
HAL Id: hal-03808925
https://hal.science/hal-03808925

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anti-Piracy Design of RF Transceivers
Alán Rodrigo Díaz-Rizo, Hassan Aboushady, Haralampos-G. Stratigopoulos

To cite this version:
Alán Rodrigo Díaz-Rizo, Hassan Aboushady, Haralampos-G. Stratigopoulos. Anti-Piracy Design of
RF Transceivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70 (1), pp.492
- 505. �10.1109/TCSI.2022.3214111�. �hal-03808925�

https://hal.science/hal-03808925
https://hal.archives-ouvertes.fr


1

Anti-Piracy Design of RF Transceivers
Alán Rodrigo Dı́az-Rizo, Hassan Aboushady, Senior Member, IEEE,

and Haralampos-G. Stratigopoulos, Member, IEEE

Abstract—We present a locking-based design-for-security
methodology to prevent piracy of RF transceiver integrated
circuits. The solution is called SyncLock as it locks the syn-
chronization of the transmitter with the receiver. If a key other
than the secret key is applied, synchronization and, thereby,
communication fail. SyncLock is implemented using a novel
locking concept consisting of two spatially separated mechanisms.
A hard-coded error is hidden into the design to break synchro-
nization while error correction, i.e., unlocking, takes place in
another part of the design by applying the secret key. SyncLock
offers several advantages: the secret key is unique, i.e., any
incorrect key causes a denial-of-service, there is no performance
penalty, it can be seemingly integrated into the digital design
flow, area and power overheads are negligible, and it achieves
maximum provable security thwarting all known counter-attacks.
SyncLock is demonstrated with hardware measurements.

Index Terms—Hardware security and trust, RF transceivers,
wireless ICs, IC piracy, locking.

I. INTRODUCTION

In the early days of the semiconductor industry, a single
company possessed all the design know-how, tooling, fab-
rication facilities, and test equipment required to build end-
to-end an Integrated Circuit (IC). Today, few such vertically
integrated companies combining all the diverse competencies
exist. We observe increasing globalization of design and
manufacturing tasks and outsourcing to third parties. For
instance, many companies are founded or have transitioned
to be “fabless”: they outsource the manufacturing step of their
IC design to offshore foundries, many of which are located
in separate continents. In this way, they do not need to bear
the enormous costs of building, maintaining, and upgrading
a manufacturing facility, which rise dramatically with each
new technology node visited. Another trend is the rise of
complex Systems-on-Chip (SoCs) where numerous general
and specialized functions are integrated onto the same chip.
Many companies do not have the know-how to design end-
to-end a SoC, thus relying on third-party Intellectual Property
(IP) blocks for building some of the functions.

A major security threat resulting from this globalized supply
chain is piracy of IP blocks in ICs and SoCs or of the entire IC
or SoC [1]. Piracy refers to cloning, overbuilding, remarking,

Manuscript received July 22, 2022; revised September 16, 2022; accepted
September 30, 2022. This work was supported by the ANR STEALTH project
under Grant ANR-17-CE24-0022-01. The work of A. R. Dı́az Rizo was
supported by the Mexican National Council for Science and Technology
(CONACYT) through Fellowship. This article was recommended by Associate
Editor D. Zhao. (Corresponding author: Haralampos-G. Stratigopoulos.)

Alán Rodrigo Dı́az Rizo, Hassan Aboushady, and Haralampos-G.
Stratigopoulos are with the Sorbonne Université, CNRS, LIP6, 75005 Paris,
France (e-mail: Alan-Rodrigo.Diaz-Rizo@lip6.fr; hassan.aboushady@lip6.fr;
haralampos.stratigopoulos@lip6.fr).

Digital Object Identifier 10.1109/TCSI.2022.XXXXXXX

and recycling of chips. More specifically, cloning consists of
illegally copying a design and reusing it without the consent or
knowledge of the design owner. It can be conducted by rogue
agents in IC/SoC integration houses and foundries. It can also
be conducted by an end-user through reverse-engineering of a
legally purchased chip. In fact, nowadays there are increased
capabilities for performing reverse-engineering of chips to
extract the design netlist and other technology secrets [2].
Overbuilding can be performed by a foundry that holds the
blueprint of the design and refers to producing and selling
chips beyond the number agreed on in the contract with the
chip design owner. Remarking can be performed by a test
facility and refers to relabelling failing chips as functional.
Recycling refers to scrapping a likely aged chip from a used
board and re-entering it into the market as a “fresh” chip.
Unauthorized chip use is often considered another form of
piracy.

Piracy leads to counterfeit chips that are a serious threat to
design houses (e.g., loss of know-how, sales, and brand name),
governments (e.g., national security threat if counterfeit chips
are used in critical infrastructure or defense), and the society
as a whole (e.g., counterfeits are likely to be of lower quality
and have shorter lifespan).

To defend against IP/IC piracy, IP/IC locking is considered
as the strongest counter-measure [3]. Illustrated in Fig. 1,
it is performed by the designer and consists in embedding
a lock mechanism inside the IP/IC. The lock mechanism
is a circuit that is mingled with the original circuit and is
controlled by a key, which is typically in the form of a digital
bit-string. The lock mechanism is transparent to the IP/IC
such that upon application of the correct key the nominal
functionality is restored. However, applying an incorrect key
corrupts the functionality. The correct key is a designer’s
secret and is not shared with any potentially untrusted party,
i.e., SoC integration house, foundry, or end-user. The chip is
securely activated after fabrication by storing the secret key
in a Tamper-Proof Memory (TPM) such that it is erased on
detecting a probing attempt. In this case, the secret key is
common to all chips, thus if it is leaked any chip instance can
be unlocked. Alternatively, a key provisioning on-die unit can
be used to ensure that each chip is unlocked only by a user
key, which is unique to that chip [4]. A standard scheme [5]
uses a Physical Unclonable Function (PUF) [6] to generate
on-die a chip identification key, then a chip-unique user key is
generated by XORing the identification key with the common
key. The common key is generated internally by XORing the
user and identification keys. Read access to the PUF output
is disabled after recording to prevent probing attacks by end-
users. Another key management scheme uses a PUF and RSA
encryption to securely activate the chip remotely [7]. IP/IC



2

Fig. 1. Locking methodology.

locking protects an IP/IC against potential attackers located
anywhere in the supply chain, as well as against malicious
end-users. It can protect also against recycling facilities as
long as the key is reloaded every time the IC is powered on.

In this paper, we propose a locking technique for RF
transceivers. Even the most modern RF transceiver designs (for
example see [8]–[12]) are not made with anti-piracy security
in mind. To this end, we propose a security plug-in that can
transform any design to a key-controlled version. In this way,
the intellectual property of the design can be protected against
piracy attempts at any point across the supply chain and its
authenticity can be traced along its entire life-cycle.

For an RF transceiver, being a mixed-signal design, one
can leverage existing techniques for locking part of its digital
section, for locking blocks in its analog section, or for locking
it at system-level, i.e., by exploiting its programmability
features. These generic techniques, however, have shown to
be vulnerable to attacks, as it will be described in more detail
in Section II. Herein, we propose a domain-specific locking
technique for RF transceivers that takes advantage of a specific
part of the signal processing chain found in any RF transceiver.

More specifically, the proposed RF transceiver locking
technique, called SyncLock, acts on the synchronization of
the transmitter with the receiver. Upon application of an
incorrect key, SyncLock disables the synchronization, thus
the wireless communication link crashes. The synchronization
is commonly set via a preamble that is appended to the
beginning of data frames. SyncLock is based on two spatially
separated hardware-level mechanisms. The first mechanism
hides a hard-coded error into the design of the data frame
generator corrupting the preamble of the data frame. The
second mechanism is located upstream in the signal processing
chain into the preamble generator and its goal is to corrupt the
preamble so as to cancel out the downstream corruption. The
corruption applied by the second mechanism is key-controlled,
with a single correct key being capable of counterbalancing
the two spatially separated preamble corruptions.

SyncLock is generally applicable to any RF transceiver
architecture, any wireless communication protocol using
correlation-based synchronization algorithms, and any mod-
ulation scheme. As the lock mechanism is embedded into
the baseband Digital Signal Processor (DSP), SyncLock can
be effortlessly integrated into the digital design flow. On the
other hand, the sensitive Analog Front-End (AFE) is left intact
which is an essential characteristic of SyncLock allowing for
its wide adoption by analog IC designers. SyncLock elegantly
achieves all locking objectives: (a) locking is totally transpar-
ent to the RF transceiver operation when the correct secret key

is applied; (b) applying invalid keys breaks the operation; (c)
area and power overheads are minimal; (d) all known counter-
attacks in both the analog and digital domains are thwarted. We
demonstrate SyncLock in hardware using the Software Defined
Radio (SDR) bladeRF board from NuandTM [13].

SyncLock was originally proposed in [14]. This paper de-
scribes a new design and implementation of SyncLock that
offers higher security compared to its preliminary version in
[14]. In addition, the paper provides an in-depth analysis of
the inner workings of SyncLock.

The rest of the article is structured as follows. In Section
II, we discuss the prior art on locking and anti-piracy design
of analog and mixed-signal ICs. In Section III, we present
the new implementation and design of SyncLock. Section III
concludes by presenting the first SyncLock implementation in
[14] as a sub-case and comparing the two. In Section IV,
we present the hardware platform used for demonstrating the
locking efficiency of SyncLock in Section V. Section VI dis-
cusses related locking and obfuscation approaches, including
approaches based on the corrupt-and-correct principle utilized
by SyncLock, and explains their differences as compared to
SyncLock. Section VI also discusses existing counter-attacks
for locking approaches based on the corrupt-and-correct prin-
ciple. Section VII provides the threat model and analyzes the
resilience of SyncLock to all known counter-attacks. Section
VIII concludes this article.

