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We propose in this work a Monte Carlo method for three dimensional scalar radiative transfer equations with non-integrable, space-dependent scattering kernels. Such kernels typically account for long-range statistical features, and arise for instance in the context of wave propagation in turbulent atmosphere, geophysics, and medical imaging in the peaked-forward regime. In contrast to the classical case where the scattering cross section is integrable, which results in a non-zero mean free time, the latter here vanishes. This creates numerical difficulties as standard Monte Carlo methods based on a naive regularization exhibit large jump intensities and an increased computational cost. We propose a method inspired by the finance literature based on a small jumps -large jumps decomposition, allowing us to treat the small jumps efficiently and reduce the computational burden. We demonstrate the performance of the approach with numerical simulations and provide a complete error analysis. The multifractional terminology refers to the fact that the high frequency contribution of the scattering operator is a fractional Laplace-Beltrami operator on the unit sphere with space-dependent index.

Introduction

Radiative transfer models have been used for more than a century to describe wave energy propagation through complex/random media [START_REF] Jeans | Stars, Gaseous, radiative transfer of energy[END_REF][START_REF] Chandrasekhar | Radiative transfer[END_REF], as well as neutron transport [START_REF] Lux | Monte Carlo particle transport methods : neutron and photon calculations[END_REF][START_REF] Spanier | Monte Carlo principles and neutron transport problems[END_REF], heat transfer [START_REF] Viskanta | Radiation heat transfer in combustion systems[END_REF], and are still an active area of research in astrophysics, geophysics, and optical tomography [START_REF] Louvin | Adaptive multilevel splitting for Monte Carlo particle transport[END_REF][START_REF] Margerin | A scalar radiative transfer model including the coupling between surface and body waves[END_REF][START_REF] Noebauer | Monte Carlo radiative transfer[END_REF][START_REF] Powell | A pseudospectral method for solution of the radiative transport equation[END_REF] for instance. In this work, we propose a new Monte Carlo (MC) method to simulate the following radiative transfer equation (RTE)

∂ t u + k • ∇ x u = Qu, u(t = 0, x, k) = u 0 (x, k), (t, x, k) ∈ (0, ∞) × R 3 × S 2 , ( 1 
)
where S 2 denotes the unit sphere in R 3 , and u is the wave energy density in the context of wave propagation or a particle distribution function in the context of neutronics. The scattering operator Q has the standard form (Qu)(x, k) = λ(x)

S 2 Φ(x, |p -k|)(u(x, p) -u(x, k))σ(dp), (2) 
for σ(dp) the surface measure on S 2 , Φ the scattering kernel, and λ > 0 a function modeling the support of the scattering process. Regions where λ(x) = 0 are homogeneous and u undergoes free transport. MC methods have long be used for the resolution of [START_REF] Abdulle | High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations[END_REF], see e.g. [START_REF] Lapeyre | Introduction to Monte-Carlo Methods for Transport and Diffusion Equations[END_REF][START_REF] Spanier | Monte Carlo principles and neutron transport problems[END_REF]. The originality and difficulty in our work lies in the fact that we consider situations where the mean free time t 0 associated with Q vanishes in the scattering regions, that is 1 t 0 (x) = λ(x)

S 2 Φ(x, | k -p|)σ(dp) = +∞, where λ(x) > 0, (3) 
and as a consequence the standard MC representations of u do not apply. Such a scenario arises for instance in the context of highly peaked-forward light scattering in biological tissues and in turbulent atmosphere, or more generally in the context of wave propagation in random media with long-range correlations that we describe below. In this paper we write Φ as Φ(x, |p -k|) := a(|p -k|)

|p -k| 2+α(x) = 1 2 1+α(x)/2 ρ(x, k • p), with ρ(x, s) := a 2(1 -s) (1 -s) 1+α(x)/2 s ∈ [-1, 1). ( 4)

Above, α : R 3 -→ [0, 2) accounts for the slow variations of scattering across the ambient space, and a is a smooth bounded function characterizing some statistical properties of the medium and such that a(0) > 0. Practical examples are given further. A direct calculation shows that (3) holds when α ∈ [0, 2). Also, the integral in [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF] has to be understood in the principal value sense when α ∈ [1, 2), see [START_REF] Gomez | Radiative transfer with long-range interactions regularity and asymptotics[END_REF]. The multifractional terminology that we use is motivated by the fact that the unbounded operator Q can be expressed as a (multi)-fractional Laplace-Beltrami operator (-∆ S 2 ) α(x)/2 on the unit sphere up to a bounded operator w.r.t. the k variable [START_REF] Gomez | Hypoelliptic estimates in radiative transfer[END_REF][START_REF] Gomez | Radiative transfer with long-range interactions regularity and asymptotics[END_REF].

We would like to emphasize that we focus in this work on kernels of the form (4) for simplicity of the exposition, and that our method applies, after proper decomposition (see [START_REF] Gomez | Radiative transfer with long-range interactions regularity and asymptotics[END_REF]), to more general kernels that behave like (4) at the singularity.

The RTE can be derived from high frequency wave propagation in random media, see e.g. [START_REF] Ryzhik | Transport equations for elastic and other waves in random media[END_REF]. In such a context, the velocity field c(x) has the form

1 c 2 (x) = 1 c 2 0 1 + √ η V 0 x, x η x ∈ R 3 , η 1,
where c 0 is the background velocity (that we set to one in the sequel for simplicity), V 0 is a mean zero random field modeling fluctuations around the background, and η is the correlation length of the random medium, assumed to be small after proper rescaling. The first variable in V 0 represents the slow variations of the random perturbations, while the second one corresponds to their high frequency oscillations. The latter are responsible for the strong interaction between the wave and the medium over sufficient distances. The scattering kernel Φ is related to the correlation function of V 0 , and assuming V 0 is stationary (in the statistical sense) with respect to the fast variable, a kernel of the form (4) can be obtained from random fields such that

E[V 0 (x, x )V 0 (y, y )] = λ(x)λ(y) R 3 a(|p|) |p| 1+ α(x)+α(y) 2 e ip•(x -y ) dp, (5) 
with α ranging from 0 to 2. Denoting by R(x) the expectation in [START_REF] Van Den Berg | Brownian motion on hypersurface[END_REF] with y = x, y = x + x/η, one can show that R behaves like |x| α(x)-2 for |x| 1, and is therefore not integrable. This is how random fields with long-range correlations are defined, as opposed to random fields with short-range correlations that exhibit an integrable correlation function. This approach is of practical interest in biomedical imaging as media with long-range correlations are able to reproduce experimentally observed power-law attenuations associated with effective fractional wave equations [START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF][START_REF] Gomez | An effective fractional paraxial wave equation for wave-fronts in randomly layered media with long-range correlations[END_REF]. The value of the exponents is related to the rate of decay of the correlation function R, and depends on the nature of the imaged tissues as reported in [START_REF] Duck | Physical Properties of Tissue[END_REF][START_REF] Goss | Comprehensive compilation of empirical ultrasonic properties of mammalian tissues[END_REF][START_REF] Goss | Compilation of empirical ultrasonic properties of mammalian tissues. II[END_REF]. Variations of this exponent can then be used for diagnosis purposes [START_REF] Lin | Frequency-dependent ultrasonic differentiation of normal and diffusely diseased liver[END_REF][START_REF] Rau | Frequency-dependent attenuation reconstruction with an acoustic reflector[END_REF].

In Figure 1, we provide examples of such 2D random fields. The top-left picture represents a random medium with short-range correlations (with a standard Gaussian covariance kernel), while the top-right picture illustrates a random medium with long-range correlations with α ≡ 1. Because of the singularity at p = 0, one can observe significantly larger statistical patterns than in the short-range case. In the bottom two pictures, we highlight the roles of λ and α: λ characterizes scattering regions, and α defines the correlation structure. In the inner circle of the bottom-left picture we have α ≡ 0.1, which tends to create shorter range fluctuations than in the outside where α ≡ 1. In the bottom-right picture, we have a three-layer model for α in which the inner band exhibits smaller statistical patterns than the outer ones. This type of model is used for modeling non-Kolmogorov atmospheric turbulences, while standard atmospheric turbulence is modeled with the so-called Kolmogorov power spectrum Φ(|k|) ∝ a(|k|) |k| 11/3 , for |k| in the inertial range of turbulence. This corresponds to the case α = 5/3. This case is not always valid in experiments as reported in [START_REF] Belen'kii | Experimental evidence of the effects of non-Kolmogorov turbulence and anisotropy of turbulence[END_REF][START_REF] Stribling | Optical propagation in non-Kolmogorov atmospheric turbulence[END_REF][START_REF] Zilberman | Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence[END_REF], and the statistics of atmospheric turbulence have been shown to vary with altitude. Models have been derived for instance (see [START_REF] Korotkova | Non-Classic Atmospheric Optical Turbulence: Review[END_REF] for a review) by considering three ranges (0-2km, 2-8km, and above 8km) with distinct power laws (see Figure 16 for an illustration). In the context of biological tissues, the following the Gegenbauer scattering kernel ρ G and Henyey-Greenstein (HG) kernel ρ HG are commonly used in the peaked-forward regime [START_REF] Henyey | Diffuse radiation in the galaxy[END_REF][START_REF] Reynolds | Approximate two-parameter phase function for light scattering[END_REF]:

ρ G (x, s) := α g (1 + g 2 -2g s) -1-α/2 2π((1 -g) -α -(1 + g) -α ) , ρ HG (x, s) := 1 4π 1 -g 2 (1 + g 2 -2g s) 3/2 . ( 6 
)
The parameter g ∈ (-1, 1) is called the anisotropy factor, and ρ HG is obtained by setting α ≡ 1 in ρ G . The case g = 0 corresponds to isotropic energy transfer over the unit sphere, g < 0 to dominant transfer in the backward direction, and g > 0 to forward energy transfer. The peaked forward regime is obtained in the limit g → 1, for which

1 (1 -g) α ρ G (x, k • p) ∼ g→1 α 2π(2 -2 k • p) 1+α/2 = α 2π| k -p| 2+α . ( 7 
)
The case α ≡ 1 for the HG kernel is widely used in photon scattering in biological tissues [START_REF] Dehaes | Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging : A simulation study[END_REF][START_REF] Germer | Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range[END_REF][START_REF] Jacques | Properties of Biological Tissues: A Review[END_REF]. A typical realization of the corresponding random field in 2D as g → 1 is depicted in the top-right panel of Figure 1.

There exist a variety of methods for the resolution of (1) that handle the singular nature of the HG kernel, see e.g. [START_REF] Fujii | Renormalization of the highly forward-peaked phase function using the double exponential formula for radiative transfer[END_REF][START_REF] Gao | A fast-forward solver of radiative transfer equation[END_REF][START_REF] Kim | Transport theory for light propagation in biological tissue[END_REF][START_REF] Kim | Beam propagation in sharply peaked forward scattering media[END_REF][START_REF] Leakeas | Generalized Fokker-Planck approximations of particle transport with highly forward-peak scattering[END_REF]. They are based on finite differences type discretizations, projections over appropriate bases w.r.t. the k variable, and approximations of the kernel. Here we propose an alternative approach to handle singular scattering kernel (4) that is based on a MC method. The latter are popular choices for the simulation of the RTE when the kernel is smooth, see e.g. [START_REF] Lapeyre | Introduction to Monte-Carlo Methods for Transport and Diffusion Equations[END_REF][START_REF] Margerin | Monte Carlo simulation of multiple scattering of elastic waves[END_REF][START_REF] Margerin | Multiple scattering of high-frequency seismic waves in the deep Earth: modeling and numerical examples[END_REF][START_REF] Przybilla | Monte Carlo simulation of radiative energy transfer in continuous elastic random media -three-component envelopes and numerical validation[END_REF][START_REF] Spanier | Monte Carlo principles and neutron transport problems[END_REF], essentially for their adaptability to a wide range of configurations and their simplicity of implementation. A downside is their slow convergence rate, and there is a vast literature on variance reduction techniques for acceleration. In this work, we focus on the design of an efficient MC method and postpone any variance reduction considerations to future works.

Our approach is based on an adaptation of a method proposed by Asmussen-Cohen-Rosiński [START_REF] Asmussen | Approximations of small jumps of lévy processes with a view towards simulation[END_REF][START_REF] Cohen | Gaussian approximation of multivariate lévy processes with applications to simulation of tempered stable processes[END_REF] (ACR) for the simulation of Lévy processes with infinite jump intensity. It relies on a small jumps/large jumps decomposition of the corresponding infinitesimal generator. The main idea is to approximate the generator of the small-jump part, which possesses the infinite intensity due to the singularity of kernel, by a Laplace-Beltrami operator (with respect to the angular variables) on the unit sphere S 2 . This requires us to simulate paths of a jump-diffusion process over the unit sphere. For this purpose, we use the characterization of Brownian motion on the unit sphere given in [START_REF] Van Den Berg | Brownian motion on hypersurface[END_REF] based on a standard stochastic differential equation (SDE) in R 3 that is suitable for space-dependent kernels. This situation is hence more involved than the 2D case we investigated in [START_REF] Gomez | Monte Carlo methods for radiative transfer with singular kernels[END_REF] where the small jumps part can be approximated by Brownian motion on the unit circle for which analytical expressions are available. Note that, as shown in [START_REF] Gomez | Monte Carlo methods for radiative transfer with singular kernels[END_REF], neglecting small jumps altogether in order to use standard MC methods leads to large errors, and reducing those comes at significantly increased computational cost.

