

Threshold energies (or thresholds) of simple barrier reactions play a key role in chemistry

because they determine to a large extent, mainly through the exponential term of Eyring’s

equation, the rate at which these reactions occur (we will focus our developments on bimolec-

ular reactions in the electronic ground state).1–3 If we define the transition state (TS) of a

given barrier reaction by the “molecule” whose coordinates are transverse to the reaction

path at the barrier top, the threshold energy Eth with respect to the potential energy of the

reactants in their equilibrium geometry is given to a good approximation by

Eth = V ‡ + E‡zpe, (1)

where V ‡ is the classical barrier heigth and E‡zpe is the zero point energy (ZPE) of the

transition state (TS-ZPE).4 Eq. (1) is supported by the fact that the rate constants found by

means of transition state theory (TST) are in much better agreement with experimental rate

constants when the vibrational motions of the TS are treated quantum mechanically rather

than classically.2,3,5,6 Moreover, quantum dynamical calculations corroborate the validity of

this equation.7–13

For some reactions, couplings between vibrational motion orthogonal to the reaction path

and motion along the reaction path remain negligible across the interaction region slightly
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above threshold. The dynamics are then vibrationally adiabatic throughout the process.

This is for instance the case of the collinear reaction H+H2(v = 0) up to ∼ 0.2 eV above

the threshold.14 For others, the previous couplings are non negligible and the dynamics are

vibrationally nonadiabatic across the interaction region.

For vibrationally adiabatic reactions, one may classically justify Eq. (1) as follows: tra-

jectories start from the reagents in the rovibrational ground-state, of energy Ezpe, and with

the total energy E, or equivalently, the collision energy E − Ezpe. If the latter is suffi-

ciently large for the system to climb the barrier, all the trajectories reach the TS with the

vibrational energy E‡zpe since the dynamics are vibrationally adiabatic across the interaction

region. Thus, the kinetic energy at the TS is equal to E − V ‡ − E‡zpe. Clearly, Eth is the

value of E that makes the previous kinetic energy zero, which implies Eq. (1). Therefore, the

threshold energy is associated with the trapping of trajectories in a metastable or resonant

state at the transition state. Finally, the energy dependence of the reaction probability is

a Heaviside step function centered at Eth. The quantum mechanical justification of Eq. (1)

involves similar ideas, except that tunneling through the vibrationally adiabatic ground-

state barrier leads to the smearing of the Heaviside step. Note that since the early 70’s,

the adiabaticity assumption is the basis of many studies involving approximate statistical or

quantum dynamical calculations of reaction cross sections or rate constants.3,11,15–19

For vibrationally nonadiabatic reactions, it usually happens that some trajectories start-

ing from the reagents with Ezpe cross the transition state with a vibrational energy lower

than E‡zpe. Obviously, these trajectories make the classical threshold lower than V ‡+E‡zpe.
9,12

Therefore, classical dynamics generally contradicts Eq. (1), unlike quantum dynamics which

usually supports it regardless of the nature of the vibrational dynamics. In other words, quan-

tum dynamics appears to be more vibrationally adiabatic than classical dynamics.9 What are

the basic reasons for this difference in behaviour ? Schatz has argued that quantization of the

vibrational motion at the barrier top is imposed by the uncertainty principle.9 Besides, Pol-

lak and co-workers have carried out in-depth studies on adiabaticity-related issues that shed

3



light on the previous question.6,10,11,20 The aim of the present work is to complement these

studies with an alternative analysis of the physics underlying Eq. (1) within the framework

of the classical-limit quantum dynamical approaches pioneered by Miller and Marcus.21–25

Classical-limit quantum dynamics, more often called semiclassical dynamics, assigns proba-

bility amplitudes to classical paths and make them interfere according to the superposition

principle. Regarding reaction thresholds, one expects that interferences will be destructive

below the threshold given by Eq. (1), constructive above. The first goal of this work is to

demonstrate the validity of this scenario within a simple model of vibrationally nonadiabatic

reaction, and we will use both the semiclassical initial value representation22,26,27 (SCIVR)

and classical S-matrix theory21,22,24,25,28 (CSMT) to achieve it.

A realistic semiclassical treatment of the dynamics around the threshold should take

into account tunneling through classically prohibited area of the potential energy barrier

(dynamically or energetically). For CSMT and the type of SCIVR approach that we will

be using in the following,22,27 the most rigorous way to achieve this would require running

trajectories in complex time rather than in real time.29–31 However, this would make the

study more involved, both technically and conceptually (technically because complex time

trajectories are difficult to calculate, and conceptually since disentangling tunneling from the

TS-ZPE effect is likely to be nontrivial). For simplicity’s sake, we will thus consider a model

potential energy surface (PES) with no potential energy barrier along the reaction path

(V ‡ = 0), so Eth will be equal to E‡zpe [see Eq. (1)].12 Therefore, tunneling will be strongly

minimized and real-time classical paths sufficient for a relatively accurate description of the

reaction dynamics. This will allow us to focus our efforts on the TS-ZPE effect alone, which

is ideal for better understanding its causes. We will still have the possibility, in the future,

to study how the addition of a potential energy barrier modifies the conclusions obtained in

the present work.

Three decades ago, Friedman and Truhlar showed that reaction thresholds are associated

with poles of the S-matrix, well known to define quantum scattering resonances.32 Therefore,
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they proved that reaction thresholds are intimately related to resonances, as shown previously

within the classical picture in the vibrationally adiabatic case. Yet, if this definition in terms

of poles has the merit of rigor, it remains quite abstract. In comparison, the classic definition

of a resonance as an effect resulting from phase-matching is intuitively more appealing. A

standard illustration of this definition is that of soldiers marching in step on a bridge; if the

frequency of marching is equal to the natural frequency of the bridge, the latter can collapse

if it is not strong enough. (This was the case of the Broughton suspension bridge on April

12, 1831.) It is this type of resonant phase-matching that one might wish to highlight in the

theoretical description of chemical reactions in order to explain in simple terms the origin of

thresholds for vibrationally nonadiabatic reactions. We will see later on that this goal, the

second of this work, can also be achieved within the framework of the semiclassical treatment

of our model reaction. In fact, both goals converge and they will be reached at the same

time.

The paper is organized as follows. The model of vibrationally nonadiabatic reaction is

defined in Sec. 2. The energy dependence of the reaction probability obtained from quantum

mechanical calculations is compared with those resulting from classical trajectory and SCIVR

calculations in Sec. 3. SCIVR reproduces the sigmoidal shape of the quantum threshold

which is nearly centered at V ‡ + E‡zpe, whereas the classical threshold coincides with V ‡

(here taken at 0). In Sec. 4, these findings are analysed within CSMT. Intuitively appealing

analytical expressions are derived that enable to explain the quantum threshold from the

properties of relevant classical paths and the superposition principle. Sec. 5 concludes.

2 Model reaction

For a chemical reaction involving a potential energy barrier, the PES “felt” by the system

in the neighborhood of the saddle point is well approximated by its second order expansion.

The PES around the saddle point is then given by the sum of an inverted parabola along
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the reaction path, and a parabola along the coordinate orthogonal to the reaction path.

Consequently, the vibrational dynamics are adiabatic in the vicinity of the TS, located at

the barrier top.33 On the other hand, strong couplings between the two previous degrees-of-

freedom are in general present on way from the reagents to the TS, and on way from the TS

to the products. Slightly above threshold, the internal state along the coordinate orthogonal

to the reaction path is thus perturbed on the climb to the TS, unperturbed around the TS,

and perturbed again on the descent to the product valley (or back to the reagent valley).

Such dynamics are well summarized by the expression state-to-state-to-state dynamics.34

Below, we propose a simple model of barrierless reaction involving this type of dynamics.

We consider a fixed-plane of the laboratory and a rigid diatom rotating within this plane.

Moreover, we force the center-of-mass of the diatom to move on a given R-axis of the plane.

The orientation of the diatom with respect to R is determined by the angle φ. Our model

PES is given by:

V (R, φ) =
αsin2(φ/2)

cosh(2βR) + cosh(β∆)
(2)

with α = 4.053 eV, ∆ = 2 Å and β = 3 Å−1. (A similar potential was proposed in Ref.12

by G. Schatz.) This PES, represented in Fig. 1, involves a narrow channel separating the

reagent and product planes. An example of reactive trajectory starting from the reagent

plane with no rotational excitation is represented by the yellow line. In the numerical

calculations, we will indeed assume that the initial diatom is in the rotational ground-state

j1 = 0. The trajectory goes from (R1 = −3 Å, φ1) to (R2 = 3 Å, φ2). Miller’s shifted

angles (φ1, φ2), involved in next developments (see Sec. 3.1.3), are also shown. Within the

interaction region, there is only one periodic orbit (PO), trapped along the φ-axis. This orbit

is represented in Fig. 1 by a turquoise segment (the yellow and turquoise orbits are both at

the same energy). Pechukas and Pollak showed that the TS is the phase space surface whose

projection on the (R, φ) configuration plane coincides with the representation of the PO in

the same plane.35,36 The TS is thus trivially defined here by R = 0. The reactive trajectory

clearly mimics the passage from free rotation of the reagents to bending vibration at the
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Figure 1: Model PES used in this work. The reagent and product (half) planes, respectively
on the left and on the right of the outermost white dashed lines, are separated by a channel.
Along the R-axis, which represents the reaction path, the potential is 0. Note that φ runs
from −π to π. An example of reactive trajectory starting from the reagent plane with no
rotational excitation (yellow curve) as well as the only periodic orbit trapped within the
interaction region (turquoise segment) are shown. This periodic orbit defines the TS of the
reaction. The yellow path is run from (R1, φ1) to (R2, φ2), with R2 = −R1 = 3 Å. The four
white vertical dashed lines define three bands between the side plains. The dynamics are
rotationally adiabatic (RA) within the plains, vibrationally adiabatic (VA) within the central
band, and nonadiabatic (NA) in the two remaing bands where the R and φ coordinates are
strongly coupled. The yellow dashed lines show the geometrical relation between the so-called
shifted angles (φ1, φ2), useful in the following, and the angles (φ1, φ2).

transition state to free rotation of the products that occurs in realistic bimolecular reactions.

Four white vertical dashed lines define five regions labeled RA, NA or VA above the frame of

Fig. 1. The dynamics are rotationally adiabatic in the RA reagent and product half planes,

vibrationally adiabatic in the VA central region encompassing the TS, and nonadiabatic in
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the NA regions due to the presence of strong couplings between the R and φ coordinates.

We will call activated complex the system orthogonal to the reaction path in the VA

region. Within this definition, the activated complex coincides with the TS at R = 0.

Besides, the activated complex has a lifetime, contrary to the TS which is just crossed by

classical trajectories.

The classical Hamiltonian of the system is

H =
P 2

2µ
+
J2

2I
+ V (R, φ) (3)

where P = µdR
dt

= µṘ and J = I dφ
dt

= Iφ̇ are the momenta conjugate to R and φ, respectively,

µ is the mass associated with motion along the R-axis, and I is the moment of inertia of the

diatom, taken at 0.2768 g.mol−1Å2. From the second order development 1
2
Iω‡

2
φ2 of V (R, φ)

along the φ-axis, E‡zpe, approximately given by ~ω‡

2
, is found equal to 705 cm−1. This value

typically corresponds to that for a bending vibration. (Since the range of available angles at

705 cm−1 is much narrower than 2π, the previous harmonic approximation is quite realistic.)

Two values of µ will be considered, 19 amu and 1.9 amu. The parameters are set so that

our model process roughly mimics a triatomic heavy plus heavy-light reaction for µ = 19,

and a light plus heavy-light reaction for µ = 1.9. The total energy E of the reaction will

be limited to the range [0.8E‡zpe, 1.2E
‡
zpe] for µ = 19 and [0.6E‡zpe, 1.4E

‡
zpe] for µ = 1.9. All

actions will be expressed in ~ unit, except in Sec. 4.2.