II. PRIOR ART ON LOCKING AND ANTI-PIRACY DESIGN

The first locking technique was proposed originally for
digital circuits [7], a.k.a. logic locking or logic encryption.
Since then, several logic locking techniques were proposed
aiming at reducing Power, Performance, and Area (PPA)
penalties, increasing corruption for invalid keys, and circum-
venting counter-attacks that were developed in the meantime
aiming at exposing security vulnerabilities of logic locking,
i.e., finding the secret key with reasonable effort or identifying
and subsequently removing the lock. For a recent review of
logic locking techniques and counter-attacks the reader is
referred to [3]. Leveraging logic locking to lock a mixed-
signal design via locking its digital section was proposed
in [15]–[17]. In [15], locking targeted the digital processor
in the feedback calibration loop, while in [16], [17] locking
targeted digital blocks within the signal processing chain. This
latter locking approach, called MixLock, was demonstrated
recently for RF transceivers [18]. A state-of-the-art logic
locking technique called Stripped Functionality Logic Locking
(SFLL)-rem [19] was employed in [18]. However, recently a
counter-attack based on structural analysis of the netlist was



3

Fig. 2. Simplified architecture of a wireless device IC with SyncLock embedded.

shown to break SFLL-rem within seconds [20]. Essentially,
there is an ongoing “cat-and-mouse” game between logic
locking defenses and counter-attacks. Every newly introduced
logic locking technique is considered secure until shortly after
a counter-attack heuristic is demonstrated that breaks it.

For locking analog blocks the existing technique is biasing
locking which aims at controlling the bias generation with
the key. Unless the correct key is provided the analog block
is incorrectly biased meaning that the quiescent point of
transistors is not the desired one resulting in performance
degradation or malfunction. For RF transceivers, one can
perform biasing locking in blocks of the AFE, i.e., Low Noise
Amplifier (LNA), Power Amplifier (PA), Phase-Locked Loop
(PLL), data converters, etc. Several embodiments of biasing
locking exist, including obfuscating the geometry of a bias
transistor [21], designing key-controlled current mirrors [5],
and replacing the biasing circuit with an alternative key-
controlled bias generator, e.g., based on an on-chip neural
network [22] or a programmable memristor crossbar [23].
Biasing locking may result in imprecise or unstable biasing
and, besides, recently counter-attacks were proposed based
on Satisfiability Modulo Theory (SMT) [24] and optimization
[25], [26] that break this type of defense.

System-level locking can be achieved via calibration locking
which makes the compensation of process variations or adap-
tation to different operation modes key-dependent. Techniques
in this category include logic locking of the digital section of
the calibration loop [15], treating digital programmability as a
natural secret key [27]–[29], and making the calibration range
key-dependent [30]. To be secure calibration locking requires
that the calibration algorithm is complex enough to be devised
or re-designed in hardware by the attacker, an assumption that
is not always met.

Besides locking, other anti-piracy methods include split
manufacturing [31] that protects only against an untrusted
foundry and camouflaging [32] that protects only against
reverse-engineering. Split manufacturing has been demon-
strated for RF designs [33] and camouflaging ideas for analog
and mixed-signal ICs include multi-threshold transistor design
[34] and obfuscating the geometry of layout components [35].
Unlike split manufacturing and camouflaging, locking offers
an end-to-end protection against all potential piracy threat
scenarios.

III. SyncLock
A. Principle of operation

SyncLock is a security mechanism for preventing piracy of
RF transceivers. It can be viewed as a domain-specific logic
locking capitalizing on a specific digital signal processing path
in RF transceivers. The underlying idea is to lock the preamble
that allows the synchronization process between the transmitter
and the receiver. By blocking the synchronization, wireless
receivers are unable to find the start of the received frame,
thus the wireless communication fails.

A simplified architecture of a wireless IC with SyncLock
embedded is shown in Fig. 2. SyncLock acts on two different
parts of the design. First, it modifies the frame generation
block at the end of the baseband DSP chain of the transmitter
by corrupting the preamble of each transmitted frame. The
introduced error is hard-coded such that after logic synthesis
of the DSP it is impossible to be traced and recovered by
structural analysis of the netlist. Then, it modifies the preamble
generation block at the beginning of the baseband DSP chain
such that the output preamble is key-controlled. To enable the
synchronization process, the key must neutralize the unknown
to the attacker later corruption in the frame generation block.

B. Preamble generation
In all wireless communication protocols, the payload is

transmitted along with the physical layer (PHY) specifications.
The baseband DSP prepares the payload in a frame format
for transmission. The PHY Protocol Data Unit (PPDU) frame
format of an Orthogonal Frequency-Division Multiplexing
(OFDM) IEEE 802.11 transmission consists of several OFDM
symbols. These symbols are divided into three parts: preamble
(a.k.a SYNC), header (a.k.a SIGNAL), and payload (a.k.a
DATA). The preamble section is composed of two different
training symbol sequences, namely a Short Training Sequence
(STS) and a Long Training Sequence (LTS). Fig. 3 shows
the PPDU of an IEEE 802.11 transmission with the above
three parts as defined in the IEEE 802.11 standard [36]. The
STS field consists of 10 identical short symbol repetitions
and is used for timing acquisition based on the Schmidl and
Cox algorithm [37], i.e., for synchronization or start of frame
detection and for coarse frequency offset estimation. The LTS
field consists of 2 long symbol repetitions and is used for
channel estimation and fine frequency offset estimation [36].



4

Fig. 3. PPDU frame format of an OFDM IEEE 802.11 transmission.

TABLE I
STSnom AS DEFINED IN THE IEEE 802.11 STANDARD [36].

Sample (k) Floating-point (I,Q) Fixed-point (I,Q)

0 0.04600 , 0.04600 16’h02F2 , 16’h02F2
1 -0.13245 , 0.00234 16’hF786 , 16’h0026
2 -0.01347 , -0.07853 16’hFF23 , 16’hFAF9
3 0.14276 , -0.01265 16’h0923 , 16’hFF31
4 0.09200 , 0.00000 16’h05E3 , 16’h0000
5 0.14276 , -0.01265 16’h0923 , 16’hFF31
6 -0.01347 , -0.07853 16’hFF23 , 16’hFAF9
7 -0.13245 , 0.00234 16’hF786 , 16’h0026
8 0.04600 , 0.04600 16’h02F2 , 16’h02F2
9 0.00234 , -0.13245 16’h0026 , 16’hF786
10 -0.07853 , -0.01347 16’hFAF9 , 16’hFF23
11 -0.01265 , 0.14276 16’hFF31 , 16’h0923
12 0.00000 , 0.09200 16’h0000 , 16’h05E3
13 -0.01265 , 0.14276 16’hFF31 , 16’h0923
14 -0.07853 , -0.01347 16’hFAF9 , 16’hFF23
15 0.00234 , -0.13245 16’h0026 , 16’hF786

More specifically, as defined in the IEEE 802.11 standard
[36], the nominal STS is divided into two parts, denoted here
by STSnomI and STSnomQ, corresponding to the real I and
imaginary Q channels, respectively. STSnomI,Q is composed
of 10 repetitions of the 16 samples of 16 bits each shown in
Table I in floating-point and fixed-point representations. Thus,
STSnomI,Q is composed of 10∗16∗16 = 2560 bits in total.

Each sample of STSnomI,Q is generated in the baseband
DSP by the preamble generation block shown in Fig. 4. There
are in total 13 multiplexers (MUXes) per I/Q branch where
the i-th MUX receives a constant 16-bit input DATA i with
values shown in Table II. The SEL input of the MUXes is a
4-bit word and selects the creation of one of the 16 samples of
the sequence. The position of the selected bit of DATA i that
is transferred at the output of each MUX equals the decimal
representation of the SEL input. The 16-bit fixed-point I and
Q values of the sample are then created by concatenating the
outputs of the MUXes according to the schemes shown in the
second and fifth rows of Table III for the I and Q branches,
respectively. The same hardware and concatenation operations
are used to generate any sample k by setting the input SEL
equal to k in decimal.

For example, let us consider the first sample, i.e., k = 0,
in the I branch which has a fixed-point value of 16’h02F2
in hexadecimal representation. In this case, SEL = 4’b0000
selecting the first bit position of the DATA i inputs of the
MUXes, as shown in blue in the I branch part of Table II.
The concatenation of the MUXes output is shown in blue in
the third row of Table III resulting in the desired value of
16’h02F2. As a second example, let us consider the fourth
sample, i.e., k = 3, in the Q branch with a fixed-point value
of 16’hFF31 in hexadecimal representation. SEL = 4’b0011
selecting the fourth bit position of the DATA i inputs of the
MUXes, as shown in red in the Q branch part of Table II.

Fig. 4. Original preamble generation block.

TABLE II
INPUT VALUES OF MUXES IN THE PREAMBLE GENERATION BLOCK.

MUX Name Input (16-bit)

I branch

M0 DATA 0 16’b0110 1100 1100 0110
M1 DATA 1 16’b0110 1100 0110 1100
M2 DATA 2 16’b0010 1000 1101 0110
M3 DATA 3 16’b0110 1101 1100 0111
M4 DATA 4 16’b0010 1000 1111 1110
M5 DATA 5 16’b0100 0101 1001 0011
M6 DATA 6 16’b0100 0101 0001 0001
M7 DATA 7 16’b1110 1111 0111 1101
M8 DATA 8 16’b0110 1101 0000 0001
M9 DATA 9 16’b0100 0100 0000 0000
M10 DATA 10 16’b1000 0010 1000 0010
M11 DATA 11 16’b1000 0011 1111 1111
M12 DATA 12 16’b0110 1100 0111 1100

Q branch

M13 DATA 13 16’b1100 0110 0110 1100
M14 DATA 14 16’b0110 1100 0110 1100
M15 DATA 15 16’b1101 0110 0010 1000
M16 DATA 16 16’b1100 0111 0110 1101
M17 DATA 17 16’b1111 1110 0010 1000
M18 DATA 18 16’b1001 0011 0100 0101
M19 DATA 19 16’b0001 0001 0100 0101
M20 DATA 20 16’b0111 1101 1110 1111
M21 DATA 21 16’b0000 0001 0110 1101
M22 DATA 22 16’b0000 0000 0100 0100
M23 DATA 23 16’b1000 0010 1000 0010
M24 DATA 24 16’b1111 1111 1000 0011
M25 DATA 25 16’b0111 1100 0110 1100

The concatenation of the MUXes output is shown in red in
the sixth row of Table III resulting in the desired value of
16’hFF31.