Denoting by μ(u) the estimator produced by our MC method for some observable µ(u) built on the solution u to (1), we provide an error estimate of the form

P |μ(u) -µ(u)| > E 1 + E 2 + E 3 1
as a theoretical support of our method. Above, E 1 , E 2 , and E 3 are small terms characterizing the various approximation errors from the original model: the Laplace-Beltrami (i.e. small jumps) approximation, the discretization error of the diffusion process over the unit sphere, and the MC error. Note that the method we propose here applies directly to the stationary version of (1)

k • ∇ x u -Qu = u 0 , (x, k) ∈ R 3 × S 2 ,
with source term u 0 , through the relation

u(x, k) := ∞ 0 u(t, x, k)dt.
The paper is organized as follows. In Section 2, we introduce probabilistic representations for (1) and its approximation based on the ACR method. In Section 3, we describe our MC method, state the main theoretical result regarding the overall approximation error, and detail the simulation algorithms. Section 4 is dedicated to the validation of the method using semi-analytical solutions. Numerical illustrations are given in Section 5, where we investigate the role of the strength α of the singularity, both when constant or space-dependent in the case of non-Kolmogorov turbulence, and compare with solutions for the HG kernel. Section 6 is devoted to the proofs of our main results and we recall in an Appendix the stochastic collocation method.

The numerical simulations are performed using the Julia programming language (v1.6.5) on a NVIDIA Quadro RTX 6000 GPU driven by a 24 Intel Xeon Sliver 2.20GHz CPUs station. The codes have been implemented using the CUDA.jl library [START_REF] Besard | Effective Extensible Programming: Unleashing Julia on GPUs[END_REF][START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF].
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Probabilistic representations and approximation

Representation for (1)

The starting point is the following standard probabilistic interpretation to (1):

u(t, x, k) = E x, k u 0 (D(t)) := E u 0 (D(t)) | D(0) = (x, k) , where D = (X, K) is a Markov process on R 3 × S 2 with infinitesimal generator Lf (x, k) := -k • ∇ x f (x, k) + λ(x) 2 1+α(x)/2 S 2 ρ(x, p • k) f (x, p) -f (x, k) σ(dp).
A path, or a realization, of the Markov process D is often referred to as a particle trajectory. The X component of D represents the position of a particle, and the component K its direction. The generator L comprises two terms, the transport part describing free propagation of the particle, and the scattering operator (often referred to as the jump part in the probabilistic literature) describing the evolution of its direction. The jump component exhibits a non-integrable singularity leading to a infinite jump intensity and a vanishing mean free time as expressed in [START_REF] Asmussen | Approximations of small jumps of lévy processes with a view towards simulation[END_REF].

Note that when λ and α are constant, it is shown in [START_REF] Gomez | Radiative transfer with long-range interactions regularity and asymptotics[END_REF] that the solution u is unique and infinitely differentiable in all variables for t > 0 for any square integrable initial condition. When λ and α are infinitely differentiable with bounded derivatives at all orders, this result remains valid and we will assume throughout this work that u is smooth. The same applies to the function u ε defined further in Proposition 2.1.

In order to adapt the ACR method, we introduce the following small region over which the singularity of the kernel ρ (in (4)) is not integrable, resulting in an unbounded infinitesimal generator L:

S ε < = S ε < ( k) := {p ∈ S 2 : 1 -p • k < ε} ε ∈ (0, 1). ( 8 
)
We can now decompose the jump part of the generator L into two components

Lf (x, k) = -k • ∇ x f (x, k) + L ε < f (x, k) + L ε > f (x, k) := -k • ∇ x f (x, k) + λ(x) 2 1+α(x)/2 S ε < + S ε > ρ(x, p • k) f (x, p) -f (x, k) σ(dp),
where S ε > = (S ε < ) c is the complementary set of region [START_REF] Besard | Effective Extensible Programming: Unleashing Julia on GPUs[END_REF] over the unit sphere. The part of the scattering operator involving S ε > (with no singularity) is the infinitesimal generator of a standard jump Markov process. Regarding S ε < (with the singularity), the following result justifies the approximation of this singular part by a Laplace-Beltrami operator ∆ S 2 over the unit sphere S 2 . We will use the notation

r ε = 1 -(1 -ε) 2 /(2 -ε)
in what follows, and set in the rest of the paper 0

< ε ≤ ε 0 < 1 and 0 ≤ α m ≤ α(x) ≤ α M < 2.
Proposition 2.1 Let u be the solution to [START_REF] Abdulle | High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations[END_REF] and u ε be the solution to

     ∂ t u ε + k • ∇ x u ε = σ 2 ε (x)∆ S 2 u ε + λ(x) 2 1+α(x)/2 S ε > ρ(x, p • k)(u ε (p) -u ε ( k))σ(dp), u ε (0, x, k) = u 0 (x, k), ( 9 
)
for (t, x, k) ∈ (0, ∞) × R 3 × S 2 , where σ 2 ε (x) := 2 1-α(x) a(0)πλ(x) 2 -α(x) r ε 2-α(x) . ( 10 
)
Assuming a (0) = 0, for any T > 0, we have

sup t∈[0,T ] u(t, •, •) -u ε (t, •, •) L 2 (R 3 ×S 2 ) ≤ ε 2-(α M /2) √ 2T E(u) ( 11 
)
where E(u) is defined in [START_REF] Kim | Beam propagation in sharply peaked forward scattering media[END_REF].

The proof of Proposition 2.1 is postponed to Section 6.1. The term E(u) is independent of ε and depends on derivatives of u w.r.t. k up to order 4. Note that the error is of order ε 1-(α M /2) /(2-α M ) when a (0) = 0 yielding a less accurate approximation than for a (0) = 0. The difference comes from a truncated expansion along the sphere curvature providing an extra order in ε assuming a (0) = 0. This later assumption holds throughout the remaining of the paper. Based on [START_REF] Cohen | Gaussian approximation of multivariate lévy processes with applications to simulation of tempered stable processes[END_REF], we then devise a MC method for (9) instead of (1). The advantage in using [START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF] is the fact that the angular diffusion term σ 2 ε (x)∆ S 2 is the generator of a Markov process that can be easily simulated. Indeed, for W a standard 3D Brownian motion on R 3 and × the cross product in R 3 , it is shown in [START_REF] Van Den Berg | Brownian motion on hypersurface[END_REF] that the process B solving the SDE

dB = B × dW -Bdt, B(0) ∈ S 2 ,
has generator 1 2 ∆ S 2 . A simple adaptation then gives the desired diffusion coefficient. Since the error is of order ε 2-(α M /2) , it is always smaller than ε, and can be adjusted to obtain a desired accuracy. Note also that σ ε (x) increases as α(x) gets to 2, and diffusion on the sphere eventually becomes the dominant dynamics.

Representation for (9)

We interpret [START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF] as the forward Kolmogorov equation of an appropriate Markov process, and as a consequence focus on forward MC methods, see e.g. [START_REF] Lapeyre | Introduction to Monte-Carlo Methods for Transport and Diffusion Equations[END_REF] for terminology. Backward equations are simulated in a similar manner, and can be combined with forward methods for variance reduction techniques [START_REF] Blanc | Variance reduction method for particle transport equation in spherical geometry[END_REF][START_REF] Lux | Monte Carlo particle transport methods : neutron and photon calculations[END_REF][START_REF] Spanier | Monte Carlo principles and neutron transport problems[END_REF].

The Markov process we consider for this approach is defined by

D ε (t) := n≥0 1 [Tn,Tn+1) (t)ψ Zn n (t -T n ) t ≥ 0, (12) 
where (in the remaining of the paper we extensively make use of the notation z = (x, k)):

1. The flow ψ z n = (X x n , K k n ) is the unique strong solution to the SDE

dX x n (t) = K k n (t) dt dK k n (t) = √ 2 σ ε (X x n (t)) K k n (t) × dW n (t) -2 σ 2 ε (X x n (t)) K k n (t) dt, (13) 
where ψ z n (0) = z, × is the cross product in R 3 , (W n ) n is a sequence of independent standard Brownian motions on R 3 , and σ ε is defined by [START_REF] Chandrasekhar | Radiative transfer[END_REF].

2. The jump times (T n ) n are distributed according to

P T n+1 -T n > t | D ε (T n ) = z, (ψ z n (s)) s∈[0,t] = exp - t 0 Λ ε (ψ z n (s))ds , ∀n ≥ 0,
with T 0 = 0, and for ρ given by (4),

Λ ε (z) := λ(x) 2 1+α(x)/2 S ε > ρ(x, p • k)σ(dp). ( 14 
)
3. The jumps (Z n ) n describe a Markov chain with transition probability

P(Z n+1 ∈ dy ⊗ σ(dp) |Z n , T n+1 -T n ) = Π ε (z n+1 , dz), ( 15 
)
where z n+1 := ψ Zn n (T n+1 -T n ), and

Π ε (z, dz) := π ε (z, p)σ(dp)δ x (dy), (16) 
with density

π ε (z, p) := ρ(x, p • k) S ε > ρ(x, p • k)dσ(p ) 1 S ε > (p), z = (x, k), (17) 
which is supported over S ε > . The above Dirac mass δ x (dy) := δ(x -y)dy translates the fact that the jumps only hold w.r.t. the k variable.

Let us note that the above family of standard Brownian motions (W n (t)) t∈[0,Tn+1-Tn] can be defined as

W n (t) = W (t + T n ) -W (T n ), t ∈ [0, T n+1 -T n ],
for any n, where W is a single standard Brownian motion on R 3 . We have then the following probabilistic representation for the solution to (9).

Proposition 2.2

The Markov process D ε defined in [START_REF] Debrabant | Families of efficient second order Runge-Kutta methods for the weak approximation of Itô stochastic differential equations[END_REF] has for infinitesimal generator

A ε g(z) := k • ∇ x g(z) + σ 2 ε (x)∆ S 2 g(z) + Λ ε (z) S 2 π ε (z, p) g(x, p) -g(x, k) σ(dp),
and we have

P µ0 (D ε (t) ∈ dx ⊗ σ(d k)) = 1 ū0 u ε (t, x, k) dx σ(d k), ( 18 
)
where

µ 0 (dx, d k) := P(D ε (0) ∈ dx ⊗ σ(d k)) = u 0 (x, k) ū0 dx σ(d k) with ū0 := R 3 ×S 2 u 0 (x, k) dx σ(d k). ( 19 
)
The terminology forward comes from the fact that the particles are emitted at random points at time t = 0 (through µ 0 ) and propagate towards the observation position z = (x, k). The proof of Proposition 2.2 is provided in Section 6.2. Let us illustrate two aspects of the representation [START_REF] Fujii | Renormalization of the highly forward-peaked phase function using the double exponential formula for radiative transfer[END_REF]. In order to obtain an estimation of u ε (t, x, k) at the point z = (x, k), we calculate the probability

ū0 |B(z, r)| P µ0 D ε (t) ∈ B(z, r) u ε (t, x, k), (20) 
where B(z, r) ⊂ R 3 × S 2 stands for the open ball centered at z = (x, k) with radius r 1. If we are only interested in e.g. the energy density at point x, we estimate

ū0 |B(x, r)| P µ0 D ε (t) ∈ B(x, r) × S 2 = ū0 |B(x, r)| P µ0 D 1,ε (t) ∈ B(x, r) S 2 u ε (t, x, k)σ(d k),
where B(x, r) ⊂ R 3 stands for the open ball centered at x with radius r 1, and D 1,ε is the x component of D ε .

Monte Carlo Method

Based on the previous probabilistic representation of [START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF], solving [START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF] requires the generation of random paths of the stochastic process D ε . For any measurable bounded functions f , the convergence of the estimator

µ N (t, f ) := 1 N N j=1 f (D j ε (t)) -→ N →∞ f (x, k)u ε (t, x, k) dx σ(d k) P µ0 -almost surely,
is guaranteed by the strong law of large numbers. Above (D j ε ) j is a sample of D ε . We detail next how to treat efficiently the diffusion and jump components of the process D ε .

The jump part

Since the process D ε is inhomogeneous, i.e. Λ ε and Π ε both depend on z = (x, k), we use the so-called thinning method, also referred to as the fictitious shocks method [START_REF] Lapeyre | Introduction to Monte-Carlo Methods for Transport and Diffusion Equations[END_REF]. It is based on a acceptation/rejection step and consists in simulating at first more jumps (or shocks) than necessary. In a second step, some of the jumps are rejected according to an appropriate probability distribution in order to recover the original dynamics. Assume

0 < α m ≤ α(x) ≤ α M < 2. A direct calculation shows that Λ ε (z) ≤ 2π sup λ sup a 2 1+α(x)/2 1-ε -1 dt (1 -t) 1+α(x)/2 = 4π sup λ sup a α(x)2 1+α(x)/2 ε α(x)/2 ≤ 2π sup λ sup a α m ε α M /2 =: Λε . ( 21 
)
The fictitious jump times are then drawn as Tn := n j=1 ξ j , and T0 = 0, where the (ξ j ) j are i.i.d. exponentially distributed random variables with parameter Λε . The thinning method consists in the following acceptation/rejection step. At a jump time Tn and current position z n , we draw a jump z according to the probability distribution Π ε given by [START_REF] Ethier | Markov processes characterization and convergence[END_REF]. This jump is accepted with probability p(z n ) = Λ ε (z n )/ Λε . Otherwise, the process D ε continues to diffuse starting from z n , and Tn is not considered as a true jump time for D ε . Practically, we can define the state as

Zn := z 1 (Un≤p(zn)) + z n 1 (Un>p(zn))
at each fictitious jump times Tn . Above, U n is a random variable uniformly distributed over [0, 1] and all the U n 's are independent.

