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Abstract
We propose in this work a Monte Carlo method for three dimensional scalar radiative transfer equations

with non-integrable, space-dependent scattering kernels. Such kernels typically account for long-range statis-
tical features, and arise for instance in the context of wave propagation in turbulent atmosphere, geophysics,
and medical imaging in the peaked-forward regime. In contrast to the classical case where the scattering
cross section is integrable, which results in a non-zero mean free time, the latter here vanishes. This creates
numerical difficulties as standard Monte Carlo methods based on a naive regularization exhibit large jump
intensities and an increased computational cost. We propose a method inspired by the finance literature
based on a small jumps - large jumps decomposition, allowing us to treat the small jumps efficiently and
reduce the computational burden. We demonstrate the performance of the approach with numerical simu-
lations and provide a complete error analysis. The multifractional terminology refers to the fact that the
high frequency contribution of the scattering operator is a fractional Laplace-Beltrami operator on the unit
sphere with space-dependent index.

Key words. radiative transfer, singular scattering kernels, Monte Carlo method, wave propagation, random
media, long-range correlations.

1 Introduction
Radiative transfer models have been used for more than a century to describe wave energy propagation through
complex/random media [32, 10], as well as neutron transport [40, 51], heat transfer [54], and are still an active
area of research in astrophysics, geophysics, and optical tomography [39, 43, 44, 45] for instance. In this work,
we propose a new Monte Carlo (MC) method to simulate the following radiative transfer equation (RTE){

∂tu+ k̂ · ∇xu = Qu,
u(t = 0, x, k̂) = u0(x, k̂),

(t, x, k̂) ∈ (0,∞)× R3 × S2, (1)

where S2 denotes the unit sphere in R3, and u is the wave energy density in the context of wave propagation or
a particle distribution function in the context of neutronics. The scattering operator Q has the standard form

(Qu)(x, k̂) = λ(x)
∫
S2

Φ(x, |p̂− k̂|)(u(x, p̂)− u(x, k̂))σ(dp̂), (2)

for σ(dp̂) the surface measure on S2, Φ the scattering kernel, and λ > 0 a function modeling the support of the
scattering process. Regions where λ(x) = 0 are homogeneous and u undergoes free transport. MC methods
have long be used for the resolution of (1), see e.g. [36, 51]. The originality and difficulty in our work lies in
the fact that we consider situations where the mean free time t0 associated with Q vanishes in the scattering
regions, that is

1
t0(x) = λ(x)

∫
S2

Φ(x, |k̂ − p̂|)σ(dp̂) = +∞, where λ(x) > 0, (3)

and as a consequence the standard MC representations of u do not apply. Such a scenario arises for instance in
the context of highly peaked-forward light scattering in biological tissues and in turbulent atmosphere, or more
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generally in the context of wave propagation in random media with long-range correlations that we describe
below. In this paper we write Φ as

Φ(x, |p̂− k̂|) := a(|p̂− k̂|)
|p̂− k̂|2+α(x)

= 1
21+α(x)/2 ρ(x, k̂ · p̂), with ρ(x, s) :=

a
(√

2(1− s)
)

(1− s)1+α(x)/2 s ∈ [−1, 1). (4)

Above, α : R3 −→ [0, 2) accounts for the slow variations of scattering across the ambient space, and a is a smooth
bounded function characterizing some statistical properties of the medium and such that a(0) > 0. Practical
examples are given further. A direct calculation shows that (3) holds when α ∈ [0, 2). Also, the integral in (2)
has to be understood in the principal value sense when α ∈ [1, 2), see [23]. The multifractional terminology
that we use is motivated by the fact that the unbounded operator Q can be expressed as a (multi)-fractional
Laplace-Beltrami operator (−∆S2)α(x)/2 on the unit sphere up to a bounded operator w.r.t. the k̂ variable
[22, 23].

We would like to emphasize that we focus in this work on kernels of the form (4) for simplicity of the
exposition, and that our method applies, after proper decomposition (see [23]), to more general kernels that
behave like (4) at the singularity.

The RTE can be derived from high frequency wave propagation in random media, see e.g. [49]. In such a
context, the velocity field c(x) has the form

1
c2(x) = 1

c20

(
1 +√η V0

(
x,
x

η

))
x ∈ R3, η � 1,

where c0 is the background velocity (that we set to one in the sequel for simplicity), V0 is a mean zero random
field modeling fluctuations around the background, and η is the correlation length of the random medium,
assumed to be small after proper rescaling. The first variable in V0 represents the slow variations of the random
perturbations, while the second one corresponds to their high frequency oscillations. The latter are responsible
for the strong interaction between the wave and the medium over sufficient distances. The scattering kernel Φ
is related to the correlation function of V0, and assuming V0 is stationary (in the statistical sense) with respect
to the fast variable, a kernel of the form (4) can be obtained from random fields such that

E[V0(x, x′)V0(y, y′)] =
√
λ(x)λ(y)

∫
R3

a(|p|)
|p|1+α(x)+α(y)

2

eip·(x
′−y′)dp, (5)

with α ranging from 0 to 2. Denoting by R(x) the expectation in (5) with y = x, y′ = x′ + x/η, one can
show that R behaves like |x|α(x)−2 for |x| � 1, and is therefore not integrable. This is how random fields
with long-range correlations are defined, as opposed to random fields with short-range correlations that exhibit
an integrable correlation function. This approach is of practical interest in biomedical imaging as media with
long-range correlations are able to reproduce experimentally observed power-law attenuations associated with
effective fractional wave equations [20, 25]. The value of the exponents is related to the rate of decay of the
correlation function R, and depends on the nature of the imaged tissues as reported in [14, 26, 27]. Variations
of this exponent can then be used for diagnosis purposes [38, 47].

In Figure 1, we provide examples of such 2D random fields. The top-left picture represents a random
medium with short-range correlations (with a standard Gaussian covariance kernel), while the top-right picture
illustrates a random medium with long-range correlations with α ≡ 1. Because of the singularity at p = 0, one
can observe significantly larger statistical patterns than in the short-range case. In the bottom two pictures,
we highlight the roles of λ and α: λ characterizes scattering regions, and α defines the correlation structure.
In the inner circle of the bottom-left picture we have α ≡ 0.1, which tends to create shorter range fluctuations
than in the outside where α ≡ 1. In the bottom-right picture, we have a three-layer model for α in which the
inner band exhibits smaller statistical patterns than the outer ones. This type of model is used for modeling
non-Kolmogorov atmospheric turbulences, while standard atmospheric turbulence is modeled with the so-called
Kolmogorov power spectrum

Φ(|k|) ∝ a(|k|)
|k|11/3 ,

for |k| in the inertial range of turbulence. This corresponds to the case α = 5/3. This case is not always valid
in experiments as reported in [4, 52, 55], and the statistics of atmospheric turbulence have been shown to vary
with altitude. Models have been derived for instance (see [35] for a review) by considering three ranges (0-2km,
2-8km, and above 8km) with distinct power laws (see Figure 16 for an illustration).
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Figure 1: Realizations of Gaussian random fields. The upper-left picture represents a field with short-range
correlations, while the upper-right picture depicts a field with long-range correlations with λ ≡ 1 and α ≡ 1. In
the lower-left picture, we have λ = 1{|x1|<15}, and α = 0.1 · 1{|x|≤10} + 1 · 1{10<|x|}. In the lower-right, we have
λ ≡ 1 and α(x2) = 5/3 · 1{x2≤2} + 0.5 · 1{2<x2≤8} + 1.9 · 1{8<x2}.

In the context of biological tissues, the following the Gegenbauer scattering kernel ρG and Henyey-Greenstein
(HG) kernel ρHG are commonly used in the peaked-forward regime [29, 48]:

ρG(x, s) := α g (1 + g2 − 2g s)−1−α/2

2π((1− g)−α − (1 + g)−α) , ρHG(x, s) := 1
4π

1− g2

(1 + g2 − 2g s)3/2 . (6)

The parameter g ∈ (−1, 1) is called the anisotropy factor, and ρHG is obtained by setting α ≡ 1 in ρG. The case
g = 0 corresponds to isotropic energy transfer over the unit sphere, g < 0 to dominant transfer in the backward
direction, and g > 0 to forward energy transfer. The peaked forward regime is obtained in the limit g → 1, for
which

1
(1− g)α ρG(x, k̂ · p̂) ∼

g→1

α

2π(2− 2k̂ · p̂)1+α/2
= α

2π|k̂ − p̂|2+α
. (7)

The case α ≡ 1 for the HG kernel is widely used in photon scattering in biological tissues [13, 21, 31]. A
typical realization of the corresponding random field in 2D as g → 1 is depicted in the top-right panel of Figure
1.

There exist a variety of methods for the resolution of (1) that handle the singular nature of the HG kernel,
see e.g. [18, 19, 33, 34, 37]. They are based on finite differences type discretizations, projections over appropriate
bases w.r.t. the k̂ variable, and approximations of the kernel. Here we propose an alternative approach to handle
singular scattering kernel (4) that is based on a MC method. The latter are popular choices for the simulation
of the RTE when the kernel is smooth, see e.g. [36, 41, 42, 46, 51], essentially for their adaptability to a wide
range of configurations and their simplicity of implementation. A downside is their slow convergence rate, and
there is a vast literature on variance reduction techniques for acceleration. In this work, we focus on the design
of an efficient MC method and postpone any variance reduction considerations to future works.

Our approach is based on an adaptation of a method proposed by Asmussen-Cohen-Rosiński [3, 11] (ACR)
for the simulation of Lévy processes with infinite jump intensity. It relies on a small jumps/large jumps de-
composition of the corresponding infinitesimal generator. The main idea is to approximate the generator of the
small-jump part, which possesses the infinite intensity due to the singularity of kernel, by a Laplace-Beltrami
operator (with respect to the angular variables) on the unit sphere S2. This requires us to simulate paths of a
jump-diffusion process over the unit sphere. For this purpose, we use the characterization of Brownian motion
on the unit sphere given in [5] based on a standard stochastic differential equation (SDE) in R3 that is suitable
for space-dependent kernels. This situation is hence more involved than the 2D case we investigated in [24]
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where the small jumps part can be approximated by Brownian motion on the unit circle for which analytical
expressions are available. Note that, as shown in [24], neglecting small jumps altogether in order to use standard
MC methods leads to large errors, and reducing those comes at significantly increased computational cost.

Denoting by µ̂(u) the estimator produced by our MC method for some observable µ(u) built on the solution
u to (1), we provide an error estimate of the form

P
(
|µ̂(u)− µ(u)| > E1 + E2 + E3

)
� 1

as a theoretical support of our method. Above, E1, E2, and E3 are small terms characterizing the various
approximation errors from the original model: the Laplace-Beltrami (i.e. small jumps) approximation, the
discretization error of the diffusion process over the unit sphere, and the MC error. Note that the method we
propose here applies directly to the stationary version of (1)

k̂ · ∇xu−Qu = u0, (x, k̂) ∈ R3 × S2,

with source term u0, through the relation

u(x, k̂) :=
∫ ∞

0
u(t, x, k̂)dt.

The paper is organized as follows. In Section 2, we introduce probabilistic representations for (1) and its
approximation based on the ACR method. In Section 3, we describe our MC method, state the main theoretical
result regarding the overall approximation error, and detail the simulation algorithms. Section 4 is dedicated
to the validation of the method using semi-analytical solutions. Numerical illustrations are given in Section 5,
where we investigate the role of the strength α of the singularity, both when constant or space-dependent in the
case of non-Kolmogorov turbulence, and compare with solutions for the HG kernel. Section 6 is devoted to the
proofs of our main results and we recall in an Appendix the stochastic collocation method.

The numerical simulations are performed using the Julia programming language (v1.6.5) on a NVIDIA
Quadro RTX 6000 GPU driven by a 24 Intel Xeon Sliver 2.20GHz CPUs station. The codes have been imple-
mented using the CUDA.jl library [8, 9].

Acknowledgment. OP acknowledges support from NSF grant DMS-2006416.

2 Probabilistic representations and approximation
2.1 Representation for (1)
The starting point is the following standard probabilistic interpretation to (1):

u(t, x, k) = Ex,k̂
[
u0(D(t))

]
:= E

[
u0(D(t)) |D(0) = (x, k̂)

]
,

where D = (X,K) is a Markov process on R3 × S2 with infinitesimal generator

Lf(x, k̂) := −k̂ · ∇xf(x, k̂) + λ(x)
21+α(x)/2

∫
S2
ρ(x, p̂ · k̂)

(
f(x, p̂)− f(x, k̂)

)
σ(dp̂).