C. Locking mechanism

SyncLock acts specifically on the generation of the STS.
The locking mechanism of SyncLock is divided into two parts
embedded into the preamble and frame generation blocks, as
shown in Fig. 5. In the frame generation block, the STS origi-
nally generated by the preamble generation block is embedded
into the frame for transmission, with the final STS denoted by
STSout. The design owner deliberately corrupts the incoming
STS to the frame generation block prior to frame creation
by XORing it with the output of a nonlinear module f(·).
This module implements a feedback loop involving STSout

and a hard-coded key, denoted by keyh−c. In the preamble
generation block, an XOR operation is performed between
the key-bits stored in the TPM and STSnom, thus corrupting



5

TABLE III
CONCATENATION OPERATION AT THE OUTPUTS OF THE MUXES.

I branch

Concatenation of MUXes (M#) M0,M0,M0,M0 M1,M2,M3,M4 M5,M6,M7,M8 M9,M10,M11,M12

SEL = 4’b0000 (first sample) Fixed-point binary value 0000 0010 1111 0010
Fixed-point hexadecimal value 0 2 F 2

Q branch

Concatenation of MUXes (M#) M13,M13,M13,M13 M14,M15,M16,M17 M18,M19,M20,M21 M22,M23,M24,M25

SEL = 4’b0011 (fourth sample) Fixed-point binary value 1111 1111 0011 0001
Fixed-point hexadecimal value F F 3 1

STSnom to a faulty value, denoted by STSfaulty. Herein and
in the rest of the article we refer to a TPM but any other on-die
key provisioning scheme can be used instead. The equations
describing the operations are

STSfaulty = STSnom ⊕ key (1)

STSout = STSfaulty ⊕ f(STSout, keyh−c) (2)

Combining Eqs. (1)-(2) and using the associative property
(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) of the XOR function, the
system equation becomes

STSout = STSnom ⊕ (key ⊕ f(STSout, keyh−c)) (3)

Thus, using the self-inverse property A ⊕ A = 0 of the
XOR function, STSout = STSnom if and only if key =
f(STSnom, keyh−c)

STSout = STSnom ⇐⇒ key = f(STSnom, keyh−c) (4)

The SyncLock mechanism can be viewed as two spatially
separated XOR-based stream ciphers controlled by two secret
keys, one stored in the TPM and the other one being hard-
coded. The generated STSnom by the original preamble
generation block, i.e., the plaintext, is encrypted by the key to
STSfaulty, i.e., the ciphertext, so as to “match” the hidden
hard-coded decryption that comes downstream in the DSP
chain at the frame generation block. The secret correct key
must be loaded in the TPM of the chip for correct deciphering.
Applying incorrect keys introduces two uncorrelated STS
corruptions at two distinct blocks of the DSP chain which
breaks the synchronization.

As mentioned in Section III-B, for each channel I or Q,
at any point in the signal processing chain, STS is composed
of 2560 bits and is processed in 160 blocks with each block
corresponding to one sample of 16 bits shown in Table I. Each
key is composed of 512 bits divided into two parts of 256 bits
for each channel. Thus, for each channel, a key is divided into
16 blocks of 16 bits each. This means that for each channel
the key is repeatedly applied 10 times for every 16 blocks of
STS.

The implementation specifics showing how STSout con-
verges in Eq. (2) will be described in detail in Section III-E.

Fig. 5. SyncLock principle of operation.

D. Choice of function f(·)

As will be explained in detail in Section VII-B5, the
function f(·) is introduced to circumvent the Known-Plaintext
Attack (KPA), which is a vulnerability of the preliminary
version of SyncLock in [14]. The choice of f(·) is free, leaving
in theory unlimited freedom to the defender. It can also change
from one design to another or across design iterations to update
the key for increased security.

In our current implementation, f(·) is a two-step function. It
first performs 16-bit parallel XORing of STSout with the hard-
coded key keyh−c, then it applies to the result a circular shift
operation, a.k.a. bitwise rotation, i.e., f(STSout, keyh−c) =
(STSout ⊕ keyh−c) >> b, where >> is the bitwise rotation
operation and b is the number of bit rotations to the right.
Other possibilities include bitwise logical operations between
STSout and keyh−c, bit scrambling or substitution after the
XORing between STSout and keyh−c, etc.

The function f(·) can be executed in a single clock cycle
using any of the above bitwise operations with depth equal
to one. For example, in our current implementation, the XOR
operation STSout ⊕ keyh−c needs one clock cycle, while the
rotation can be simply implemented by rotating the wiring of
the 16-bit output of STSout ⊕ keyh−c when it is fed into
the XOR function with STSfaulty. To accommodate this one
clock cycle delay and guarantee convergence, as we will see
in Section III-E that presents the implementation specifics, we
let the first 16-bit block of STS pass without being processed
by the XOR stream ciphers, whereas the XOR steam ciphers
come into play starting from the second 16-bit block of
STS. Essentially, from this point onward, the k-th block of
STSfaulty is XORed with the output of f(·), which has been



6

computed with the (k − 1)-th blocks of STSout and keyh−c,
to produce the k-th block of STSout.

In general, if f(·) had a larger depth needing n clock cycles
to be executed, then the XOR stream ciphers would come into
play starting from the n-th 16-bit block of STS.

E. Implementation specifics
Without loss of generality, let us consider the I channel. Let

sI [k] denote the 16-bit k-th sample in Table I, k = 0, · · · , 15,
e.g., sI [0] = 16′h02F2, sI [1] = 16′hF786, etc. Let also
STSfaultyI and STSoutI denote the real parts of STSfaulty

and STSout, respectively, each composed of 2560 bits simi-
larly to STSnomI . As explained Section III-B, by construc-
tion, STS is divided into words of 16-bits corresponding to
samples sI [k]. Starting with STSnomI , it is divided into 16-
bit words STSnomI[j] corresponding to bit positions from
j ∗ 16 to (j ∗ 16 + 15), j = 0, · · · , 159. STSnomI[j] can be
expressed in terms of sI [k] as

STSnomI[j] = sI [mod(j, 16)] (5)

The key and hard-coded key are composed of 512-bits
each and are reused in every repetition of the 16 samples.
Each key can be divided into two equal 256-bit parts, with
the first part corresponding to the I channel and the second
part to the Q channel. For the I channel, the key and hard-
coded key are denoted by keyI and keyh−cI , respectively.
Similar to STS values, each key is divided into 16-bit words
corresponding to samples sI [k]. For example, keyI results
from the concatenation keyI = keyI[0]...keyI[15], where
keyI[n] is the part of keyI in bit positions from n ∗ 16 to
n ∗ 16 + 15, n = 0, · · · , 15.

Using the above definitions, we can now formally explain
the SyncLock implementation. Since the nonlinear module
evaluates STSout in a feedback loop, the system essentially
incorporates an internal memory and a valid STSout would
become available starting from the second sample of the first
repetition. To remove this delay, for the first sample of the
first repetition both XOR-based error units in the preamble and
frame generation blocks are bypassed, i.e., STSfaultyI[0] =
STSnom[0] and STSoutI[0] = STSfaultyI[0], that is, we
force the initial condition

STSoutI[0] = STSnomI[0] (6)

From the second sample of the first repetition onward, the
key and the two XOR-based error units start intervening in
the computation. Specifically, using the above definitions, for
j ≥ 1 we have

STSfaultyI[j] = STSnomI[j]⊕ keyI[mod(j, 16)],

j = 1, · · · , 159 (7)

STSoutI[j] = STSfaultyI[j]⊕
f(STSoutI[j − 1], keyh−cI[mod(j, 16)]),

j = 1, · · · , 159. (8)

Substituting Eq. (7) into Eq. (8) we have

STSoutI[j] = STSnomI[j]⊕ (keyI[mod(j, 16)]⊕
f(STSoutI[j − 1], keyh−cI[mod(j, 16)])),

j = 1, · · · , 159. (9)

The hard-coded key is set arbitrarily by the designer. The
key is then selected such that STSoutI = STSnomI which
from Eq. (9) is satisfied by the identity

keyI[mod(j, 16)]) =

f(STSnomI[j − 1], keyh−cI[mod(j, 16)])

j = 1, · · · , 159. (10)

This results in

keyI[0] = f(STSnomI[15], keyh−cI[0]) (11)
keyI[n] = f(STSnomI[n− 1], keyh−cI[n]), (12)

n = 1, · · · , 15.

An excerpt of the computations for the first 19 real samples
j = 0, · · · , 18 of STSnomI , i.e., comprising a complete first
iteration and 3 samples in the second iteration, is shown in
Table IV for three different key cases, namely (a) incorrect
zero key; (b) random incorrect key; and (c) correct key. Bitwise
rotation with b = 1 is used as the nonlinear function. The
key is repeated every 16 samples, but the XOR operations
are bypassed for the first sample of the first iteration so as to
force the initial condition for the feedback loop. The locking
mechanism becomes active starting from the second sample of
the first iteration and stays active until the end of the STSnom

transmission to the frame generation block. As it can be seen,
STSout is generated without errors only for the correct key.