The diffusion part

The diffusion part between two jumps satisfies the linear SDE [START_REF] Dehaes | Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging : A simulation study[END_REF], and is simulated using the following Euler-Maruyama type scheme

(S n,m ) :      X n,m+1 = X n,m + h n,m Kn,m K n,m+1 = Kn,m -2h n,m σ 2 ε (X n,m ) Kn,m + 2h n,m σ ε (X n,m ) Kn,m × W n,m Kn,m+1 = Kn,m+1 |Kn,m+1| , (22) 
where the (W n,m ) m,n are i.i.d. mean-zero Gaussian random vectors with identity covariance matrix. Note that the above scheme does not conserve the Euclidean norm with respect to the angular variable, and as a consequence the evolution of (K n,m ) n,m does not remain on the unit sphere over the iterations. This motivates the definition of Kn,m . We have nevertheless

E[ |K k n,m | 2 ] = 1
, for all n and m, and Theorem 3.1 below guarantees that the distribution of Kn,m provides a converging approximation of the true statistics. The stepsizes h n,m are determined from a fixed stepsize h as follows. Since our convergence theorem further is stated at a fixed time T , we include t = T in the discretization grid for simplicity. Let then

N T such that TN T ≤ T < TN T +1 . When n = N T , let dt n = Tn+1 -Tn . With m n = [dt n /h] ([•] the integer part), we set, for n = N T , h n,m = h f or m = 0, . . . , m n -1 dt n -m n h f or m = m n ,
and if m n = 0, we set h n,0 = dt n . In the rest of the paper, the grid is denoted by (T n,m ), where T n,m+1 = T n,m + h n,m for T n,0 = Tn , n ≥ 0 and m = 0, . . . , m n -1. When n = N T , we divide the interval [ TN T , TN T +1 ] similarly into subintervals of length h N T ,m at most h (we suppose there are m N T of those) and such that T N T ,m = T for one m in 0, . . . , m N T .

The overall discretized process and convergence

For any t ≥ 0, the approximate version of the process D ε , denoted D h,ε , is defined by:

D h,ε (t) = (X h,ε (t), K h,ε (t)) := ∞ n=0 mn m=0 1 [Tn,m,Tn,m+hn,m) (t)Z n,m , where 1. For any m ∈ {0, . . . , m n }, Z n,m+1 = S n,m (Z n,m ),
where Z n,0 = Zn for the ( Zn ) n defined below, and where S n,m (Z n,m ) = (X n,m+1 , Kn,m+1 ) is given by the scheme [START_REF] Gomez | Hypoelliptic estimates in radiative transfer[END_REF] with initial condition Z n,m = (X n,m , Kn,m ).

2. The sequence ( Zn ) n , is defined by

Zn+1 = z 1 (Un≤p(Zn,m n+1 )) + Z n,mn+1 1 (Un>p(Zn,m n +1)) n ≥ 0,
where z is drawn according to the probability measure Π ε (Z n,mn+1 , dz) defined by [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF].

Below, b is the backward solution to (1) with terminal condition b(T, x, k) = f (x, k), see [START_REF] Margerin | Monte Carlo simulation of multiple scattering of elastic waves[END_REF]. Our convergence result is then the following (we set h such that 4h sup x σ 2 ε (x) ≤ 1 to simplify some expressions):

Theorem 3.1 Consider µ N,h,ε (t, f ) = 1 N N j=1 f (D j h,ε (t)), µ(t, f ) = f (x, k)u(t, x, k) dx σ(d k),
where

(D j h,ε ) j is a sample of D h,ε .
For any T > 0, η > 0 and any smooth bounded function f on R 3 × S 2 , we have lim sup

N →∞ P |µ N,h,ε (T, f ) -µ(T, f )| > ηΣ h,ε √ N + ε 2-(α M /2) F 0 (u, b, f ) + hF 1 (b) ≤ erfc(η/ √ 2), (23) 
where

Σ h,ε = V ar f (D h,ε (T )) ≤ sup |f |.
The functions F 0 and F 1 are explicit and independent of ε and h, and are defined in the proof of the theorem in Section 6.3.

Theorem 3.1 is proved in Section 6.3. In [START_REF] Gomez | Radiative transfer with long-range interactions regularity and asymptotics[END_REF], there are three terms that quantify the approximation error of our estimator µ N,h,ε (t, f ): one of order ε 2-(α M /2) due to the approximation of u by u ε (the smaller the α M , i.e. the less singular the kernel is, the smaller the error), one of order h due to the numerical approximation of the diffusion over the unit sphere, and one due to the MC approximation with the standard 1/ √ N convergence rate. Note that the discretization error of the diffusion process is only of order h and not of order the standard √ h. The reason is that we are only interested in the convergence of Monte Carlo estimators, allowing us to consider this discretization error in the weak sense [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF]. However, a weak second-order Runge-Kutta method can be considered to provide an error in h 2 instead of h for the Euler scheme [START_REF] Debrabant | Families of efficient second order Runge-Kutta methods for the weak approximation of Itô stochastic differential equations[END_REF]. Modifications of the SDE [START_REF] Dehaes | Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging : A simulation study[END_REF] can also be considered to provide weak higher-order scheme [START_REF] Abdulle | High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations[END_REF]. The main goal of this paper being to present a methodology to capture efficiently the behavior induced by the singularity, we focus our attention on the error in ε, and do not present weak-higher order discretization schemes for the SDE. In this way, the Euler scheme is considered for simplicity in the proof of Theorem 3.1. For the numerical simulations of Sections 4 and 5, that illustrate the roles of ε and α in the approximation, the parameter h will be chosen proportionally to the shortest mean free time Λ-1 ε , and small enough so that the approximation error w.r.t. ε in dominant. N will also be chosen large enough so that the error of approximation in ε is dominant. The MC error is controlled by the standard deviation Σ h,ε , and variance reduction techniques can be designed to reduce this term. When estimating the energy density over a given region B, as in [START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF], the number of particles N needed to reach a given error threshold can be estimated as follows: the root mean square error of the MC estimator for

f = 1 B /|B| reads RM SE h,ε := E µ N,h,ε (T, f ) -E f (D h,ε (T ))] 2 1/2 E f (D h,ε (T )) = P h,ε (1 -P h,ε ) N |B| 2 ≤ 1 2 √ N |B| , ( 24 
)
and the relative MC error is

RM SE h,ε E f (D h,ε (T )) = 1 √ N 1 -P h,ε P h,ε ≤ 1 N P h,ε , ( 25 
) with P h,ε := P µ0 (D h,ε (T ) ∈ B) 1 ū0 B u ε (t, x, k)dxσ(d k).
Above, µ 0 and ū0 are given by [START_REF] Gao | A fast-forward solver of radiative transfer equation[END_REF]. A RMSE lower than a threshold c would then require

N ≥ 1 4c 2 |B| 2 , ( 26 
)
while a relative error would require

N ≥ 1 c 2 P h,ε . ( 27 
)
If B is a region centered around a point (x 0 , k 0 ), with a small volume (that is P h,ε 1 as for ( 20)), we would have

N ≥ ū0 c 2 |B|u ε (t, x 0 , k 0 ) .

Algorithms

We discuss in this section practical aspects of the method. Before stating the algorithm itself, let us emphasize that a key point is to sample efficiently the jumps from Π ε given by ( 16).

Let us fix the current state of the process D h,ε at a point z = (x, k). In spherical coordinates, π ε defined in ( 17) is equivalent to a probability density function drawing a polar angle θ and an azimuthal angle ϕ. Here, the north pole of the spherical system is the current direction k, and it is direct to see that the azimuthal angle ϕ is uniformly distributed over (0, 2π). We denote this by ϕ ∼ U(0, 2π). For the polar angle, a change of variables leads to θ = arccos(1 -χ), where χ has probability density function

f χ (χ|x) := a( √ 2χ) C χ χ 1+α(x)/2 1 (ε,2) (χ),
and C χ is a normalizing constant. Therefore, to draw a jump according to [START_REF] Foster | Transmission of ultrasound beams through human tissue-focusing and attenuation studies[END_REF] starting from k, we compute p = R(θ, ϕ, k) := cos(θ) k + sin(θ)

I 3 + sin(ϕ)Q( k) + (1 -cos 2 (ϕ))Q 2 ( k) k⊥ , ( 28 
)
where k⊥ is an orthonormal vector to k, I 3 is the 3 × 3 identity matrix, and

Q(k) =   0 -k 3 k 2 k 3 0 -k 1 -k 2 k 1 0   , where k = (k 1 , k 2 , k 3 ). ( 29 
)
The transformation R corresponds to a rotation from k to p with polar angle θ with respect to k and azimuthal angle ϕ with respect to k⊥ . Note that the choice of k⊥ is not important since ϕ is uniformly distributed over (0, 2π). We notice that in the case of a constant function a ≡ a 0 , one obtains a truncated Pareto distribution for χ. The corresponding cumulative distribution function can be exactly inverted giving then a direct simulation method. In this case, the cumulative distribution function is given by, for χ ∈ (ε, 2),

F χ (χ|x) = a 0 C χ χ ε dv v 1+α(x)/2 = 1 -(ε/χ) α(x)/2 1 -(ε/2) α(x)/2 .
The random variable χ can then be generated by

χ = F -1 χ (U |x) = ε(1 -(1 -(ε/2) α(x)/2 )U ) -2/α(x) ,
where U is a random variable uniformly distributed over (0, 1) (U ∼ U(0, 1)). In the case of a non constant function a, the main features of the density f χ (•|x) are similar to those of the truncated Pareto distribution, and a stochastic collocation method can be considered to simulate f χ (•|x). This method is described in Appendix A in our context. It is based on the simulation of the above truncated Pareto distribution and proves to be very effective.

The algorithm used to simulate a trajectory of D h,ε can be summarized in the following two procedures. The first one corresponds to the simulation of the diffusion process between two (fictitious) jumps, and we use the notation

S(Z, W, h) = X + h K K -2h σ 2 ε (X) K + √ 2h σ ε (X) W × K,
with Z = (X, K). Below, N (0, I 3 ) stands for the three dimensional multivariate Normal distribution with identity covariance matrix.

Algorithm 1: Diffusion input : current state of the particle z = (x, k), duration of the diffusion δt output : state of the particle after the diffusion process initialization: n ← [δt/h] // number of iterations Z ← z // initialization of the diffusion state // Main loop of the diffusion

for j ← 1 to n do W ∼ N (0, I 3 ) Z ← S(Z, W, h) K ← K/|K| // Add a diffusion step with stepsize h ≤ h to match the duration δt h ← δt -nh W ∼ N (0, I 3 ) Z ← S(Z, W, h ) K ← K/|K| return Z
The second procedure combines the diffusion step with the jump process. Below, we denote by E( Λε ) the exponential distribution with parameter Λε defined by [START_REF] Germer | Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range[END_REF].

Algorithm 2:

TrajectorySimulation input : Duration T of the particle evolution output : state of the particle at time T initialization: Z ← (x, k) ∼ µ 0 // initialization of the particle state at random t ← 0 // temporary time variable δt ∼ E( Λε ) // first jump time // main loop for the path evolution

while t + δt < T do Z ← Diffusion(Z, δt) U ∼ U(0, 1) if U ≤ p(Z) then // the jump is accepted, Z is transformed χ ∼ f χ (• | x) θ ← arccos(1 -χ) ϕ ∼ U(0, 2π) p ← R(θ, ϕ, k) Z ← (x, p) t ← t + δt δt ∼ E( Λε ) // remaining diffusion step of duration T -t Z ← Diffusion(Z, T -t) return Z
The rest of the paper is dedicated to numerical simulations and the proofs of our main results.

Validation

In this section, we first derive a semi-analytical solution to validate our method in the simplest situation where α, a, λ are constant functions. We then highlight the crucial role of the small jumps correction for computational efficiency.