Finally, one should note that the absence of a potential energy barrier on the PES does

not preclude the presence of a barrier of 705 cm−1 on the vibrationally adiabatic ground-state

curve. It is only in this sense that our model reaction brings into play a barrier.
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3 Energy dependence of the reaction probability

3.1 Theoretical approaches

3.1.1 Quantum method

The quantum calculations have been performed by using the standard Time Dependent Wave

Packet (TDWP) approach in which a wave packet (WP) initialy located in the reagent plane

is propagated up to the products where it is finally analyzed.37 In these calculations, the

time propagation is achieved using the split-operator method38,39 with the propagation time

t being discretized with uniform time steps ∆t. The initial state describing the system is

built as the direct product :

ψj1(R, φ, t = 0) = G(R)ϕj1(φ) (4)

where

G (R) =

(
1

2πσ2

) 1
4

exp

[
−(R−R0)2

4σ2
+ ik0(R−R0)

]
(5)

is an incoming Gaussian WP (GWP) centered at R0, with a width σ and a mean kinetic

energy 〈E0〉 = (1/2µ) [k2
0 + 1/4σ2], and where

ϕj1(φ) =
1√
2π
eij1φ (6)

is the plane wave corresponding to the initial rotational state j1 (for generality’s sake, we

present all the theoretical formulations for any value of j1 though we will only apply them

to the case j1 = 0 in the following). ψj1(R, φ, t = 0) is travelling from left to right, i.e., R0

is negative and k0 is positive. The action of the Hamiltonian Ĥ onto the wave packet is

computed using local representations of each operator, namely, a discrete variable represen-

tation40–42 (DVR) for the potential energy operator, and a finite basis representation (FBR)

for the radial and angular kinetic energy operators. The DVR is based on a direct product
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grid of NR × Nφ points, corresponding to equally spaced grid points for both the radial R

and angular φ coordinates. The basis set of the related FBR is defined as a direct product

of NR × Nφ plane waves. The kinetic energy terms are calculated in the FBR while the

potential one is determined in the DVR. The transformations DVR ↔ FBR are performed

by a two-dimensional fast Fourier transform.43 Complex absorbing potentials (CAPs) are

employed to avoid unphysical reflections of the wave packet at the edges of the R grid and

are applied at each time step in the two regions defined by R ≤ R− and R ≥ R+. We chose

in this work the third order polynomial form W±(R) = ξ(R − R±)3, proposed by Riss and

Meyer,44 where ξ is a strength parameter. The final analysis is performed by calculating the

S-matrix elements Sj2j1(E) as:

Sj2j1(E) =
Bj2j1(E)

aj1(E)

√
kj2
µ
e−ikj2Ra , (7)

where

aj1(E) =

(
µR
kj1

) 1
2

+∞∫
−∞

G(R) e−ikj1R dR (8)

is the energy amplitude contained in the initial wave packet for an incoming free wave at

energy E,

kji =

√√√√2µ

(
E − j2

i

2I

)
, (9)

i = 1, 2 and

Bj2j1(E) =
1√
2π

∫ +∞

−∞
eiEt bj2j1(t) dt. (10)

In Eq. (10), the bj2j1(t) = 〈ϕj2|ψj1(t)〉 elements are the Fourier transform (time↔ energy) of

the projection of the TDWP ψj1(Ra, φ, t), taken at the analysis position Ra, on the quantum

state ϕj2(φ). The total reaction probability is finally given by

Pj1(E) =
∑
j2

|Sj2j1(E)|2. (11)
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Table 1: Parameters in au used in the TDWP calculations to get converged total
reaction probabilities over the collision energy range [0.05− 0.15] eV.

Variable Value Description
NR / Nφ 256 / 61 Number of DVR grid points
Rmin / Rmax -31.56 / 26.15 Minimal and maximal R values
φmin / φmax −π / π Minimal and maximal φ values
σ 1.23 Width of the GWP
E0 0.011 Mean kinetic energy of the GWP
R0 -17.36 Center of the GWP
j1 0 azimuthal quantum number
T 496165 Total propagation time
∆t 3.76 Propagation time step
ξ 0.000005 Strength parameters for the CAP
R−/ R+ (au) -14.42 / 9.25 Location of the CAPs along R
Rd (au) 9.25 Location of the dividing surface

The values of the parameters used in the TDWP calculations are collected in Table 1. The

same parameters were used for the two masses. The main issue in TDWP calculations for

the low energy domain relates to the ability of the CAP to absorb the wave packet at the

edge of the grids, since the associated de Broglie wavelengths are large in this case. Several

convergence tests were performed by increasing the length of the absorbing grids and by

varying the strength parameter ξ of the CAP. Additional convergence tests were performed

for the parameters of the GWP (R0 and σ) and the location of the analysis line (Rd) to get

convergence.

3.1.2 Classical method

104 trajectories were run at each energy by numerically solving Hamilton equations45,46 using

the fourth-order Runge-Kutta integrator.47 Their initial conditions were set at (R1, φ1, P1, J1)

with R1 = −3 Å, φ1 randomly selected within the range [−π, π], P1 = kj1 [see Eq. (9)] and

J1 = j1. Trajectories were run until R reaches either R1 (nonreactive paths) or R2 = 3

Å (reactive paths). The values of (φ, P, J) at R2, or back to R1, are called (φ2, P2, J2).

We set the time step at 0.1 fs, a standard choice for classical simulations of gas-phase
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chemical reactions. The reaction probability was obtained by dividing the number of reactive

trajectories by 104.

3.1.3 Semiclassical methods: SCIVR and CSMT
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Figure 2: The blue path represents a trajectory going from (R1, φ1) to (R2, φ2). The red
straight lines on the left and right are tangential to the blue path at (R1, φ1) and (R2, φ2),
respectively. The green expressions indicate the lengths of the green arrows and, thus, the
quantitative link between (φ1, φ2) and (φ1, φ2) [see Eqs. (12) and (13)].

Before giving the SCIVR expression of Sj2j1(E),22,27 we need to specify the Miller’s shifted

angles involved in this expression.22,48,49 To this aim, we consider in Fig. 2 the blue trajectory

run forward in time from (R1, φ1) to (R2, φ2) (for the sake of generality, we do not assume

that j1 is 0 in the present part, except at the very end of it). The blue trajectory is such that

the four momenta J1, J2, P1 and P2 are positive; φ is indeed increasing at R1 and R2, and R
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is constantly increasing. The red straight line on the left side is a trajectory run forward in

time from (R1, φ1, P1, J1) with V (R, φ) taken at 0 (we will, however, run it backward in time

after defining the shifted angles). The red line is thus tangential to the blue path at (R1, φ1).

This trajectory is stopped at the point of coordinates (0, φ1) belonging to the φ-axis. On the

way from R = R1 to R = 0, φ increases by [−µR1J1
IP1

], as indicated in green on the left side of

Fig. 2. The mathematical expression of this angular change can be more easily understood

if one writes it as the product of [−µR1

P1
], the period of time required to go from R = R1 to

R = 0, and J1
I

, the angular velocity (we recall that P1 = µṘ1 and J1 = Iφ̇1; note that R1 is

negative while both J1 and P1 are positive, so the minus sign in [−µR1J1
IP1

] makes positive the

variation of φ). It is thus clear from Fig. 2 that

φ1 = φ1 −
µR1J1

IP1

. (12)

The red line on the right side is a trajectory run backward in time from (R2, φ2, P2, J2) with

V (R, φ) taken at 0. It is thus tangential to the blue path at (R2, φ2). This trajectory is

stopped at the point of coordinates (0, φ2) belonging to the φ-axis. On the way from R = R2

to R = 0, φ decreases by [µR2J2
IP2

], as indicated in green on the right side of Fig. 2 (the

mathematical form of this angular change can be justified as previously; since R2, J2 and

P2 are all positive, no minus sign is needed in [µR2J2
IP2

] to make it positive). From Fig. 2, we

clearly have

φ2 = φ2 −
µR2J2

IP2

. (13)

φ1 and φ2, also represented for the yellow path in Fig. 1, are Miller’s shifted angles.

We are now in a position to specify the type of trajectories involved in the next SCIVR

calculations of Sj2j1(E). Previously, we introduced the shifted angles by considering that

the blue and left red paths in Fig. 2 were run forward in time, while the right red path was

run backward in time. For the SCIVR calculations, we will (i) set the values of P1 and J1

at kj1 and j1, respectively, (ii) run the left red path backward in time from (0, φ1, kj1 , j1) to
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(R1, φ1, kj1 , j1), (iii) run the blue path forward in time from (R1, φ1, kj1 , j1) to (R2, φ2, P2, J2),

and (iv) run the right red path backward in time from (R2, φ2, P2, J2) to (0, φ2, P2, J2). Time

τ will be equal to 0 at (0, φ1), a given negative value t1 at (R1, φ1), a given positive value t2

at (R2, φ2), and [t2 − µR2

P2
] at (0, φ2).

With this in mind, the SCIVR expression of Sj2j1(E) reads27

Sj2j1(E) =
1

2π

∫ π

−π
dφ1

∣∣∣∣∣∂φ2

∂φ1

∣∣∣∣
j1

∣∣∣∣∣
1/2

ei(Φ−πν̄/2)ρ(φ1) (14)

(
∣∣∣∂φ2
∂φ1

∣∣
j1

∣∣∣ is the absolute value of ∂φ2
∂φ1

∣∣
j1

). ρ(φ1) is equal to 1 (0) if the blue path is reactive

(nonreactive), Φ is given by

Φ = (J2 − j2)φ2 + Ω (15)

with

Ω = ΩP + ΩJ , (16)

ΩP = −
∫ t2

t1

dτRṖ , (17)

ΩJ = −
∫ t2

t1

dτφJ̇, (18)

and

ν̄ = η − χ. (19)

Ω is an action integral in the momentum space calculated along the blue path. Ω only

depends on the segment of trajectory lying within the interaction region, for outside the

latter, P and J are constants of motion. We will call ΩP and ΩJ the translational and

vibrational phases, respectively. η is the Maslov index or number of focal points along the

blue path, assuming that the latter is run from τ = −∞ to +∞, instead of t1 to t2. In

practice, we analytically extend each blue path from R = R1 to R = −103 Å and from
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R = R2 to R = 103 Å. Then, we run a second path from the new initial point, with

momenta slightly different from kj1 and j1, up to R = 103 Å (the momenta are chosen in

such a way that both trajectories are at the same energy E). The focal points are the

crossing points within (R, φ) between the (extended) blue path and the second path, and

as mentioned above, η is equal to their number (see Fig. 14 for a pictorial representation of

conjugate points). More details on these calculations are given in Sec. III.A.3 of Ref.28 and

in Ref.27. χ is 0 (1) if ∂φ2
∂φ1

∣∣
j1

∂J2
∂φ1

∣∣
j1

is positive (negative).27 The determination of χ requires

the calculation of the previous derivatives by running a third trajectory from the same initial

conditions as the (non extended) blue path, except that φ1 is increased by a tiny amount

(we set it at 10−4). For each values of E, we ran one batch of 105 blue paths starting from

regularly distributed values of φ1, and two supplementary batches of 105 trajectories for the

calculation of the pre-exponential factor in Eq. (14) and the indices η, χ and ν̄. Finally,

focusing our SCIVR calculations on the case j1 = 0 allowed us to improve their efficiency

by exploiting the symmetry of the PES with respect to the R-axis. The details are given in

Appendix A.