F. Key size
The above SyncLock implementation has the advantageous

property that there is a single correct key enabling synchro-
nization, while any other key results in no synchronization,
i.e., there are no approximate keys. This property stems from
the nonlinear module inside the frame generation block. More
specifically, considering for example a bit rotation function, for
a single bit flip of the secret key, there is a large and arbitrary
number of bit flips in STSout. Thus, even for an incorrect
key with Hamming Distance (HD) of 1 from the correct key,
STSout contains a high number of errors. As a result, this
SyncLock implementation has a full effective 512-bit key size.

So far, we have assumed full key sizes of 512 bits. However,
this is a rather unnecessarily large key size from a security
point view. Typically, a key size of 64 bits suffices to guarantee
high resilience against brute-force and optimization attacks.
Therefore, we can consider keys of smaller size that can be
composed using any key-bits of the original 512-bit keys since
all key-bits are effective. Reducing the keys’ size has the
advantage of reducing the die area of the TPM, or in general
the die area of the implemented on-die key provisioning
scheme, as well as the die area of the lock mechanism itself.



7

TABLE IV
VALUES OF THE MAIN SIGNALS OF THE SyncLock LOCKING MECHANISM FOR THREE KEY CASES: INCORRECT ZERO KEY, RANDOM INCORRECT KEY, AND

CORRECT KEY. THE EXAMPLE CONSIDERS A BIT ROTATION FUNCTION WITH b = 1 AND SHOWS THE COMPUTATIONS DURING THE TRANSMISSION OF
THE FIRST 19 SAMPLES OF STSnom FOR THE I CHANNEL.

(a) Incorrect zero key

Preamble generation block Frame generation block

j STSnomI[j] keyI[mod(j, 16)] STSfaultyI[j] keyh−cI[mod(j, 16)] f(STSoutI[j − 1], keyh−cI[mod(j, 16)]) STSoutI[j]

0 16’h02F2 16’h0000 (Bypassed) 16’h02F2 16’h0052 (Bypassed) (Bypassed) 16’h02F2
1 16’hF786 16’h0000 16’hF786 16’hFAFA (16’h02F2 ⊕ 16’hFAFA) >> b = 16’h7C04 16’h8B82
2 16’hFF23 16’h0000 16’hFF23 16’hFEA6 (16’h8B82 ⊕ 16’hFEA6) >> b = 16’h3A92 16’hC5B1
3 16’h0923 16’h0000 16’h0923 16’h5216 (16’hC5B1 ⊕ 16’h5216) >> b = 16’hCBD3 16’hC2F0
4 16’h05E3 16’h0000 16’h05E3 16’h5614 (16’hC2F0 ⊕ 16’h5614) >> b = 16’h4A72 16’h4F91
5 16’h0923 16’h0000 16’h0923 16’hCAFE (16’h4F91 ⊕ 16’hCAFE) >> b = 16’hC2B7 16’hCB94
6 16’hFF23 16’h0000 16’hFF23 16’hFEF8 (16’hCB94 ⊕ 16’hFEF8) >> b = 16’h1AB6 16’hE595
7 16’hF786 16’h0000 16’hF786 16’h4516 (16’hE595 ⊕ 16’h4516) >> b = 16’hD041 16’h27C7
8 16’h02F2 16’h0000 16’h02F2 16’h0158 (16’h27C7 ⊕ 16’h0158) >> b = 16’h934F 16’h91BD
9 16’h0026 16’h0000 16’h0026 16’hCAFE (16’h91BD ⊕ 16’hCAFE) >> b = 16’hADA1 16’hAD87

10 16’hFAF9 16’h0000 16’hFAF9 16’hFFAC (16’hAD87 ⊕ 16’hFFAC) >> b = 16’hA915 16’h53EC
11 16’hFF31 16’h0000 16’hFF31 16’hAAAA (16’h53EC ⊕ 16’hAAAA) >> b = 16’h7CA3 16’h8392
12 16’h0000 16’h0000 16’h0000 16’h003A (16’h8392 ⊕ 16’h003A) >> b = 16’h41D4 16’h41D4
13 16’hFF31 16’h0000 16’hFF31 16’h0569 (16’h41D4 ⊕ 16’h0569) >> b = 16’hA25E 16’h5D6F
14 16’hFAF9 16’h0000 16’hFAF9 16’hFFC2 (16’h5D6F ⊕ 16’hFFC2) >> b = 16’hD156 16’h2BAF
15 16’h0026 16’h0000 16’h0026 16’h9623 (16’h2BAF ⊕ 16’h9623) >> b = 16’h5EC6 16’h5EE0
16 16’h02F2 16’h0000 16’h02F2 16’h0052 (16’h5EE0 ⊕ 16’h0052) >> b = 16’h2F59 16’h2DAB
17 16’hF786 16’h0000 16’hF786 16’hFAFA (16’h2DAB ⊕ 16’hFAFA) >> b = 16’hEBA8 16’h1C2E
18 16’hFF23 16’h0000 16’hFF23 16’hFEA6 (16’h1C2E ⊕ 16’hFEA6) >> b = 16’h7144 16’h8E67

(b) Random incorrect key

Preamble generation block Frame generation block

j STSnomI[j] keyI[mod(j, 16)] STSfaultyI[j] keyh−cI[mod(j, 16)] f(STSoutI[j − 1], keyh−cI[mod(j, 16)]) STSoutI[j]

0 16’h02F2 16’h2324 (Bypassed) 16’h02F2 16’h0052 (Bypassed) (Bypassed) 16’h02F2
1 16’hF786 16’hCAFE 16’h3D78 16’hFAFA (16’h02F2 ⊕ 16’hFAFA) >> b = 16’h7C04 16’h417C
2 16’hFF23 16’h5249 16’hAD6A 16’hFEA6 (16’h417C ⊕ 16’hFEA6) >> b = 16’h5FED 16’hF287
3 16’h0923 16’h3216 16’h3B35 16’h5216 (16’hF287 ⊕ 16’h5216) >> b = 16’hD048 16’hEB7D
4 16’h05E3 16’hEFAC 16’hEA4F 16’h5614 (16’hEB7D ⊕ 16’h5614) >> b = 16’hDEB4 16’h34FB
5 16’h0923 16’h1234 16’h1B17 16’hCAFE (16’h34FB ⊕ 16’hCAFE) >> b = 16’hFF02 16’hE415
6 16’hFF23 16’hAFC5 16’h50E6 16’hFEF8 (16’hE415 ⊕ 16’hFEF8) >> b = 16’h8D76 16’hDD90
7 16’hF786 16’hDE18 16’h299E 16’h4516 (16’hDD90 ⊕ 16’h4516) >> b = 16’h4C43 16’h65DD
8 16’h02F2 16’h0090 16’h0262 16’h0158 (16’h65DD ⊕ 16’h0158) >> b = 16’hB242 16’hB020
9 16’h0026 16’hFE10 16’hFE36 16’hCAFE (16’hB020 ⊕ 16’hCAFE) >> b = 16’h3D6F 16’hC359

10 16’hFAF9 16’h3620 16’hCCD9 16’hFFAC (16’hC359 ⊕ 16’hFFAC) >> b = 16’h9E7A 16’h52A3
11 16’hFF31 16’h5148 16’hAE79 16’hAAAA (16’h52A3 ⊕ 16’hAAAA) >> b = 16’hFC04 16’h527D
12 16’h0000 16’h6696 16’h6696 16’h003A (16’h527D ⊕ 16’h003A) >> b = 16’hA923 16’hCFB5
13 16’hFF31 16’hA5CD 16’h5AFC 16’h0569 (16’hCFB5 ⊕ 16’h0569) >> b = 16’h656E 16’h3F92
14 16’hFAF9 16’hB517 16’h4FEE 16’hFFC2 (16’h3F92 ⊕ 16’hFFC2) >> b = 16’h6028 16’h2FC6
15 16’h0026 16’h9ED1 16’h9EF7 16’h9623 (16’h2FC6 ⊕ 16’h9623) >> b = 16’hDCF2 16’h4205
16 16’h02F2 16’h2324 16’h21D6 16’h0052 (16’h4205 ⊕ 16’h0052) >> b = 16’hA12B 16’h80FD
17 16’hF786 16’hCAFE 16’h3D78 16’hFAFA (16’h80FD ⊕ 16’hFAFA) >> b = 16’hBD03 16’h807B
18 16’hFF23 16’h5249 16’hAD6A 16’hFEA6 (16’h807B ⊕ 16’hFEA6) >> b = 16’hBF6E 16’h1204

(c) Correct key

Preamble generation block Frame generation block

j STSnomI[j] keyI[mod(j, 16)] STSfaultyI[j] keyh−cI[mod(j, 16)] f(STSoutI[j − 1], keyh−cI[mod(j, 16)]) STSoutI[j]

0 16’h02F2 16’h003A (bypassed) 16’h02F2 16’h0052 (bypassed) (bypassed) 16’h02F2
1 16’hF786 16’h7C04 16’h8B82 16’hFAFA (16’h02F2 ⊕ 16’hFAFA) >> b = 16’h7C04 16’hF786
2 16’hFF23 16’h0490 16’hFBB3 16’hFEA6 (16’hF786 ⊕ 16’hFEA6) >> b = 16’h0490 16’hFF23
3 16’h0923 16’hD69A 16’hDFB9 16’h5216 (16’hFF23 ⊕ 16’h5216) >> b = 16’hD69A 16’h0923
4 16’h05E3 16’hAF9B 16’hAA78 16’h5614 (16’h0923 ⊕ 16’h5614) >> b = 16’hAF9B 16’h05E3
5 16’h0923 16’hE78E 16’hEEAD 16’hCAFE (16’h05E3 ⊕ 16’hCAFE) >> b = 16’hE78E 16’h0923
6 16’hFF23 16’hFBED 16’h04CE 16’hFEF8 (16’h0923 ⊕ 16’hFEF8) >> b = 16’hFBED 16’hFF23
7 16’hF786 16’hDD1A 16’h2A9C 16’h4516 (16’hFF23 ⊕ 16’h4516) >> b = 16’hDD1A 16’hF786
8 16’h02F2 16’h7B6F 16’h799D 16’h0158 (16’hF786 ⊕ 16’h0158) >> b = 16’h7B6F 16’h02F2
9 16’h0026 16’h6406 16’h6420 16’hCAFE (16’h02F2 ⊕ 16’hCAFE) >> b = 16’h6406 16’h0026