Semi-analytical solution

We set λ ≡ 1 and the RTE (1) reads

∂ t u + k • ∇ x u = Qu (30) 
with scattering kernel

Qf ( k) = a S 2 σ(dp) |p -k| 2+α (f (p) -f ( k)), k ∈ S 2 .
Using the the Funk-Hekke formula [START_REF] Samko | On inversion of fractional spherical potentials by spherical hypersingular operators[END_REF], this operator can be diagonalized in L 2 (S 2 ) equipped with the inner product

f, g L 2 (S 2 ) = S 2 f (p)g(p)σ(dp) = π 0 2π 0 f (θ, ϕ)g(θ, ϕ) sin(θ)dθdϕ.
The eigenvalues are given by

λ l = aπΓ(-α/2) 2 α Γ(1 + α/2) Γ(l + 1 + α/2) Γ(l + 1 -α/2) - Γ(1 + α/2) Γ(1 -α/2) l ∈ N,
and the eigenvectors are the spherical harmonics

Y l,m ( k) = Y l,m (θ, ϕ) := (2l + 1)(l -m)! 4π(l + m)! P m l (cos(θ))e imϕ , (l, m) ∈ N × {-l, . . . , l},
where the P m l are the associated Legendre polynomials. In order to derive a semi-analytical solution, we Fourier transform (30) w.r.t. x, and introduce

û(t, q, k) = R 3 u(t, x, k)e -iq•x dx.
Above, q = q := (0, 0, ξ) so that ũ(t, ξ, k) = û(t, q, k) solves

∂ t ũ + i k • q ũ = Qũ. ( 31 
)
Writing k in spherical coordinates with (0, 0, 1) as north-pole, this latter equation reads,

∂ t ũ(t, ξ, θ, ϕ) = (Q -iξ cos(θ))ũ(t, ξ, θ, ϕ), (t, ξ, θ, ϕ) ∈ (0, ∞) × R × (0, π) × (0, 2π).
We now decompose ũ on the basis of spherical harmonics

ũ(t, ξ, θ, ϕ) = ∞ l=0 l m=-l ûl,m (t, ξ)Y l,m (θ, ϕ), resulting in d dt ûl,m = λ l ûl,m -iξ(d + l,m ûl+1,m + d - l,m ûl-1,m ) for l ≥ 1, d dt û0,0 = -iξd + 0,0 û1,0 for l = 0. ( 32 
)
Above, we have used the fact that

Y m ,l , cos(θ)Y m,l L 2 (S 2 ) =                d + l,m := (l + m + 1)(l -m + 1) (2l + 1)(2l + 3) if m = m and l -l = 1, d - l,m := (l + m)(l -m) (2l -1)(2l + 1) if m = m and l -l = -1, 0 otherwise.
For computational purposes, we introduce a cutoff in the variable l (l ∈ {0, . . . , L}), and consider a truncated version of (32) as the vector differential equation

d dt ûL (t, ξ) = (D L -iξ A L ) ûL (t, ξ), ûL (t, ξ) = ûL l 2 +j (t, ξ) l∈{0,...,L} j∈{0,...,2l} ∈ C (L+1) 2 , ( 33 
)
where D L and A L are two (L + 1) 2 × (L + 1) 2 matrices defined by

     D L l 2 +j+1,l 2 +j+1 := λ l for l ∈ {0, . . . , L}, j ∈ {0, . . . , 2l}, A L l 2 +j+1,(l+1) 2 +j+2 := d + l,j-l for l ∈ {0, . . . , L -1}, j ∈ {0, . . . , 2l} A L l 2 +j+2,(l-1) 2 +j+1 := d - l,j-l+1
for l ∈ {1, . . . , L}, j ∈ {0, . . . , 2(l -1)}.

All other coefficients in both D L and A L are set to 0. Note that the indexing of the matrices starts at 0 for simplicity. The solution to [START_REF] Kim | Transport theory for light propagation in biological tissue[END_REF] reads ûL (t, ξ) = e (D L -iξ A L )t ûL (0, ξ), where the matrix exponential is computed numerically. For our test case, we consider the following initial condition

u(t = 0, x, k) = 1 √ 2π e -|x| 2 /2 • 2 cos 2 (θ/2) = 1 √ 2π e -|x| 2 /2 (2 √ πY 0,0 (θ, ϕ) + 2 π/3Y 0,1 (θ, ϕ)), so that ûL l 2 +j (t = 0, ξ) =    2 √ πe -ξ 2 /2 for l = j = 0, 2 π/3e -ξ 2 /2 for l = j = 1, 0 otherwise.
Finally, an approximation of ũ, solution to [START_REF] Jacques | Properties of Biological Tissues: A Review[END_REF], is given by

ũL (t = 0, ξ, θ, ϕ) = L l=0 2l j=0 e (D L -iξ A L )t ûL (0, ξ) l 2 +j Y l,j-l (θ, ϕ).
For numerical comparisons with our MC method, we introduce a discretization of the unit sphere S 2 via the polar and azimuthal angles (θ m ) m and (ϕ m ) m , with respective stepsize ∆θ and ∆ϕ. We then compare ũL (t, ξ, θ m , ϕ m ) 1 ∆θ∆ϕ

θm+1 θm ϕ m +1 ϕ m ũL (t, ξ, θ, ϕ) sin(θ)dθdϕ with its MC approximation ũL N (t, ξ, m, m ) = 1 ∆θ∆ϕ N N n=1 e -iξX n 3,h,ε (t) 1 θ n h,ε (t)∈(θm,θm+1), ϕ n h,ε (t)∈(ϕ m ,ϕ m +1 )
where θ n h,ε and ϕ n h,ε are respectively the polar and azimuthal angles for Kn h,ε , and where

(D n h,ε ) n = (X n h,ε , Kn h,ε ) n is a sample of D h,ε introduced in Section 3.
In the following numerical illustrations we consider a = 0.002 in the RTE, and set ∆θ = ∆ϕ = 0.05, ε = 0.1 and h = 0.5/ Λε 12.6 for the approximation parameters. Note that these choices for ε and h are providing us with a good accuracy at a very low computational cost as we will see. Such values may have to be decreased in other setups and when considering different observables. For instance, in Section 5.2 where α is varying, smaller values of ε and h are needed to capture correctly the solution.

Also, in the context of singular scattering kernels, the classical notion of scattering mean free time is not informative since it is equal to 0 (see [START_REF] Asmussen | Approximations of small jumps of lévy processes with a view towards simulation[END_REF]). Instead, we define a characteristic time using the inverse of the second eigenvalue of Q, i.e. the first non zero eigenvalue, and set t c = -1 λ1 . We refer to Figure 2 for the evolution of t c w.r.t. α.

In our setting, t c 79.6 (for α = 1), which is about six times the stepsize h needed to capture the diffusive correction. Also, since ε is not too small, this correction plays a significant role in obtaining the correct dynamics.

In Figure 3 In all these illustrations, and despite somewhat fairly large values for ε and h, we observe a very good agreement between the Monte Carlo results and the semi-analytic calculations.

Role of the correction

In this section, we highlight the role of the correction provided by the diffusion over the unit sphere w.r.t. the k-variable. To this end, we compare the following observables obtained from the semi-analytic solution

u 4 (x 3 ) = 3tc 0 ũL (t, x ⊥ , x 3 , θ, ϕ) sin(θ) dt dx ⊥ dθ dϕ, x := (x ⊥ , x 3 ) ∈ R 2 × R,
with the ones obtained with our MC method, with and without this diffusive correction, and for various values of α, ε and h. The grid in z range from -300 to 300 with size 2 8 and we run N = 300 × 10 6 particles. According to ( 26) and ( 27), the number of samples N is taken large enough so that the RMSE (24) of the MC estimation is of order 10 -5 and the relative MC error ( 25) is of order 0.03% where u 4 takes values of order as low as 10 -3 . With this choice of N , we can focus our attention on the role played by ε and h in the approximation. In Figure with ε = 0.1 (with still a fairly large stepsize h = 0.5/ Λε ) providing at most a relative error slightly larger than 1%. The other curves correspond to the noncorrected MC method for several values of ε. The corrected MC consistently yields a better accuracy than the noncorrected version, and even in weakly singular cases where α is less than one, a very small value of ε (red and green curves) is necessary to match the accuracy of the corrected method. The right picture illustrates the evolution of the relative running time of the noncorrected method w.r.t. the corrected one. For values of α less than 0.7 (weakly singular kernels), corrected and noncorrected methods have similar computational times for comparable accuracy, while in the case of singular kernels with α ≥ 1, the noncorrected methods yield a much larger cost and a much lower accurary. In Figure 7, we illustrate the precision and running time sensitivity of the (corrected) MC method w.r.t. the stepsize h = h 0 / Λε . As expected, we obtain a better precision for smaller stepsizes but at the price of a longer running time. These effects are amplified as α increases due to the increasing strength of the diffusion correction. In what follows, we select h 0 = 0.3 since this yields a relative error less than 1% for a wide range of α's while not changing significantly the running time. In Figure 8, we depict the precision and running time sensitivity w.r.t. the cutoff parameter ε, and observe the same phenomena as in the case of the stepsize h. The parameter ε defines not only the accuracy of the diffusion correction, but also the average number of jumps, and as a consequence the running time increases as ε decreases as in the case of the noncorrected Monte Carlo method.

Numerical illustrations

The role of α

In this section, we highlight the effects of the kernel singularity on the energy density. We consider a constant α, with a = 0.002 in this section. Our setting is depicted in Figure 9. The spatial variable x is decomposed into a main propagation axis x 3 and a transverse plane x ⊥ , i.e. x = (x ⊥ , x 3 ) ∈ R 2 × R. The same notation holds for the direction variable k = ( k⊥ , k3 ) ∈ S 2 . We choose an initial condition for (1) of the form u 0 (x, k) = δ(x)δ( k -k0 ), k0 = (0, 0, 1), In the following subsections, the MC estimations are obtained using N = 1×10 9 particles and a diffusion stepsize h = 0.3/ Λε . We set ε = 0.01 for the calculation of transmitted quantities, and ε = 0.1 for the reflected ones. For any value of α, the observation time we consider is T = 4t c , for t c the critical time computed for α = 1.

In the transmission case and when ε is too large, the mean free time is large as well and it is possible that particles escape the slab without undergoing any jumps, leading to inaccurate results. Hence the choice ε = 0.01. A larger value of ε is acceptable in the calculation of the reflected quantities since the particles exiting early would not have traveled to the plane located at x 3 = -5, and the error is reduced compared to the transmission case.

The running times for the time-integrated transmitted (ε = 0. All these running time measurements account also for the transfer of the resulting arrays from the device to the host. We clearly observe a significantly larger running time for smaller values of ε and large values of α. This is due to the increase in scattering events as the mean free time decreases. These computational times correspond to the cost for the MC method to reach the expected accuracy for fixed ε's and α's. With our choice of N = 10 9 , the RMSEs (24) are of order 10 -4 (resp. 10 -5 ) for the transmitted (resp. reflected) observables, and the relative errors are of order 1% (resp. 0.1%) for the transmitted (resp. reflected) observables taking values of order 10 -3 (resp. 10 -4 upto 10 -5 ).

Energy at the boundaries of the transverse plane

In what follows, the (time-integrated) transverse reflected and transmitted energy are defined by

F T tr (x ⊥ ) := T 0 dt S 2 σ(d k) u(t, x ⊥ , x 3 = 40, k) and F T ref (x ⊥ ) := T 0 dt S 2 σ(d k) u(t, x ⊥ , x 3 = -5, k).
The MC estimators for these quantities are given respectively by

F T tr (m, n) := 1 ∆x ⊥ N N j=1 1 X j,⊥ h,ε (τ j )∈ mn , X j 3,h,ε (τ j )>40 , F T ref (m, n) := 1 ∆x ⊥ N N j=1 1 X j,⊥ h,ε (τ j )∈ mn , X j 3,h,ε (τ j )<-5
where τ j := inf(t ∈ [0, T ] : X j 3,h,ε (t) > 40 or X j 3,h,ε (t) < -5), is the first time the j-th particle exits the slab. Note that once a particle escapes, it cannot reenter it since it propagates freely. Above, ( mn ) m,n is a uniform square grid of the traverse plane to the x 3 -axis. All squares in the grid have area ∆x ⊥ . Note that the grid can be different for the transmitted and reflected signals.

We have considered for the transverse variable of the transmitted energy a uniform grid over a detector of size [-10, 10] × [-10, 10] centered around the x 3 -axis, and over a detector of size [-50, 50] × [-50, 50] for the reflected energy. For both cases, we chose 128 × 128 grid points. The principle of these estimators is simply to count the number of particles that exit the slab before time T and to record their position in the transverse plane.

In Figure 10, we illustrate the and reflected energy flux, for several values of α. We represent the variations w.r.t. the first coordinate of x ⊥ = (x 1 , x 2 ), and for two values of x 2 . 24) are less than 6.5 × 10 -4 (resp. 2.6 × 10 -5 ) on the left picture (resp. right picture), while the relative errors [START_REF] Gomez | An effective fractional paraxial wave equation for wave-fronts in randomly layered media with long-range correlations[END_REF] are less than 0.6% for the left picture (resp. 1.3% for the right picture) for values of the observables as low as 10 -3 (resp. 10 -5 ).

One can observe that at fixed times, the larger the α, the more diffuse are the signals. Indeed, as α increases, the jump intensity Λ ε (in other words the number of scattering events) increases as well as the strength of the diffusive correction σ ε (see Figure 11). 14) and σ ε defined by [START_REF] Chandrasekhar | Radiative transfer[END_REF]. Here, a = 0.002 and ε = 0.01.