The CSMT expression of Sj2j1(E) is27,28

Sj2j1(E) =
∑

ReactivePaths

[
2π

∣∣∣∣∣∂J2

∂φ1

∣∣∣∣
j1

∣∣∣∣∣
]−1/2

ei(Ω−πη/2+π/4). (20)

The sum is over the discrete and possibly infinite set of reactive trajectories starting from

R1 with P1 = kj1 and J1 = j1, and reaching R2 with J2 = j2. The physical meaning of

Eq. (20) is as follows. The squared modulus of a given term of the sum is the contribution

of the trajectory corresponding to this term to the classical density of probability to go from

J1 = j1 in the reagents to J2 = j2 in the products.22,50 In other words, it is the classical

statistical weight of the trajectory. In Eq. (20), each trajectory contributing to Sj2j1(E) is

thus assigned the square root of its statistical weight, as usual in semiclassical mechanics,

multiplied by a phase factor accounting for the wave nature of the particles involved in the
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collision. The sum in Eq. (20) is the mathematical expression of the superposition principle.

CSMT is thus classical mechanics plus the superposition principle. Eq. (20) can be deduced

from Eq. (14) by using the stationary phase approximation (SPA).27,51 Further details on

CSMT will be given in Sec. 4.1. We will call S ′j2j1(E) the probability amplitude to reform the

reagent diatom in the rotational state j2. The SCIVR and CSMT expressions of S ′j2j1(E) are

still given by Eqs. (14) and (20), respectively, except that the trajectories taken into account

are obviously the nonreactive ones. (Whenever ∂J2
∂φ1

∣∣
j1

is 0 for a given path, the prefactor in

Eq. (20) tends to infinity; one may however use SCIVR to calculate the contribution of this

path to Sj2j1(E), and still use CSMT for the remaining paths).

CSMT was first derived in Refs.21,24 and soon applied successfully to a collinear inelastic

atom-diatom collision in Ref.22. SCIVR was originally deduced from CSMT by Fourier

transform and application of the stationary phase approximation,22 but without the phase

index ν̄. The latter was introduced in Ref.27. Moreover, it has recently been shown that

Miller’s SCIVR in shifted angles can be obtained from Møller operators and is more efficient

than the SCIVR developped within the angles (φ1, φ2).48,49 This was a bit of a surprise since

the angles (φ1, φ2) are those usually used in quantum and classical calculations.

3.2 Results

The φ1 dependence of J2 is represented in Fig. 3 for E = 1.2 E‡zpe and µ = 19 amu. We

recall that J1 = 0, so the incoming trajectories considered here move parallel to the R-axis

in the reagent channel (see the yellow path in Fig. 1). φ1 is thus equal to φ1 [see Eq. (12)].

This will always be so in the following. Owing to the symmetry of the PES with respect to

the R-axis (see Fig. 1), J2 is an odd function of φ1 = φ1 (see also Appendix A). J2 is thus

represented in Fig. 3 only within the range [0, π]. All the trajectories are reactive within the

range [0, φpo[ and nonreactive within the range ]φpo, π] (see Fig. 3). The trajectory starting

from φpo, represented in magenta in Fig. 4, has a special status. It is indeed neither reactive

nor nonreactive. Instead, it is trapped by the PO (turquoise segment in Figs. 1 and 4). In
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Reactive paths Non reactive paths

k=0

k=1

k=2
k=7

k=7

k=1

k=2

k=0

k=+∞
k=+∞

Figure 3: Variation of J2 in terms of φ1 for the model reaction corresponding to Eqs. (2)
and (3), E = 1.2 E‡zpe, and µ = 19 amu. The trajectories leading to J2 = 0 are labeled by

the indice k. They start from (R1, φ
k

1) with J1 = 0 and P1 = kj1=0 =
√

2µE [see Eq. (9)]. φ
k

1

is represented for k = 1 on both the reactive and non-reactive sides of φpo, the initial angle
of the trajectory trapped by the periodic orbit (see Fig. 4). See text for more details.

other words, it approaches the PO indefinitely without ever being able to reach it. This PO

is unstable.33 Consequently, the closer φ1 to φpo, the closer the trajectory starting from φ1

passes to the PO, the larger its lifetime in the vicinity of the PO, and the more unstable it

is with respect to a tiny variation of its initial conditions. This explains why the local rate

of oscillations of J2 diverges at φpo (see Fig. 3). In the following, we will call resonant paths

those trajectories trapped in a metastable vibrational motion in the close neighborhood of

the PO. The values of φ1 leading to J2 = 0 are denoted φ
k

1, where k ranges from 0 to +∞.

For example, φ
1

1 is represented in Fig. 3 on both the reactive and non-reactive sides of φpo
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R

Figure 4: Trajectory starting from φpo (magenta line), trapped by the periodic orbit
(turquoise segment), also represented on the PES in Fig. 1. E = 1.2 E‡zpe and µ = 19
amu.

(the fact that φ
k

1 is used for both reactive and nonreactive paths should not be confusing).

For reactive paths, φ
0

1 = 0 and φ
k

1 increases as k increases. For nonreactive paths, φ
0

1 = π

and φ
k

1 decreases as k increases. φ
k

1 tends to φpo as k tends to +∞ for both reactive and

nonreactive trajectories.

In Fig. 5, the variations with φ1 of the prefactor of the integrand in Eq. (14), and its phase

Φ−πν̄/2, are represented by the orange and green curves, respectively. The two contributions

Φ and −πν̄/2 to the phase are also shown (magenta and blue curves, respectively). The

calculation of Φ assumes that j2 = 0 [see Eq. (15)]. Careful inspection of the orange, blue

and green curves shows that each time the prefactor takes the value 0 (see the downward

spikes of the orange curve, one of which is indicated by a small downward arrow), the phase
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Reactive paths Non reactive paths

Figure 5: Dependence on φ1 of various terms in the integrand of Eq. (14) for E = 1.2 E‡zpe
and µ = 19 amu: prefactor (orange), Φ (magenta), −πν̄/2 (blue) and the overall phase
Φ− πν̄/2 (green = magenta+blue). Φ is calculated for j2 = 0 [see Eq. (15)].

jumps by π/2 (see the two small upward arrows below the downward arrow). The sign of

the jump as φ1 increases is negative (positive) for the reactive (nonreactive) paths. These

jumps are necessary to make the integrand in Eq. (14) continuous. All the curves diverge at

φpo, due to the resonant paths (we will come back to this point in Sec. 4). The values of φ1

very close to φpo cause the integrand of Eq. (14) to oscillate very strongly, and with a very

large amplitude. Thus, the contribution of these values to the integral of Eq. (14) is difficult

to numerically estimate. We thus ignored those trajectories for which πν̄/2 is larger than

150. It is clear from Fig. 5 that these paths represent a very small part of the whole set of

trajectories run, so the contribution of the former to Sj2j1(E) is expected to be negligible.

In principle, S-matrix elements should be normalized to unity, i.e., Nj1 = Σj2|Sj2j1(E)|2 +
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|S ′j2j1(E)|2 = 1. This is indeed what we previously found for an inelastic collision with no

trapped PO (Nj1 , then, reduces to Σj2|Sj2j1(E)|2).27 For the present model reaction, however,

Eq. (14) leads to values of Nj1 scattered within the range [0.8, 2], depending on E (note

that the code used for the present study is the one used to obtain the results of Ref.27).

We attribute this lack of normalization to the presence of the PO, as such orbits are well

known to strongly affect the accuracy of semiclassical calculations.29 In order to improve the

consistency of our predictions, we thus divided S-matrix elements by N
1/2
j1

. This pragmatic

procedure does not work miracles, but it necessarily ensures normalization to unity.

SCIVR

CTQM

Figure 6: Energy dependence of the reaction probability around the threshold, in unit of E‡zpe.
The upper (lower) panel corresponds to the heavy (light) mass. The red and blue curves
are obtained from quantum mechanical (QM) and classical trajectory (CT) calculations,
respectively, while the green circles are obtained by rescaling SCIVR results by a factor of
one half. See text for more details.

The energy dependence of the reaction probability Pr around the threshold is represented
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in Fig. 6 for both the heavy mass (upper panel) and the light mass (lower panel). The red

and blue curves were obtained from quantum mechanical (QM) and classical trajectory (CT)

calculations, respectively (in general, the acronym QCT (Q referring to quasi) means that

the reagents are prepared with a given quantized vibrational energy, usually the ZPE, which

is not the case here since we are dealing with a rigid rotor). The classical energy threshold

(not visible in Fig. 6) is equal to 0. The quantum energy threshold appears to be well defined

by Eq. (1) since the reactivity starts to be significant at E = E‡zpe. The green circles were

deduced from SCIVR calculations in the following way: the true SCIVR probabilities, not

represented in Fig. 6, were found equal to about twice the quantum probabilities for both

masses (we carefully checked than no factor 2, artificially doubling the reaction probability,

was introduced by mistake in our code). For clarity’s sake, the probabilities corresponding to

the green circles in Fig. 6 were therefore set to half of their actual values. This rescaling shows

unambiguously that, even if SCIVR overestimates the reactivity, it nevertheless reproduces

very well the (nearly) sigmoidal shape of the quantum probability around the threshold for

each of the two masses. The goal of the next section is to explain the origin of the threshold,

its value around E‡zpe, and its shape.

4 Analysis of the results

In the present part, we focus on the S-matrix elements S00(E) and S ′00(E) for two reasons.

The first one is that in the vicinity of the threshold, the evolutions with E of |Sj20(E)|2 and

|S ′j20(E)|2 for j2 6= 0 are found from quantum calculations to be similar to those of |S00(E)|2

and |S ′00(E)|2 (not shown). The second reason is that the analytical formulation presented

later on requires that j2 be 0. In addition to the energy E = 1.2E‡zpe, we consider hereafter

the threshold energy E = E‡zpe and the energy E = 0.8E‡zpe, symmetrical of the first one

with respect to the threshold.
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4.1 Qualitative analysis

The semiclassical method best suited to the analysis of the threshold is CSMT. Within this

approach, Sj2j1(E) is given by Eq. (20). However, in the particular case that interests us,

i.e., j2 = j1 = 0, Eq. (20) can be rewritten as

S00(E) =
+∞∑
k=0

γk

[
2π

∣∣∣∣∂J2

∂φ1

∣∣∣
k

∣∣∣∣ ]−1/2

eiΨk . (21)

with

Ψk = Ωk − πηk/2 + π/4. (22)

The kth term of the sum is calculated for φ
k

1 lower than φpo (see Fig. 3 and the related

discussion; we recall that the φ
k

1’s are those values of φ1 leading to J2 = 0). S ′00(E) is

determined in the same way, but from the φ
k

1’s larger than φpo. γk is equal to 1 for k = 0,

and 2 for k > 0. ∂J2
∂φ1

∣∣
k

means value of ∂J2
∂φ1

∣∣
j1=0

at φ
k

1. Eq. (21) is straightforwardly deduced

from Eq. (20) by taking into account the symmetry properties discussed in Appendix A.

In Fig. 7, the values ΩPk of the translational phase, and ΩJk of the vibrational phase, are

represented in terms of φ
k

1 for E = 0.8E‡zpe and µ = 19. ΩPk and ΩJk correspond to the blue

circles and blue squares, respectively. We recall that ΩP and ΩJ are given by Eqs. (17) and

(18), and ΩPk + ΩJk = Ωk. In addition, the Maslov index ηk, multiplied by −π/2, is also

represented in Fig. 7 by the upward green triangles. Note that the closer the filled symbols

to the vertical dashed line, the more they overlap. It is indeed clear from Fig. 3 that the

larger k, the lower the difference (φ
k+1

1 − φk1). We will now analyse the variations of ΩPk,

ΩJk and ηk in terms of φ
k

1, from which we will deduce that of the overall phase Ψk. We start

with ΩJk, because its study is a little simpler than that of ΩPk, we continue with ηk, then

with ΩPk, and we end with Ψk.
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Reactive paths Non reactive paths

Figure 7: Representation of ΩPk (blue circles), ΩJk (blue squares), Ωk (green diamond),
−πηk/2 (upward green triangles), and the overall phase Ψk = Ωk − πηk/2 + π/4 in Eq. (21)
(downward orange triangles). The segments joining the symbols are guides for the eyes, and
this will be so further below for all the figures based on CSMT calculations. The sum of
the blue symbols gives the green diamonds, while the sum of the green symbols gives the
downward orange triangles. The overall phase is only represented for k ≤ 7 in order to
emphasize that far enough from the trapping angle φpo, the slope of the overall phase is
negative from left to right.