10 16’hFAF9 16’h7FC5 16’h853C 16’hFFAC (16’h0026 ⊕ 16’hFFAC) >> b = 16’h7FC5 16’hFAF9
11 16’hFF31 16’hA829 16’h5718 16’hAAAA (16’hFAF9 ⊕ 16’hAAAA) >> b = 16’hA829 16’hFF31
12 16’h0000 16’hFF85 16’hFF85 16’h003A (16’hFF31 ⊕ 16’h003A) >> b = 16’hFF85 16’h0000
13 16’hFF31 16’h82B4 16’h7D85 16’h0569 (16’h0000 ⊕ 16’h0569) >> b = 16’h82B4 16’hFF31
14 16’hFAF9 16’h8079 16’h7A80 16’hFFC2 (16’hFF31 ⊕ 16’hFFC2) >> b = 16’h8079 16’hFAF9
15 16’h0026 16’h366D 16’h364B 16’h9623 (16’hFAF9 ⊕ 16’h9623) >> b = 16’h366D 16’h0026
16 16’h02F2 16’h003A 16’h02C8 16’h0052 (16’h0026 ⊕ 16’h0052) >> b = 16’h003A 16’h02F2
17 16’hF786 16’h7C04 16’h8B82 16’hFAFA (16’h02F2 ⊕ 16’hFAFA) >> b = 16’h7C04 16’hF786
18 16’hFF23 16’h0490 16’hFBB3 16’hFEA6 (16’hF786 ⊕ 16’hFEA6) >> b = 16’h0490 16’hFF23



8

G. Overheads

1) Area Overhead: The hardware added by the SyncLock
are two XOR-based modules in the preamble and frame
generation blocks and one nonlinear module involving another
XOR operation and a bitwise rotation in the frame generation
block. To compute the area overhead of SyncLock we used
as baseline non-locked implementation an open-source IEEE
802.11 compatible SDR VHDL modem [38]. The project is
called bladeRF-wiphy as it implements the IEEE 802.11 PHY
on the Cyclone V Field-Programmable Gate Array (FPGA)
integrated on the bladeRF board [13]. More details about the
bladeRF board will be given in Section IV. Starting from the
non-locked implementation, we added the SyncLock locking
mechanism into the PHY of the modem and we re-synthesized
the project using Quartus II 16.0 from Intel to find the resultant
overhead. Considering a full key size of 512 bits, SyncLock
results in 1.22% area overhead for the baseband DSP section,
which when projected to the entire RF transceiver is even
smaller as the area is dominated by the AFE.

The overhead for the key management scheme, i.e., based
on a TPM, is common to all locking schemes. Besides, the
key can be shared across different blocks in a SoC. Thus, the
overhead of the key management scheme is taken as fixed for
any locking mechanism and is not considered.

2) Power overhead: Embedding SyncLock in the bladeRF-
wiphy PHY implementation as above resulted in no noticeable
power overhead.

3) Performance penalty: The SyncLock mechanism has
no impact on the performance of the RF transceiver. The
delay of f(·) is accommodated by just enabling the XOR
stream ciphers with the same delay. Thus, the STS gen-
eration is not delayed because of f(·). However, the two
XOR stream ciphers introduce a delay of two clock cycles
in the STS generation. This results in no timing violation
because the preamble, consisting of STS and LTS, and the
payload are generated in parallel to compose the data frame,
while the payload part is much longer than the preamble
part. In other words, the preamble generation, despite being
delayed, still finishes before the payload is generated. The non-
instrusiveness of the SyncLock mechanism is confirmed with
hardware measurements in Section V.

4) Design flow: The AFE is left intact, thus there is no
change in the analog IC design flow. This is an important
attribute of SyncLock since analog IC designers are often
reluctant to make any alternations in the circuit once it is
finalized since this would typically add parasitics that would
likely degrade performance. A lock mechanism inside the
analog section inevitably would have to be co-designed with
the circuit, possibly increasing design iterations and failing to
meet the intent specifications. In contrast, SyncLock is a plug-
in module added to the digital section of the RF transceiver
once the design is completed without requiring any change in
the design flow.

H. Practicality

Since a synchronization process is present and necessary in
any wireless communication protocol, SyncLock is applicable

to any of them. For instance, Wireless Local Area Network
(WLAN) IEEE 802.11 (i.e., Wi-Fi), Wireless Personal Area
Network (WPAN) IEEE 802.15.1 (i.e., Bluetooth), Low-Rate
Wireless Personal Area Network (LRWPAN) IEEE 802.15.4
(i.e., Zigbee), and any other standard using correlation-based
synchronization algorithms, are natural candidates. Further-
more, since SyncLock only acts on the preamble generation,
it is independent of the modulation scheme that is applied
on the payload and, thereby, it is generally applicable for
any modulation scheme. Finally, since SyncLock modifies only
the DSP, it is independent of the AFE of the RF transceiver
architecture. Therefore, it can be applied to conventional RF
transceiver architectures, such as Zero Intermediate Frequency
(Zero-IF) and Low Intermediate Frequency (Low-IF), as well
as to highly-digitized RF transceiver architectures.

I. First SyncLock version [14]

The first SyncLock implementation in [14] is a special
case of the new SyncLock implementation proposed in this
paper. In particular the first SyncLock implementation does
not include the nonlinear module and feedback in the part of
the mechanism that is embedded inside the frame generation
block. This can be expressed as

f(STSout, keyh−c) = keyh−c (13)

with the system equation being simplified from Eq. (3) to

STSout = STSnom ⊕ (key ⊕ keyh−c) (14)

As will be explained in detail in Section VII-B5, the
motivation for the new SyncLock implementation is that the
first SyncLock implementation in [14] is vulnerable to the
KPA. This new SyncLock implementation effectively thwarts
the KPA.

Another difference is that the first SyncLock implementation
in [14] does not provide a full effective key size. The reason is
that a single bit flip in the input secret key results in a single bit
flip in STSout. To quantify the fraction of incorrect keys that
are still capable of enabling synchronization we performed
a HD test. In particular, we generated incorrect keys with
increasing HD from the correct key. For a full size key of
512 bits, there are 512 incorrect keys with HD=1 and

(
512
k

)
keys with HD=k. Since

(
512
k

)
is very high for k > 1, e.g.,(

512
2

)
=130816, for each k > 1 we tested a randomly generated

set of 103 keys. We increased k until for all tested 103 keys
synchronization failed. The results are shown in Table V. For
HD=1, only 192 incorrect keys, or 37% of the incorrect keys,
did not allow the synchronization process, thus reducing the
number of effective key-bits to 192. This percentage increases
with k and for k = 14 all incorrect keys resulted in no
synchronization. The number of incorrect keys that enabled
synchronization can be estimated as:

n=13∑
i=1

(
1− ωk

100

)
·
(
512

i

)
≈ 1022



9

TABLE V
HD TEST FOR THE FIRST SyncLock IMPLEMENTATION IN [14].

HD 1 2 3 4 5 6 7

Percentage
of failing 37.5% 63.5% 72.8% 84.6% 91.7% 94.4% 96.3%

keys

HD 8 9 10 11 12 13 14

Percentage
of failing 98.0% 98.3% 98.9% 99.3% 99.7% 99.9% 100%

keys

TABLE VI
COMPARISON BETWEEN THE NEW AND FIRST SyncLock

IMPLEMENTATIONS.

First New
implementation [14] implementation

Effective number of key-bits 192 512
Area overhead
(projected to DSP) 1.12% 1.22%
Performance penalty no no
Attacks in the analog domain 3 3
Brute-force and
optimization attacks 3 3
Input-output query attacks 3 3
Removal attacks 3 3
KPA through
AFE baseband loopback 3 3
KPA through
digital baseband loopback 7 3

3: Resilient , 7: Not Resilient

where ωk is the percentage of failing keys for HD=k and
n = 13 is the highest HD showing keys that enable synchro-
nization. Thus, a negligible percentage (1022/2512) · 100 =
10−131% of incorrect keys were capable of enabling synchro-
nization.

Table VI summarizes the comparison between the first and
new SyncLock implementations. The description of different
counter-attacks and the resilience to them will be described in
detail in Section VII.

IV. HARDWARE PLATFORM

SyncLock is demonstrated in hardware using a SDR bladeRF
board from Nuand [13]. The board contains three main chips:
(a) an RF transceiver; (b) an FPGA; and (c) a USB 3.0
peripheral controller. We implemented on the bladeRF board
an IEEE 802.11 RF transceiver with a direct conversion AFE
architecture for both the receiver and the transmitter. The
bladeRF board has an AFE RF loopback mode as shown in
Fig. 2, which allows us to perform Bit Error Rate (BER) mea-
surements and symbol timing recovery, i.e., synchronization,
using the same board. Note that this on-board loopback mini-
mizes the impairments of the wireless communication channel,
such as path loss, fading, and shadowing, and greatly simplifies
the channel model. The measurements presented in Section V
were obtained using this on-board loopback considering an
Additive White Gaussian Noise (AWGN) channel model. The
baseband DSP is designed in VHDL [38] and implemented
on the FPGA of the board. The VHDL code of the preamble
and frame generation blocks is modified to insert the SyncLock
locking mechanism and is re-embedded into the same FPGA

Fig. 6. Bit error rate with for RF transceiver with no locking and RF
transceiver with SyncLock embedded using the correct and incorrect keys.

project. Detailed information on implementation overhead is
presented in Section III-G1. As mentioned in Section III-H,
SyncLock is independent of the modulation scheme. To show
this, we repeat the demonstration by modulating the payload
of the transmitted signal using Binary Phase-Shift Keying
(BPSK), Quadrature Phase-Shift Keying (QPSK), and 16-
Quadrature Amplitude Modulation (QAM), then encoding it
into OFDM symbols. The frame generation block creates the
PPDU frame format for an IEEE 802.11 transmission, as
shown in Fig. 3. At the receiver side, the synchronization
frame detection block searches for the start of the frame based
on the Schmidl and Cox algorithm [37]. The received signal
is processed and demodulated, and different performances of
the RF transceiver are derived and visualized, such as BER
and constellation diagram of the received payload.