Time evolution of the exiting energy

Here, we are interested of the time evolution of the energy exiting the slab, and we define the (integrated) reflected and transmitted energy by

F tr (t) := R 2 dx ⊥ S 2 σ(d k) u(t, x ⊥ , x 3 = 40, k) and F ref (t) := R 2 dx ⊥ S 2 σ(d k) u(t, x ⊥ , x 3 = -5, k).
The MC estimators for these two quantities are given by

Ftr (n) := 1 dt N N j=1 1 τ j ∈(tn,tn+1], X j 3,h,ε (τ j )>40
and Fref (n

) := 1 dt N N j=1 1 τ j ∈(tn,tn+1], X j 3,h,ε (τ j )<-5
.

Here, (t n ) n is a uniform grid of the time interval with stepsize dt. For the transmitted signal, we have considered the time interval [START_REF] Lux | Monte Carlo particle transport methods : neutron and photon calculations[END_REF][START_REF] Powell | A pseudospectral method for solution of the radiative transport equation[END_REF] with a stepsize dt = 0.02, and have set [0, 4t c ] with a stepsize dt = 0.4 for the backscattered signal. Note that the time interval starts at 40 for the transmitted energy, which is the travel time of the wave (traveling at speed c 0 = 1) from the source to the plane x 3 = 40. These estimators count the number of particles that exit the slab in the time interval (t n , t n+1 ] at each side of the slab. In Figure 12, we illustrate the evolution of the transmitted and reflected energy, for several values of α.

Figure 12: Time evolution of the energy at the boundaries F tr (t) and F ref (t). The RMSE [START_REF] Gomez | Monte Carlo methods for radiative transfer with singular kernels[END_REF] are less than 8 × 10 -4 (resp. 4 × 10 -5 ) on the left picture (resp. right picture), while the relative errors [START_REF] Gomez | An effective fractional paraxial wave equation for wave-fronts in randomly layered media with long-range correlations[END_REF] are less than 0.7% for the left picture (resp. 0.5% for the right picture) for values of the observables as low as 10 -3 (resp. 10 -4 ).

In the case of the transmitted signal (left), and for small values of α, we see the arrival of the coherent wave at the proper travel time followed by the coda. When α increases, one notices the stronger impact of scattering and of the diffusive correction that smooths the signal out and damps its amplitude. For the largest α, we only observe a coda. Regarding the reflected signal (right), there is only a coda for all α due our choice of k0 , and one can observe two stages in the dynamics: backscattering increases up to a time of order t c , about which exponentially decay due to the operator Q takes over.

Comparison with the Henyey-Greenstein scattering kernel

In this section, we compare the solutions to the RTE with Henyey-Greenstein scattering kernel [START_REF] Billingsley | Convergence of probability measures[END_REF] for an anisotropy factor g close to one with the solutions to [START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF] with singular kernel derived from [START_REF] Blanc | Variance reduction method for particle transport equation in spherical geometry[END_REF], that is by setting a ≡ (1 -g)/(2π) and α = 1 in (4). Note that the value of the constant a changes with g, and as a consequence Λε , h, and σ ε vary accordingly. To illustrate this approximation, we still consider the setting depicted in Figure 9 and the various observables introduced in the previous sections, but now at a time T = 300.

We observe in Figure 13 the very good agreement between the two solutions. The reflected signal is well captured by our method despite fairly large values of ε and h. Also, let us mention that the computational cost is decreasing as the anisotropic parameter g is getting close to 1, as the overall jump intensity decreases in this case in the highly peaked regime g → 1. Regarding the transmitted signal, ε (and then h) needs to be lowered for an accurate approximation, as explained at the beginning of Section 5.1.

The RTE with a Henyey-Greenstein scattering kernel is simulated with a standard MC method. Compared to our method, its computational costs to achieve RMSEs of order 10 -4 and 10 -5 for respectively the transmitted and reflected observables are the following: running time (s) g = 0.97 g = 0.98 g = 0.99 HG kernel 8.3 7.6 6.0 singular kernel, ε = 0.01 13.9 6.7 2.0 singular kernel, ε = 0.1 2.5 1.5 0.7

Here, ε = 0.01 is considered for the transmitted observables, while we set ε = 0.1 for the reflected ones. According to this table, lower computational times are observed with our method for the three considered g's compared to standard MC methods for the Henyey-Greenstein scattering kernel. Our MC method provides therefore an efficient tool to simulate an RTE with a Henyey-Greenstein kernel. For transmitted observables, g needs to be quite close to one to provide a significant advantage to our method. 

Varying α function

In this section, we investigate the influence of a varying α function that characterizes the strength of the singularity. We consider two situations, one inspired from optical tomography, and the second one from wave propagation through atmospheric turbulence.

A two-stage model with a sphere

We keep the setting introduced in Section 5.1, and add a defect with a different value of α to the setting. This defect is modeled by ball of radius 3 centered at the origin and where α is equal to α 1 . We set α ≡ 1 in the exterior of the ball, corresponding to the peak forward regime of the Henyey-Greenstein scattering kernel. See Figure 14. This situation models a biological tissue in which statistical properties are changing and define a region of interest for imaging. We illustrate in Figure 15 the impact of the introduction of the defect on the observables introduced in Section 5.1. The impact is stronger on transmitted observables and quite significant, giving then the possibility to identify the defect with α = α 1 inside the scattering medium. Reflected quantities tend to be less sensitive to the presence of the defect since a fraction of the signal is backscattered before reaching it. 

Non-Kolmogorov turbulences

In this section, we keep once more the setting introduced in Section 5.1, with the difference that α takes three different large values depending on the altitude parametrized by x 3 , see Figure 16:

α(x 3 ) = 5/3 • 1 {x3≤2} + 4/3 • 1 {2<x3≤8} + 1.9 • 1 {8<x3} .
The value 5/3 corresponds to standard Kolmogorov turbulences, while other values are associated with non-Kolmogorov turbulence models [START_REF] Belen'kii | Experimental evidence of the effects of non-Kolmogorov turbulence and anisotropy of turbulence[END_REF][START_REF] Stribling | Optical propagation in non-Kolmogorov atmospheric turbulence[END_REF][START_REF] Zilberman | Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence[END_REF]. In these models, it is considered that for altitudes higher than 8km, the atmospheric turbulence yields larger statistical patterns (which tend to be created by singular kernels) than around the ground (0-2km). Hence, we set α = 1.9 for altitudes greater than 8km. The function a is no longer constant in these models, and for our illustrations we chose a(r) = 0.002 • exp(-r 2 /(2 × 0.8 2 )).

In Figure 17, one can notice that non-Kolmogorov turbulence yields quite different signals compared to Kolmogorov turbulence, in particular for reflected quantities. As we saw in Section 5.1, the higher the α, the more diffuse is the signal which then enhances reflected signals. This explains the increased reflections in the non-Kolmogorov case.

Proofs

This section is dedicated to the proof of Proposition 2.1, describing the approximation of the RTE (1) by [START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF] where the small jumps have been replaced by a diffusion term, Proposition 2.2, providing the probabilistic representation to [START_REF] Besard | Rapid software prototyping for heterogeneous and distributed platforms[END_REF], and Theorem 3.1, justifying the overall MC method involving a discretization scheme for the diffusion part.

Proof of Proposition 2.1

Let v ε := u ε -u, so that v ε (t = 0) = 0. We have Since ∆ S 2 is a nonpositive operator, we have

d dt v ε (t) 2 L 2 (R 3 ×S 2 ) = 2 < ∂ t v ε (t), v ε (t) > L 2 (R 3 ×S 2 ) = 2 < (σ 2 ε ∆ S 2 + L ε > )v ε (t), v ε (t) > L 2 (R 3 ×S 2 ) +2 < (σ 2 ε ∆ S 2 -L ε < )u, v ε (t) > L 2 (R 3 ×S 2 ) .
< (σ 2 ε ∆ S 2 + L ε > )v ε (t), v ε (t) > L 2 (R 3 ×S 2 ) ≤ - 1 2 R 3 ×S 2 ×S 2 dx σ(dp) σ(d k) λ(x) 2 1+α(x)/2 S ε > ρ(x, p • k)(f (x, p) -f (x, k)) 2 ≤ 0.
We then obtain sup

t∈[0,T ] v ε (t) 2 L 2 (R 3 ×S 2 ) ≤ 2 T 0 (σ 2 ε ∆ S 2 -L ε < )u(t) 2 L 2 (R 3 ×S 2 ) dt,
which concludes the proof using the following lemma.

Lemma 6.1 Let 0 < ε < ε 0 < 1. Then, for any f ∈ L 2 x (R 3 , C 4 k (S 2
)), we have

(L ε < -σ 2 ε ∆ S 2 )f L 2 (R 3 ×S 2 ) ≤ ε 2-α M /2 E(f )
where, with f (x, v)

:= f (x, v/|v|) for v ∈ R 3 , E(f ) := π 3(1 -ε 0 ) 6 sup λ sup a sup |h|≤rε 0 D 4 k f (•, • + h) L 2 (R 3 ×S 2 ) + 6π (1 -ε 0 ) 3 sup a + 2 4 π sup v∈[0,2 √ 2ε0] |a (v)| sup λ ∆ S 2 f L 2 (R 3 ×S 2 ) . ( 34 
)
Proof Before starting the proof, we introduce the retraction R k at k onto the sphere R k(h) := k+h | k+h| , and

B ε, k := R -1 k (S ε < ) = h = β 1 k⊥ 1 + β 2 k⊥ 2 : β = (β 1 , β 1 ) ∈ R 2 with |β| < r ε ,
where ( k⊥ 1 , k⊥ 2 ) stands for an orthonormal basis of k⊥ . We also recall that [START_REF] Besard | Effective Extensible Programming: Unleashing Julia on GPUs[END_REF]. In different terms, B ε, k is a ball centered at 0 with radius r ε on the tangent plane to the unit sphere at k, and the retraction R k holds from B ε, k onto S ε < . To prove the lemma, we start with the following change of variables p = R k(h) in L ε < , so that

r ε = 1 -(1 -ε) 2 /(1 -ε), coming from the relation tan(arccos(s)) = √ 1 -s 2 /s and
L ε < f (x, k) = λ(x) 2 1+α(x)/2 B ε, k ρ(x, R k(h) • k) f (x, R k(h)) -f (x, R k(0)) | det JacR k(h)|dh. Using that f (x, k + h) = f (x, R k(h)) and f (x, k) = f (x, k), one can decompose L ε < f as L ε < f (x, k) = D 1 + D 2 + D 3 + D 4
, where the terms D j follow with obvious notations from the Taylor expansion

f (x, k + h) -f (x, k) = D k f (x, k)(h) + 1 2! D 2 k f (x, k)(h, h) + 1 3! D 3 k f (x, k)(h, h, h) + 1 3! 1 0 (1 -s) 3 D 4 k f (x, k + sh)(h, h, h, h)ds.
The terms D 1 and D 3 . Using that the ball B ε, k in the tangent plane is symmetric with respect to 0, we just make the change of variables h → -h, so that

D 1 = -D 1 and D 3 = -D 3 leading to D 1 = D 3 = 0.
The term D 4 . We have

|D 4 | ≤ λ(x) 3! 2 1+α(x)/2 1 0 ds (1 -s) 3 B ε, k dh ρ(x, R k(h) • k) D 4 k f (x, k + sh) |h| 4 | det JacR k(h)| dh. Since R k(h) = k+h √ 1+|h| 2 , we have R k(h) • k = 1 1 + |h| 2 and | det JacR k(h)| = 1 1 + |h| 2 .
As a consequence, we find

D 4 L 2 (R 3 ×S 2 ) ≤ 1 4! sup v a(v) sup |h|≤rε D 4 f (•, • + h) L 2 (R 3 ×S 2 ) × sup x λ(x) 2 1+α(x)/2 {|h|≤rε} |h| 4 (1 -1/ 1 + |h| 2 ) 1+α(x)/2
dh.