4.1.1 Vibrational phase ΩJk

The reactive path starting from φ
7

1 = 0.7196 (see Fig. 7) is represented in Fig. 8 in the (φ, J)

plane. The blue dot corresponds to the starting point (at R = R1 = −3 Å) while the red

dot corresponds to the end point (at R = R2 = 3 Å). Note that both J1 and J2 are zero,

as is the case for all the trajectories contributing to Eq. (21). Since for positive (negative)

values of J , φ increases (decreases), the path is run clockwize. Therefore, when φ is negative
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(positive), J is increasing (decreasing), in such a way that −φJ̇ is always positive or zero.

Consequently, ΩJk is necessarily positive (see Fig. 7). We can see this even more directly if,

using the integration-by-part formula, one expresses ΩJ [see Eq. (18)] as

ΩJ =

∫ t2

t1

dτJφ̇− (J2φ2 − J1φ1) =

∫ t2

t1

dτ
J2

I
=

∫ φ2

φ1

Jdφ. (23)

The second equality, which comes from the fact that J = Iφ̇ and J1 = J2 = 0, confirms

our previous statement. Moreover, the third equality shows that ΩJ is the cumulative area

within the (φ, J) plane of all the loops performed between the blue and red dots (see Fig. 8;

the loops are elliptic within the channel). It is clear that the closer φ
k

1 to φpo, the longer

the time spent by the system within the channel, the larger the number of loops, and the

larger ΩJk. This explains why the ΩJk’s involve an upward peak centered at φpo (see Fig. 7).

Finally, J̇ is 0 all along the trajectories starting from 0 and π (see Fig. 1). For these two

angles, ΩJ = ΩJ0 is thus zero (see Fig. 7). In conclusion, ΩJk increases monotonically from

0 at φ
0

1 = 0 to +∞ at φpo, and decreases monotonically from +∞ at φpo to 0 at φ
0

1 = π.

Therefore, the ΩJk’s involve an upward peak centered at φpo, the tip of which is due to

resonant paths.

4.1.2 Maslov index ηk

As will be shown in Sec. 4.2.1, ηk is roughly equal to twice the number of vibrational periods

spent by the kth trajectory within the channel, i.e., twice the number of loops shown in

Fig. 8. Since the number of loops, and thus ηk, tends to +∞ as φ
k

1 tends to φpo, the values

of −πηk/2 involve a downward peak (see the upper green triangles in Fig. 7).

4.1.3 Translational phase ΩPk

The three reactive trajectories starting from φ
0

1 = 0, φ
7

1 = 0.7196, and φ
∞
1 = φpo− ε (ε being

positive and infinitesimal) are represented in the (R,P ) plane by the blue curves in Fig. 9.
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Figure 8: Projection on the (φ, J) plane of the reactive path starting from φ
7

1 (see Fig. 7).
E = 0.8E‡zpe and µ = 19. Blue dot: starting point, at R = R1 = −3; red dot: end point, at

R = R2 = 3 Å.

The first one, labeled k = 0, follows the R-axis (see Fig. 3) with a constant momentum

P = P1 = P2 = (2µE)1/2 [see Eq. (3)]. Equation (17) shows that ΩP0 is thus zero (see

Fig. 7). Along the second trajectory, labeled k = 7, P decreases by about a quarter before

returning to its starting value. Using again the integration-by-part formula, ΩP [see Eq. (18)]

can be written as

ΩP =

∫ R2

R1

PdR− (P2R2 − P1R1). (24)

∫ R2

R1
PdR is the area between the blue curve labeled k = 7, the magenta axis, and the vertical

edges of the frame. (P2R2 − P1R1) is the rectangular area defined by the upper blue line,

the magenta axis, and the vertical edges of the frame. ΩP7 is thus given by minus the area
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between the two upper blue lines, found equal to -16 (see the eight blue circle from the left

in Fig. 7). The third blue path, labeled k = +∞, starts from φ
∞
1 = φpo − ε and follows the

trapped trajectory for an infinite time before crossing the TS, then takes the same time to

move away from the TS and reach the products. One notes the symmetry of the projection of

this path with respect to the P -axis (vertical green axis; see Fig. 9), and the fact that P tends

to 0 at the TS. ΩP∞ is equal to minus the area between the upper and lower blue lines, found

roughly equal to -50 (see Fig. 7). The projections in the (R,P ) plane of two nonreactive

paths are also displayed in Fig. 9 (orange curves). The path labeled k = +∞ starts from

φ
∞
1 = φpo + ε and follows the trapped trajectory for an infinite time until “touching” the

TS without being able to cross it. The trajectory then needs the same time to move away

from the TS and turn back to the reagents. Thus, this path overlaps the blue path labeled

k = +∞ from the reagents onto the TS (we had to slightly shift the orange and blue paths

relative to each other to distinguish them). Then, the two paths separate symmetrically

with respect to the origin of the (R,P ) plane. Eq. (24) (reformulated for the present path)

shows that ΩP∞ is equal to the area encompassed by the orange path labeled k = +∞ and

the left vertical edge of the frame, minus the area of the square defined by the green lines,

the upper blue line, and the left vertical edge of the frame. ΩP∞ is thus equal to -50, just as

for the blue trajectory labeled k = +∞. The second nonreactive path labeled k = 0 starts

from φ
0

1 = π. The value of R at the turning point is much lower than for the previous orange

path (see Fig. 9), thus implying a significantly lower value of ΩP0 (-89.5). In conclusion, the

fact that for reactive paths, the value of P at the TS decreases when φ
k

1 increases, and for

nonreactive paths, the value of R at the turning point decreases when φ
k

1 increases, makes

ΩPk a monotonously decreasing function from 0 to π (see Fig. 7).

4.1.4 Overall phase Ψk

Let us concentrate on Ωk = ΩJk + ΩPk for the height reactive trajectories starting from φ
k

1,

k = 0, ..., 7 (see the left side of Fig. 7). Since ΩJk and ΩPk have nearly the same absolute
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k=0

k=7

k=+∞

k=0 k=+∞

Figure 9: Projection on the (R,P ) plane of the reactive paths starting from φ
0

1 = 0, φ
7

1 =
0.7196 and φ

∞
1 = φpo − ε (blue lines) and the nonreactive paths starting from φ

∞
1 = φpo + ε

and φ
0

1 = π (orange lines). E = 0.8E‡zpe and µ = 19. Since φ
∞
1 “touches” φpo for both the

blue and the orange lines labeled k = +∞, they virtually overlap from (R1, P1) to (0,0),
while their second halves are symmetric with respect to (0,0). For the reactive paths, the
quantity P2R2 − P1R1 is the area of the rectangle defined by the magenta line, the blue line
labeled k = 0, and the vertical edges of the frame. For the nonreactive paths, P2R2 − P1R1

is the area of the square defined by the green lines, the blue line labeled k = 0, and the left
vertical edge of the frame. The two areas are identical. This drawing is used in the text to
explain why in Fig. 7, the ΩPk’s continuously decrease from left to right.

values, but opposite signs, Ωk is close to 0. The overall phase Ψk = Ωk − πηk/2 + π/4 of

Eq. (21) (downward orange triangles), equal to the sum of the two green curves in Fig. 7 plus

π/4, is thus close to −πηk/2 (upward green triangles) and the orange curve that fits them

decreases. As for the height nonreactive trajectories starting from φ
k

1, k = 0, ..., 7 (see the

right side of Fig. 7), both ΩJk and ΩPk decrease as φ
k

1 increases while −πηk/2 is almost flat in
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comparison. Therefore, Ψk decreases. To sum up, the phase Ψk of Eq. (21) decreases within

the ranges ∼ [0, π/5] and ∼ [π/2, π], i.e., for the nonresonant trajectories, and we have found

that this behaviour is independent on the value of E within the range [0.8E‡zpe, 1.2E
‡
zpe].

In contrast, we now show that the behaviour of Ψk changes with E for the resonant paths,

i.e., for the values of φ
k

1 close to φpo. The reason is as follows. First, ΩJk tends to +∞ as φ
k

1

tends to φpo while ΩPk retains a finite value that can be considered constant as compared

to ΩJk (compare the two blue curves in Fig. 7 around φpo). Second, for the resonant paths,

nearly all the energy E is in the vibrational motion within the channel, and the average area

of a single loop, call it A(E), increases with E (in Sec. 4.2, we will derive the analytical

expression of A(E) for a channel of harmonic section). Third, we know that ΩJk is equal to

the sum of A(E) over the loops; but we have seen previously that the number of loops is

roughly equal to half the Maslov index ηk (see Sec. 4.1.2), so ΩJk can be approximated by

A(E)ηk/2. Therefore, the k-dependent part [ΩJk−πηk/2] of Ψk is equal to ∼ [A(E)−π]ηk/2.

When E tends to 0, the area of the loops are negligible and so is A(E). Consequently, the

previous phase reduces to −πηk/2 which tends to −∞ as φ
k

1 tends to φpo (see the upward

green triangles in Fig. 7). Thus, the overall phase Ψk is expected to involve a downward peak

centered at φpo. When E increases and takes the value satisfying the constraint A(E) = π,

the k-dependent part of Ψk is 0 and no peak is expected. When E continues to increase,

A(E) gets larger than π, and [A(E) − π]ηk/2 tends to +∞ as φ
k

1 tends to φpo. An upward

peak is then expected.

Now, what can we say about the solution of the equation A(E) = π ? Since resonant

trajectories spend most of their long stay in the interaction region vibrating like the PO,

the average area A(E) of a single loop is very close to A‡(E), the area
∮
Jdφ inside the PO.

Moreover, it is well known that the vibrational action n‡(E) along the PO, plus 1
2
, is equal

to A‡(E) divided by Planck constant h (see Chapter 7.1.1 in Ref.52). Since we are working
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in ~ unit, h = 2π, and the previous statement becomes

n‡(E) +
1

2
=
A‡(E)

2π
. (25)

Now, if A‡(E) = A(E) = π, Eq. (25) implies

n‡(E) = 0. (26)

However, the vibrational action is the classical analog of the vibrational quantum num-

ber,51,52 so the solution of Eq. (26) is necessarily

E = E‡zpe. (27)

Eq. (25), together with the constraint that n‡(E) be an integer, is nothing but the Bohr-

Sommerfeld quantization rule 51,52 applied to the activated complex (or the TS). To recap,

the Ψk’s are expected to involve a downward peak below E‡zpe, no peak at E‡zpe, and an

upward peak above E‡zpe.

These predictions are indeed confirmed by Figs. 10 to 12 which display the Ψk’s (orange

circles) for the three energies 0.8E‡zpe, E
‡
zpe and 1.2E‡zpe and µ = 19 (contrary to Fig. 7, the

present figures show the phase for all the values of φ
k

1 going from 0 to π). As expected,

the phases form a sharp peak directed downward below E‡zpe (Fig. 10), upward above E‡zpe

(Fig. 12) and there is no peak at E‡zpe (Fig. 11). Note that in Fig. 11, the orange circles

scattered over a dozen units along the dotted line correspond to very unstable trajectories.