V. MEASURED SyncLock EFFICIENCY

A. BER performance for incorrect keys

The hardware platform is used for assessing the impact of
SyncLock on the nominal performance when using the correct
key and for demonstrating the locking efficiency when using
an incorrect key. As discussed in Section III-F, there is a single
key enabling synchronization since any incorrect key, even
those with HD=1 from the correct key, generate an arbitrary
number of bit errors in the preamble of the outgoing data
frame which impedes synchronization. For this reason, in the
measurement results below we utilize a randomly selected
incorrect key.

Fig. 6 shows the BER of an OFDM-BPSK transmission con-
sidering different Signal-to-Noise Ratio (SNR) values without
SyncLock, with SyncLock when applying the correct key, and
with SyncLock when applying a randomly selected incorrect
key. A first observation is that when applying the correct key
there is no BER penalty. The curves of BER without and with
SyncLock are identical for all SNR values. This measurement
proves that SyncLock is totally transparent when the correct
key is used, thus there is zero performance penalty. This
is expected since SyncLock leaves intact the sensitive AFE
concentrating the lock mechanism inside the DSP. For each



10

(a) BPSK. (b) QPSK. (c) 16-QAM.

Fig. 7. Constellation diagram of the received payload with SyncLock embedded using the correct and an incorrect key.

preamble bit line SyncLock essentially introduces two spatially
separated XOR gates in the path without causing any timing
violation. A second observation is that with an incorrect key
the system does not synchronize and erroneously demodulates
the received signal. As a result, the BER is maximum and
constant across all SNR values. It should be noted that for
SNR values below −5dB the synchronization was not possible
even for the device with no locking.

B. Constellation diagrams for incorrect keys

Fig. 7 shows the constellation diagrams of the received pay-
load for three different modulation schemes, namely BPSK,
QPSK, and 16-QAM, when applying the correct key and
when applying a randomly selected incorrect key. The thin
black circles show the reference constellation points for the
modulation schemes. While the received signal lies inside the
reference constellation for every modulation using the correct
key, the non-synchronized signal is randomly distributed.

C. Locking efficiency for approximate keys

Finally, we tested the synchronization process for all the 512
incorrect keys with HD=1 from the correct key. All incorrect
keys resulted in no synchronization with the smallest observed
HD between STSout and STSnom being equal to 80. As
discussed theoretically in Section III-F, any incorrect key will
show the same behavior observed in Figs. 6 and 7, with
the only difference being the randomness of distribution of
payload data in Fig. 7 when different incorrect keys are loaded
onto the chip.

VI. RELATED LOCKING AND OBFUSCATION APPROACHES

Herein, we describe related locking approaches and explain
their differences compared to SyncLock.

1) Key-gates in logic locking: Traditional logic locking
techniques insert key-gates into the design [7], [39]–[42]. A
key-gate interrupts a digital line controlling its value with a
key-bit. The first technique inserted key-gates randomly [7],
while follow-up techniques targeted high output corruption for
incorrect keys [39], resilience to sensitizing the key-bits to the
output [40], reducing PPA overheads [41], or thwarting the

Fig. 8. SFLL-hd principle of operation.

ability of the attacker to learn the key-bit value from the key-
gate type [42]. In all cases, key-gates are inserted randomly
or algorithmically. In contrast, SyncLock inserts key-gates on
fixed binary sequences, i.e., STSnom inside the preamble
generation block and STSfaulty inside the frame generation
block.

2) Preamble obfuscation: The XOR-based cipher of the
SyncLock mechanism inside the preamble generator that en-
crypts the nominal preamble STSnom with a key was used
in [43] as a PHY layer security to prevent man-in-the-middle
attacks such as eavesdropping. In this different context, the
preamble obfuscation is performed through unique keys that
are independently generated at both the transmitter and the
receiver based on channel characteristics known only to the
pair. Using only the XOR-based cipher inside the preamble
generator is not sufficient for anti-piracy since the attacker
can identify and straightforwardly remove this XOR-based
cipher by tracing the key-bits from the TPM. SyncLock hides
a second XOR-based cipher inside the frame generation block
to achieve the anti-piracy objective.

3) Corrupt-and-correct logic locking: SyncLock belongs
to the family of corrupt-and-correct locking techniques. Two
state-of-the-art corrupt-and-correct logic locking techniques
are SFLL-hd [44] and SFLL-rem [19].

SFLL-hd, illustrated in Fig. 8, inserts a corrupt unit which
compares the input to a hard-coded secret key. If the HD
between the key and the input is h, then the output of the
corrupt unit is 1, thus flipping the output of the circuit using
an XOR gate. The inputs that satisfy this condition are called
Protected Input Patterns (PIPs). The correct unit is identical



11

(a) Targeted logic cone from the
c17 circuit having n = 5 inputs
{I1, I2, I3, I6, I7}. The location of
the stuck-at fault is shown.

(b) Failing inputs patterns for the
stuck-at 0 fault of Fig. 9a highlighting
the selected PIPs.

(c) Simplified circuit after stuck-at-0
fault injection.

(d) Circuit after restoring logic in the
circuit in Fig. 9c for all input patterns
in Fig. 9b except the selected PIPs.

(e) Addition of correct unit for restoring functionality
for the selected PIPs in Fig. 9b.

Fig. 9. SFLL-rem principle of operation explained with an example using
the c17 circuit from the ISCAS benchmark suite [45].

to the corrupt unit, but in this case the key is sourced from
the TPM. The correct unit flips the output a second time for
the PIPs to restore correct functionality only when the correct
secret key is loaded into the TPM. If an incorrect key is used,
the functionality will be corrupted for all PIPs. The hypothesis
is that the corrupt unit is immersed into the circuit after logic
synthesis becoming indistinguishable to the attacker.

SFLL-rem, illustrated in Fig. 9 with an example reproduced
from [19], corrupts the circuit functionality by injecting a
stuck-at fault. Due to the fault, a number of input patterns fail
resulting in incorrect output. Also due to the fault, some gates
become redundant and the topology of the circuit is simplified
by removing them. The circuit is then redesigned to correct
functionality for all input patterns apart for a selected one that
has k care bits and n − k don’t care bits, where n is the
input size. In this way, 2n−k PIPs are generated. Thereafter,
a correction unit similar to SFLL-hd is used where the secret
key is composed of the aforementioned k care bits and is
sourced from the TPM to flip the output for all PIPs restoring
functionality. Similar to SFLL-hd, if an incorrect key is used,
the functionality will be corrupted for all PIPs.

SyncLock compared to SFLL-hd and SFLL-rem is concep-

tually different. As it will be discussed in detail in Section
VII-B4, SFLL-hd and SFLL-rem were shown to be vulnerable
to recently developed structural attacks [20], [46], [47], while
SyncLock circumvents successfully these attacks.

VII. THREAT MODEL AND SECURITY ANALYSIS

A. Threat model

We consider the most demanding threat model for a de-
fender. We assume that the attacker is in possession of the
netlist and an oracle, i.e., a working chip with the correct
key applied into the TPM. The goal of the attacker is either to
identify a key that establishes synchronization or, alternatively,
remove SyncLock while restoring the functionality. Next, we
describe the known counter-attacks and discuss how SyncLock
achieves resilience against all of them.

B. Resilience to counter-attacks

1) Attacks in the analog domain: Biasing locking is the
only known locking approach working in the analog domain.
Recently several attacks on biasing locking were demon-
strated, some of them not requiring particular knowledge on
analog design by the attacker [24]–[26]. These attacks assume
the existence of an obfuscated analog component, i.e., the
geometry of the mirroring transistor in a current mirror. They
do not apply to SyncLock since SyncLock is not based on
analog component obfuscation.

2) Brute-force and optimization attacks: The attacker
searches in the key space either randomly in a brute-force
manner or more efficiently by employing an optimization
algorithm hoping to find a key that enables synchronization.
The search is performed by simulating the design at netlist-
level where the TPM is circumvented and the key inputs
are accessed directly. At each iteration, instead of evaluating
synchronization, a faster evaluation criterion may be devised
by involving the oracle. For example a simulated transient
response can be compared to that of the oracle. Resilience
against this attack is achieved since: (a) the key space size, i.e.,
2512 for a full key size, is huge; (b) a single secret key enables
synchronization, thus the optimization function behaves like a
delta function on the secret key and an optimization algorithm
will “zig-zag” endlessly; (c) a single simulation at netlist-level
can be very time-consuming, thus the attacker in practice can
perform a very limited number of trials.

3) Input-output query attacks: Attacks based on Boolean
satisfiability (SAT) [48] belong to this category and were
shown to be very powerful, breaking traditional logic locking
approaches [7], [39]–[41] by recovering the key with little
effort. The SAT attack computes Distinguishing Input Patterns
(DIPs), defined as inputs which produce different output for at
least two different keys, and prunes down multiple incorrect
keys iteratively using DIPs and querying the oracle. SFLL-hd
and SFLL-rem were specifically proposed to push the limits
of the SAT attack by eliminating exactly one key per iteration,
thus making it equivalent to a brute-force attack in terms of
attack time. As the SAT attack makes use of the scan chain,
another recently proposed solution to thwart the SAT attack is
to withdraw the secret key upon detection of access to the scan



12

chain [42]. The SAT attack does not apply to SyncLock since
the inputs to the preamble generation block, i.e., the DATA i
values and SEL, are fixed and hard-coded, thus no DIPs can
be generated.