Changing to polar coordinates in the last integral gives

{|h|≤rε} |h| 4 (1 -1/ 1 + |h| 2 ) 1+α(x)/2 dh = 2π rε 0 r 5 (1 -1/ √ 1 + r 2 ) 1+α(x)/2 dr = 2π ε/(1-ε) 0 v 1-α(x)/2 (2 + v) 2 (v + 1) 2+α(x)/2 dv
where we used the change of variables v = √ 1 + r 2 -1 and that 1 + r 2 ε -1 = ε/(1 -ε). This gives finally

D 4 L 2 (R 3 ×S 2 ) ≤ π 3 sup v a(v) sup h∈Bε D 4 f (•, • + h) L 2 (R 3 ×S 2 ) sup x λ(x) ε 2-α M /2 (1 -ε) 6 .
The term D 2 . For this last term, we have

D 2 = λ(x) 2 2+α(x)/2 B ε, k ρ(x, R k(u) • k)D 2 f (x, k)(h, h)| det JacR k(h)|dh, with D 2 f (x, k)(h, h) = h 2 1 ∂ 2 k1k1 f (x, k) + h 2 2 ∂ 2 k2k2 f (x, k) + 2h 1 h 2 ∂ 2 k1k2 f (x, k
), and, accordingly, the following decomposition

D 2 = D 21 + D 22 + 2D 23 . Applying the change of variables h = (h 1 , h 2 ) → (-h 1 , h 2 ) leads to D 23 = 0. Setting h = (h 1 , h 2 ) → (h 2 , h 1 ) leads to D 2 = λ(x) 2 3+α(x)/2 B ε, k ρ(x, R k(h) • k)|h| 2 | det JacR k(h)|dh T race(Hess f (x, k)),
where

T race(Hess f (x, k)) = ∆ p f x, p |p| |p= k = ∆ S 2 f (x, k).
Furthermore, with the change of variables p = R k(h), we find

B ε, k ρ(x, R k(h) • k)|h| 2 | det JacR k(h)|dh = S ε < ρ(x, p • k)|R -1 k (p)| 2 σ(dp),
and note that for p • k = cos(θ), we have

|R -1 k (p)| 2 = tan 2 (θ).
As a result, moving to spherical coordinates, and performing the change of variables v = tan(θ/2) together with the relation

arccos(s) = 2 arctan √ 1 -s 2 1 + s for s ∈ (-1, 1],
we find, with

r ε = 1 -(1 -ε) 2 /(2 -ε), S ε < ρ(x, p • k)|R -1 k (p)| 2 σ(dp) = 2π arccos(1-ε) 0 ρ(x, cos(θ)) tan 2 (θ) sin(θ)dθ = 2 3-α(x)/2 π r ε 0 a(2v/ √ 1 + v 2 )(1 + v 2 ) α(x)/2 (1 -v 2 ) 2 v α(x)-1
dv, leading to

D 2 = D2 ∆ S 2 f ( k) := 2 1-α(x) πλ(x) r ε 0 a(2v/ √ 1 + v 2 )(1 + v 2 ) α(x)/2 (1 -v 2 ) 2 v α(x)-1 dv ∆ S 2 f (x, k). Now, let us introduce σ2 ε (x) := 2 1-α(x) πλ(x) r ε 0 a(2v/ 1 + v 2 ) dv v α(x)-1 ,
and remark that

| D2 -σ2 ε (x)| ≤ 3 • 2 3-α(x) πλ(x) sup v a(v) 1 (1 -r ε 2 ) 3 r ε 0 v 3-α(x) dv ≤ 3 • 2 2-α(x) πλ(x) sup v a(v) r ε 2 (1 -r ε 2 ) 3 ≤ 6π sup x λ(x) sup v a(v) ε 2-α M /2 (1 -ε) 3 , since r ε ≤ √ 2ε, 0 ≤ α m ≤ α(x) ≤ α M < 2 and 1 -r ε 2 = 2(1-ε) 2-ε > 2(1 -ε).
With the definition of σ ε given in [START_REF] Chandrasekhar | Radiative transfer[END_REF], we obtain using a (0) = 0,

|σ 2 ε (x) -σ 2 ε (x)| ≤ 2 5 πλ(x) sup ṽ∈[0,2 √ 2ε] |a (ṽ)| r ε 0 v 3-α(x) dv, ≤ 2 4 π sup x λ(x) sup v∈[0,2 √ 2ε] |a (v)| ε 2-α M /2 .
Collecting the various estimates on the D j and using that ε ≤ ε 0 < 1 concludes the proof of Lemma 6.1 and therefore of Proposition 2.1.

Proof of Proposition 2.2

We first show that the infinitesimal generator of the Markov process D ε is A ε .

Infinitesimal generator for D ε . Let f be a smooth bounded function on R 3 × S 2 . The goal of this section is to prove that lim

h→0 + 1 h E z [f (D ε (h))] -f (z) = A ε f (z). (35) 
To this end, we introduce the first jump time T 1 to obtain

E z [f (D ε (t))] = E z [f (D ε (t))1 (T1>t) ] + E z [f (D ε (t))1 (T1≤t) ]. (36) 
Using conditional expectations, we find for the first term

E z [f (D ε (t))1 (T1>t) ] = E z [f (ψ z 0 (t))1 (T1>t) ] = E z E z [f (ψ z 0 (t))1 (T1>t) | ψ z 0 (s), s ∈ [0, t]] = E z f (ψ z 0 (t)) P z T 1 > t | ψ z 0 (s), s ∈ [0, t] = E z f (ψ z 0 (t))e - t 0 Λε(ψ z 0 (s))ds .
With the following notations for the flow ψ z n ,

ψ z n = (X x n , K k n ) = (X x j,n ) j=1,2,3 , (K k j,n ) j=1,2,3 ∈ R 3 × S 2 , together with f (x, k) = f (x, k/|k|) for (x, k) ∈ R 3 × R 3 , the Itô formula yields df (ψ z n (t)) = d f (ψ z n (t)) = ∇ x f (ψ z n (t)) • dX x n (t) + ∇ k f (ψ z n (t)) • dK k n (t) + 1 2 j,l=1,2,3 ∂ 2 kj k l f (ψ z n (t))d < K k j,n (t), K k l,n (t) > = K k n (t) • ∇ x f (ψ z n (t)) dt + σ 2 ε (X x n (t))∆ S 2 f (ψ z n (t)) dt + √ 2 σ ε (X x n (t))∇ k f (ψ z n (t)) • (K k n (t) × dW n (t)).
Above, we have used the fact that

∆ S 2 f (x, k) = ∆ k f (x, k) - j,l=1,2,3 kj kl ∂ 2 kj k l f (x, k) -2 j=1,2,3 kj ∂ kj f (x, k). (37) 
Therefore, we have for n = 0,

d (f (ψ z 0 (t)) -f (z))e - t 0 Λε(ψ z 0 (s))ds = df (ψ z 0 (t)) -Λ ε (ψ z 0 (t))(f (ψ z 0 (t)) -f (z)) e - t 0 Λε(ψ z 0 (s))ds so that lim h→0 + 1 h E z [(f (D ε (h)) -f (z))1 (T1>h) ] = k • ∇ x f (z) + σ 2 ε (x)∆ S 2 f (z), ∀z = (x, k) ∈ R 3 × S 2 .
Regarding the second term in [START_REF] Lapeyre | Introduction to Monte-Carlo Methods for Transport and Diffusion Equations[END_REF], we find, using the Markov property in the third line,

E z f (D ε (h))1 (T1≤h) = E z E z [f (D ε (h)) | T 1 ] 1 (T1≤h) = E z h 0 E z [f (D ε (h)) | T 1 = v] Λ ε (ψ z 0 (v)) e - v 0 Λε(ψ z 0 (s))ds dv = E z h 0 R 3 ×S 2 E z [f (D ε (h -v))] Π ε (ψ z 0 (v), dz ) Λ ε (ψ z 0 (v)) e - v 0 Λε(ψ z 0 (s))ds dv = E z h 0 S 2 E (X x 0 (h-w), p) [f (D ε (w))] π ε (ψ z 0 (h -w), p) σ(dp) Λ ε (ψ z 0 (h -w)) e - h-w 0 Λε(ψ z 0 (s))ds dw ,
where the probability Π ε and the density π ε are defined respectively in ( 16) and [START_REF] Foster | Transmission of ultrasound beams through human tissue-focusing and attenuation studies[END_REF]. As a consequence, lim

h→0 + 1 h E z [f (D ε (h))1 (T1≤h) ] = Λ ε (z) S 2
f (x, p)π ε (z, p)σ(dp).

Moreover, we have

P z (T 1 ≤ h) = E z P z T 1 ≤ h | ψ z 0 (s), s ∈ [0, h] = E z 1 -e - h 0 Λε(ψ z 0 (s))ds ,
and it is then direct to see that lim

h→0 1 h P z (T 1 ≤ h) = Λ ε (z).
This finally yields lim

h→0 + 1 h E z [(f (D ε (h)) -f (z))1 (T1≤h) ] = Λ ε (z) S 2 (f (x, p) -f (x, k))π ε (z, p)σ(dp),
which gives [START_REF] Korotkova | Non-Classic Atmospheric Optical Turbulence: Review[END_REF] collecting all results.

Proof of [START_REF] Fujii | Renormalization of the highly forward-peaked phase function using the double exponential formula for radiative transfer[END_REF]. Since D ε is a solution to the martingale problem associated to A ε (see [15, Proposition 1.7 pp. 162]), we have, for any smooth bounded function

f on R 3 × S 2 , µ t (f ) = µ 0 (f ) + t 0 µ s (A ε f ) ds, where µ t (f ) := E µ0 [f (D ε (t))]. Let ν t (f ) := 1 ū0 R 3 ×S 2 u ε (t, x, k)f (x, k) dx σ(d k).
Since u ε solves (9), we have

u ε (t) = u 0 + t 0 A * ε u ε (s)ds,
where A * ε stands for the adjoint operator of A ε in L 2 (R 3 × S 2 ). Then,

ν t (f ) = µ 0 (f ) + 1 ū0 R 3 ×S 2 t 0 A * ε u ε (s, x, k) ds f (x, k) dx σ(d k) = µ 0 (f ) + t 0 1 ū0 R 3 ×S 2 u ε (s, x, k)A ε f (x, k) dx σ(d k) ds = µ 0 (f ) + t 0 ν s (A ε f )ds.
Therefore, according to [15, Proposition 9.18 pp. 251], we have µ t = ν t for any t ≥ 0, which concludes the proof.

Proof of Theorem 3.1

The proof of this result is provided in three steps. The first step consists in rewriting the probabilistic representation [START_REF] Fujii | Renormalization of the highly forward-peaked phase function using the double exponential formula for radiative transfer[END_REF] for ( 9) is terms of a SDE with jumps. The second step concerns the error analysis of the solution to this later SDE with its discretized version. Finally, the last step gathers all the error estimated and concludes the proof.

Step 1

We first introduce an equivalent formulation (in the statistical sense) for the process D ε in terms of a stochastic differential equation (SDE) with jumps. This representation is useful when comparing with the discrete scheme. Let Dε = ( Xε , Kε ) be the solution to the following SDE with jumps:

d Xε (t) = Kε (t) dt d Kε (t) = √ 2 σ ε ( Xε (t -)) Kε (t -) × dW -2 σ 2 ε ( Xε (t -)) Kε (t -) dt + (0,π)×(0,2π)×(0,1)
R(θ, ϕ, Dε (t -), v)P (dt, dθ, dϕ, dv) [START_REF] Lin | Frequency-dependent ultrasonic differentiation of normal and diffusely diseased liver[END_REF] where the function R is defined by, for z = (x, k),

R(θ, ϕ, z, v) = R(θ, ϕ, k) -k if v ≤ Λ ε (z)π ε (z, R(θ, ϕ, k))/ Λε 0 otherwise.
Above, R is defined in [START_REF] Grzelak | The stochastic collocation monte carlo sampler: Highly efficient sampling from "expensive" distributions[END_REF], Λ ε in [START_REF] Duck | Physical Properties of Tissue[END_REF], Λε in [START_REF] Germer | Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range[END_REF], π ε in [START_REF] Foster | Transmission of ultrasound beams through human tissue-focusing and attenuation studies[END_REF], and P is a random Poisson measure with intensity measure µ(dt, dθ, dϕ, du) = Λε 1 (0,∞)×(0,π)×(0,2π)×(0,1) (t, θ, ϕ, v) sin(θ)dt dϕ dθ/(4π). [START_REF] Louvin | Adaptive multilevel splitting for Monte Carlo particle transport[END_REF] See e.g. [2, Chapter 2] for more details on Poisson random measures. The notation t -is standard and refers to the left limit when approaching t before a jump. With this construction, the infinitesimal generator for the Markov process Dε is

Ãε f (z) = k • ∇ x f (z) + σ 2 ε (x)∆ S 2 f (z) + Λε (0,π)×(0,2π)×(0,1) (f (x, k + R(θ, ϕ, z, v)) -f (z))σ(dp)dv,
and we have the following result. Proof Dε and D ε are both Markov processes and are therefore characterized by their generators. We just have then to prove that A ε g = Ãε g for any bounded smooth function g. This is a direct consequence of the definition to R. Indeed, denoting by Ĩε and I ε the integral operators in respectively Ãε and A ε , we have with z = (x, k), Ĩε g(z) = Λε (0,π)×(0,2π)×(0,1)

(g(x, k + R(θ, ϕ, z, v)) -g(z)) sin(θ) dϕ dθ dv/(4π) = Λε (0,π)×(0,2π) Λε(z)πε(z,R(θ,ϕ, k))/ Λε 0 dv (g(x, R(θ, ϕ, k)) -g(z)) sin(θ) dϕ dθ/(4π) = Λε S 2 Λ ε (z)π ε (z, p) Λε (g(x, p) -g(z)) σ(dp) = I ε g(z),
which concludes the proof.