A path, or a realization, of the Markov process D is often referred to as a particle trajectory. The X component
of D represents the position of a particle, and the component K its direction. The generator L comprises
two terms, the transport part describing free propagation of the particle, and the scattering operator (often
referred to as the jump part in the probabilistic literature) describing the evolution of its direction. The jump
component exhibits a non-integrable singularity leading to a infinite jump intensity and a vanishing mean free
time as expressed in (3).

Note that when λ and α are constant, it is shown in [23] that the solution u is unique and infinitely
differentiable in all variables for t > 0 for any square integrable initial condition. When λ and α are infinitely
differentiable with bounded derivatives at all orders, this result remains valid and we will assume throughout
this work that u is smooth. The same applies to the function uε defined further in Proposition 2.1.

In order to adapt the ACR method, we introduce the following small region over which the singularity of
the kernel ρ (in (4)) is not integrable, resulting in an unbounded infinitesimal generator L:

Sε< = Sε<(k̂) := {p̂ ∈ S2 : 1− p̂ · k̂ < ε} ε ∈ (0, 1). (8)
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We can now decompose the jump part of the generator L into two components

Lf(x, k̂) = −k̂ · ∇xf(x, k̂) + Lε<f(x, k̂) + Lε>f(x, k̂)

:= −k̂ · ∇xf(x, k̂) + λ(x)
21+α(x)/2

(∫
Sε<

+
∫
Sε>

)
ρ(x, p̂ · k̂)

(
f(x, p̂)− f(x, k̂)

)
σ(dp̂),

where Sε> = (Sε<)c is the complementary set of region (8) over the unit sphere. The part of the scattering
operator involving Sε> (with no singularity) is the infinitesimal generator of a standard jump Markov process.
Regarding Sε< (with the singularity), the following result justifies the approximation of this singular part by a
Laplace-Beltrami operator ∆S2 over the unit sphere S2. We will use the notation r′ε =

√
1− (1− ε)2/(2− ε) in

what follows, and set in the rest of the paper 0 < ε ≤ ε0 < 1 and 0 ≤ αm ≤ α(x) ≤ αM < 2.
Proposition 2.1 Let u be the solution to (1) and uε be the solution to

∂tuε + k̂ · ∇xuε = σ2
ε(x)∆S2uε + λ(x)

21+α(x)/2

∫
Sε>

ρ(x, p̂ · k̂)(uε(p̂)− uε(k̂))σ(dp̂),

uε(0, x, k̂) = u0(x, k̂),
(9)

for (t, x, k̂) ∈ (0,∞)× R3 × S2, where

σ2
ε(x) := 21−α(x)a(0)πλ(x)

2− α(x) r′ε
2−α(x)

. (10)

Assuming a′(0) = 0, for any T > 0, we have

sup
t∈[0,T ]

‖u(t, ·, ·)− uε(t, ·, ·)‖L2(R3×S2) ≤ ε2−(αM/2)
√

2T E(u) (11)

where E(u) is defined in (34).

The proof of Proposition 2.1 is postponed to Section 6.1. The term E(u) is independent of ε and depends on
derivatives of u w.r.t. k̂ up to order 4. Note that the error is of order ε1−(αM/2)/(2−αM ) when a′(0) 6= 0 yielding
a less accurate approximation than for a′(0) = 0. The difference comes from a truncated expansion along the
sphere curvature providing an extra order in ε assuming a′(0) = 0. This later assumption holds throughout the
remaining of the paper. Based on (11), we then devise a MC method for (9) instead of (1). The advantage in
using (9) is the fact that the angular diffusion term σ2

ε(x)∆S2 is the generator of a Markov process that can be
easily simulated. Indeed, for W a standard 3D Brownian motion on R3 and × the cross product in R3, it is
shown in [5] that the process B solving the SDE

dB = B × dW −Bdt, B(0) ∈ S2,

has generator 1
2∆S2 . A simple adaptation then gives the desired diffusion coefficient. Since the error is of order

ε2−(αM/2), it is always smaller than ε, and can be adjusted to obtain a desired accuracy. Note also that σε(x)
increases as α(x) gets to 2, and diffusion on the sphere eventually becomes the dominant dynamics.

2.2 Representation for (9)
We interpret (9) as the forward Kolmogorov equation of an appropriate Markov process, and as a consequence
focus on forward MC methods, see e.g. [36] for terminology. Backward equations are simulated in a similar
manner, and can be combined with forward methods for variance reduction techniques [7, 40, 51].

The Markov process we consider for this approach is defined by

Dε(t) :=
∑
n≥0

1[Tn,Tn+1)(t)ψZnn (t− Tn) t ≥ 0, (12)

where (in the remaining of the paper we extensively make use of the notation z = (x, k̂)):

1. The flow ψzn = (Xx
n ,K

k̂
n) is the unique strong solution to the SDE{

dXx
n(t) = K k̂

n(t) dt
dK k̂

n(t) =
√

2σε(Xx
n(t))K k̂

n(t)× dWn(t)− 2σ2
ε(Xx

n(t))K k̂
n(t) dt,

(13)

where ψzn(0) = z, × is the cross product in R3, (Wn)n is a sequence of independent standard Brownian
motions on R3, and σε is defined by (10).
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2. The jump times (Tn)n are distributed according to

P
(
Tn+1 − Tn > t |Dε(Tn) = z, (ψzn(s))s∈[0,t]

)
= exp

(
−
∫ t

0
Λε(ψzn(s))ds

)
, ∀n ≥ 0,

with T0 = 0, and for ρ given by (4),

Λε(z) := λ(x)
21+α(x)/2

∫
Sε>

ρ(x, p̂ · k̂)σ(dp̂). (14)

3. The jumps (Zn)n describe a Markov chain with transition probability

P(Zn+1 ∈ dy ⊗ σ(dp̂) |Zn, Tn+1 − Tn) = Πε(zn+1, dz), (15)

where zn+1 := ψZnn (Tn+1 − Tn), and

Πε(z, dz) := πε(z, p̂)σ(dp̂)δx(dy), (16)

with density

πε(z, p̂) := ρ(x, p̂ · k̂)∫
Sε>
ρ(x, p̂′ · k̂)dσ(p̂′)

1Sε>(p̂), z = (x, k̂), (17)

which is supported over Sε>. The above Dirac mass δx(dy) := δ(x−y)dy translates the fact that the jumps
only hold w.r.t. the k̂ variable.

Let us note that the above family of standard Brownian motions (Wn(t))t∈[0,Tn+1−Tn] can be defined as

Wn(t) = W (t+ Tn)−W (Tn), t ∈ [0, Tn+1 − Tn],

for any n, where W is a single standard Brownian motion on R3. We have then the following probabilistic
representation for the solution to (9).

Proposition 2.2 The Markov process Dε defined in (12) has for infinitesimal generator

Aεg(z) := k̂ · ∇xg(z) + σ2
ε(x)∆S2g(z) + Λε(z)

∫
S2
πε(z, p̂)

(
g(x, p̂)− g(x, k̂)

)
σ(dp̂),

and we have
Pµ0(Dε(t) ∈ dx⊗ σ(dk̂)) = 1

ū0
uε(t, x, k̂) dxσ(dk̂), (18)

where

µ0(dx, dk̂) := P(Dε(0) ∈ dx⊗ σ(dk̂)) = u0(x, k̂)
ū0

dxσ(dk̂) with ū0 :=
∫
R3×S2

u0(x, k̂) dxσ(dk̂). (19)

The terminology forward comes from the fact that the particles are emitted at random points at time
t = 0 (through µ0) and propagate towards the observation position z = (x, k̂). The proof of Proposition 2.2 is
provided in Section 6.2. Let us illustrate two aspects of the representation (18). In order to obtain an estimation
of uε(t, x, k̂) at the point z = (x, k̂), we calculate the probability

ū0

|B(z, r)| Pµ0

(
Dε(t) ∈ B(z, r)

)
' uε(t, x, k̂), (20)

where B(z, r) ⊂ R3 × S2 stands for the open ball centered at z = (x, k̂) with radius r � 1. If we are only
interested in e.g. the energy density at point x, we estimate

ū0

|B(x, r)| Pµ0

(
Dε(t) ∈ B(x, r)× S2) = ū0

|B(x, r)|Pµ0

(
D1,ε(t) ∈ B(x, r)

)
'
∫
S2
uε(t, x, k̂)σ(dk̂),

where B(x, r) ⊂ R3 stands for the open ball centered at x with radius r � 1, and D1,ε is the x component of
Dε.
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3 Monte Carlo Method
Based on the previous probabilistic representation of (9), solving (9) requires the generation of random paths
of the stochastic process Dε. For any measurable bounded functions f , the convergence of the estimator

µN (t, f) := 1
N

N∑
j=1

f(Dj
ε(t)) −→

N→∞

∫
f(x, k̂)uε(t, x, k̂) dxσ(dk̂) Pµ0 − almost surely,

is guaranteed by the strong law of large numbers. Above (Dj
ε)j is a sample of Dε. We detail next how to treat

efficiently the diffusion and jump components of the process Dε.

3.1 The jump part
Since the process Dε is inhomogeneous, i.e. Λε and Πε both depend on z = (x, k̂), we use the so-called thinning
method, also referred to as the fictitious shocks method [36]. It is based on a acceptation/rejection step and
consists in simulating at first more jumps (or shocks) than necessary. In a second step, some of the jumps are
rejected according to an appropriate probability distribution in order to recover the original dynamics. Assume
0 < αm ≤ α(x) ≤ αM < 2. A direct calculation shows that

Λε(z) ≤
2π supλ sup a

21+α(x)/2

∫ 1−ε

−1

dt

(1− t)1+α(x)/2 = 4π supλ sup a
α(x)21+α(x)/2εα(x)/2 ≤

2π supλ sup a
αmεαM/2

=: Λ̄ε. (21)

The fictitious jump times are then drawn as

T̄n :=
n∑
j=1

ξj , and T̄0 = 0,

where the (ξj)j are i.i.d. exponentially distributed random variables with parameter Λ̄ε.
The thinning method consists in the following acceptation/rejection step. At a jump time T̄n and current

position zn, we draw a jump z according to the probability distribution Πε given by (15). This jump is accepted
with probability p(zn) = Λε(zn)/Λ̄ε. Otherwise, the process Dε continues to diffuse starting from zn, and T̄n is
not considered as a true jump time for Dε. Practically, we can define the state as

Z̄n := z 1(Un≤p(zn)) + zn 1(Un>p(zn))

at each fictitious jump times T̄n. Above, Un is a random variable uniformly distributed over [0, 1] and all the
Un’s are independent.

3.2 The diffusion part
The diffusion part between two jumps satisfies the linear SDE (13), and is simulated using the following Euler-
Maruyama type scheme

(Sn,m) :


Xn,m+1 = Xn,m + hn,m K̂n,m

Kn,m+1 = K̂n,m − 2hn,m σ2
ε(Xn,m) K̂n,m +

√
2hn,m σε(Xn,m) K̂n,m ×Wn,m

K̂n,m+1 = Kn,m+1
|Kn,m+1| ,

(22)

where the (Wn,m)m,n are i.i.d. mean-zero Gaussian random vectors with identity covariance matrix. Note
that the above scheme does not conserve the Euclidean norm with respect to the angular variable, and as a
consequence the evolution of (Kn,m)n,m does not remain on the unit sphere over the iterations. This motivates
the definition of K̂n,m. We have nevertheless E[ |Kk

n,m|2 ] = 1, for all n andm, and Theorem 3.1 below guarantees
that the distribution of K̂n,m provides a converging approximation of the true statistics. The stepsizes hn,m are
determined from a fixed stepsize h as follows. Since our convergence theorem further is stated at a fixed time
T , we include t = T in the discretization grid for simplicity. Let then NT such that T̄NT ≤ T < T̄NT+1. When
n 6= NT , let dtn = T̄n+1 − T̄n. With mn = [dtn/h] ([·] the integer part), we set, for n 6= NT ,

hn,m =
{

h for m = 0, . . . ,mn − 1
dtn −mnh for m = mn,

and if mn = 0, we set hn,0 = dtn. In the rest of the paper, the grid is denoted by (Tn,m), where Tn,m+1 =
Tn,m + hn,m for Tn,0 = T̄n, n ≥ 0 and m = 0, . . . ,mn − 1. When n = NT , we divide the interval [T̄NT , T̄NT+1]
similarly into subintervals of length hNT ,m at most h (we suppose there are mNT of those) and such that
TNT ,m = T for one m in 0, . . . ,mNT .
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3.3 The overall discretized process and convergence
For any t ≥ 0, the approximate version of the process Dε, denoted Dh,ε, is defined by:

Dh,ε(t) = (Xh,ε(t),Kh,ε(t)) :=
∞∑
n=0

mn∑
m=0

1[Tn,m,Tn,m+hn,m)(t)Zn,m,

where

1. For any m ∈ {0, . . . ,mn},
Zn,m+1 = Sn,m(Zn,m),

where Zn,0 = Z̄n for the (Z̄n)n defined below, and where Sn,m(Zn,m) = (Xn,m+1, K̂n,m+1) is given by the
scheme (22) with initial condition Zn,m = (Xn,m, K̂n,m).