Consequently, their positions are quite inaccurate. Owing to the smooth alignment of the

circles located close to the dotted line without overlapping it (these dots correspond to more

stable trajectories), we will assume that more exact calculations, beyond reach with current

computers, would smooth the alignment of the circles up to φpo (we will analytically validate

this assumption in Sec. 4.2 for reactive paths). Anyway, the important observation here is
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Reactive paths Non reactive paths

Figure 10: Prefactor (indigo squares) and phase (orange circles) for each term of the CSMT
expression of S00(E) and S ′00(E) [see Eq. (21)]. µ = 19. The magenta arrow indicates the
stationary phase on the nonreactive side.

that the orientation of the phase peak switches at E‡zpe from down to up. In addition, we

have seen previously that the phase monotonically decreases within the ranges [0, ∼ π/5]

and [∼ π/2, π] (see the downward orange triangles in Fig. 7 as well as the orange circles in

Figs. 10 to 12).

Combined, these two properties have a major effect on the reaction probability for the

following reason: below E‡zpe, the phase involves a stationary point on the nonreactive side of

φpo, as indicated by the magenta arrow in Fig. 10, while the phase decreases monotonously

on the reactive side of φpo. On the other hand, the opposite is observed above E‡zpe: the

stationary phase is indeed on the reactive side of φpo, as indicated by the magenta arrow in

Fig. 12, while the phase decreases monotonously on the nonreactive side of φpo.
53 However,
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Reactive paths Non reactive paths

Figure 11: Same as Fig. 10, with the difference that the stationary phase is at φpo for both
reactive and nonreactive paths.

the squared modulus of a sum of complex numbers is the greater the closer their phases are

to each other, because when this is the case, the complex numbers interfere in a constructive

way. Therefore, if the Ψk’s involve a stationary point, the phases around the stationary

point lead to constructive interferences, while if the Ψk’s are monotonously decreasing, the

interferences are generally destructive (see further on the discussions around Figs. 13 and

21). Consequently, at 0.8 E‡zpe, where the phases decrease monotonously for the reactive

paths while there is a stationary phase for the nonreactive paths (see Fig. 10), |S00(E)|2

and |S ′00(E)|2 are expected to be small and large, respectively. Conversely, at 1.2E‡zpe, where

there is a stationary phase for the reactive paths while the phases decrease monotonously

for the nonreactive paths (see Fig. 12), the reverse is expected, i.e., |S00(E)|2 and |S ′00(E)|2
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Reactive paths Non reactive paths

Figure 12: Same as Fig. 10, with the difference that the magenta arrow indicates the sta-
tionary phase on the reactive side.

are expected to be large and small, respectively. Since the same trends are also expected for

the remaining state-to-state populations (see the first paragraph of the present section), the

probability of reaction necessarily has a threshold at ∼ E‡zpe. This achieves the justification

of a chemical reaction threshold in terms of interferences between probability amplitudes

carried by classical paths. The threshold constraint on bending across the interaction region

is thus properly built into semiclassical mechanics.

Last but not least, at E‡zpe (see Fig. 11), the phases are identical for the infinite number

of dots that overlap at φpo (assuming, as previously stated, that they form a smooth line

around φpo). S00(E) and S ′00(E) are thus given by a sum of complex amplitudes [see Eq. (21)]

among which an infinite number, corresponding to the large k’s (resonant paths), have the
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same phase. In other words, right at E‡zpe, we have a resonant phase-matching, or resonance.

This finding, which we have seen is intimately related to Eq. 25, bears similarities with

previous findings by Pollak and Child33,54 on quantal resonances above threshold.55 Note

that the prefactor, represented in Figs. 10 to 12 by the indigo squares, tends to 0 at φpo

whatever the energy. Therefore, at E‡zpe, both S00(E) and S ′00(E) are given by a finite sum

of complex numbers with varying phases, corresponding to k lower than a few tens, plus an

infinite sum of complex numbers with nearly equal phases and a modulus vanishing for huge

k’s. It is shown in Appendix B that this modulus is approximately proportional to 1/k3/2,

the sum of which (from k > 0) is convergent (the developments of Appendix B rely on those

of Sec. 4.2.1). This explains why |S00(E)|2 and |S ′00(E)|2 do not diverge at the threshold.

On the other hand, the notion of resonance is not relevant apart from the threshold

energy. As shown further below, only a few tens of trajectories with phases distributed

around the stationary phase contribute to the reactivity, against an infinite number at E‡zpe

as we have just seen.

4.1.5 Folding functions

It is both instructive with respect to what as already been said, and aesthetically pleasing,

to visualize the effect of the peak reorientation on S00(E) and S ′00(E). To this aim, we define

the folding function F (N) as the right-hand-side of Eq. (21), build from reactive paths,

limited to the N + 1 first values of k. Then, we consider the path followed by F (N) in the

complex plane when N is increased from 0 to +∞, where F (N) tends to S00(E) (in all rigor,

F (N) is a sum; the word “function” is best suited to the SCIVR analog of F (N) discussed

in Appendix C). This path is represented in the left panels of Fig. 13, where it is simply

called F . The values of F are indicated by dots. The analogous path F ′ for nonreactive

trajectories is shown in the right panels. The prefactor in Eq. (21) is a decreasing function of

k for both reactive and nonreactive paths (see the indigo squares in Figs. 10 to 12; remember

that for reactive trajectories, φ
k

1 increases as k increases while for nonreactive trajectories,

33



0

4

17

Figure 13: Representation in the complex plane of the CSMT folding functions F and F ′,
based on Eq. (21). µ = 19 amu. See text for more details.

φ
k

1 decreases as k increases). Therefore, the length of the segments in Fig. 13 decreases as

N increases. At 0.8E‡zpe (upper panels in Fig. 13), F forms an Archimedean spiral making

|S00(E)| very small, while F ′ forms a Cornu spiral making |S ′00(E)| large. The Archimedean
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spiral is run clockwize as N increases, for two reasons: first, for reactive paths, the phase

ΩN decreases as N increases (see Fig. 10); second, ΩN − ΩN+1 turns out to be lower than

π. Therefore, the (N + 1)th segment in the left upper panel of Fig. 13 is necessarily oriented

towards the right with respect to the N th segment. As for the Cornu spiral (right upper

panel in Fig. 13), the magenta arrow corresponds to the value of F ′ obtained when ΩN is

the stationary phase, which is the case at N = 17. This phase is located at the head of the

magenta arrow in Fig. 10. When N increases from 0 to 17, ΩN increases (see in Fig. 10 the

orange dots from π to the magenta arrow). From N = 3 to N = 17, ΩN+1 − ΩN is lower

than π and the Cornu spiral is run counterclockwize. From N = 17 on, ΩN decreases (see

in Fig. 10 the orange dots from the magenta arrow to φpo), ΩN − ΩN+1 is lower than π and

the Cornu spiral is then run clockwize. To summarize, below the threshold, F is folded in

on itself while F ′ is unfolded. Moreover, the modulus of F ′ is mainly due to the set of ∼ 25

trajectories roughly centered at k = 17 which define the most linear, or less curved part of

the Cornu spiral. The folding functions at the threshold are represented in the middle panels

of Fig. 13. F and F ′ are about to unfold and fold, respectively; they are in an intermediate

situation that makes them look similar, the main difference being that F is run clockwize

while F ′ is run anticlockwize. Fig. 11 indeed shows that for reactive paths, ΩN decreases

as N increases while for nonreactive paths, the opposite happens. The end of the spirals

do not fold in on themselves. They are more and more linear as N takes large values, since

the phases converge toward the same value. Dots accumulate at the end of the spirals, since

an infinite number of resonant paths contribute to the reactivity. Those are geometrical

manifestations of the resonance. At 1.2E‡zpe (lower panels in Fig. 13), the scenario is the

opposite of that at 0.8E‡zpe. F forms a Cornu spiral making |S00(E)| large, while F ′ forms an

Archimedean spiral (not visible in Fig. 13) making |S ′00(E)| very small. The SCIVR folding

functions presented in Appendix C have essentially the same features.

We wish to outline the fact that a threshold resonance is expected at E‡zpe whatever

the initial quantum state of the reagents consistent with reaction. The reason is that there
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will always be trapped trajectories at the frontier between reactive and nonreactive paths.

Consequently, there will necessarily be resonant paths with equal phases right at E‡zpe and,

thus, fully constructive interferences enhancing the reactivity.

4.2 Analytical approach of the reactivity threshold

We have found that a resonance occurs at E‡zpe, the TS or activated complex ZPE. Moreover,

passage through this resonance as the energy increases allows quantum interferences between

reactive paths to shift from destructive to constructive and vice versa for nonreactive paths,

thereby creating a reactivity threshold at E‡zpe. We now come to the last stage of this work,

which consists in treating analytically the dynamics of reactive paths. This will allow us

not only to clarify some points previously discussed, but also to provide new theoretical

arguments sheding light on the quantization of the activated complex or the TS.

4.2.1 Description of the dynamics

For R within the range [−∆/2,∆/2], we approximate the potential of Fig. 1 by its second

order development

V (R, φ) =
1

2
Iω‡

2
φ2. (28)

As stated in Sec. 2, this expression is quite accurate around E‡zpe. Therefore, the latter is well

approximated by ~ω‡/2 (for clarity’s sake, we stop expressing actions in ~ unit; ~ will thus

explicitely appear in the developments). Outside the range [−∆/2,∆/2], V (R, φ) is taken at

0. We thus have reagent and product half planes separated by a channel of parabolic section

and length ∆.

Within the channel, the previous potential involves an infinite number of POs vibrating

perpendicular to the R-axis. However, if one adds along this axis an Eckart barrier of

infinitesimal height centered at R = 0, all these POs disappear but the one at R = 0, so the

existence of a unique TS is ensured. In the following, we will assume that such a barrier is

36



present, but we will neglect it in the analytical treatment of the channel crossing.

Figure 14: The blue trajectory is an example of path which contributes to S00(E). The
crossings between the blue and red paths, represented by the green circles, are called focal

points. The Maslov index η is equal to their number in the limit where δφ
k

1 tends to 0 (η = 12
in the present case). See text for more details.

As in Sec. 4.1, we use Eqs. (21) and (22), built from the trajectories starting from the

reagents with P1 =
√

2µE, J1 = 0, φ
k

1 and ending in the products with J2 = 0. We now deter-

mine analytically the expression of the φ
k

1’s. We ignore the case k = 0 as the corresponding

trajectory plays a minor role in the following. For k > 0, the previous trajectories typically

resemble the blue path in Fig. 14. This path comes from the reagents parallel to the R-axis.