Step 2

The goal is now to prove that the discretized process D h,ε approximates Dε in a statistical sense. We use for this the notations of Section 3.2 for X n,m , K n,m and Kn,m . For simplicity, we suppose that the Gaussian vectors (W n,m ) in ( 22) are obtained from a single 3D standard Brownian motion W as follows: for n ≥ 0 and m = 0, . . . , m n , we set W n,m = (W (T n,m + h n,m ) -W (T n,m ))/ h n,m . In the sequel, we will use the following process, defined by, for t ∈ [T n,m , T n,m + h n,m ], m = 0, . . . , m n ,

         X n,m (t) = X n,m + t Tn,m
Kn,m ds

K n,m (t) = Kn,m -2 t Tn,m σ ε (X n,m ) Kn,m ds + √ 2 t Tn,m σ ε (X n,m ) Kn,m × dW (s). ( 40 
)
For t ≥ 0, we then combine the (X n,m , K n,m ) into

D h,ε (t) = (X h,ε (t), K h,ε (t)) = ∞ n=0 mn m=0 1 [Tm,n,Tm,n+hn,m) (t)Ψ n,m (t),
where Ψ n,m (t) = (X n,m (t), K n,m (t)) is the solution to [START_REF] Lux | Monte Carlo particle transport methods : neutron and photon calculations[END_REF] with initial condition Ψ n,m (T n,m ) = (X n,m , Kn,m ). Note that D h,ε is simply an interpolation of D h,ε in the intervals [T n,m , T n,m + h n,m ] that will allow us to use the Itô formula.

For any smooth function f , we now introduce b the (smooth) solution to the following backward RTE,

∂ t b + k • ∇ x b + λ(x) 2 1+α(x)/2 S 2 ρ(x, k • p)(b(p) -b( k))σ(dp) = 0, (41) 
with terminal condition b(T, x, k) = f (x, k) and use the notation b(t,

x, k) = b(t, x, k/|k|), (t, x, k) ∈ [0, T ] × R 3 × R 3 .
We have the following result. Proposition 6.1 For any T > 0, any smooth bounded function f on R 3 × S 2 , and any (x, k) ∈ R 3 × S 2 , we have

E (x, k) [f (D h,ε (T ))] -E (x, k) [f ( Dε (T ))] ≤ ε 2-α M /2 2T E ∞ (b) + hF 1 (b),
where E ∞ (b) is defined as in [START_REF] Kim | Beam propagation in sharply peaked forward scattering media[END_REF] with L 2 norms replaced by L ∞ norms in all variables, and where F 1 (b) is an explicit function independent of ε and h that depends on derivatives of b up to order 4.

The notation E (x, k) above indicates that the process under the expectation starts at the point (x, k).

Proof The proof consists in analyzing the discretization error of the diffusion process in a weak sense following the ideas of [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF]. We first write

E h,ε := E z [f (D h,ε (T ))] -E z [f ( Dε (T ))] = E z [b(T, D h,ε (T ))] -E z [b(T, Dε (T ))],
with z = (x, k). Using the Itô formula, see e.g. [2, Th 4.4.7 p. 226], together with the expression of ∆ S 2 given in (37), we have

E z [b(T, Dε (T ))] -b(0, z) = E z T 0 ∂ t b(t, Dε (t)) + Kε (t) • ∇ x b(t, Dε (t)) + σ 2 ε ( Xε (t))∆ S 2 b(t, Dε (t)) + I ε > (t)dt ,
where

I ε > (t) = λ( Xε (t)) 2 1+α( Xε(t))/2 S ε > ρ( Xε (t), Kε (t) • p)(b(t, Xε (t), p) -b(t, Xε (t), Kε (t))σ(dp).
Using the fact that b satisfies (41), we find

E z [b(T, Dε (T ))] = b(0, z) + E z T 0 σ 2 ε ( Xε (t))∆ S 2 b(t, Dε (t)) -I ε < (t)dt ,
where I ε < is as I ε > with S ε > replaced by S ε < . Following the lines of the proof of Lemma 6.1, we obtain

|E[b(T, Dε (T ))] -b(0, z)| ≤ ε 2-α M /2 T E ∞ (b),
where E ∞ (b) is defined as in [START_REF] Kim | Beam propagation in sharply peaked forward scattering media[END_REF] with L 2 norms replaced by L ∞ norms. We move now to the term E z [b(T, D h,ε (T ))] which requires more work. Decomposing the interval [0, T ] according to the grid (T n,m ), we have

b(T, D h,ε (T )) -b(0, z) = b(T, D h,ε (T )) -b(0, z) = n≥0 m≥0 b(T n,m+1 ∧ T, D h,ε (T n,m+1 ∧ T )) -b(T n,m ∧ T, D h,ε (T n,m ∧ T )) + b(T n,m ∧ T, D h,ε (T n,m ∧ T )) -b(T n,m ∧ T, D h,ε (T n,m ∧ T -)) =: B 1 + B 2 ,
with obvious notations and where B 1 is meant to capture the dynamic between jumps while B 2 captures that at the jumps. The double sum and the T n,m ∧ T are only here to simplify the proof. Note that in order to define the sum for all m ≥ 0, we set T n,m = T for m > m n , and note also that there is only a finite number of terms in the sums. We are then led to estimate the differences in B 1 and B 2 for which we will use the process D h,ε . We introduced b since K h,ε is not necessarily on the sphere between the grid points. Since T is on the grid, we have by definition

D h,ε (T n,m ∧ T ) = D h,ε (T n,m ∧ T ). Consider now the notation Dε,h := (X ε,h , Kε,h ) with Kε,h := K ε,h |K ε,h | .
By construction, the process Dh,ε is continuous at the times T n,m that do not correspond to jump times, so that b

(T n,m , D h,ε (T n,m )) = b(T n,m , Dh,ε (T n,m )) = b(T n,m , Dh,ε (T - n,m )) = b(T n,m , D h,ε (T - n,m ))
for those T n,m . As a consequence, B 2 indeed only accounts for jumps. We will then estimate B 1 using the Itô formula for D h,ε between T n,m and T n,m+1 , and the properties of Poisson random measures for B 2 . For the latter, we notice that we have by construction

D h,ε ( T - n ) = Dh,ε ( T - n ).
Using then the random Poisson measure P with intensity measure µ introduced in ( 38) and (39), we can write

B 2 = T 0 ( b(t, D h,ε (t -)) + R(θ, ϕ, Dh,ε (t -), v)) -b(t, D h,ε (t -)) P (dt, dθ, dϕ, dv),
so that, together with the fact that P -µ is a measure-valued martingale, see e.g. [2, Chapter 2],

E z [B 2 ] = n m E z Tn,m+1∧T Tn,m∧T Ĩε > (t)dt with Ĩε > (t) = λ(X h,ε (t)) 2 1+α(X h,ε (t))/2 S ε > ρ(X h,ε (t), Kh,ε (t) • p)( b(t, X h,ε (t), p) -b(t, X h,ε (t), K h,ε (t))σ(dp).
For B 1 , we have from the Itô formula

E z [B 1 ] = n m E z Tn,m+1∧T Tn,m∧T ∂ t b(t, D h,ε (t)) + K h,ε (T n,m ) • ∇ x b(t, D h,ε (t)) + σ 2 ε (X h,ε (T n,m ))B ε n,m (t) dt where B ε n,m (t) = ∆ k b(t, D h,ε (t)) -K h,ε (T n,m ) T D 2 k b(t, D h,ε (t))K h,ε (T n,m ) -2K h,ε (T n,m ) • ∇ k b(t, D h,ε (t)).
As a result,

E z [B 1 + B 2 ] = n m E z Tn,m+1∧T
Tn,m∧T

∂ t b(t, D h,ε (t)) + K h,ε (T n,m ) • ∇ x b(t, D h,ε (t)) + σ 2 ε (X h,ε (T n,m ))B ε n,m (t) + Ĩε > (D h,ε (t)) dt .
Using again the fact that b satisfies (41), we have

∂ t b(t, D h,ε (T n,m )) + K h,ε (T n,m ) • ∇ x b(t, D h,ε (T n,m )) + Qb(t, D h,ε (T n,m )) = 0,
which also holds true for b since the variable K h,ε (T n,m ) has norm 1 at the grid points T n,m . As a consequence,

E z [b(T, D h,ε (T ))] -b(0, z) = n m 7 j=1 E (j) n,m
where E (1) n,m := E z Tn,m+1∧T

Tn,m∧T

∂ t b(t, D h,ε (t)) -∂ t b(t, D h,ε (T n,m )) dt E (2) n,m := E z Tn,m+1∧T Tn,m∧T K h,ε (T n,m ) • (∇ x b(t, D h,ε (t)) -∇ x b(t, D h,ε (T n,m ))) dt E (3) n,m := E z Tn,m+1∧T Tn,m∧T σ 2 ε (X h,ε (T n,m )) (∆ k b(t, D h,ε (t)) -∆ k b(t, D h,ε (T n,m ))) dt E (4) n,m := E z Tn,m+1∧T Tn,m∧T -σ 2 ε (X h,ε (T n,m ))K h,ε (T n,m ) T (D 2 k b(t, D h,ε (t)) -D 2 k b(t, D h,ε (T n,m )))K h,ε (T n,m ) dt E (5) n,m := E z Tn,m+1∧T Tn,m∧T -2 σ 2 ε (X h,ε (T n,m )) K h,ε (T n,m ) • (∇ k b(t, D h,ε (t)) -∇ k b(t, D h,ε (T n,m ))) dt E (6) n,m := E z Tn,m+1∧T Tn,m∧T σ 2 ε (X ε (T n,m ))∆ S 2 b(t, D h,ε (T n,m )) -Ĩε < (D h,ε (T n,m )) dt E (7) n,m := E z Tn,m+1∧T Tn,m∧T Ĩε > (D h,ε (t)) -Ĩε > (D h,ε (T n,m )) dt with Ĩε < (D h,ε (t)) = λ(X h,ε (t)) 2 1+α(X h,ε (t))/2 S ε < ρ(X h,ε (t), Kh,ε (t) • p)( b(t, X h,ε (t), p) -b(t, D h,ε (t))σ(dp). (42) 
In the estimates below involving b, derivatives involving k → k = k/|k| produce terms of the form 1/|k| p for some p > 0. These terms are due to the fact that K n,m does not stay on the sphere at all times. However, these terms can be bounded uniformly thanks to the following lemma. 

|K n,m (s)| ≥ (1 -2hσ 2 ε,∞ ) ≥ 1 2 ,
for h and ε small enough, and

sup s∈[Tn,m,Tn,m+hn,m) E |K n,m (s)| 2 | T n,m , T n,m+1 ≤ 1 + 4hσ 2 ε,∞ ≤ 2.
Proof For s ∈ [T n,m , T n,m + h n,m ], K n,m can be rewritten as the sum of two orthogonal components

K n,m (s) = (1 -2(t -T n,m )σ 2 ε (X n,m )) Kn,m + √ 2σ ε (X n,m ) Kn,m × (W (s) -W (T n,m )) so that |K n,m (s)| 2 ≥ (1 -2hσ 2 ∞,ε ) 2
. Now for the upper bound, using that W n and P are independent, we have

E |K n,m (s)| 2 | T n,m , T n,m+1 ≤ (1 + 2hσ 2 ε,∞ ) + 2σ 2 ε,∞ E |W (s) -W (T n,m )| 2 | T n,m , T n,m+1 ≤ 1 + 4hσ 2 ε,∞ ≤ 2,
where we used that 4hσ 2 ε,∞ ≤ 1. This concludes the proof.

For E

(1) n,m . Using the Itô formula between T n,m and T n,m+1 , we find

E ∂ t b(t, D h,ε (t)) -∂ t b(t, D h,ε (T n,m )) T n,m , T n,m+1 = t Tn,m K h,ε (T n,m ) • ∇ x ∂ t b(t, D h,ε (s)) + σ 2 ε (X h,ε (T n,m )) ∆ k ∂ t b(t, D h,ε (s)) -K h,ε (T n,m ) T D 2 k ∂ t b(t, D h,ε (s))K h,ε (T n,m ) -2K h,ε (T n,m ) • ∇ k ∂ t b(t, D h,ε (s)) ds, so that |E (1) n,m | ≤ h D 2 t,x b ∞ + 2σ 2 ε,∞ ( D 3 t,k,k b ∞ + D 2 t,k b ∞ ) , where σ ∞,ε = sup x σ ε (x). When ε ≤ ε 0 , we have σ ∞,ε ≤ σ ∞,ε0 since r ε is an increasing function of ε. As a result, we obtain n m |E (1) n,m | ≤ h T D 2 t,x b ∞ + 2σ 2 ∞,ε0 ( D 3 t,k,k b ∞ + D 2 t,k b ∞ ) =: hF 2 (b). For E (j)
n,m with j = 2, . . . , 5. Following the same lines as above, we have

n m 5 j=2 |E (j) n,m | ≤ 2h T D 2 x,x b ∞ + 2σ 2 ∞,ε0 ( D 3 x,k,k b ∞ + D 2 x,k b ∞ ) + 4h T σ 2 ∞,ε0 D 2 x,k b ∞ + D 3 x,k,k b ∞ + 2σ 2 ∞,ε0 (2 D 3 k,k,k b ∞ + D 4 k,k,k,k b ∞ + D 2 k,k b ∞ ) =: hF 3 (b).
For E [START_REF] Billingsley | Convergence of probability measures[END_REF] n,m . For this term, we follow the proof of Lemma 6.1 and find n m

|E (6) n,m | ≤ T ε 2-α M /2 E ∞ (b),
where E ∞ (b) is defined as before.