2. The sequence (Z̄n)n, is defined by

Z̄n+1 = z 1(Un≤p(Zn,mn+1)) + Zn,mn+1 1(Un>p(Zn,mn+1)) n ≥ 0,

where z is drawn according to the probability measure Πε(Zn,mn+1, dz) defined by (16).

Below, b is the backward solution to (1) with terminal condition b(T, x, k̂) = f(x, k̂), see (41). Our conver-
gence result is then the following (we set h such that 4h supx σ2

ε(x) ≤ 1 to simplify some expressions):

Theorem 3.1 Consider

µN,h,ε(t, f) = 1
N

N∑
j=1

f(Dj
h,ε(t)), µ(t, f) =

∫
f(x, k̂)u(t, x, k̂) dxσ(dk̂),

where (Dj
h,ε)j is a sample of Dh,ε. For any T > 0, η > 0 and any smooth bounded function f on R3 × S2, we

have
lim sup
N→∞

P
(
|µN,h,ε(T, f)− µ(T, f)| > ηΣh,ε√

N
+ ε2−(αM/2)F0(u, b, f) + hF1(b)

)
≤ erfc(η/

√
2), (23)

where
Σh,ε =

√
V ar

(
f(Dh,ε(T ))

)
≤ sup |f |.

The functions F0 and F1 are explicit and independent of ε and h, and are defined in the proof of the theorem in
Section 6.3.

Theorem 3.1 is proved in Section 6.3. In (23), there are three terms that quantify the approximation error of
our estimator µN,h,ε(t, f): one of order ε2−(αM/2) due to the approximation of u by uε (the smaller the αM ,
i.e. the less singular the kernel is, the smaller the error), one of order h due to the numerical approximation of
the diffusion over the unit sphere, and one due to the MC approximation with the standard 1/

√
N convergence

rate. Note that the discretization error of the diffusion process is only of order h and not of order the standard√
h. The reason is that we are only interested in the convergence of Monte Carlo estimators, allowing us to

consider this discretization error in the weak sense [53]. However, a weak second-order Runge-Kutta method
can be considered to provide an error in h2 instead of h for the Euler scheme [12]. Modifications of the SDE (13)
can also be considered to provide weak higher-order scheme [1]. The main goal of this paper being to present a
methodology to capture efficiently the behavior induced by the singularity, we focus our attention on the error
in ε, and do not present weak-higher order discretization schemes for the SDE. In this way, the Euler scheme
is considered for simplicity in the proof of Theorem 3.1. For the numerical simulations of Sections 4 and 5,
that illustrate the roles of ε and α in the approximation, the parameter h will be chosen proportionally to the
shortest mean free time Λ̄−1

ε , and small enough so that the approximation error w.r.t. ε in dominant. N will
also be chosen large enough so that the error of approximation in ε is dominant. The MC error is controlled
by the standard deviation Σh,ε, and variance reduction techniques can be designed to reduce this term. When
estimating the energy density over a given region B, as in (20), the number of particles N needed to reach a given
error threshold can be estimated as follows: the root mean square error of the MC estimator for f = 1B/|B|
reads

RMSEh,ε :=
E
[(
µN,h,ε(T, f)− E

[
f(Dh,ε(T ))]

)2]1/2
E
[
f(Dh,ε(T ))

] =

√
Ph,ε(1− Ph,ε)

N |B|2
≤ 1

2
√
N |B|

, (24)
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and the relative MC error is

RMSEh,ε

E
[
f(Dh,ε(T ))

] = 1√
N

√
1− Ph,ε
Ph,ε

≤ 1√
NPh,ε

, (25)

with
Ph,ε := Pµ0(Dh,ε(T ) ∈ B) ' 1

ū0

∫
B

uε(t, x, k)dxσ(dk̂).

Above, µ0 and ū0 are given by (19). A RMSE lower than a threshold c would then require

N ≥ 1
4c2|B|2 , (26)

while a relative error would require
N ≥ 1

c2Ph,ε
. (27)

If B is a region centered around a point (x0, k0), with a small volume (that is Ph,ε � 1 as for (20)), we would
have

N ≥ ū0

c2|B|uε(t, x0, k0) .

3.4 Algorithms
We discuss in this section practical aspects of the method. Before stating the algorithm itself, let us emphasize
that a key point is to sample efficiently the jumps from Πε given by (16).

Let us fix the current state of the process Dh,ε at a point z = (x, k̂). In spherical coordinates, πε defined in
(17) is equivalent to a probability density function drawing a polar angle θ and an azimuthal angle ϕ. Here, the
north pole of the spherical system is the current direction k̂, and it is direct to see that the azimuthal angle ϕ is
uniformly distributed over (0, 2π). We denote this by ϕ ∼ U(0, 2π). For the polar angle, a change of variables
leads to θ = arccos(1− χ), where χ has probability density function

fχ(χ|x) := a(
√

2χ)
Cχχ1+α(x)/2 1(ε,2)(χ),

and Cχ is a normalizing constant. Therefore, to draw a jump according to (17) starting from k̂, we compute

p̂ = R(θ, ϕ, k̂) := cos(θ)k̂ + sin(θ)
(
I3 + sin(ϕ)Q(k̂) + (1− cos2(ϕ))Q2(k̂)

)
k̂⊥, (28)

where k̂⊥ is an orthonormal vector to k̂, I3 is the 3× 3 identity matrix, and

Q(k) =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 , where k = (k1, k2, k3). (29)

The transformation R corresponds to a rotation from k̂ to p̂ with polar angle θ with respect to k̂ and azimuthal
angle ϕ with respect to k̂⊥. Note that the choice of k̂⊥ is not important since ϕ is uniformly distributed over
(0, 2π).

We notice that in the case of a constant function a ≡ a0, one obtains a truncated Pareto distribution for
χ. The corresponding cumulative distribution function can be exactly inverted giving then a direct simulation
method. In this case, the cumulative distribution function is given by, for χ ∈ (ε, 2),

Fχ(χ|x) = a0

Cχ

∫ χ

ε

dv

v1+α(x)/2 = 1− (ε/χ)α(x)/2

1− (ε/2)α(x)/2 .

The random variable χ can then be generated by

χ = F−1
χ (U |x) = ε(1− (1− (ε/2)α(x)/2)U)−2/α(x),

where U is a random variable uniformly distributed over (0, 1) (U ∼ U(0, 1)). In the case of a non constant
function a, the main features of the density fχ(·|x) are similar to those of the truncated Pareto distribution, and
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a stochastic collocation method can be considered to simulate fχ(·|x). This method is described in Appendix A
in our context. It is based on the simulation of the above truncated Pareto distribution and proves to be very
effective.

The algorithm used to simulate a trajectory of Dh,ε can be summarized in the following two procedures.
The first one corresponds to the simulation of the diffusion process between two (fictitious) jumps, and we use
the notation

S(Z,W, h) =
{
X + hK

K − 2hσ2
ε(X)K +

√
2hσε(X)W ×K,

with Z = (X,K). Below, N(0, I3) stands for the three dimensional multivariate Normal distribution with
identity covariance matrix.
Algorithm 1: Diffusion

input : current state of the particle z = (x, k̂), duration of the diffusion δt
output : state of the particle after the diffusion process
initialization: n← [δt/h] // number of iterations
Z ← z // initialization of the diffusion state
// Main loop of the diffusion
for j ← 1 to n do

W ∼ N(0, I3)
Z ← S(Z,W, h)
K ← K/|K|

// Add a diffusion step with stepsize h′ ≤ h to match the duration δt
h′ ← δt− nh
W ∼ N(0, I3)
Z ← S(Z,W, h′)
K ← K/|K|
return Z

The second procedure combines the diffusion step with the jump process. Below, we denote by E(Λ̄ε) the
exponential distribution with parameter Λ̄ε defined by (21).
Algorithm 2: TrajectorySimulation
input : Duration T of the particle evolution
output : state of the particle at time T
initialization: Z ← (x, k̂) ∼ µ0 // initialization of the particle state at random
t← 0 // temporary time variable
δt ∼ E(Λ̄ε) // first jump time
// main loop for the path evolution
while t+ δt < T do

Z ← Diffusion(Z, δt)
U ∼ U(0, 1)
if U ≤ p(Z) then

// the jump is accepted, Z is transformed
χ ∼ fχ(· |x)
θ ← arccos(1− χ)
ϕ ∼ U(0, 2π)
p̂← R(θ, ϕ, k̂)
Z ← (x, p̂)

t← t+ δt

δt ∼ E(Λ̄ε)
// remaining diffusion step of duration T − t
Z ← Diffusion(Z, T − t)
return Z

The rest of the paper is dedicated to numerical simulations and the proofs of our main results.
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4 Validation
In this section, we first derive a semi-analytical solution to validate our method in the simplest situation where
α, a, λ are constant functions. We then highlight the crucial role of the small jumps correction for computational
efficiency.

4.1 Semi-analytical solution
We set λ ≡ 1 and the RTE (1) reads

∂tu+ k̂ · ∇xu = Qu (30)

with scattering kernel
Qf(k̂) = a

∫
S2

σ(dp̂)
|p̂− k̂|2+α

(f(p̂)− f(k̂)), k̂ ∈ S2.

Using the the Funk-Hekke formula [50], this operator can be diagonalized in L2(S2) equipped with the inner
product 〈

f, g
〉
L2(S2) =

∫
S2
f(p̂)g(p̂)σ(dp̂) =

∫ π

0

∫ 2π

0
f(θ, ϕ)g(θ, ϕ) sin(θ)dθdϕ.

The eigenvalues are given by

λl = aπΓ(−α/2)
2αΓ(1 + α/2)

(
Γ(l + 1 + α/2)
Γ(l + 1− α/2) −

Γ(1 + α/2)
Γ(1− α/2)

)
l ∈ N,

and the eigenvectors are the spherical harmonics

Yl,m(k̂) = Yl,m(θ, ϕ) :=

√
(2l + 1)(l −m)!

4π(l +m)! Pml (cos(θ))eimϕ, (l,m) ∈ N× {−l, . . . , l},

where the Pml are the associated Legendre polynomials. In order to derive a semi-analytical solution, we Fourier
transform (30) w.r.t. x, and introduce

û(t, q, k) =
∫
R3
u(t, x, k)e−iq·xdx.

Above, q = q̃ := (0, 0, ξ) so that ũ(t, ξ, k̂) = û(t, q̃, k̂) solves

∂tũ+ i k̂ · q̃ ũ = Qũ. (31)

Writing k̂ in spherical coordinates with (0, 0, 1) as north-pole, this latter equation reads,

∂tũ(t, ξ, θ, ϕ) = (Q− iξ cos(θ))ũ(t, ξ, θ, ϕ), (t, ξ, θ, ϕ) ∈ (0,∞)× R× (0, π)× (0, 2π).

We now decompose ũ on the basis of spherical harmonics

ũ(t, ξ, θ, ϕ) =
∞∑
l=0

l∑
m=−l

ûl,m(t, ξ)Yl,m(θ, ϕ),

resulting in

d

dt
ûl,m = λlûl,m − iξ(d+

l,mûl+1,m + d−l,mûl−1,m) for l ≥ 1, d

dt
û0,0 = −iξd+

0,0 û1,0 for l = 0. (32)

Above, we have used the fact that

〈
Ym′,l′ , cos(θ)Ym,l

〉
L2(S2) =


d+
l,m :=

√
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3) if m = m′ and l′ − l = 1,

d−l,m :=

√
(l +m)(l −m)
(2l − 1)(2l + 1) if m = m′ and l′ − l = −1,

0 otherwise.
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For computational purposes, we introduce a cutoff in the variable l (l ∈ {0, . . . , L}), and consider a truncated
version of (32) as the vector differential equation

d

dt
ûL(t, ξ) = (DL − iξ AL) ûL(t, ξ), ûL(t, ξ) =

(
ûLl2+j(t, ξ)

)
l∈{0,...,L} j∈{0,...,2l} ∈ C(L+1)2

, (33)

where DL and AL are two (L+ 1)2 × (L+ 1)2 matrices defined by
DL
l2+j+1,l2+j+1 := λl for l ∈ {0, . . . , L}, j ∈ {0, . . . , 2l},

ALl2+j+1,(l+1)2+j+2 := d+
l,j−l for l ∈ {0, . . . , L− 1}, j ∈ {0, . . . , 2l}

ALl2+j+2,(l−1)2+j+1 := d−l,j−l+1 for l ∈ {1, . . . , L}, j ∈ {0, . . . , 2(l − 1)}.