At the entrance of the parabolic channel, the kinetic energy P 2

2µ
suddenly decreases from E

to

(
E − 1

2
Iω‡

2
φ
k

1

2
)

[see Eqs. (3) and (28), with H = E and J = J1 = 0]. Consequently, P

suddenly reduces to the value

Pk =

[
2µ

(
E − 1

2
Iω‡

2
φ
k

1

2
)]1/2

(29)
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and remains constant up to the exit of the channel. Within the latter, and thus at the TS,

the rigid diatom oscillates with the vibrational energy

E‡vk =
1

2
Iω‡

2
φ
k

1

2
. (30)

The period of time T spent by the blue trajectory within the channel is equal to an integer

number l of half vibrational periods π
ω‡ (l = 11 in Fig. 14). Then, the trajectory leaves the

parabolic channel with J2 = 0, while P takes its initial value back. From the exit of the

channel on, the trajectory is parallel to the R-axis. Within the channel, the time dependences

of φ and J are given by

φ(τ) = φ1cos(ω
‡τ) (31)

and

J(τ) = Iφ̇ = −Iω‡φ1sin(ω‡τ), (32)

where τ is 0 at R = −∆/2. Moreover, the channel crossing time is

T =
µ∆

P
. (33)

However, we have just seen that

T =
lπ

ω‡
(34)

where l is an integer, and we immediately see that substituting the right-hand-side of Eq. (34)

to τ in Eq. (32) implies J(T ) = 0, as it should be. Note from Eq. (32) that there is no

analytical solution of the equation J(T ) = J2 if the latter is different from 0. Substituting

the right-hand-side of Eq. (29) for P in Eq. (33) and equating the resulting expression to

the right-hand-side of Eq. (34) gives

φ
k

1 =

[
2E

Iω‡2
− µ∆2

Iπ2l2

]1/2

. (35)
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Since the term under the square root must be positive, we necessarily have

l ≥

[
µ∆2ω‡

2

2π2E

]1/2

(36)

and, thus,

l > l0 = int

[µ∆2ω‡
2

2π2E

]1/2
 (37)

where int(x) means integer part of x. Replacing l by l0 + k in Eq. (35), we have

φ
k

1 =

[
2E

Iω‡2
− µ∆2

Iπ2(l0 + k)2

]1/2

. (38)

φpo, obtained by making k tend to +∞ in the above expression, results in
√

2E
I
/ω‡. In

Eq. (21), each term of the sum involves the phase Ψk = Ωk/~ − πηk/2 + π/4 with Ωk =

ΩPk + ΩJk. Using Eq. (24) with R1 = −∆/2, R2 = ∆/2, P1 =
√

2µE = P2, the fact that

P = Pk between R1 and R2, and Eq. (29), we obtain

ΩPk =
µω‡∆2

π(l0 + k)
−∆

√
2µE. (39)

Moreover, ΩJk is given by l0 + k times half the area of the ellipse in the (φ, J) plane defined

by

J2

2I
+

1

2
Iω‡

2
φ2 =

1

2
Iω‡

2
φ
k

1

2
. (40)

After some steps of algebra and using Eq. (38), we find

ΩJk =
πE

ω‡
(l0 + k)− µω‡∆2

2π(l0 + k)
. (41)

The Maslov index ηk is accurately calculated as follows. The blue trajectory in Fig. 14 starts

from (R∞, φ
k

1) where R∞ tends to −∞. Its energy is E and its initial direction is parallel

to the R-axis. Therefore, this path arrives at R1 with φ
k

1. The red trajectory in Fig. 14 also
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starts from (R∞, φ
k

1) with E. However, its initial direction makes a positive infinitesimal

angle with the R-axis. Therefore, the red path arrives at R1 with φ
k

1 + δφ1 where δφ1 is

positive and infinitesimal. The latter is obviously exaggerated in Fig. 14 for clarity’s sake.

We can now define ηk: this is the number of crossings between the blue and red paths. These

crossings, or focal points, are represented in Fig. 14 by the green dots. In fact, the velocity

along the R-axis is slightly lower for the red path than for the blue path since both are at the

same energy but V (R1, φ
k

1 +δφ1) is slightly larger than V (R1, φ
k

1). This is the reason why the

green dots are all the more distant from the reaction path (horizontal dashed line) as they

are close to the exit of the channel. However, if we make δφ1 tends to 0, as it should be, it

is clear that the green dots inside the channel will move inward to eventually be aligned on

the reaction path. In addition, the right most green dot located outside the channel will be

sent to infinity. Therefore, ηk is equal to the number of green dots inside the channel, i.e.,

the number l0 + k of half vibrational periods performed within the channel, plus one unit:

ηk = l0 + k + 1. (42)

This justifies our definition of ηk in Sec. 4.1.2 (in fact, we used ηk = l0 + k and applied it

to resonant paths. However, for these trajectories, l0 + k is very large, so the last unit in

Eq. (42) can be neglected).

4.2.2 Analysis of the Phase

From Eqs. (39), (41) and (42), Ψk/~ = ΩPk/~ + ΩJk/~− πηk/2 + π/4 reads

Ψk

~
=

µω‡∆2

2π~(l0 + k)
+
π(l0 + k)

~ω‡

(
E − ~ω‡

2

)
−∆

√
2µE/~− π/4. (43)

As seen in Sec. 4.1, the resonance is mostly due to the infinite set of trajectories trapped

a long period of time in the vicinity of the PO. For these resonant paths, corresponding to

large values of k, Ψk/~ reduces to the last three terms of Eq. (43), since the first one tends to
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0. The last two terms do not depend on k. The second term accounts for two inverse effects

when k increases by 1 unit: since the (k + 1)th trajectory spends a half vibrational period

more than the kth trajectory within the channel, the vibrational action increases by πE/ω‡

while the increase of the Maslov index removes ~π/2 from the previous increase. Eq. (43)

shows that these two effects exactly offset each other whenever E = ~ω‡/2 = E‡zpe. The

consequence of this compensation is that right at the threshold and for the large values of k,

Ψk/~ reduces to the constant value (π/4−∆
√

2µE) [see Eq. (43)]. In other words, the Ψk’s

match for an infinite number of terms, thus, leading to a resonance. Out of the resonance,

but still for the large k’s, the difference between two consecutive Ψk/~’s is (πE/ω‡ − ~π/2),

independent on k. The sign of this difference defines the orientation of the phase peak.

One may invert Eq. (38) in order to express l0 + k in terms of φ
k

1 and substitute l0 + k

with the resulting expression in Eq. (43). The final result is

Ψk

~
=

√
µ

2

∆

~


√(

E − 1

2
Iω‡2φ

k

1

2
)

+

(
E − ~ω‡

2

)
√(

E − 1
2
Iω‡2φ

k

1

2
)
−∆

√
2µE/~− π/4, (44)

or equivalently,

Ψk

~
=

√
µI∆ω‡

2~


√(

φ
2

po − φ
k

1

2
)

+

(
φ

2

po − φ
zpe

po

2
)

√(
φ

2

po − φ
k

1

2
)
−∆

√
2µE/~− π/4. (45)

In Eq. (45), φpo =
√

2E
I
/ω‡ [see right after Eq. (38)], and φ

zpe

po is the value of φpo at the

threshold. In these expressions, the change in orientation of the phase peak at the energy

threshold appears very clearly, as well as the fact that the peak is centered at φpo. In Fig. 15,

the values of Ψk

~ obtained by using the above expressions are shown at E = 0.8E‡zpe (circles),

E = E‡zpe (squares) and E = 1.2E‡zpe (diamonds). Qualitatively, the basic features of the
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Figure 15: Representation, for the parabolic channel model, of the phase Ψk

~ assigned to the
trajectories contributing to S00(E). These phases, given by Eqs. (43)-(45), are shown for the
three energies indicated in the drawing. µ = 19 amu. The symbols corresponding to k = 0
are not drawn.

phases represented in Figs. 10 to 12 are well reproduced (focus on the reactive side of φpo).

The peak is down (up) below (above) the threshold, and at the threshold, the phase is given

by the right upper quarter of an ellipse corresponding to the first term within the square

brackets of Eqs. (44) and (45). The right most part of the ellipse, tangent to the vertical line

defined by φ
k

1 = φpo, supports our previous assumption that the orange circles in Fig. 11,

scattered over a dozen units along the dotted line, have inaccurate positions due to numerical

instabilities and should instead form a continuous line.

Our analysis would have been more complete if we could have extended the previous

developments to nonreactive trajectories. However, their dynamics are more complex and

we have not found a way to simply describe them.
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4.2.3 Quantization of the activated complex

The CSMT F -folding function is represented in Fig. 16 from k = 3 on for E = 1.2E‡zpe and

µ = 19 amu. A few values of k are indicated in order to show the direction of travel of the

folding function (as CSMT lacks accuracy for the smallest values of k, we determined the

folding function from SCIVR up to the angle between φ
2

1 and φ
3

1 where the phase index ν̄

jumps, and then switched to CSMT). The folding function is a Cornu spiral, run clockwize

from the origin to k = 24 (green square in Fig. 16), counterclockwize beyond. The length of

the dashed segment is equal to the modulus of S00(E), and the dotted segment going from

k = 17 to k = 33 has the same length as the dashed segment. The spiral has the same

shape as its analog in Figs. 13 (lower left panel). However, it is oriented differently since the

present potential [Eq. (28)] is different from the previously used one [Eq. (2)].

The phase Ψk/~ and the vibrational energy E‡vk at the TS are shown in Fig. 17. The

latter is given in unit of E‡zpe. The same symbol colors as in Fig. 16 are used for the same

values of k. The phase is stationary at k = 24 (green square in Fig. 17; Ψk/~ is not equal

to 2 at this point; we just shifted it for the clarity of the figure, which has no consequence

on the reasoning). The fact that the phase decreases (increases) before (after) k = 24 is

consistent with the clockwize (anticlockwize) run of the Cornu spiral before (after) k = 24.

The value of |S00(E)| is mainly due to the trajectories corresponding to the blue squares

numbered from 17 to 33 (we will call these paths the “blue trajectories” further on). The

dotted segment in Fig. 16 has indeed the same length has the dashed one, equal to |S00(E)|,

thus implying that the combined action of all the red circles in Fig. 16 just rotates (and

slightly translates) the contribution of the blue squares to S00(E) without changing its mod-

ulus. Besides, the TS vibrational energies for the blue trajectories are seen in Fig. 17 to

be distributed closely around E‡v24, which turns out to be equal to E‡zpe (this is analytically

justified further below). Therefore, those trajectories mostly contributing to the reactivity

– the blue trajectories – cross the TS with a vibrational energy close to E‡zpe and an av-

erage vibrational energy very close to E‡zpe. This remarkable result, which we confirmed
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Figure 16: CSMT F -folding function represented from k = 3 on. E = 1.2E‡zpe and µ = 19
amu. |S00(E)| is equal to the length of the dashed segment, also equal to that of the dotted
segment whose extremities are the blue squares numbered 17 and 33. The green square
numbered 24 corresponds to the stationary phase (see Fig. 17).

for several energies above the threshold, strongly supports the idea of quantized transition

state.13,56 In addition to that, nearly half of the previous trajectories cross the TS with a

vibrational energy lower than E‡zpe (see trajectories 17 to 23 in Fig. 17). This challenges the

fairly widespread idea in the QCTM community that the vibrational energy of the activated

complex must be greater than or equal to its ZPE.

We now prove that the vibrational energy at the TS for the trajectory making the phase

stationary, call it E‡vsp, is equal to E‡zpe. It is clear from Fig. 17 that we will not make a

significant error if we consider k as a continuous variable while estimating the stationary
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k=24

k=33k=17

Figure 17: The phase Ψk/~ and the vibrational energy E‡vk at the TS (in unit of E‡zpe) are
shown for k between 3 and 43. E = 1.2E‡zpe and µ = 19 amu. The choice of the colors in
terms of k is as in Fig. 16.

value of Ψk. Within this approximation, the value of k making Ψk stationary is found from

Eq. (43) to be solution of

dΨk

dk
= − µω‡∆2

2π(l0 + k)2
+

π

ω‡

(
E − ~ω‡

2

)
= 0. (46)

E‡vsp is then found by deducing the expression of (l0 + k)−2 from Eq. (46), introducing this

expression in Eq. (38), and using Eq. (30). The final result is as expected:

E‡vsp =
~ω‡

2
= E‡zpe. (47)
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Moreover, it is seen in Fig. 18 that this relation is accurately satisfied for the potential of

Fig. 1. To sum up, S00(E) is mainly due to the blue trajectories whose initial conditions are

Figure 18: E‡vsp/E
‡
zpe in terms of E/E‡zpe for the potential of Fig. 1. µ = 19 amu. The

dots correspond to E/E‡zpe = 1.01, 1.05, 1.1, 1.15, 1.2 and 1.3. For each energy, the trajectory
making the phase stationary was sought, and E‡vsp is the vibrational energy obtained at the
moment when the trajectory crosses the transition state.

close to the one making the phase Ψk/~ stationary, the vibrational energies at the TS are

closely distributed around E‡zpe, and their average value is nearly equal to E‡zpe.