For E [START_REF] Blanc | Variance reduction method for particle transport equation in spherical geometry[END_REF] n,m . Starting from (42), we have

Ĩε > (D h,ε (t)) = λ(X h,ε (t)) 2 1+α(X h,ε (t))/2 S ε > ρ(X h,ε (t), Kh,ε (t) • p)( b(t, X h,ε (t), p) -b(t, X h,ε (t), Kh,ε (t))σ(dp) = λ(X h,ε (t)) 2 1+α(X h,ε (t))/2 2π 0 dϕ 1-ε -1
ds ρ(X h,ε (t), s) × b t, X h,ε (t), s Kh,ε (t) + 1 -s 2 G(ϕ, Kh,ε (t)) -b t, X h,ε (t), Kh,ε (t) where the last line is obtained by changing to spherical coordinates with s = cos(θ), and G(ϕ, k) := cos(ϕ) k⊥ 1 + sin(ϕ) k⊥ 2 .

Above, ( k⊥ 1 , k⊥ 2 ) forms an orthonormal basis of the plane k⊥ . Note that the choice of ( k⊥ 1 , k⊥ 2 ) does not play any role since the variable ϕ is integrated. Now, writing Ĩε > (D h,ε (t)) = λ(X h,ε (t)) 2 1+α(X h,ε (t))/2 2π 0 dϕ 1-ε -1 ds 1 0 dv ρ(X h,ε (t), s) × (s -1) Kh,ε (t) + 1 -s 2 G(ϕ, Kh,ε (t))

• ∇ k b t, X h,ε (t), (1 + v(s -1)) Kh,ε (t) + v 1 -s 2 G(ϕ, Kh,ε (t)) , and using that G(ϕ + π, k) = -G(ϕ, k), we just have to focus on Ĩε > (D h,ε (t)) = λ(X h,ε (t)) 2 1+α(X h,ε (t))/2 2π 0 dϕ 1-ε -1 ds 1 0 dv ρ(X h,ε (t), s)(s -1) Kh,ε (t)

• ∇ k b t, X h,ε (t), (1 + v(s -1)) Kh,ε (t) + v 1 -s 2 G(ϕ, Kh,ε (t)) .

Before applying the Itô formula to this term, we rewrite G as

G(ϕ, k) = I 3 + sin(ϕ)Q( k) + (1 -cos(ϕ))Q 2 ( k) H 1 ( k)
where I 3 is the 3 × 3 identity matrix, Q is defined by [START_REF] Henyey | Diffuse radiation in the galaxy[END_REF], and where

H 1 ( k) := 1 k2 1 + k2 2   k2 -k1 0   = 1 k 2 1 + k 2 2   k 2 -k 1 0   ,
which is orthogonal to k = k/|k|. In fact, G(ϕ, k) corresponds to the rotation of H 1 ( k) ∈ k⊥ with angle ϕ and axis k. This choice simplifies calculations. Now, note that

1-ε -1 ρ(x, s)(s -1)ds ≤ 1 -1 ρ(x, s)(s -1) ≤ a ∞ 2 1-ηm/2 1 -η M /2 ,
so that E [START_REF] Blanc | Variance reduction method for particle transport equation in spherical geometry[END_REF] n,m does not depends on ε. Applying the Itô formula, we obtain n m |E (7) n,m | ≤hT

(1 + (1 + 2 7 • 3 3 )σ 2 ∞,ε0 ) a ∞ 2 1-ηm/2 1 -η M /2 1 + 1 1 -η M /2 × ∇ x λ ∞ + λ ∞ + ∇ x α ∞ D 1 k b ∞ + D 2 k,k b ∞ =: hF 4 (b)
Setting finally F 1 := F 2 + F 3 + F 4 and gathering all previous results concludes the proof of Proposition 6.1.

Step 3 and conclusion

We remark first that the error bound in Proposition 6.1 does not depend on the starting point (x, k). Then, from this pointwise result, we find

E µ0 [f (D h,ε (T ))] -E µ0 [f ( Dε (T ))] ≤ R 3 ×S 2 E x, k[f (D h,ε (T ))] -E x, k[f ( Dε (T ))] µ 0 (dx, d k),
where µ 0 is the probability measure given by [START_REF] Gao | A fast-forward solver of radiative transfer equation[END_REF]. Let now µ(t, f ) = 

P |µ N,h,ε (T, f ) -µ(T, f )| > ηΣ h,ε √ N + ε 2-α M /2 F 0 (u, b, f ) + ε 2-α M /2 2T E ∞ (b) + h F 1 (b) ≤ P |µ N,h,ε (T, f ) -µ h,ε (T, f )| > ηΣ h,ε √ N + ε 2-α M /2 F 0 (u, b, f ) + h F 1 (b) -|µ h,ε (T, f ) -µ(T, f )| ≥0 ≤ P |µ N,h,ε (T, f ) -µ h,ε (T, f )| > ηΣ h,ε √ N where F 0 (u, b, f ) := √ 2T E(u) f L 2 (R 3 ×S 2 ) + 2T E ∞ (u).
We conclude by applying the central limit theorem [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] together with the Portmanteau theorem [6, Theorem 2.1 pp.16].

Conclusion

We have derived an efficient MC method for the resolution of the RTE with non-integrable scattering kernels.

It is based on a small jumps/large jumps decomposition that allows us to simulate the small jumps part at a low cost by solving a standard SDE. The large jumps are obtained by using the stochastic collocation technique with a candidate distribution function that captures the singular behavior of the kernel. We have moreover demonstrated the necessity to include the small jumps component in order to obtain a good accuracy at a manageable computational cost, and investigated practical situations in optical tomography and atmospheric turbulence where the singular RTE is of interest. We in particular highlighted the role of the singularity strength α on the qualitative behavior of the solution. Future investigations include the estimation of the scattering kernel, with an emphasis on the parameter α, from either simulated or experimental data obtained e.g. from light propagation in biological tissues. This problem is of practical interest in biomedical applications and will require the development of appropriate inverse techniques.

A Stochastic collocation

In this section, we describe the stochastic collocation method, see e.g. [START_REF] Grzelak | The stochastic collocation monte carlo sampler: Highly efficient sampling from "expensive" distributions[END_REF], and consider the situation of Section 5.2.2 as an illustration. The goal is to simulate a real-valued random variable W (for which direct simulation is not possible or too costly) from an auxiliary variable V that can be generated efficiently. In our context, we want to simulate W with probability density function (PDF)

f W (w) := a( √ 2w) C W w 1+α/2 1 (ε,2) (w),
where C W is a normalization constant. As already noticed in Section 3.4, a direct method is available when a ≡ 1. Therefore, we take V with PDF

f V (v) := 1 C V v 1+α/2 1 (ε,2) (v),
that can be simulated with

V = F -1 V (U ) = ε(1 -(1 -(ε/2) α/2
)U ) -2/α , where U ∼ U(0, 1) and where F V is the cumulative distribution function (CDF) of V . The stochastic collocation method is based on the following three observations. First, we have F V (V ) ∼ U(0, 1). Second, denoting by F W the CDF of W , we note that W can be (theoretically) simulated with

F -1 W (U ) = F -1 W (F V (V )) =: G(V ),
with G = F -1 W • F V and U = F V (V ). Last, we only need to approximate G and not F -1 W , and with a good candidate V , G behaves better than F -1 W . In order to approximate G, we use Gauss polynomial interpolation and only need to invert F W at a small number of points.

In our example, V captures the "singular" behavior of W , and is as a consequence a good candidate. The function G is then direct to approximate with just a few quadrature points for a reduced computational cost. Because G needs only to be approximated over (ε, 2), with known values at the extremes, we rather use a Gauss-Lobatto-Jacobi quadrature rule. In Figure 18, we illustrate the polynomial approximation of G, with 5 and 10 interpolation points for α = 5/3, ε = 0.01, and a(r) = exp(-r 2 /(2 × 0.8 2 )). Because of our choice for V , one can observe that the overall behavior of the PDF f W is well captured with just 5 quadrature points, even for strongly singular kernels with α = 5/3. However, the fast decay of the function a, which is the main source of error between F W and F V , requires more quadrature points for an accurate approximation and 10 points seem sufficient. 
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 1 Figure 1: Realizations of Gaussian random fields. The upper-left picture represents a field with short-range correlations, while the upper-right picture depicts a field with long-range correlations with λ ≡ 1 and α ≡ 1. In the lower-left picture, we have λ = 1 {|x1|<15} , and α = 0.1 • 1 {|x|≤10} + 1 • 1 {10<|x|} . In the lower-right, we have λ ≡ 1 and α(x 2 ) = 5/3 • 1 {x2≤2} + 0.5 • 1 {2<x2≤8} + 1.9 • 1 {8<x2} .
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 2 Figure 2: Illustration of the evolution of t c w.r.t. α.
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 3 Figure 3: Comparisons of the real and imaginary parts of û1 (t, ξ) for three observation times and for α = 1. The grid in ξ range from -0.2 to 0.2 with 100 discretization points and we run N = 2.4 × 10 6 particles.
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 4 Figure 4: Comparisons of the real and imaginary parts of û2 (t, ξ, θ) for α = 1, for three values of ξ if t = t c , and for ξ = 0 if t = 10t c . We run N = 2.4 × 10 6 particles for the top two pictures and N = 24 × 10 6 for the third one.
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 5 Figure 5: Comparisons of the real and imaginary parts of the observable û3 (t = 2t c , ξ = 0.02, θ) for three values of α. We run N = 24 × 10 6 particles.
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 6 Figure 6: Illustration of the relative error Err ε,α and running time of the MC method with and without a diffusive correction. The reference time in the right picture is the one of corrected method with ε = 0.1. 6, we represent the relative error
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 7 Figure 7: Illustration of the relative error Err ε,α and running time of the (corrected) Monte Carlo method.
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 8 Figure 8: Illustration of the relative error Err ε,α and running time of the (corrected) MC method.
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 9 Figure 9: Illustration of the numerical setting.

  01) and reflected (ε = 0.1) signals for different values of α are the following: running time (s) α = 0.3 α = 0.7 α = 0.1 α = 1.3 α = 1

Figure 10 :

 10 Figure 10: Illustration of the energy at the boundaries F T tr (x ⊥ ) and F T ref (x ⊥ ) w.r.t. x 1 with x 2 = 0 (solid line) and x 2 = 1 (dotted line) for the left picture and x 2 = 10 (dotted line) for the right one. The RMSEs (24) are less than 6.5 × 10 -4 (resp. 2.6 × 10 -5 ) on the left picture (resp. right picture), while the relative errors[START_REF] Gomez | An effective fractional paraxial wave equation for wave-fronts in randomly layered media with long-range correlations[END_REF] are less than 0.6% for the left picture (resp. 1.3% for the right picture) for values of the observables as low as 10 -3 (resp. 10 -5 ).

Figure 11 :

 11 Figure 11: Illustrations of the evolution w.r.t. α of Λ ε defined by (14) and σ ε defined by[START_REF] Chandrasekhar | Radiative transfer[END_REF]. Here, a = 0.002 and ε = 0.01.

Figure 13 :

 13 Figure 13: Comparison of the observables obtained using the Henyey-Greenstein scattering kernel and our singular kernel with α = 1, T = 300, ε = 0.01 for the transmitted observables (left panels), and ε = 0.1 for the reflected ones (right panels). The RMSEs (24) and relative errors (25) are similar to those of Figures 10 and 12.

Figure 14 :

 14 Figure 14: Illustration of the setting with λ = 1 {x3∈(-5,40)} and α(x) = α 1 1 x∈B + 1 • 1 x ∈B where B is a ball centered at 0 with radius 3.

Figure 15 :

 15 Figure 15: Illustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T = 300, and ε = 0.01. For the top two pictures we set x 2 = 0 (solid lines) and x 2 = 1.5 for the top-left and x 2 = 0.5 for top-right picture (dotted lines).

Figure 16 :

 16 Figure 16: Illustration of a three stages α-profile for a non-Kolmogorov phase function.

Figure 17 :

 17 Figure 17: Illustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T = 300, and ε = 0.01. For the top two pictures we illustrate x 2 = 0 (solid lines) and x 2 = 2 for the top-left and x 2 = 5 for top-right picture (dot line).

Lemma 6 . 2

 62 The processes Dε and D ε have the same distribution.

Lemma 6 . 3

 63 We have for any n ≥ 0 and m ≤ m n , inf s∈[Tn,m,Tn,m+hn,m) 

R 3 ×S 2 u

 2 (t, x, k)f (x, k) dx σ(d k) and µ h,ε (t, f ) = E µ0 [f (D h,ε (t))].Using Propositions 2.1 and 6.1, and thatR 3 ×S 2 u ε (T, x, k)f (x, k) dx σ(d k) = E µ0 [f (D ε (T ))] = E µ0 [f ( Dε (T ))] according to Lemma 6.2, we have|µ h,ε (T, f ) -µ(T, f )| ≤ ε 2-α M /2 √ 2T E(u) f L 2 (R 3 ×S 2 ) + ε 2-α M /2 2T E ∞ (b) + hF 1 (b).In order to end the proof of Theorem 3.1, it suffices to remark now that|µ N,h,ε (T, f ) -µ(T, f )| ≤ |µ N,h,ε (T, f ) -µ h,ε (T, f )| + |µ h,ε (T, f ) -µ(T, f )|, so that

Figure 18 :

 18 Figure 18: Illustration of the polynomial approximation to G with 5 (left picture) and 10 (right picture) interpolations points. We use the library Jacobi.jl to compute these quadrature points.