All other coefficients in both DL and AL are set to 0. Note that the indexing of the matrices starts at 0 for
simplicity. The solution to (33) reads ûL(t, ξ) = e(DL−iξ AL)tûL(0, ξ), where the matrix exponential is computed
numerically. For our test case, we consider the following initial condition

u(t = 0, x, k̂) = 1√
2π
e−|x|

2/2 · 2 cos2(θ/2) = 1√
2π
e−|x|

2/2(2
√
πY0,0(θ, ϕ) + 2

√
π/3Y0,1(θ, ϕ)),

so that

ûLl2+j(t = 0, ξ) =

 2
√
πe−ξ

2/2 for l = j = 0,
2
√
π/3e−ξ2/2 for l = j = 1,

0 otherwise.

Finally, an approximation of ũ, solution to (31), is given by

ũL(t = 0, ξ, θ, ϕ) =
L∑
l=0

2l∑
j=0

[
e(DL−iξ AL)tûL(0, ξ)

]
l2+j

Yl,j−l(θ, ϕ).

For numerical comparisons with our MC method, we introduce a discretization of the unit sphere S2 via the
polar and azimuthal angles (θm)m and (ϕm)m, with respective stepsize ∆θ and ∆ϕ. We then compare

ũL(t, ξ, θm, ϕ′m) ' 1
∆θ∆ϕ

∫ θm+1

θm

∫ ϕm′+1

ϕm′

ũL(t, ξ, θ, ϕ) sin(θ)dθdϕ

with its MC approximation

ũLN (t, ξ,m,m′) = 1
∆θ∆ϕN

N∑
n=1

e−iξX
n
3,h,ε(t)1(

θn
h,ε

(t)∈(θm,θm+1), ϕn
h,ε

(t)∈(ϕm′ ,ϕm′+1)
)

where θnh,ε and ϕnh,ε are respectively the polar and azimuthal angles for K̂n
h,ε, and where (Dn

h,ε)n = (Xn
h,ε, K̂

n
h,ε)n

is a sample of Dh,ε introduced in Section 3.
In the following numerical illustrations we consider a = 0.002 in the RTE, and set ∆θ = ∆ϕ = 0.05, ε = 0.1

and h = 0.5/Λ̄ε ' 12.6 for the approximation parameters. Note that these choices for ε and h are providing us
with a good accuracy at a very low computational cost as we will see. Such values may have to be decreased in
other setups and when considering different observables. For instance, in Section 5.2 where α is varying, smaller
values of ε and h are needed to capture correctly the solution.

Also, in the context of singular scattering kernels, the classical notion of scattering mean free time is not
informative since it is equal to 0 (see (3)). Instead, we define a characteristic time using the inverse of the second
eigenvalue of Q, i.e. the first non zero eigenvalue, and set tc = − 1

λ1
. We refer to Figure 2 for the evolution of

tc w.r.t. α.
In our setting, tc ' 79.6 (for α = 1), which is about six times the stepsize h needed to capture the diffusive

correction. Also, since ε is not too small, this correction plays a significant role in obtaining the correct dynamics.

In Figure 3, we compare, for α = 1, the real and imaginary parts of the observable

û1(t, ξ) :=
∫ π

0

∫ 2π

0
ũL(t, ξ, θ, ϕ) sin(θ)dθdϕ with 4π∆θ∆ϕ

∑
m,m′

ũLN (t, ξ,m,m′),
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Figure 2: Illustration of the evolution of tc w.r.t. α.

Figure 3: Comparisons of the real and imaginary parts of û1(t, ξ) for three observation times and for α = 1.
The grid in ξ range from −0.2 to 0.2 with 100 discretization points and we run N = 2.4× 106 particles.

Figure 4: Comparisons of the real and imaginary parts of û2(t, ξ, θ) for α = 1, for three values of ξ if t = tc, and
for ξ = 0 if t = 10tc. We run N = 2.4 × 106 particles for the top two pictures and N = 24 × 106 for the third
one.

for three values of t. In Figure 4, we compare the real and imaginary parts of

û2(t, ξ, θ) :=
∫ 2π

0
ũL(t, ξ, θ, ϕ)dϕ sin(θ) with 4π∆ϕ

∑
m′

ũLN (t, ξ,m,m′),
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for three values of ξ.
In Figure 5, we compare

û3(t = 2tc, ξ = 0.02, θ) :=
∫ 2π

0
ũL(t = 2tc, ξ = 0.02, θ, ϕ)dϕ sin(θ) with 4π∆ϕ

∑
m′

ũLN (t = 2tc, ξ = 0.02,m′),

for three values of α.

Figure 5: Comparisons of the real and imaginary parts of the observable û3(t = 2tc, ξ = 0.02, θ) for three values
of α. We run N = 24× 106 particles.

In all these illustrations, and despite somewhat fairly large values for ε and h, we observe a very good
agreement between the Monte Carlo results and the semi-analytic calculations.

4.2 Role of the correction
In this section, we highlight the role of the correction provided by the diffusion over the unit sphere w.r.t. the
k̂-variable. To this end, we compare the following observables obtained from the semi-analytic solution

u4(x3) =
∫ 3tc

0
ũL(t, x⊥, x3, θ, ϕ) sin(θ) dt dx⊥ dθ dϕ, x := (x⊥, x3) ∈ R2 × R,

with the ones obtained with our MC method, with and without this diffusive correction, and for various values
of α, ε and h. The grid in z range from −300 to 300 with size 28 and we run N = 300×106 particles. According
to (26) and (27), the number of samples N is taken large enough so that the RMSE (24) of the MC estimation
is of order 10−5 and the relative MC error (25) is of order 0.03% where u4 takes values of order as low as 10−3.
With this choice of N , we can focus our attention on the role played by ε and h in the approximation. In Figure

Figure 6: Illustration of the relative error Errε,α and running time of the MC method with and without a
diffusive correction. The reference time in the right picture is the one of corrected method with ε = 0.1.

6, we represent the relative error
Errε,α := max

z

|u4(z)− u4,MC(z)|
maxz u4(z) ,

for various sizes of the cutoff ε, and where u4,MC(z) is the MC approximation to u4(z). The left picture
illustrates the evolution of the relative error for various ε. The blue curve corresponds to the corrected MC
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with ε = 0.1 (with still a fairly large stepsize h = 0.5/Λ̄ε) providing at most a relative error slightly larger than
1%. The other curves correspond to the noncorrected MC method for several values of ε. The corrected MC
consistently yields a better accuracy than the noncorrected version, and even in weakly singular cases where α is
less than one, a very small value of ε (red and green curves) is necessary to match the accuracy of the corrected
method. The right picture illustrates the evolution of the relative running time of the noncorrected method
w.r.t. the corrected one. For values of α less than 0.7 (weakly singular kernels), corrected and noncorrected
methods have similar computational times for comparable accuracy, while in the case of singular kernels with
α ≥ 1, the noncorrected methods yield a much larger cost and a much lower accurary.

Figure 7: Illustration of the relative error Errε,α and running time of the (corrected) Monte Carlo method.

In Figure 7, we illustrate the precision and running time sensitivity of the (corrected) MC method w.r.t.
the stepsize h = h0/Λ̄ε. As expected, we obtain a better precision for smaller stepsizes but at the price of a
longer running time. These effects are amplified as α increases due to the increasing strength of the diffusion
correction. In what follows, we select h0 = 0.3 since this yields a relative error less than 1% for a wide range of
α’s while not changing significantly the running time.

Figure 8: Illustration of the relative error Errε,α and running time of the (corrected) MC method.

In Figure 8, we depict the precision and running time sensitivity w.r.t. the cutoff parameter ε, and observe
the same phenomena as in the case of the stepsize h. The parameter ε defines not only the accuracy of the
diffusion correction, but also the average number of jumps, and as a consequence the running time increases as
ε decreases as in the case of the noncorrected Monte Carlo method.

5 Numerical illustrations
5.1 The role of α

In this section, we highlight the effects of the kernel singularity on the energy density. We consider a constant
α, with a = 0.002 in this section. Our setting is depicted in Figure 9. The spatial variable x is decomposed into
a main propagation axis x3 and a transverse plane x⊥, i.e. x = (x⊥, x3) ∈ R2×R. The same notation holds for
the direction variable k̂ = (k̂⊥, k̂3) ∈ S2. We choose an initial condition for (1) of the form

u0(x, k̂) = δ(x)δ(k̂ − k̂0), k̂0 = (0, 0, 1),
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Figure 9: Illustration of the numerical setting.

modeling a source located at x = 0 and embedded in the random medium, and emitting in the forward x3-
direction. We set a function λ of the form λ(x) = 1(−5,40)(x3), that defines a scattering layer between x3 = −5
and x3 = 40. In such a configuration, both transmitted and reflected quantities at x3 = 40 and x3 = −5 are of
interest. With our particular choice for k̂0, what is obtained at x3 = −5 is purely due to backscattering.

In the following two subsections, the MC estimations are obtained using N = 1×109 particles and a diffusion
stepsize h = 0.3/Λ̄ε. We set ε = 0.01 for the calculation of transmitted quantities, and ε = 0.1 for the reflected
ones. For any value of α, the observation time we consider is T = 4tc, for tc the critical time computed for
α = 1.

In the transmission case and when ε is too large, the mean free time is large as well and it is possible that
particles escape the slab without undergoing any jumps, leading to inaccurate results. Hence the choice ε = 0.01.
A larger value of ε is acceptable in the calculation of the reflected quantities since the particles exiting early
would not have traveled to the plane located at x3 = −5, and the error is reduced compared to the transmission
case.

The running times for the time-integrated transmitted (ε = 0.01) and reflected (ε = 0.1) signals for different
values of α are the following:

running time (s) α = 0.3 α = 0.7 α = 0.1 α = 1.3 α = 1.5
ε = 0.01 9.38 15.21 24.54 42.74 65.39
ε = 0.1 3.61 3.72 4.12 4.92 6.01

All these running time measurements account also for the transfer of the resulting arrays from the device
to the host. We clearly observe a significantly larger running time for smaller values of ε and large values of
α. This is due to the increase in scattering events as the mean free time decreases. These computational times
correspond to the cost for the MC method to reach the expected accuracy for fixed ε’s and α’s. With our choice
of N = 109, the RMSEs (24) are of order 10−4 (resp. 10−5) for the transmitted (resp. reflected) observables,
and the relative errors are of order 1% (resp. 0.1%) for the transmitted (resp. reflected) observables taking
values of order 10−3 (resp. 10−4 upto 10−5).

5.1.1 Energy at the boundaries of the transverse plane

In what follows, the (time-integrated) transverse reflected and transmitted energy are defined by

FTtr(x⊥) :=
∫ T

0
dt

∫
S2
σ(dk̂)u(t, x⊥, x3 = 40, k̂) and FTref (x⊥) :=

∫ T

0
dt

∫
S2
σ(dk̂)u(t, x⊥, x3 = −5, k̂).

The MC estimators for these quantities are given respectively by

F̂Ttr(m,n) := 1
∆x⊥N

N∑
j=1

1(
Xj,⊥
h,ε

(τj)∈�mn, Xj3,h,ε(τj)>40
), F̂Tref (m,n) := 1

∆x⊥N

N∑
j=1

1(
Xj,⊥
h,ε

(τj)∈�mn, Xj3,h,ε(τj)<−5
)

where
τ j := inf(t ∈ [0, T ] : Xj

3,h,ε(t) > 40 or Xj
3,h,ε(t) < −5),

is the first time the j-th particle exits the slab. Note that once a particle escapes, it cannot reenter it since it
propagates freely. Above, (�mn)m,n is a uniform square grid of the traverse plane to the x3-axis. All squares
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in the grid have area ∆x⊥. Note that the grid can be different for the transmitted and reflected signals.
We have considered for the transverse variable of the transmitted energy a uniform grid over a detector of size
[−10, 10]× [−10, 10] centered around the x3-axis, and over a detector of size [−50, 50]× [−50, 50] for the reflected
energy. For both cases, we chose 128× 128 grid points. The principle of these estimators is simply to count the
number of particles that exit the slab before time T and to record their position in the transverse plane.

In Figure 10, we illustrate the transmitted and reflected energy flux, for several values of α. We represent
the variations w.r.t. the first coordinate of x⊥ = (x1, x2), and for two values of x2.