4) Structural attacks: Structural attacks, a.k.a. removal at-
tacks, aim at identifying and removing the locking mechanism.
The attacker can trace the key-bits from the TPM to straight-
forwardly identify and remove the first XOR-based stream
cipher in the preamble generation block. In this case, the
design will be left with a hard-coded error introduced by the
second XOR-based stream cipher inside the frame generation
block. Thus, the attacker will need to identify this second
corrupt unit too to complete the removal attack. However, after
logic synthesis this small circuit is immersed in the original
design and the two become inseparable. The attacker has at
hand a non-annotated netlist, thus identifying this small circuit
is puzzling.

The fact that the corrupt unit is non-identifiable is the hy-
pothesis of SFLL-hd too. For SFLL-hd, however, two specific
attacks were developed recently that succeed in identifying the
corrupt unit [46], [47]. They perform a structural analysis of
the locked netlist to identify PIPs by leveraging the properties
of the HD-based corrupt and correct units, and also exploiting
the fact that in SFLL-hd the input feeds the corrupt unit.
These attacks, apart from being specific to SFLL-hd, are
not generalizable for SyncLock for two reasons. First, in
SyncLock corruption is not a function of the STSnom input
which is fixed, i.e., SyncLock does not generate PIPs or stated
differently all inputs are PIPs. Second, the corrupt unit hidden
inside the frame generation block is spatially separated from
the correct unit inside the input preamble generation block,
thus the corrupt unit cannot be traced from the input.

In [20], a structural attack is proposed that defeats both
SFLL-hd and SFLL-rem. It works differently by analyzing the
Boolean truth table of the corrupted circuit to extract the PIPs.
The SFLL-hd and SFLL-rem techniques essentially construct
the corrupted circuit by adding (removing) selected minterm(s)
to (from) the original circuit to create the PIPs. Then, the logic
synthesis tool synthesizes the resulting corrupted circuit. The
attack in [20] aims at recovering the PIPs. It demonstrates how
the optimization performed to minimize the PPA overhead
executed by the Electronic Design Automation (EDA) tools
may expose the PIPs. This attack is not applicable to SyncLock
either since SyncLock does not employ PIPs to secure the
circuit, i.e., it does not add or remove any minterms, and
no trace is left in the Boolean truth table. In addition, the
correctness of the extracted PIPs is verified by querying the
oracle with the PIPs. As explained in Section VII-B3, in the
case of SyncLock, an attacker cannot query the oracle since
the inputs to the preamble generation block, i.e., the DATA i
values and SEL, are fixed and hard-coded.

In short, it is realistic to assume that the corrupt unit inside
the frame generation block cannot be distinguished within a
“sea” of non-annotated digital gates. However, as we observed
with other corrupt-and-correct logic locking techniques [19],
[44], it leaves a backdoor that may be exploited to develop an
attack based on structural analysis. Although such an attack
is not known at this point for SyncLock, the possibility cannot

be ruled out.
5) KPA: It applies to stream ciphers with symmetric en-

cryption, i.e., when the encryption and decryption processes
are performed using the same encryption key. In our context,
the plaintext is STSnom and is known to the attacker since it
is published in the IEEE 802.11 standard [36].

Let us consider the first SyncLock implementation in [14].
The attacker applies a trial key, denoted by keytrial. From
Eq. (14), using the associative and self-inverse properties of
the XOR function, we obtain

keyh−c = keytrial ⊕ STSnom ⊕ STSout (15)

Knowing STSnom and selecting any keytrial, the attacker can
successfully recover keyh−c and, thereby, the secret key since
key = keyh−c, provided that STSout is measured accurately.
In the oracle chip, the attacker cannot re-write the TPM to ap-
ply a trial key, thus STSout has to be extracted by simulation.
The attacker can simulate a transmission and try to extract
STSout from the transmitted frame. A loopback connection
to the receiver can be used to analyse the transmitted signal.
There are three different loopback modes, as shown in Fig.
2, namely (a) the AFE RF loopback that connects the output
of the transmitter’s PA to the input of the receiver’s LNA, (b)
the AFE baseband loopback right before the RF mixers, and
(c) the digital baseband loopback between the DSP output
and subsequent AFE data converters. In all three scenarios,
the attacker should be able to manually locate the received
STSout bits. However, with loopback modes (a) and (b), some
bits of STSout will be corrupted due to analog impairments,
quantization noise, and nonlinearities introduced throughout
the signal processing at transistor-level. To demonstrate this,
we implemented this attack using loopback mode (b) on our
hardware platform, which will be described in Section IV.
Fig. 10 shows the amplitude values of the first 32 samples
of the measured transmitted and received STSout for a given
keytrial. As it can be seen, for every sample the amplitude
values differ between the two STSout signals. To quantify
the number of bit errors, we translated the floating-point values
into binary fixed-point values and obtained a HD of 1902 bits
out of 5120 bits between the two signals. Thus, the transmitted
STSout will be extracted with errors and the computed keyh−c
from Eq. (15) will be incorrect.

In contrast, if the attacker can locate the boundary between
the DSP and AFE to implement loopback mode (c), then
STSout can be extracted accurately and KPA is completed
successfully. This is a security breach of the first SyncLock
implementation in [14] that is addressed with the second
SyncLock implementation in this paper. As shown in the
comparison Table VI, this is the main differentiation between
the two implementations and the motivation for complexifying
SyncLock giving rise to the second implementation.

In particular, introducing the nonlinear feedback inside the
frame generation block helps thwarting the KPA attack even
when STSout is correctly extracted using a purely digital
baseband loopback (c). The reason is that the identity from
Eq. (3) now becomes



13

Fig. 10. Amplitude values of the first 32 samples of the transmitted and
received STSout for a given keytrial using the AFE baseband loopback.

STSout = (STSnom⊕ keytrial)⊕ f(STSout, keyh−c) (16)

making it impossible to de-embed keyh−c since both the
nonlinear function f and keyh−c are unknown to the attacker.
In the implementation presented herein, f is an XOR followed
by a circular shift operation. However, as mentioned in Section
III-D, any shift value can be used and any other function
performing bitwise operations can be used instead. Thus, we
presented one out of the countless implementations without
endangering the security of SyncLock.

VIII. CONCLUSION

We presented SyncLock, an anti-piracy design technique for
RF transceivers. SyncLock makes the synchronization between
the transmitter and receiver key-dependent, while there is a
single valid key that can have up to 512 effective key-bits. The
SyncLock mechanism is hidden inside the DSP resulting in an
overhead of around 1.22% of the DSP, which is negligible
when projected to the entire RF transceiver since the area is
dominated by the AFE. SyncLock is non-intrusive to the RF
transceiver operation when applying the correct key incurring
no performance penalty. No changes in the AFE design or the
analog design flow are needed. The SyncLock mechanism is
a simple plug-in to the DSP. SyncLock is a generic approach
applicable to any RF transceiver architecture, communication
protocol, and modulation scheme. Finally, it is shown to be
resilient against any known counter-attack aiming at finding
the secret key or removing the lock mechanism.

REFERENCES

[1] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proc. IEEE, vol. 102, no. 8, pp. 1207–
1228, Aug. 2014.

[2] M. Holler et al., “High-resolution non-destructive three-dimensional
imaging of integrated circuits,” Nature, vol. 543, pp. 402–406, Mar.
2017.

[3] A. Chakraborty et al., “Keynote: A disquisition on logic locking,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp.
1952–1972, Oct. 2020.

[4] A. Sanabria-Borbón, N. G. Jayasankaran, S. Lee, E. Sánchez-Sinencio,
J. Hu, and J. Rajendran, “Schmitt trigger-based key provisioning for
locking analog/RF integrated circuits,” in Proc. IEEE Int. Test Conf.
(ITC), Nov. 2020.

[5] J. Wang, C. Shi, A. Sanabria-Borbon, E. Sánchez-Sinencio, and J. Hu,
“Thwarting analog IC piracy via combinational locking,” in Proc. IEEE
Int. Test Conf. (ITC), Oct. 2017.

[6] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical
unclonable functions and applications: A tutorial,” Proc. IEEE, vol.
102, no. 8, pp. 1126–1141, Aug. 2014.

[7] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30–38, Oct. 2010.

[8] H.-C. Park et al., “4.1 A 39GHz-band CMOS 16-channel phased-array
transceiver IC with a companion dual-stream IF transceiver IC for 5G
NR base-station applications,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), 2020, pp. 76–78.

[9] J. Lee et al., “30.2 NB-IoT and GNSS all-in-one system-on-chip
integrating RF transceiver, 23dBm CMOS power amplifier, power man-
agement unit and clock management system for low-cost solution,” in
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2020, pp. 462–464.

[10] K. Shibata et al., “A 22nm 0.84mm2 BLE transceiver with self IQ-
phase correction achieving 39dB image rejection and on-chip antenna
impedance tuning,” in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2022, vol. 65, pp. 398–400.

[11] R. Chen et al., “A 6.5-to-10GHz IEEE 802.15.4/4z-compliant 1T3R
UWB transceiver,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
2022, vol. 65, pp. 396–398.

[12] E. Bechthum et al., “30.6 A low-power BLE transceiver with support
for phase-based ranging, featuring 5µs PLL locking time and 5.3ms
ranging time, enabled by staircase-chirp PLL with sticky-lock channel-
switching,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2020,
pp. 470–472.