Now, what about below the threshold ? We know that the phase monotonously decreases

with φ
k

1 [see Fig. 10 (reactive paths) and the curve in Fig. 15 corresponding to E = 0.8E‡zpe].

For reactive paths, however, k increases with φ
k

1 [see Eq. (38)] so the phase monotonously

decreases also with k. There is thus no stationary phase so that when we calculate |S00(E)|

using Eq. (21), the different terms of the sum interfere in a destructive way. As a conse-

quence, the folding function takes the shape of an Archimedean spiral folded in on itself, thus

explaining the smallness of |S00(E)| (see the left upper panel of Fig. 13). However, if we stick
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to these qualitative considerations, we do not see which trajectories can contribute the most

to |S00(E)| (when the latter is not too small), nor what their vibrational energies can be at

the TS. To find out more, we can approximately solve Eq. (21) by transforming its sum into

an integral and applying the saddle point method which involves an appropriate deformation

of the integration contour in the complex plane.23,29,57 Using Eqs. (43) and (B.1), Eq. (21)

then becomes

S00(E) =

∫
C

g(z)e
f(z)
~ dz (48)

where the contour C is defined further below,

z = l0 + k (49)

along the real axis,

f(z) = i

[
µω‡∆2

2πz
+

π

ω‡

(
E − ~ω‡

2

)
z

]
(50)

and

g(z) = i

π~
2

∣∣∣∣∣∣2Iπ
3z3

µω‡∆2

[
E − µω‡

2
∆2

2π2z2

]1/2
∣∣∣∣∣∣
−1/2

e−i(∆
√

2µE/~+π/4). (51)

In the limit where ~ tends to 0, the saddle point method57 tells us that

S00(E) =

√
2π~
|f ′′(z0)|

g(z0)e
f(z0)

~ eiα (52)

where

f ′(z0) = 0 (53)

and

α = π/2− arg[f ′′(z0)]/2 (54)

[note that this angle has nothing to do with α in Eq. (2)]. z0 locates the saddle point of

|f(z)|2 while α gives the orientation of the steepest descent path with respect to the real

47



axis in the neighborhood of z0. The contour C must be distorted from the real axis so as

to coincide with the steepest descent path in the vicinity of z0 and be run in the direction

given by eiα. Note that the present developments involve two approximations: the first is the

passage from a sum [Eq. (21)] to an integral [Eq. (48)], and the second is Eq. (52), accurate

only if ~ takes negligible values compared to the actions into play in the process, which is

not really the case for the vibrational action (E is indeed lower than E‡zpe). The expressions

we are going to establish will therefore help us to rationalize the dynamics rather than to

describe them precisely. After a few steps of algebra, one finds that the solution of Eq. (53)

is

z0 = −i

[
µω‡

2
∆2

π2(~ω‡ − 2E)

]1/2

(55)

(the opposite of the right-hand-side of Eq. (55) is also a solution of Eq. (53) ; it is however

not physically acceptable, as shown a few lines further on). Moreover,

f ′′(z0) =
π2(~ω‡ − 2E)3/2

µ1/2ω‡2∆
. (56)

f ′′(z0) is thus positive real, so α equals π/2 [see Eq. (52)]. Therefore, in the neighborhood

of z0, the contour C runs upward along the imaginary axis. Setting z = iy, we can rewrite

Eq. (48) as

S00(E) =

∫ 0

−∞
ig(iy)e

f(iy)
~ dy. (57)

The exponential term e
f(iy)

~ of the integrand is represented in Fig. 19 by the blue bell curve

with red ends (this curve involves exponential damping; if we had used the other solution of

Eq. (53), i.e., −z0 instead of z0, we would have obtained exponential enhancement instead of

damping and |S00(E)| would have been infinite). E was taken at 0.95E‡zpe and µ at 19. The

top of this curve corresponds to y0 = z0/i. The statistical weight of the y value is proportional

to the squared modulus of the integrand of Eq. (57). This weight is proportional to e2
f(iy)

~ ,

represented by the green curve in Fig. 19 (for clarity’s sake, the two previous curves were

48



rescaled so as to be equal to 2 at their maximum). The green curve shows that the values

of y that contribute to S00(E) belong approximately to the range [-160,-40], for outside this

range, the statistical weight is negligible. The term e
f(iy)

~ is represented in blue within the

previous range, in red outside. This choice of colors is identical to that in Fig. 17 where

the blue color emphasizes the real values of k which contribute the most to S00(E). In both

cases (Figs. 17 and 19), the relevant initial conditions (k and y) are distributed around the

values that make stationary the arguments of the exponential terms (iΨk

~ and f(iy)
~ ).

The vibrational energy of the activated complex, obtained by replacing l0 + k by iy in

Eqs. (30) and (38), is

E‡v(y) = E +
µω‡

2
∆2

2Iπ2y2
. (58)

This energy is thus larger than the total energy, thus implying that the kinetic energy is

negative within the channel. This can be explained from the fact that the channel crossing

time has the pure imaginary value

T (y) =
iyπ

ω‡
. (59)

This time is deduced from Eq. (34), the fact that l was renamed l0 + k right after Eq. (37),

then z in Eq. (49) and finally, iy along the steepest descent path in the vicinity of the

saddle point. In this description, R keeps real while P , proportional to the ratio of a real

distance and a pure imaginary time, is pure imaginary. This explains why the kinetic energy

is negative within the channel.58 E‡v(y) is represented in unit of E‡zpe in Fig. 19. Substituting

y0 = z0/i for y in Eq. (58) and using Eq. (55) shows that the vibrational energy is equal to

E‡zpe at the stationary value of f(iy). We also note that the most probable values of E‡v(y),

represented in blue, are closely distributed around E‡zpe, and their average value is nearly

equal to E‡zpe. The situations below and above the threshold are thus very similar. In both

cases, the activated complex appears to be quantized. Finally, Eqs. (50)-(52), (55) and (56)
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Figure 19: Representation of e
f(iy)

~ , its square value, and the ratio E‡v(y)/E‡zpe. E = 0.95E‡zpe
and µ = 19 amu. As in Figs. 16 and 17, the blue color emphasizes the range of values of y
that mainly contribute to S00(E) [see Eq. (57)].

lead after some steps of algebra to the state-to-state probability

P00(E) = |S00(E)|2 =
4~

π2Iω‡
e−2∆
√
µ(~ω‡−2E)/~. (60)

In fact, above the threshold, it turns out that P00(E) is equal to the pre-exponential factor

of Eq. (60), i.e., 4~/(π2Iω‡). This can be shown by transforming Eq. (21) into an integral

and solving the latter within the stationary phase approximation.27,51 Below the threshold,

however, 4~/(π2Iω‡) is multiplied by exp[−2∆
√
µ(~ω‡ − 2E)/~], which we recognize as the

WKB probability of tunneling through the adiabatic barrier.
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4.2.4 Time-energy uncertainty

We consider the standard deviations ∆E‡v and ∆T ‡ of the activated complex vibrational

energies and lifetimes at E = 1.2E‡zpe. Since S00(E) is mainly due to the blue trajectories

defined by k = 17, ..., 33 (see the blue squares in Figs. 16 and 17), ∆E‡v is given by

∆E‡v =

√
E‡v

2 − E‡v
2

(61)

with

E‡v
2

=

∑k=33
k=17 pkE

‡
vk

2∑k=33
k=17 pk

(62)

and

E‡v =

∑k=33
k=17 pkE

‡
vk∑k=33

k=17 pk
, (63)

where

pk =

[
π

2

∣∣∣∣∂J2

∂φ1

∣∣∣
k

∣∣∣∣ ]−1

(64)

is the classical statistical weight of the kth trajectory [see Eq. (21) and the lines following

Eq. (20)]. ∆T ‡ is given by similar expressions where Tk is substituted for E‡vk. E‡vk and

T ‡k are given by Eq. (30) and Eq. (34) with l = l0 + k. pk is straighforwardly deduced

from Eq. (B.1). Tk, the activated complex lifetime is here the channel crossing time, but

more generally, Tk will be the time to cross the vibrationally adiabatic region encompassing

any TS.33 In Fig. 1, this region is the central band labeled VA. By identifying ∆E‡v and

∆T ‡ with the uncertainties on the activated complex vibrational energy and lifetime, we

calculated their product and found 0.37~. We repeated this calculation for E/E‡zpe = 1.005,

1.02, 1.05 and 1.1 and found, respectively, 0.41~, 1.00~, 0.43~ and 0.87~. This is again

a remarkable result strengthening the notion of quantized activated complex or transition

state, and showing that the time-energy uncertainty principle is properly built into classical

S-matrix theory. Obviously, saying that the activated complex is quantized does not imply

that its vibrational energy is strictly quantized, since we have just seen that the activated
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complex is in general in a time-dependent quantum state. Its vibrational energy will be

strictly quantized only in the limit where ∆T ‡ tends to infinity (see further below).

Figure 20: Standard deviation ∆E‡v, activated complex lifetime T
‡

and standard deviation

∆T ‡ represented in terms of E/E‡zpe. ∆E‡v is given in cm−1 while T
‡

and ∆T ‡ are expressed
in unit of vibrational period along the periodic orbit (23.66 fs). Calculations have been made
using Eq. (38), i.e., the harmonic approximation of the potential of Fig. 1. µ was taken at
19 amu. The symbols correspond to E/E‡zpe = 1, 1.005, 1.02, 1.05, 1.1 and 1.2. The dashed
lines are guides for the eyes.

In Fig. 20, ∆T ‡, T
‡

and ∆E‡v are represented in terms of E/E‡zpe. ∆E‡v is given in cm−1

while ∆T ‡ and T
‡

are expressed in unit of vibrational period along the PO (23.66 fs). For

E/E‡zpe = 1, the calculations have been performed as follows. Since E = ~ω/2, the k-

dependent part of Ψk/~ reduces to the first term of the right-hand-side of Eq. (43), which

tends to 0 as k increases. The large values of k define the resonant paths whose phases are

all equal. As we have seen before, these paths mainly contribute to S00(E‡zpe). We have

found that limiting the sum in Eq. (21) to the resonant paths defined by k ≥ 466 allows us
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to reproduce the value of |S00(E‡zpe)| accurately. Therefore, this set of paths plays the role of

the set of blue paths previously dicussed and they were used to calculate ∆T ‡, T
‡

and ∆E‡v

from Eqs. (61)-(64). We found ∆E‡v∆T
‡ = 0.7~. Moreover, T

‡
is equal to 460 vibrational

periods, which is a very long time. This is not surprizing since Tk = (l0+k)π/ω‡ and k ranges

from 466 to +∞. Note that resonant paths sojourn a very long time in the vicinity of the

PO where the bending motion is much faster than the motion along the reaction coordinate.

Therefore, the activated complex evolves adiabatically along the resonant paths. From the

k-dependence of Tk and the fact that k ≥ 466, the range of values of Tk is infinitely broad,

thus explaining why the value of ∆T ‡ is also very large (520 vibrational periods). Conversely,

∆E‡v is very small compared to E‡zpe (∼ 3 cm−1 against 705 cm−1). Therefore, we can say

that the vibrational energy of the activated complex is “strictly” quantized right at the

threshold, which is consistent with the fact that the activated complex evolves adiabatically

for a very long time. If one increases the energy, the resonant paths no longer contribute to

S00(E). The relevant paths are those defined by the values of k around the one that makes

the phase Ψk/~ minimal (see the blue squares in Fig. 17 for E/E‡zpe = 1.2). It is a simple

matter of algebra to show from Eq. (43) that d2Ψk

dk2
varies like (E −E‡zpe)3/2 at the minimum

of Ψk (see Fig. 17). Therefore, the larger the difference E −E‡zpe, the narrower the range of

k-values in which exp
(
iΨk

~

)
does not oscillate too fast (these values define the blue paths).