Figure 10: Illustration of the energy at the boundaries FTtr(x⊥) and FTref (x⊥) w.r.t. x1 with x2 = 0 (solid line)
and x2 = 1 (dotted line) for the left picture and x2 = 10 (dotted line) for the right one. The RMSEs (24) are
less than 6.5× 10−4 (resp. 2.6× 10−5) on the left picture (resp. right picture), while the relative errors (25) are
less than 0.6% for the left picture (resp. 1.3% for the right picture) for values of the observables as low as 10−3

(resp. 10−5).

One can observe that at fixed times, the larger the α, the more diffuse are the signals. Indeed, as α increases,
the jump intensity Λε (in other words the number of scattering events) increases as well as the strength of the
diffusive correction σε (see Figure 11).

Figure 11: Illustrations of the evolution w.r.t. α of Λε defined by (14) and σε defined by (10). Here, a = 0.002
and ε = 0.01.

5.1.2 Time evolution of the exiting energy

Here, we are interested of the time evolution of the energy exiting the slab, and we define the (integrated)
reflected and transmitted energy by

Ftr(t) :=
∫
R2
dx⊥

∫
S2
σ(dk̂)u(t, x⊥, x3 = 40, k̂) and Fref (t) :=

∫
R2
dx⊥

∫
S2
σ(dk̂)u(t, x⊥, x3 = −5, k̂).

The MC estimators for these two quantities are given by

F̂tr(n) := 1
dtN

N∑
j=1

1(
τj∈(tn,tn+1], Xj3,h,ε(τj)>40

) and F̂ref (n) := 1
dtN

N∑
j=1

1(
τj∈(tn,tn+1], Xj3,h,ε(τj)<−5

).
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Here, (tn)n is a uniform grid of the time interval with stepsize dt. For the transmitted signal, we have considered
the time interval [40, 45] with a stepsize dt = 0.02, and have set [0, 4tc] with a stepsize dt = 0.4 for the
backscattered signal. Note that the time interval starts at 40 for the transmitted energy, which is the travel
time of the wave (traveling at speed c0 = 1) from the source to the plane x3 = 40. These estimators count the
number of particles that exit the slab in the time interval (tn, tn+1] at each side of the slab. In Figure 12, we
illustrate the evolution of the transmitted and reflected energy, for several values of α.

Figure 12: Time evolution of the energy at the boundaries Ftr(t) and Fref (t). The RMSE (24) are less than
8 × 10−4 (resp. 4 × 10−5) on the left picture (resp. right picture), while the relative errors (25) are less than
0.7% for the left picture (resp. 0.5% for the right picture) for values of the observables as low as 10−3 (resp.
10−4).

In the case of the transmitted signal (left), and for small values of α, we see the arrival of the coherent wave
at the proper travel time followed by the coda. When α increases, one notices the stronger impact of scattering
and of the diffusive correction that smooths the signal out and damps its amplitude. For the largest α, we only
observe a coda. Regarding the reflected signal (right), there is only a coda for all α due our choice of k̂0, and
one can observe two stages in the dynamics: backscattering increases up to a time of order tc, about which
exponentially decay due to the operator Q takes over.

5.1.3 Comparison with the Henyey-Greenstein scattering kernel

In this section, we compare the solutions to the RTE with Henyey-Greenstein scattering kernel (6) for an
anisotropy factor g close to one with the solutions to (9) with singular kernel derived from (7), that is by setting
a ≡ (1− g)/(2π) and α = 1 in (4). Note that the value of the constant a changes with g, and as a consequence
Λ̄ε, h, and σε vary accordingly. To illustrate this approximation, we still consider the setting depicted in Figure
9 and the various observables introduced in the previous sections, but now at a time T = 300.

We observe in Figure 13 the very good agreement between the two solutions. The reflected signal is well
captured by our method despite fairly large values of ε and h. Also, let us mention that the computational cost
is decreasing as the anisotropic parameter g is getting close to 1, as the overall jump intensity decreases in this
case in the highly peaked regime g → 1. Regarding the transmitted signal, ε (and then h) needs to be lowered
for an accurate approximation, as explained at the beginning of Section 5.1.

The RTE with a Henyey-Greenstein scattering kernel is simulated with a standard MC method. Compared to
our method, its computational costs to achieve RMSEs of order 10−4 and 10−5 for respectively the transmitted
and reflected observables are the following:

running time (s) g = 0.97 g = 0.98 g = 0.99
HG kernel 8.3 7.6 6.0

singular kernel, ε = 0.01 13.9 6.7 2.0
singular kernel, ε = 0.1 2.5 1.5 0.7

Here, ε = 0.01 is considered for the transmitted observables, while we set ε = 0.1 for the reflected ones. According
to this table, lower computational times are observed with our method for the three considered g’s compared
to standard MC methods for the Henyey-Greenstein scattering kernel. Our MC method provides therefore an
efficient tool to simulate an RTE with a Henyey-Greenstein kernel. For transmitted observables, g needs to be
quite close to one to provide a significant advantage to our method.
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Figure 13: Comparison of the observables obtained using the Henyey-Greenstein scattering kernel and our
singular kernel with α = 1, T = 300, ε = 0.01 for the transmitted observables (left panels), and ε = 0.1 for the
reflected ones (right panels). The RMSEs (24) and relative errors (25) are similar to those of Figures 10 and 12.

5.2 Varying α function
In this section, we investigate the influence of a varying α function that characterizes the strength of the
singularity. We consider two situations, one inspired from optical tomography, and the second one from wave
propagation through atmospheric turbulence.

5.2.1 A two-stage model with a sphere

We keep the setting introduced in Section 5.1, and add a defect with a different value of α to the setting. This
defect is modeled by ball of radius 3 centered at the origin and where α is equal to α1. We set α ≡ 1 in the
exterior of the ball, corresponding to the peak forward regime of the Henyey-Greenstein scattering kernel. See
Figure 14. This situation models a biological tissue in which statistical properties are changing and define a
region of interest for imaging.

Figure 14: Illustration of the setting with λ = 1{x3∈(−5,40)} and α(x) = α11x∈B + 1 · 1x6∈B where B is a ball
centered at 0 with radius 3.

We illustrate in Figure 15 the impact of the introduction of the defect on the observables introduced in
Section 5.1. The impact is stronger on transmitted observables and quite significant, giving then the possibility
to identify the defect with α = α1 inside the scattering medium. Reflected quantities tend to be less sensitive
to the presence of the defect since a fraction of the signal is backscattered before reaching it.
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Figure 15: Illustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T =
300, and ε = 0.01. For the top two pictures we set x2 = 0 (solid lines) and x2 = 1.5 for the top-left and x2 = 0.5
for top-right picture (dotted lines).

5.2.2 Non-Kolmogorov turbulences

In this section, we keep once more the setting introduced in Section 5.1, with the difference that α takes three
different large values depending on the altitude parametrized by x3, see Figure 16:

α(x3) = 5/3 · 1{x3≤2} + 4/3 · 1{2<x3≤8} + 1.9 · 1{8<x3}.

The value 5/3 corresponds to standard Kolmogorov turbulences, while other values are associated with non-
Kolmogorov turbulence models [4, 52, 55]. In these models, it is considered that for altitudes higher than 8km,
the atmospheric turbulence yields larger statistical patterns (which tend to be created by singular kernels) than
around the ground (0-2km). Hence, we set α = 1.9 for altitudes greater than 8km. The function a is no longer
constant in these models, and for our illustrations we chose

a(r) = 0.002 · exp(−r2/(2× 0.82)).

In Figure 17, one can notice that non-Kolmogorov turbulence yields quite different signals compared to
Kolmogorov turbulence, in particular for reflected quantities. As we saw in Section 5.1, the higher the α, the
more diffuse is the signal which then enhances reflected signals. This explains the increased reflections in the
non-Kolmogorov case.

6 Proofs
This section is dedicated to the proof of Proposition 2.1, describing the approximation of the RTE (1) by (9)
where the small jumps have been replaced by a diffusion term, Proposition 2.2, providing the probabilistic
representation to (9), and Theorem 3.1, justifying the overall MC method involving a discretization scheme for
the diffusion part.

6.1 Proof of Proposition 2.1
Let vε := uε − u, so that vε(t = 0) = 0. We have

d

dt
‖vε(t)‖2L2(R3×S2) = 2 < ∂tvε(t), vε(t) >L2(R3×S2)

= 2 < (σ2
ε∆S2 + Lε>)vε(t), vε(t) >L2(R3×S2) +2 < (σ2

ε∆S2 − Lε<)u, vε(t) >L2(R3×S2) .
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Figure 16: Illustration of a three stages α-profile for a non-Kolmogorov phase function.

Figure 17: Illustrations the transmitted (left-hand-side) and reflected (right-hand-side) observables with T =
300, and ε = 0.01. For the top two pictures we illustrate x2 = 0 (solid lines) and x2 = 2 for the top-left and
x2 = 5 for top-right picture (dot line).

Since ∆S2 is a nonpositive operator, we have

< (σ2
ε∆S2 + Lε>)vε(t), vε(t) >L2(R3×S2) ≤ −

1
2

∫∫∫
R3×S2×S2

dxσ(dp̂)σ(dk̂) λ(x)
21+α(x)/2

∫
Sε>

ρ(x, p̂ · k̂)(f(x, p̂)− f(x, k̂))2

≤ 0.

We then obtain
sup
t∈[0,T ]

‖vε(t)‖2L2(R3×S2) ≤ 2
∫ T

0
‖(σ2

ε∆S2 − Lε<)u(t)‖2L2(R3×S2)dt,

which concludes the proof using the following lemma.

Lemma 6.1 Let 0 < ε < ε0 < 1. Then, for any f ∈ L2
x(R3, C4

k̂
(S2)), we have

‖(Lε< − σ2
ε∆S2)f‖L2(R3×S2) ≤ ε2−αM/2E(f)
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where, with f̌(x, v) := f(x, v/|v|) for v ∈ R3,

E(f) := π

3(1− ε0)6 supλ sup a sup
|h|≤rε0

‖D4
kf̌(·, ·+ h)‖L2(R3×S2)

+
( 6π

(1− ε0)3 sup a+ 24π sup
v∈[0,2

√
2ε0]
|a′′(v)|

)
supλ ‖∆S2f‖L2(R3×S2).

(34)

Proof Before starting the proof, we introduce the retraction Rk̂ at k̂ onto the sphere Rk̂(h) := k̂+h
|k̂+h| , and

Bε,k̂ := R−1
k̂

(Sε<) =
{
h = β1 k̂

⊥
1 + β2 k̂

⊥
2 : β = (β1, β1) ∈ R2 with |β| < rε

}
,

where (k̂⊥1 , k̂⊥2 ) stands for an orthonormal basis of k̂⊥. We also recall that rε =
√

1− (1− ε)2/(1− ε), coming
from the relation tan(arccos(s)) =

√
1− s2/s and (8). In different terms, Bε,k̂ is a ball centered at 0 with radius

rε on the tangent plane to the unit sphere at k̂, and the retraction Rk̂ holds from Bε,k̂ onto Sε<.
To prove the lemma, we start with the following change of variables p̂ = Rk̂(h) in Lε<, so that

Lε<f(x, k̂) = λ(x)
21+α(x)/2

∫
Bε,k̂

ρ(x,Rk̂(h) · k̂)
(
f(x,Rk̂(h))− f(x,Rk̂(0))

)
|det JacRk̂(h)|dh.

Using that f̌(x, k̂ + h) = f(x,Rk̂(h)) and f̌(x, k̂) = f(x, k̂), one can decompose Lε<f as

Lε<f(x, k̂) = D1 +D2 +D3 +D4,

where the terms Dj follow with obvious notations from the Taylor expansion

f̌(x, k̂ + h)− f̌(x, k̂) = Dkf̌(x, k̂)(h) + 1
2!D

2
kf̌(x, k̂)(h, h) + 1

3!D
3
kf̌(x, k̂)(h, h, h)

+ 1
3!

∫ 1

0
(1− s)3D4

kf̌(x, k̂ + sh)(h, h, h, h)ds.

The terms D1 and D3. Using that the ball Bε,k̂ in the tangent plane is symmetric with respect to 0, we just
make the change of variables h→ −h, so that D1 = −D1 and D3 = −D3 leading to D1 = D3 = 0.

The term D4. We have

|D4| ≤
λ(x)

3! 21+α(x)/2

∫ 1

0
ds (1− s)3

∫
Bε,k̂

dh ρ(x,Rk̂(h) · k̂)‖D4
kf̌(x, k̂ + sh)‖ |h|4|det JacRk̂(h)| dh.

Since Rk̂(h) = k̂+h√
1+|h|2

, we have

Rk̂(h) · k̂ = 1√
1 + |h|2

and |det JacRk̂(h)| = 1√
1 + |h|2

.

As a consequence, we find

‖D4‖L2(R3×S2) ≤
1
4! sup

v
a(v) sup

|h|≤rε
‖D4f̌(·, ·+ h)‖L2(R3×S2)

× sup
x

λ(x)
21+α(x)/2

∫
{|h|≤rε}

|h|4

(1− 1/
√

1 + |h|2)1+α(x)/2
dh.

Changing to polar coordinates in the last integral gives∫
{|h|≤rε}

|h|4

(1− 1/
√

1 + |h|2)1+α(x)/2
dh = 2π

∫ rε

0

r5

(1− 1/
√

1 + r2)1+α(x)/2
dr

= 2π
∫ ε/(1−ε)

0
v1−α(x)/2(2 + v)2(v + 1)2+α(x)/2dv

where we used the change of variables v =
√

1 + r2 − 1 and that
√

1 + r2
ε − 1 = ε/(1− ε). This gives finally

‖D4‖L2(R3×S2) ≤
π

3 sup
v
a(v) sup

h∈Bε
‖D4f̂(·, ·+ h)‖L2(R3×S2) sup

x
λ(x)ε

2−αM/2

(1− ε)6 .
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The term D2. For this last term, we have

D2 = λ(x)
22+α(x)/2

∫
Bε,k̂

ρ(x,Rk̂(u) · k̂)D2f̌(x, k̂)(h, h)|det JacRk̂(h)|dh,

with
D2f̌(x, k̂)(h, h) = h2

1 ∂
2
k1k1

f̌(x, k̂) + h2
2 ∂

2
k2k2

f̌(x, k̂) + 2h1h2 ∂
2
k1k2

f̌(x, k̂),

and, accordingly, the following decomposition D2 = D21 + D22 + 2D23. Applying the change of variables
h = (h1, h2)→ (−h1, h2) leads to D23 = 0. Setting h = (h1, h2)→ (h2, h1) leads to

D2 = λ(x)
23+α(x)/2

∫
Bε,k̂

ρ(x,Rk̂(h) · k̂)|h|2|det JacRk̂(h)|dhTrace(Hessf̌(x, k̂)),

where
Trace(Hessf̌(x, k̂)) = ∆pf

(
x,

p

|p|

)
|p=k̂

= ∆S2f(x, k̂).

Furthermore, with the change of variables p̂ = Rk̂(h), we find∫
Bε,k̂

ρ(x,Rk̂(h) · k̂)|h|2|det JacRk̂(h)|dh =
∫
Sε<

ρ(x, p̂ · k̂)|R−1
k̂

(p̂)|2σ(dp̂),

and note that for p̂ · k̂ = cos(θ), we have |R−1
k̂

(p̂)|2 = tan2(θ). As a result, moving to spherical coordinates, and
performing the change of variables v = tan(θ/2) together with the relation

arccos(s) = 2 arctan
(√1− s2

1 + s

)
for s ∈ (−1, 1],

we find, with r′ε =
√

1− (1− ε)2/(2− ε),∫
Sε<

ρ(x, p̂ · k̂)|R−1
k̂

(p̂)|2σ(dp̂) = 2π
∫ arccos(1−ε)

0
ρ(x, cos(θ)) tan2(θ) sin(θ)dθ

= 23−α(x)/2π

∫ r′ε

0

a(2v/
√

1 + v2)(1 + v2)α(x)/2

(1− v2)2vα(x)−1 dv,

leading to

D2 = D̃2∆S2f(k̂) := 21−α(x)πλ(x)
∫ r′ε

0

a(2v/
√

1 + v2)(1 + v2)α(x)/2

(1− v2)2vα(x)−1 dv∆S2f(x, k̂).

Now, let us introduce

σ̃2
ε(x) := 21−α(x)πλ(x)

∫ r′ε

0
a(2v/

√
1 + v2) dv

vα(x)−1 ,

and remark that

|D̃2 − σ̃2
ε(x)| ≤ 3 · 23−α(x)πλ(x) sup

v
a(v) 1

(1− r′ε2)3

∫ r′ε

0
v3−α(x)dv ≤ 3 · 22−α(x)πλ(x) sup

v
a(v) r′ε

2

(1− r′ε2)3

≤ 6π sup
x
λ(x) sup

v
a(v)ε

2−αM/2

(1− ε)3 ,

since r′ε ≤
√

2ε, 0 ≤ αm ≤ α(x) ≤ αM < 2 and 1 − r′ε
2 = 2(1−ε)

2−ε > 2(1 − ε). With the definition of σε given in
(10), we obtain using a′(0) = 0,

|σ̃2
ε(x)− σ2

ε(x)| ≤ 25πλ(x) sup
ṽ∈[0,2

√
2ε]
|a′′(ṽ)|

∫ r′ε

0
v3−α(x)dv,

≤ 24π sup
x
λ(x) sup

v∈[0,2
√

2ε]
|a′′(v)| ε2−αM/2.

Collecting the various estimates on the Dj and using that ε ≤ ε0 < 1 concludes the proof of Lemma 6.1 and
therefore of Proposition 2.1. �
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6.2 Proof of Proposition 2.2
We first show that the infinitesimal generator of the Markov process Dε is Aε.

Infinitesimal generator for Dε. Let f be a smooth bounded function on R3 × S2. The goal of this section
is to prove that

lim
h→0+

1
h

(
Ez[f(Dε(h))]− f(z)

)
= Aεf(z). (35)

To this end, we introduce the first jump time T1 to obtain

Ez[f(Dε(t))] = Ez[f(Dε(t))1(T1>t)] + Ez[f(Dε(t))1(T1≤t)]. (36)

Using conditional expectations, we find for the first term

Ez[f(Dε(t))1(T1>t)] = Ez[f(ψz0(t))1(T1>t)] = Ez
[
Ez[f(ψz0(t))1(T1>t)|ψ

z
0(s), s ∈ [0, t]]

]
= Ez

[
f(ψz0(t))Pz

(
T1 > t |ψz0(s), s ∈ [0, t]

)]
= Ez

[
f(ψz0(t))e−

∫ t
0

Λε(ψz0 (s))ds
]
.

With the following notations for the flow ψzn ,

ψzn = (Xx
n ,K

k̂
n) =

(
(Xx

j,n)j=1,2,3, (K k̂
j,n)j=1,2,3

)
∈ R3 × S2,

together with f̌(x, k) = f(x, k/|k|) for (x, k) ∈ R3 × R3, the Itô formula yields

df(ψzn(t)) = df̌(ψzn(t)) = ∇xf̌(ψzn(t)) · dXx
n(t) +∇kf̌(ψzn(t)) · dK k̂

n(t)

+ 1
2

∑
j,l=1,2,3

∂2
kjkl

f̌(ψzn(t))d < K k̂
j,n(t),K k̂

l,n(t) >

= K k̂
n(t) · ∇xf̌(ψzn(t)) dt+ σ2

ε(Xx
n(t))∆S2f(ψzn(t)) dt

+
√

2σε(Xx
n(t))∇kf̌(ψzn(t)) · (K k̂

n(t)× dWn(t)).

Above, we have used the fact that

∆S2f(x, k̂) = ∆kf̌(x, k̂)−
∑

j,l=1,2,3
k̂j k̂l∂

2
kjkl

f̌(x, k̂)− 2
∑

j=1,2,3
k̂j∂kj f̌(x, k̂). (37)

Therefore, we have for n = 0,

d
(

(f(ψz0(t))− f(z))e−
∫ t

0
Λε(ψz0 (s))ds

)
=
(
df(ψz0(t))− Λε(ψz0(t))(f(ψz0(t))− f(z))

)
e
−
∫ t

0
Λε(ψz0 (s))ds

so that

lim
h→0+

1
h
Ez[(f(Dε(h))− f(z))1(T1>h)] = k̂ · ∇xf(z) + σ2

ε(x)∆S2f(z), ∀z = (x, k̂) ∈ R3 × S2.

Regarding the second term in (36), we find, using the Markov property in the third line,

Ez
[
f(Dε(h))1(T1≤h)

]
= Ez

[
Ez[f(Dε(h)) |T1] 1(T1≤h)

]
= Ez

[ ∫ h

0
Ez[f(Dε(h)) |T1 = v] Λε(ψz0(v)) e−

∫ v
0

Λε(ψz0 (s))ds
dv
]

= Ez
[ ∫ h

0

∫
R3×S2

Ez′ [f(Dε(h− v))] Πε(ψz0(v), dz′) Λε(ψz0(v)) e−
∫ v

0
Λε(ψz0 (s))ds

dv
]

= Ez
[ ∫ h

0

∫
S2
E(Xx0 (h−w),p̂)[f(Dε(w))]πε(ψz0(h− w), p̂)σ(dp̂) Λε(ψz0(h− w)) e−

∫ h−w
0

Λε(ψz0 (s))ds
dw
]
,

where the probability Πε and the density πε are defined respectively in (16) and (17). As a consequence,

lim
h→0+

1
h
Ez[f(Dε(h))1(T1≤h)] = Λε(z)

∫
S2
f(x, p̂)πε(z, p̂)σ(dp̂).
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Moreover, we have

Pz(T1 ≤ h) = Ez
[
Pz
(
T1 ≤ h |ψz0(s), s ∈ [0, h]

)]
= Ez

[
1− e−

∫ h
0

Λε(ψz0 (s))ds
]
,

and it is then direct to see that
lim
h→0

1
h
Pz(T1 ≤ h) = Λε(z).

This finally yields

lim
h→0+

1
h
Ez[(f(Dε(h))− f(z))1(T1≤h)] = Λε(z)

∫
S2

(f(x, p̂)− f(x, k̂))πε(z, p̂)σ(dp̂),

which gives (35) collecting all results.

Proof of (18). Since Dε is a solution to the martingale problem associated to Aε (see [15, Proposition 1.7 pp.
162]), we have, for any smooth bounded function f on R3 × S2,

µt(f) = µ0(f) +
∫ t

0
µs(Aεf) ds, where µt(f) := Eµ0 [f(Dε(t))].

Let
νt(f) := 1

ū0

∫
R3×S2

uε(t, x, k̂)f(x, k̂) dxσ(dk̂).

Since uε solves (9), we have

uε(t) = u0 +
∫ t

0
A∗εuε(s)ds,

where A∗ε stands for the adjoint operator of Aε in L2(R3 × S2). Then,

νt(f) = µ0(f) + 1
ū0

∫
R3×S2

∫ t

0
A∗εuε(s, x, k̂) ds f(x, k̂) dxσ(dk̂)

= µ0(f) +
∫ t

0

1
ū0

∫
R3×S2

uε(s, x, k̂)Aεf(x, k̂) dxσ(dk̂) ds = µ0(f) +
∫ t

0
νs(Aεf)ds.

Therefore, according to [15, Proposition 9.18 pp. 251], we have µt = νt for any t ≥ 0, which concludes the proof.

6.3 Proof of Theorem 3.1
The proof of this result is provided in three steps. The first step consists in rewriting the probabilistic represen-
tation (18) for (9) is terms of a SDE with jumps. The second step concerns the error analysis of the solution to
this later SDE with its discretized version. Finally, the last step gathers all the error estimated and concludes
the proof.

6.3.1 Step 1

We first introduce an equivalent formulation (in the statistical sense) for the process Dε in terms of a stochastic
differential equation (SDE) with jumps. This representation is useful when comparing with the discrete scheme.
Let D̃ε = (X̃ε, K̃ε) be the solution to the following SDE with jumps:

dX̃ε(t) = K̃ε(t) dt
dK̃ε(t) =

√
2σε(X̃ε(t−)) K̃ε(t−)× dW − 2σ2

ε(X̃ε(t−))K̃ε(t−) dt

+
∫

(0,π)×(0,2π)×(0,1)
R̃(θ, ϕ, D̃ε(t−), v)P (dt, dθ, dϕ, dv)

(38)

where the function R̃ is defined by, for z = (x, k̂),

R̃(θ, ϕ, z, v) =
{
R(θ, ϕ, k̂)− k̂ if v ≤ Λε(z)πε(z,R(θ, ϕ, k̂))/Λ̄ε

0 otherwise.
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Above, R is defined in (28), Λε in (14), Λ̄ε in (21), πε in (17), and P is a random Poisson measure with intensity
measure

µ(dt, dθ, dϕ, du) = Λ̄ε1(0,∞)×(0,π)×(0,2π)×(0,1)(t, θ, ϕ, v) sin(θ)dt dϕ dθ/(4π). (39)
See e.g. [2, Chapter 2] for more details on Poisson random measures. The notation t− is standard and refers
to the left limit when approaching t before a jump. With this construction, the infinitesimal generator for the
Markov process D̃ε is

Ãεf(z) = k̂ · ∇xf(z) + σ2
ε(x)∆S2f(z) + Λ̄ε

∫
(0,π)×(0,2π)×(0,1)

(f(x, k̂ + R̃(θ, ϕ, z, v))− f(z))σ(dp̂)dv,

and we have the following result.