Since Tk is proportional to k, the width of the interval of Tk values decreases with E −E‡zpe,

thus implying that ∆T ‡ also decreases. Concomitantly, ∆E‡v increases (see Fig. 20) in such

a way that the vibrational energy of the activated complex is less and less quantized. At

E = 1.2E‡zpe, however, Ev is still roughly quantized since the uncertainty on the latter (∼ 400

cm−1) keeps reasonably small compared to the bending vibrational quantum (1410 cm−1).

Below the threshold energy, y is assigned the statistical weight p(y), defined as the squared

modulus of the integrand of Eq. (57) mutliplied by a factor making the weight normalized

to unity. The uncertainty ∆E‡v on the vibrational energy [Eq. (58)] is then given by Eq. (61)

with E‡v
n

=
∫ 0

−∞ dyp(y)E‡v(y)
n
, n = 1, 2. The uncertainty ∆T ‡ on the modulus of T (y)
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[Eq. (59)] is given by similar expressions where the vibrational energy is replaced by |T (y)|.

The findings are in line with those obtained previously. The product ∆E‡v∆T
‡ is indeed equal

to 0.60, 0.64 and 0.75 at E/E‡zpe = 0.95, 0.97 and 0.99, respectively (|S00(E)| is negligible

below E/E‡zpe = 0.95, as can be seen in the upper panel of Fig. 6). Moreover, E‡v is very

close to E‡zpe. Finally, the variations of ∆T ‡, T
‡

and ∆E‡v with |E − E‡zpe| are as in Fig. 20.

Therefore, the closer E from E‡zpe, the more quantized the vibrational motion of the activated

complex. Note that at E = 0.95E‡zpe, ∆E‡v remains low compared to the bending vibrational

quantum (205 cm−1 against 1410 cm−1), so that the activated complex vibrational energy

is still nearly quantized. It clearly appears from the results of Secs. 4.2.3 and 4.2.4 that real

and pure imaginary times play a symmetric role depending on whether the energy is above

or below the adiabatic barrier top.6

5 Conclusion

We have built a two-dimensional model of chemical reaction taking place in the electronic

ground state, involving a single transition state (TS), and accounting for the correlation

between the rotational motions of the separated reagents or products and the bending vibra-

tional motion at the TS. This model process involves vibrationally nonadiabatic dynamics

across the interaction region. Nevertheless, there is a region encompassing the TS in which

the dynamics are vibrationally adiabatic (as it always is),33 and we have called activated

complex the molecular system orthogonal to the reaction path in the previous region. As is

well known, the TS is intimately related to the existence of a periodic orbit (PO) located

within the interaction region.35,36

For such a process occurring at low temperature, the two quantum mechanical effects

known to play a key role within the interaction region are the zero point energy (ZPE)

constraint at the TS, and tunneling through classically prohibited area.9,12 Since in the

general case, these two effects are likely to be entangled, we have decided not to include a
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potential energy barrier in our model reaction so as to minimize the influence of tunneling

on the dynamics. Therefore, we could focus our developments on the role played by the

TS-ZPE in the dynamics, often empirically or pragmatically approached in the literature.

The TS-ZPE has been denoted by E‡zpe.

We have performed quantum scattering calculations showing that the energy threshold

of the reaction is equal to E‡zpe, as previously observed.7–13 Therefore, the threshold is found

to be the same as if the motion orthogonal to the reaction path were to evolve adiabatically.

Schatz related this finding with the uncertainty principle.9 Our goal was to describe and

understand it in terms of classical paths within the framework of classical-limit quantum

mechanics,22,24,26,27 which assigns probability amplitudes to classical paths and make them

interfere in accordance with the superposition principle. Two approaches have been used:

the semiclassical initial value representation (SCIVR), more quantitative, with the hope of

reproducing the threshold, and classical S-matrix theory (CSMT), more qualitative, in order

to explain its origin. The conclusions of the study are as follows:

1) SCIVR reproduces very well the sigmoid shape of the quantum reaction probability.

The threshold constraint on bending is thus properly built into semiclassical mechanics.

CSMT shows that below E‡zpe, reactive paths interfere destructively while a number of non-

reactive paths whose phases are close to a stationary value interfere constructively. This

inhibits the reactivity observed classical mechanically. Right at E‡zpe, however, infinitely

many reactive paths temporarily trapped in a metastable state at the TS – the resonant

paths – interfere constructively, and the same thing happens for nonreactive trajectories.

This resonant phase-matching enhances the reactivity. Above E‡zpe, the opposite scenario to

that below E‡zpe occurs, i.e., a number of reactive paths interfere constructively while non-

reactive paths interfere destructively. As a result, the reactivity continues to rise to finally

reach a plateau.

2) The reason why a quantum resonance occurs precisely at E‡zpe is the following: the

relevant part of the phase of resonant paths is proportional to [A(E) − π] where A(E) is

55



the average vibrational action within the interaction region in ~ unit at the energy E. Since

the resonant paths spend most of their long stay in the interaction region in the immediate

vicinity of the PO underlying the TS, A(E) is, to a good approximation, the vibrational

action A‡(E) corresponding to one vibrational period along the PO. E‡zpe turns out to be

the value of E making A‡(E) equal to π; the phases of resonant paths are then all equal and

interfere constructively, thus explaining the quantum resonance. The equation A‡(E) = π is

nothing but the Bohr-Sommerfeld quantization rule applied to the activated complex.

3) Within the energy range considered in our study, the classical paths that primar-

ily contribute to the semiclassical reactivity traverse the TS with a vibrational energy E‡v

distributed around E‡zpe, and an average value of E‡v nearly equal to E‡zpe. Moreover, the

standard deviation of E‡v multiplied by the standard deviation of the lifetime of the activated

complex is equal to ∼ ~. These findings support the idea that the activated complex is in

a time-dependent quantum state satisfying the time-energy uncertainty principle.13,56 Right

at the threshold, however, the uncertainty on the lifetime of the activated complex is so large

that its vibrational energy can be considered as quantized.

To summarize, we hope to have clearly highlighted from the properties of some relevant

classical trajectories, in particular the periodic orbit underlying the transition state, the

close link existing between the notions of reaction threshold, resonant trajectories, stationary

phase, quantum resonance, and quantized activated complex or transition state.
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Appendix A: Symmetry-adapted expression of Sj2j1(E)

It is clear from Eq. (12) that if J1 = j1 = 0, φ1 = φ1. Eq. (14) can thus be rewritten as:

Sj20(E) =
1

2π

∫ π

0

dφ1[f(−φ1) + f(φ1)] (A.1)

with

f(φ1) =

∣∣∣∣∣∂φ2

∂φ1

∣∣∣∣
j1

∣∣∣∣∣
1/2

ei(Φ−πν̄/2)ρ(φ1). (A.2)

Moreover, the PES is symmetric with respect to the R-axis (see Fig. 1). Therefore, the

trajectory starting from φ1 (see the yellow path in Fig. 1), will be the symmetric with respect

to the R-axis of the trajectory starting from −φ1. Consequently, φ(φ1, τ) = −φ(−φ1, τ),

J(φ1, τ) = −J(−φ1, τ), R(φ1, τ) = R(−φ1, τ), P (φ1, τ) = P (−φ1, τ), φ2(φ1) = −φ2(−φ1)

(see Eq. (13)), Ω(φ1) = Ω(−φ1), ν̄(φ1) = ν̄(−φ1) and ρ(φ1) = ρ(−φ1). Hence, it is a simple

matter of algebra to check from Eq. (15) that

Φ(−φ1) = Φ(φ1) + 2j2φ2(φ1). (A.3)

Overall, we finally have

Sj20(E) =
1

2π

∫ π

0

dφ1

∣∣∣∣∣∂φ2

∂φ1

∣∣∣∣
j1

∣∣∣∣∣
1/2

ei(Φ−πν̄/2)
[
1 + ei2j2φ2

]
ρ(φ1). (A.4)

This expression allowed us to run twice less trajectories for the same accuracy compared to

Eq. (14).

Appendix B: Approximation of the prefactors in Eq. (21)

We have seen in Sec. 4.1.4 that |S00(E)|2 and |S ′00(E)|2 do not diverge at the threshold

because the prefactors in Eq. (21) are approximately proportional to 1/k3/2. We now prove
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this assertion. A few mathematical steps involving Eq. (32) with τ = T , and Eqs. (29), (33)

and (38), lead to ∣∣∣∣∂J2

∂φ1

∣∣∣
k

∣∣∣∣ =
2Iπ3(l0 + k)3

µω‡∆2

[
E − µω‡

2
∆2

2π2(l0 + k)2

]1/2

. (B.1)

At the threshold, those paths mostly contributing to the sum in Eq. (21) are the resonant

paths for which k is much larger than l0, so l0 + k can be replaced by k in Eq. (B.1). Thus,

its right-hand-side is proportional to k3, and the prefactors in Eq. (21) to 1/k3/2.

Appendix C: SCIVR Folding functions

Within the SCIVR approach, the way in which S-matrix elements are built from the am-

plitudes assigned to the trajectories can be qualitatively understood as follows. Based on

Eq. (14), we define the folding F function associated with S00(E) by

F (φmax) =
1

2π

∫ φmax

−φmax

dφ1

∣∣∣∣∣∂φ2

∂φ1

∣∣∣∣
j1=0

∣∣∣∣∣
1/2

ei(Φ−πν̄/2). (C.1)

If we take φmax at φpo, the integral in Eq. (C.1) is over the whole set of reactive trajectories

(see Fig. 3; since j1 = 0, J2 is an odd function of φ1, and trajectories are reactive from

φ1 = −φpo to φ1 = φpo). Therefore, F (φpo) = S00(E) [see Eq. (14)]. We consider the path

followed by F (φmax) in the complex plane when φmax increases from 0 to φpo [F (φmax) is

simply denoted by F ]. This path is represented at the three energies 0.8E‡zpe, E
‡
zpe and

1.2E‡zpe by the blue curves in Fig. 21. They all start from the origin of the complex plane.

The folding F ′ function associated with S ′00(E) is defined by

F ′(φmax) =
1

2π

∫ π+φmax

π−φmax

dφ1

∣∣∣∣∣∂φ2

∂φ1

∣∣∣∣
j1=0

∣∣∣∣∣
1/2

ei(Φ−πν̄/2). (C.2)

If we take φmax at π − φpo, the integral in Eq. (C.2) is over the whole set of nonreactive

trajectories (see Fig. 3; since j1 = 0, J2 is an odd function of [φ1 − π], and trajectories are
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Figure 21: Representation in the complex plane of the SCIVR folding functions F and F ′,
defined by Eq. (C.1). See text for more details.

reactive from φ1 = φpo to φ1 = 2π − φpo). Thus, F ′(π − φpo) = S ′00(E). The paths followed

by F ′(φmax) ≡ F ′ in the complex plane at 0.8E‡zpe, E
‡
zpe and 1.2E‡zpe are shown by the green

curves in Fig. 21. Apart from the zig-zags, or the initial loops, the curves in Fig. 21 closely
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resemble those in Fig. 13. This is true across the entire green curves, and across a large part

of the blue curves. The blue CSMT curves, however, do not start from the origin like the

blue SCIVR curves for the following reason: CSMT does not work when ∂J2
∂φ1

∣∣
k

takes very

small value, as is the case for the reactive paths corresponding to k ≤ 2 (see Fig. 3). The

prefactor in Eq. (21) is indeed strongly overestimated for k ≤ 2, and the initial variation of

F is unrealistic. This is why we ignored the first three terms of the sum in Eq. (21) for the

calculation of F . On the other hand, we took into account all the terms for the calculation

of F ′ since the prefactor is never overestimated.
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