Lemma 6.2 The processes D̃ε and Dε have the same distribution.

Proof D̃ε and Dε are both Markov processes and are therefore characterized by their generators. We just have
then to prove that Aεg = Ãεg for any bounded smooth function g. This is a direct consequence of the definition
to R̃. Indeed, denoting by Ĩε and Iε the integral operators in respectively Ãε and Aε, we have with z = (x, k̂),

Ĩεg(z) = Λ̄ε
∫

(0,π)×(0,2π)×(0,1)
(g(x, k̂ + R̃(θ, ϕ, z, v))− g(z)) sin(θ) dϕ dθ dv/(4π)

= Λ̄ε
∫

(0,π)×(0,2π)

∫ Λε(z)πε(z,R(θ,ϕ,k̂))/Λ̄ε

0
dv (g(x,R(θ, ϕ, k̂))− g(z)) sin(θ) dϕ dθ/(4π)

= Λ̄ε
∫
S2

Λε(z)πε(z, p̂)
Λ̄ε

(g(x, p̂)− g(z))σ(dp̂) = Iεg(z),

which concludes the proof. �

6.3.2 Step 2

The goal is now to prove that the discretized process Dh,ε approximates D̃ε in a statistical sense. We use
for this the notations of Section 3.2 for Xn,m, Kn,m and K̂n,m. For simplicity, we suppose that the Gaussian
vectors (Wn,m) in (22) are obtained from a single 3D standard Brownian motion W as follows: for n ≥ 0 and
m = 0, . . . ,mn, we set Wn,m = (W (Tn,m + hn,m)−W (Tn,m))/

√
hn,m. In the sequel, we will use the following

process, defined by, for t ∈ [Tn,m, Tn,m + hn,m], m = 0, . . . ,mn,
Xn,m(t) = Xn,m +

∫ t

Tn,m

K̂n,mds

Kn,m(t) = K̂n,m − 2
∫ t

Tn,m

σε(Xn,m)K̂n,mds+
√

2
∫ t

Tn,m

σε(Xn,m) K̂n,m × dW (s).
(40)

For t ≥ 0, we then combine the (Xn,m,Kn,m) into

Dh,ε(t) = (Xh,ε(t),Kh,ε(t)) =
∞∑
n=0

mn∑
m=0

1[Tm,n,Tm,n+hn,m)(t)Ψn,m(t),

where Ψn,m(t) = (Xn,m(t),Kn,m(t)) is the solution to (40) with initial condition Ψn,m(Tn,m) = (Xn,m, K̂n,m).
Note that Dh,ε is simply an interpolation of Dh,ε in the intervals [Tn,m, Tn,m + hn,m] that will allow us to use
the Itô formula.

For any smooth function f , we now introduce b the (smooth) solution to the following backward RTE,

∂tb+ k̂ · ∇xb+ λ(x)
21+α(x)/2

∫
S2
ρ(x, k̂ · p̂)(b(p̂)− b(k̂))σ(dp̂) = 0, (41)

with terminal condition b(T, x, k̂) = f(x, k̂) and use the notation b̌(t, x, k) = b(t, x, k/|k|), (t, x, k) ∈ [0, T ]×R3×
R3. We have the following result.

Proposition 6.1 For any T > 0, any smooth bounded function f on R3 × S2, and any (x, k̂) ∈ R3 × S2, we
have ∣∣E(x,k̂)[f(Dh,ε(T ))]− E(x,k̂)[f(D̃ε(T ))]

∣∣ ≤ ε2−αM/2 2T E∞(b) + hF1(b),

where E∞(b) is defined as in (34) with L2 norms replaced by L∞ norms in all variables, and where F1(b) is an
explicit function independent of ε and h that depends on derivatives of b up to order 4.
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The notation E(x,k̂) above indicates that the process under the expectation starts at the point (x, k̂).

Proof The proof consists in analyzing the discretization error of the diffusion process in a weak sense following
the ideas of [53].

We first write

Eh,ε := Ez[f(Dh,ε(T ))]− Ez[f(D̃ε(T ))] = Ez[b(T,Dh,ε(T ))]− Ez[b(T, D̃ε(T ))],

with z = (x, k̂). Using the Itô formula, see e.g. [2, Th 4.4.7 p. 226], together with the expression of ∆S2 given
in (37), we have

Ez[b(T, D̃ε(T ))]− b(0, z) = Ez
[ ∫ T

0
∂tb(t, D̃ε(t)) + K̃ε(t) · ∇xb(t, D̃ε(t))

+ σ2
ε(X̃ε(t))∆S2b(t, D̃ε(t)) + Iε>(t)dt

]
,

where
Iε>(t) = λ(X̃ε(t))

21+α(X̃ε(t))/2

∫
Sε>

ρ(X̃ε(t), K̃ε(t) · p̂)(b(t, X̃ε(t), p̂)− b(t, X̃ε(t), K̃ε(t))σ(dp̂).

Using the fact that b satisfies (41), we find

Ez[b(T, D̃ε(T ))] = b(0, z) + Ez
[ ∫ T

0
σ2
ε(X̃ε(t))∆S2b(t, D̃ε(t))− Iε<(t)dt

]
,

where Iε< is as Iε> with Sε> replaced by Sε<. Following the lines of the proof of Lemma 6.1, we obtain

|E[b(T, D̃ε(T ))]− b(0, z)| ≤ ε2−αM/2 T E∞(b),

where E∞(b) is defined as in (34) with L2 norms replaced by L∞ norms. We move now to the term Ez[b(T,Dh,ε(T ))]
which requires more work. Decomposing the interval [0, T ] according to the grid (Tn,m), we have

b(T,Dh,ε(T ))− b(0, z) = b̌(T,Dh,ε(T ))− b̌(0, z)

=
∑
n≥0

∑
m≥0

b̌(Tn,m+1 ∧ T,Dh,ε(Tn,m+1 ∧ T ))− b̌(Tn,m ∧ T,Dh,ε(Tn,m ∧ T ))

+ b̌(Tn,m ∧ T,Dh,ε(Tn,m ∧ T ))− b̌(Tn,m ∧ T,Dh,ε(Tn,m ∧ T−))
=: B1 +B2,

with obvious notations and where B1 is meant to capture the dynamic between jumps while B2 captures that
at the jumps. The double sum and the Tn,m∧T are only here to simplify the proof. Note that in order to define
the sum for all m ≥ 0, we set Tn,m = T for m > mn, and note also that there is only a finite number of terms
in the sums. We are then led to estimate the differences in B1 and B2 for which we will use the process Dh,ε.
We introduced b̌ since Kh,ε is not necessarily on the sphere between the grid points. Since T is on the grid, we
have by definition Dh,ε(Tn,m ∧ T ) = Dh,ε(Tn,m ∧ T ). Consider now the notation

D̂ε,h := (Xε,h, K̂ε,h) with K̂ε,h := Kε,h
|Kε,h|

.

By construction, the process D̂h,ε is continuous at the times Tn,m that do not correspond to jump times, so that

b̌(Tn,m,Dh,ε(Tn,m)) = b(Tn,m, D̂h,ε(Tn,m)) = b(Tn,m, D̂h,ε(T−n,m)) = b̌(Tn,m,Dh,ε(T−n,m))

for those Tn,m. As a consequence, B2 indeed only accounts for jumps. We will then estimate B1 using the Itô
formula for Dh,ε between Tn,m and Tn,m+1, and the properties of Poisson random measures for B2. For the
latter, we notice that we have by construction Dh,ε(T̄−n ) = D̂h,ε(T̄−n ). Using then the random Poisson measure
P with intensity measure µ introduced in (38) and (39), we can write

B2 =
∫ T

0

(
(b̌(t,Dh,ε(t−)) + R̄(θ, ϕ, D̂h,ε(t−), v))− b̌(t,Dh,ε(t−))

)
P (dt, dθ, dϕ, dv),
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so that, together with the fact that P − µ is a measure-valued martingale, see e.g. [2, Chapter 2],

Ez[B2] =
∑
n

∑
m

Ez
[ ∫ Tn,m+1∧T

Tn,m∧T
Ĩε>(t)dt

]
with

Ĩε>(t) = λ(Xh,ε(t))
21+α(Xh,ε(t))/2

∫
Sε>

ρ(Xh,ε(t), K̂h,ε(t) · p̂)(b̌(t,Xh,ε(t), p̂)− b̌(t,Xh,ε(t),Kh,ε(t))σ(dp̂).

For B1, we have from the Itô formula

Ez[B1] =
∑
n

∑
m

Ez
[ ∫ Tn,m+1∧T

Tn,m∧T
∂tb̌(t,Dh,ε(t)) + Kh,ε(Tn,m) · ∇xb̌(t,Dh,ε(t)) + σ2

ε(Xh,ε(Tn,m))Bεn,m(t) dt
]

where

Bεn,m(t) = ∆k b̌(t,Dh,ε(t))− Kh,ε(Tn,m)TD2
k b̌(t,Dh,ε(t))Kh,ε(Tn,m)− 2Kh,ε(Tn,m) · ∇k b̌(t,Dh,ε(t)).

As a result,

Ez[B1 +B2] =
∑
n

∑
m

Ez
[ ∫ Tn,m+1∧T

Tn,m∧T
∂tb̌(t,Dh,ε(t)) + Kh,ε(Tn,m) · ∇xb̌(t,Dh,ε(t))

+ σ2
ε(Xh,ε(Tn,m))Bεn,m(t) + Ĩε>(Dh,ε(t)) dt

]
.

Using again the fact that b satisfies (41), we have

∂tb(t,Dh,ε(Tn,m)) + Kh,ε(Tn,m) · ∇xb(t,Dh,ε(Tn,m)) +Qb(t,Dh,ε(Tn,m)) = 0,

which also holds true for b̌ since the variable Kh,ε(Tn,m) has norm 1 at the grid points Tn,m. As a consequence,

Ez[b(T,Dh,ε(T ))]− b(0, z) =
∑
n

∑
m

7∑
j=1

E(j)
n,m

where

E(1)
n,m := Ez

[ ∫ Tn,m+1∧T

Tn,m∧T
∂tb̌(t,Dh,ε(t))− ∂tb̌(t,Dh,ε(Tn,m)) dt

]
E(2)
n,m := Ez

[ ∫ Tn,m+1∧T

Tn,m∧T
Kh,ε(Tn,m) · (∇xb̌(t,Dh,ε(t))−∇xb̌(t,Dh,ε(Tn,m))) dt

]
E(3)
n,m := Ez

[ ∫ Tn,m+1∧T

Tn,m∧T
σ2
ε(Xh,ε(Tn,m)) (∆k b̌(t,Dh,ε(t))−∆k b̌(t,Dh,ε(Tn,m))) dt

]
E(4)
n,m := Ez

[ ∫ Tn,m+1∧T

Tn,m∧T
−σ2

ε(Xh,ε(Tn,m))Kh,ε(Tn,m)T (D2
k b̌(t,Dh,ε(t))−D2

k b̌(t,Dh,ε(Tn,m)))Kh,ε(Tn,m) dt
]

E(5)
n,m := Ez

[ ∫ Tn,m+1∧T

Tn,m∧T
−2σ2

ε(Xh,ε(Tn,m))Kh,ε(Tn,m) · (∇k b̌(t,Dh,ε(t))−∇k b̌(t,Dh,ε(Tn,m))) dt
]

E(6)
n,m := Ez

[ ∫ Tn,m+1∧T

Tn,m∧T
σ2
ε(Xε(Tn,m))∆S2b(t,Dh,ε(Tn,m))− Ĩε<(Dh,ε(Tn,m)) dt

]
E(7)
n,m := Ez

[ ∫ Tn,m+1∧T

Tn,m∧T
Ĩε>(Dh,ε(t))− Ĩε>(Dh,ε(Tn,m)) dt

]
with

Ĩε<(Dh,ε(t)) = λ(Xh,ε(t))
21+α(Xh,ε(t))/2

∫
Sε<

ρ(Xh,ε(t), K̂h,ε(t) · p̂)(b̌(t,Xh,ε(t), p̂)− b̌(t,Dh,ε(t))σ(dp̂). (42)

In the estimates below involving b̌, derivatives involving k 7→ k̂ = k/|k| produce terms of the form 1/|k|p for
some p > 0. These terms are due to the fact that Kn,m does not stay on the sphere at all times. However, these
terms can be bounded uniformly thanks to the following lemma.
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Lemma 6.3 We have for any n ≥ 0 and m ≤ mn,

inf
s∈[Tn,m,Tn,m+hn,m)

|Kn,m(s)| ≥ (1− 2hσ2
ε,∞) ≥ 1

2 ,

for h and ε small enough, and

sup
s∈[Tn,m,Tn,m+hn,m)

E
[
|Kn,m(s)|2 |Tn,m, Tn,m+1

]
≤ 1 + 4hσ2

ε,∞ ≤ 2.

Proof For s ∈ [Tn,m, Tn,m + hn,m], Kn,m can be rewritten as the sum of two orthogonal components

Kn,m(s) = (1− 2(t− Tn,m)σ2
ε(Xn,m))K̂n,m +

√
2σε(Xn,m) K̂n,m × (W (s)−W (Tn,m))

so that
|Kn,m(s)|2 ≥ (1− 2hσ2

∞,ε)2.

Now for the upper bound, using that Wn and P are independent, we have

E
[
|Kn,m(s)|2 |Tn,m, Tn,m+1

]
≤ (1 + 2hσ2

ε,∞) + 2σ2
ε,∞ E

[
|W (s)−W (Tn,m)|2 |Tn,m, Tn,m+1

]
≤ 1 + 4hσ2

ε,∞

≤ 2,

where we used that 4hσ2
ε,∞ ≤ 1. This concludes the proof. �

For E(1)
n,m. Using the Itô formula between Tn,m and Tn,m+1, we find

E
[
∂tb̌(t,Dh,ε(t))− ∂tb̌(t,Dh,ε(Tn,m))

∣∣∣Tn,m, Tn,m+1

]
=
∫ t

Tn,m

Kh,ε(Tn,m) · ∇x∂tb̌(t,Dh,ε(s))

+ σ2
ε(Xh,ε(Tn,m))

(
∆k∂tb̌(t,Dh,ε(s))− Kh,ε(Tn,m)TD2

k∂tb̌(t,Dh,ε(s))Kh,ε(Tn,m)

− 2Kh,ε(Tn,m) · ∇k∂tb̌(t,Dh,ε(s))
)
ds,

so that
|E(1)
n,m| ≤ h

(
‖D2

t,xb̌‖∞ + 2σ2
ε,∞(‖D3

t,k,k b̌‖∞ + ‖D2
t,k b̌‖∞)

)
,

where σ∞,ε = supx σε(x). When ε ≤ ε0, we have σ∞,ε ≤ σ∞,ε0 since r′ε is an increasing function of ε. As a
result, we obtain∑

n

∑
m

|E(1)
n,m| ≤ hT

(
‖D2

t,xb̌‖∞ + 2σ2
∞,ε0

(‖D3
t,k,k b̌‖∞ + ‖D2

t,k b̌‖∞)
)

=: hF2(b).

For E(j)
n,m with j = 2, . . . , 5. Following the same lines as above, we have

∑
n

∑
m

5∑
j=2
|E(j)
n,m| ≤ 2hT

(
‖D2

x,xb̌‖∞ + 2σ2
∞,ε0

(‖D3
x,k,k b̌‖∞ + ‖D2

x,k b̌‖∞)
)

+ 4hT σ2
∞,ε0

(
‖D2

x,k b̌‖∞ + ‖D3
x,k,k b̌‖∞ + 2σ2

∞,ε0
(2‖D3

k,k,k b̌‖∞ + ‖D4
k,k,k,k b̌‖∞ + ‖D2

k,k b̌‖∞)
)

=: hF3(b).

For E(6)
n,m. For this term, we follow the proof of Lemma 6.1 and find∑

n

∑
m

|E(6)
n,m| ≤ T ε2−αM/2E∞(b),

where E∞(b) is defined as before.
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For E(7)
n,m. Starting from (42), we have

Ĩε>(Dh,ε(t)) = λ(Xh,ε(t))
21+α(Xh,ε(t))/2

∫
Sε>

ρ(Xh,ε(t), K̂h,ε(t) · p̂)(b̌(t,Xh,ε(t), p̂)− b̌(t,Xh,ε(t), K̂h,ε(t))σ(dp̂)

= λ(Xh,ε(t))
21+α(Xh,ε(t))/2

∫ 2π

0
dϕ

∫ 1−ε

−1
ds ρ(Xh,ε(t), s)

×
(
b̌
(
t,Xh,ε(t), sK̂h,ε(t) +

√
1− s2 G(ϕ, K̂h,ε(t))

)
− b̌
(
t,Xh,ε(t), K̂h,ε(t)

))
where the last line is obtained by changing to spherical coordinates with s = cos(θ), and

G(ϕ, k) := cos(ϕ)k̂⊥1 + sin(ϕ)k̂⊥2 .

Above, (k̂⊥1 , k̂⊥2 ) forms an orthonormal basis of the plane k̂⊥. Note that the choice of (k̂⊥1 , k̂⊥2 ) does not play
any role since the variable ϕ is integrated. Now, writing

Ĩε>(Dh,ε(t)) = λ(Xh,ε(t))
21+α(Xh,ε(t))/2

∫ 2π

0
dϕ

∫ 1−ε

−1
ds

∫ 1

0
dv ρ(Xh,ε(t), s)

×
(
(s− 1)K̂h,ε(t) +

√
1− s2 G(ϕ, K̂h,ε(t))

)
· ∇k b̌

(
t,Xh,ε(t), (1 + v(s− 1))K̂h,ε(t) + v

√
1− s2G(ϕ, K̂h,ε(t))

)
,

and using that G(ϕ+ π, k) = −G(ϕ, k), we just have to focus on

Ĩε>(Dh,ε(t)) = λ(Xh,ε(t))
21+α(Xh,ε(t))/2

∫ 2π

0
dϕ

∫ 1−ε

−1
ds

∫ 1

0
dv ρ(Xh,ε(t), s)(s− 1)K̂h,ε(t)

· ∇k b̌
(
t,Xh,ε(t), (1 + v(s− 1))K̂h,ε(t) + v

√
1− s2 G(ϕ, K̂h,ε(t))

)
.

Before applying the Itô formula to this term, we rewrite G as

G(ϕ, k̂) =
(
I3 + sin(ϕ)Q(k̂) + (1− cos(ϕ))Q2(k̂)

)
H1(k̂)

where I3 is the 3× 3 identity matrix, Q is defined by (29), and where

H1(k̂) := 1√
k̂2

1 + k̂2
2

 k̂2
−k̂1

0

 = 1√
k2

1 + k2
2

 k2
−k1

0

 ,

which is orthogonal to k̂ = k/|k|. In fact, G(ϕ, k̂) corresponds to the rotation of H1(k̂) ∈ k̂⊥ with angle ϕ and
axis k̂. This choice simplifies calculations. Now, note that∫ 1−ε

−1
ρ(x, s)(s− 1)ds ≤

∫ 1

−1
ρ(x, s)(s− 1) ≤ ‖a‖∞

21−ηm/2

1− ηM/2
,

so that E(7)
n,m does not depends on ε. Applying the Itô formula, we obtain

∑
n

∑
m

|E(7)
n,m| ≤hT (1 + (1 + 27 · 33)σ2

∞,ε0
) ‖a‖∞

21−ηm/2

1− ηM/2

(
1 + 1

1− ηM/2

)
×
(
‖∇xλ‖∞ + ‖λ‖∞ + ‖∇xα‖∞

)(
‖D1

k b̌‖∞ + ‖D2
k,k b̌‖∞

)
=: hF4(b)

Setting finally F1 := F2 + F3 + F4 and gathering all previous results concludes the proof of Proposition 6.1. �

6.3.3 Step 3 and conclusion

We remark first that the error bound in Proposition 6.1 does not depend on the starting point (x, k̂). Then,
from this pointwise result, we find∣∣Eµ0 [f(Dh,ε(T ))]− Eµ0 [f(D̃ε(T ))]

∣∣ ≤ ∫
R3×S2

∣∣Ex,k̂[f(Dh,ε(T ))]− Ex,k̂[f(D̃ε(T ))]
∣∣µ0(dx, dk̂),
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where µ0 is the probability measure given by (19). Let now

µ(t, f) =
∫
R3×S2

u(t, x, k̂)f(x, k̂) dxσ(dk̂) and µh,ε(t, f) = Eµ0 [f(Dh,ε(t))].

Using Propositions 2.1 and 6.1, and that
∫
R3×S2 uε(T, x, k̂)f(x, k̂) dxσ(dk̂) = Eµ0 [f(Dε(T ))] = Eµ0 [f(D̃ε(T ))]

according to Lemma 6.2, we have

|µh,ε(T, f)− µ(T, f)| ≤ ε2−αM/2
√

2TE(u)‖f‖L2(R3×S2) + ε2−αM/2 2TE∞(b) + hF1(b).

In order to end the proof of Theorem 3.1, it suffices to remark now that

|µN,h,ε(T, f)− µ(T, f)| ≤ |µN,h,ε(T, f)− µh,ε(T, f)|+ |µh,ε(T, f)− µ(T, f)|,

so that

P
(
|µN,h,ε(T, f)− µ(T, f)| > ηΣh,ε√

N
+ ε2−αM/2F0(u, b, f) + ε2−αM/2 2TE∞(b) + hF1(b)

)
≤ P

(
|µN,h,ε(T, f)− µh,ε(T, f)| > ηΣh,ε√

N
+ ε2−αM/2F0(u, b, f) + hF1(b)− |µh,ε(T, f)− µ(T, f)|︸ ︷︷ ︸

≥0

)

≤ P
(
|µN,h,ε(T, f)− µh,ε(T, f)| > ηΣh,ε√

N

)
where

F0(u, b, f) :=
√

2TE(u)‖f‖L2(R3×S2) + 2TE∞(u).

We conclude by applying the central limit theorem [16] together with the Portmanteau theorem [6, Theorem
2.1 pp.16]. �

7 Conclusion
We have derived an efficient MC method for the resolution of the RTE with non-integrable scattering kernels.
It is based on a small jumps/large jumps decomposition that allows us to simulate the small jumps part at a
low cost by solving a standard SDE. The large jumps are obtained by using the stochastic collocation technique
with a candidate distribution function that captures the singular behavior of the kernel. We have moreover
demonstrated the necessity to include the small jumps component in order to obtain a good accuracy at a
manageable computational cost, and investigated practical situations in optical tomography and atmospheric
turbulence where the singular RTE is of interest. We in particular highlighted the role of the singularity strength
α on the qualitative behavior of the solution.

Future investigations include the estimation of the scattering kernel, with an emphasis on the parameter
α, from either simulated or experimental data obtained e.g. from light propagation in biological tissues. This
problem is of practical interest in biomedical applications and will require the development of appropriate inverse
techniques.

A Stochastic collocation
In this section, we describe the stochastic collocation method, see e.g. [28], and consider the situation of Section
5.2.2 as an illustration. The goal is to simulate a real-valued random variable W (for which direct simulation
is not possible or too costly) from an auxiliary variable V that can be generated efficiently. In our context, we
want to simulate W with probability density function (PDF)

fW (w) := a(
√

2w)
CWw1+α/2 1(ε,2)(w),

where CW is a normalization constant. As already noticed in Section 3.4, a direct method is available when
a ≡ 1. Therefore, we take V with PDF

fV (v) := 1
CV v1+α/2 1(ε,2)(v),
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that can be simulated with
V = F−1

V (U) = ε(1− (1− (ε/2)α/2)U)−2/α,

where U ∼ U(0, 1) and where FV is the cumulative distribution function (CDF) of V . The stochastic collocation
method is based on the following three observations. First, we have FV (V ) ∼ U(0, 1). Second, denoting by FW
the CDF of W , we note that W can be (theoretically) simulated with

F−1
W (U) = F−1

W (FV (V )) =: G(V ),

with G = F−1
W ◦ FV and U = FV (V ). Last, we only need to approximate G and not F−1

W , and with a good
candidate V , G behaves better than F−1

W . In order to approximate G, we use Gauss polynomial interpolation
and only need to invert FW at a small number of points.

In our example, V captures the "singular" behavior of W , and is as a consequence a good candidate. The
function G is then direct to approximate with just a few quadrature points for a reduced computational cost.
Because G needs only to be approximated over (ε, 2), with known values at the extremes, we rather use a
Gauss-Lobatto-Jacobi quadrature rule. In Figure 18, we illustrate the polynomial approximation of G, with 5
and 10 interpolation points for α = 5/3, ε = 0.01, and a(r) = exp(−r2/(2× 0.82)). Because of our choice for V ,
one can observe that the overall behavior of the PDF fW is well captured with just 5 quadrature points, even
for strongly singular kernels with α = 5/3. However, the fast decay of the function a, which is the main source
of error between FW and FV , requires more quadrature points for an accurate approximation and 10 points
seem sufficient.

Figure 18: Illustration of the polynomial approximation to G with 5 (left picture) and 10 (right picture)
interpolations points. We use the library Jacobi.jl to compute these quadrature points.
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