[13] Nuand, “SDR bladeRF 2.0 micro xA9,” https://bit.ly/3z2QV1N, Online.
[14] A. R. Dı́az Rizo, H. Aboushady, and H.-G. Stratigopoulos, “SyncLock:

RF transceiver security using synchronization locking,” in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 1153–1156.

[15] N. G. Jayasankaran, A. S. Borbon, E. Sanchez-Sinencio, J. Hu, and
J. Rajendran, “Towards provably-secure analog and mixed-signal locking
against overproduction,” in Proc. 18th Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2018.

[16] J. Leonhard et al., “MixLock: Securing mixed-signal circuits via logic
locking,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar.
2019, p. 84–89.

[17] J. Leonhard et al., “Digitally-assisted mixed-signal circuit security,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2021, early
access.

[18] A. R. Dı́az Rizo, J. Leonhard, H. Aboushady, and H. Stratigopoulos,
“RF transceiver security against piracy attacks,” IEEE Trans. Circuits
Syst., II, Exp. Briefs, 2022, early access.

[19] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly stripping functionality for logic locking: A fault-based perspec-
tive,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 12, pp. 4439–4452, Jan. 2020.

[20] Z. Han, M. Yasin, and J. Rajendran, “Does logic locking work with
EDA tools?,” in Proc. 30th USENIX Security Symposium, Aug. 2021.

[21] V. Rao and I. Savidis, “Performance and security analysis of parameter-
obfuscated analog circuits,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 29, no. 12, pp. 2013–2026, Dec. 2021.

[22] G. Volanis, Y. Lu, S. Govinda, R. Nimmalapudi, A. Antonopoulos,
A. Marshall, and Y. Makris, “Analog performance locking through
neural network-based biasing,” in Proc. IEEE VLSI Test Symp. (VTS),
Apr. 2019.

[23] D. H. K. Hoe, J. Rajendran, and R. Karri, “Towards secure analog
designs: A secure sense amplifier using memristors,” in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI, Jul. 2014, pp. 516–521.

[24] N. G. Jayasankaran, A. Sanabria-Borbón, A. Abuellil, E. Sánchez-
Sinencio, J. Hu, and J. Rajendran, “Breaking analog locking techniques,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 10, pp.
2157–2170, Oct. 2020.

[25] R. Y. Acharya, S. Chowdhury, F. Ganji, and D. Forte, “Attack of
the genes: Finding keys and parameters of locked analog ICs using
genetic algorithm,” in Proc. IEEE Int. Symp.Hardw. Oriented Secur.
Trust (HOST), Dec. 2020, pp. 284–294.



14

[26] J. Leonhard, M. Elshamy, M.-M. Louërat, and H.-G. Stratigopoulos,
“Breaking analog biasing locking techniques via re-synthesis,” in Proc.
26th Asia South Pacific Design Automat. Conf., Jan. 2021, p. 555–560.

[27] M. Elshamy, A. Sayed, M.-M. Louërat, A. Rhouni, H. Aboushady,
and H.-G. Stratigopoulos, “Securing programmable analog ICs against
piracy,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar.
2020, pp. 61–66.

[28] M. Elshamy, A. Sayed, M.-M. Louërat, H. Aboushady, and H.-G.
Stratigopoulos, “Locking by untuning: A lock-less approach for analog
and mixed-signal IC security,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 12, pp. 2130–2142, Dec. 2021.

[29] M. Tlili, A. Sayed, D. Mahmoud, M.-M. Louërat, H. Aboushady, and
H.-G. Stratigopoulos, “Anti-piracy of analog and mixed-signal circuits
in FD-SOI,” in Proc. 27th Asia South–Pac. Design Autom. Conf. (ASP-
DAC), Jan. 2022, pp. 423–428.

[30] S. G. Rao Nimmalapudi, G. Volanis, Y. Lu, A. Antonopoulos, A. Mar-
shall, and Y. Makris, “Range-controlled floating-gate transistors: A
unified solution for unlocking and calibrating analog ICs,” in Proc.
Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar 2020.

[31] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks,
defenses, and challenges,” IEEE Access, vol. 8, pp. 184013–184035, Oct.
2020.

[32] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu,
“Physical design obfuscation of hardware: A comprehensive investiga-
tion of device and logic-level techniques,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 1, pp. 64 – 77, Jan. 2017.

[33] Y. Bi, J. S. Yuan, and Y. Jin, “Beyond the interconnections: split
manufacturing in RF designs,” Electronics, vol. 4, no. 3, pp. 541–564,
Aug. 2015.

[34] A. Ash-Saki and S. Ghosh, “How multi-threshold designs can protect
analog IPs,” in Proc. IEEE Int. Conf. Comput. Design (ICCD), Oct.
2018, pp. 464–471.

[35] J. Leonhard, A. Sayed, M.-M. Louërat, H. Aboushady, and H.-G.
Stratigopoulos, “Analog and mixed-signal IC security via sizing camou-
flaging,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
40, no. 5, pp. 822–835, Jul. 2021.

[36] IEEE, “IEEE standard for information technology—telecommunications
and information exchange between systems local and metropolitan
area networks—specific requirements - part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications,” IEEE
Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, 2016.

[37] T. M. Schmidl and D. C. Cox, “Robust frequency and timing syn-
chronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp.
1613–1621, Dec. 1997.

[38] Nuand, “Open-source IEEE 802.11 compatible software defined radio
VHDL modem (bladeRF-wiphy),” https://github.com/Nuand/bladeRF-
wiphy/, Online.

[39] J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE Trans.
Comput., vol. 64, no. 2, pp. 410–424, Feb. 2015.

[40] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 9, pp. 1411–1424, Sep. 2016.

[41] K. Juretus and I. Savidis, “Reduced overhead gate level logic encryp-
tion,” in Proc. Great Lakes Symp. VLSI (GLSVLSI), May 2016, pp.
15–20.

[42] N. Limaye, E. Kalligeros, N. Karousos, I. G. Karybali, and O. Sinanoglu,
“Thwarting all logic locking attacks: Dishonest oracle with truly random
logic locking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 9, pp. 1740–1753, Sep. 2021.

[43] J. Chacko et al., “Physical gate based preamble obfuscation for securing
wireless communication,” in Proc. Int. Conf. Comput. Netw. Commun.
(ICNC), Jan. 2017, pp. 293–297.

[44] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proc. ACM SIGSAC Conf. Comput. and Commun. Security, Oct. 2017,
pp. 1601–1618.

[45] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: a case study in reverse engineering,” IEEE Des. Test, vol.
16, no. 3, pp. 72–80, Jul. 1999.

[46] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar.
2019, pp. 936–939.

[47] F. Yang, M. Tang, and O. Sinanoglu, “Stripped functionality logic lock-
ing with hamming distance-based restore unit (SFLL-hd) – unlocked,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 10, pp. 2778–2786, Oct.
2019.

[48] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE Int. Sym. Hardw. Oriented Secur.
Trust (HOST), May 2015, pp. 137–143.

Alán Rodrigo Dı́az-Rizo is a Ph.D. candidate at the
Computer Science Laboratory (LIP6) of Sorbonne
Université, Paris, France. His research interests in-
clude hardware security, cognitive radio, and radio
signal processing. He received the B.Sc. in Electron-
ics and Communication Engineering from Guadala-
jara University, Guadalajara, Mexico, in 2015, and
the M.Sc. in Electrical Engineering from the Center
for Research and Advanced Studies of the National
Polytechnic Institute (Cinvestav), Mexico, in 2018.

Hassan Aboushady (Senior Member, IEEE) re-
ceived the B.Sc. degree in Electrical Engineer-
ing from Cairo University, Egypt, in 1993, the
M.Sc. and Ph.D. degrees in Electrical Engineering
and Computer Science from Sorbonne University,
Paris, France, in 1996 and 2002 respectively. Dr.
Aboushady is currently an Associate Professor at
Sorbonne University. His research interests include
Sigma-Delta modulation, Analog/RF circuit design,
Analog-to-Digital and Digital-to-Analog conversion,
as well as Security in analog and mixed-signal

circuits. He is the author and co-author of more than 70 publications in these
areas. He is the recipient of the 2004 best paper award in the IEEE Design
Automation and Test in Europe Conference, as well as the recipient and the
co-recipient of the 2nd and the 3rd best student paper awards of the IEEE
Midwest Symposium on Circuits and Systems in 2000 and 2003 respectively.
Dr. Aboushady is an IEEE-CAS distinguished lecturer and a member of the
IEEE Circuits and Systems for Communications Committee (CASCOM). He
also served as an Associate Editor of the IEEE Transactions on Circuits and
Systems II: Express Briefs.

Haralampos-G. Stratigopoulos (Member, IEEE)
received the Diploma in electrical and computer
engineering from the National Technical University
of Athens, Athens, Greece, in 2001 and the Ph.D.
in electrical engineering from Yale University, New
Haven, USA, in 2006. He is a Research Director
of the French National Center for Scientific Re-
search (CNRS) at the LIP6 laboratory of Sorbonne
Université, Paris, France. Before he was Researcher
with the CNRS at the TIMA Laboratory, Université
Grenoble Alpes, Grenoble, France. His main re-

search interests are in the areas of hardware security, neuromorphic computing,
and design-for-test for analog, mixed-signal, RF circuits and systems. He
was the General Chair of the 2015 IEEE International Mixed-Signal Testing
Workshop (IMSTW), the Program Chair of the 2017 IEEE European Test
Symposium (ETS), and the General Chair of the 2021 and 2022 AI Hardware:
Test, Reliability and Security (AI-TREATS) Workshop. He has served on the
Technical Program Committees of Design, Automation, and Test in Europe
Conference (DATE), Design Automation Conference (DAC), IEEE Interna-
tional Conference on Computer-Aided Design (ICCAD), IEEE European Test
Symposium (ETS), IEEE International Test Conference (ITC), IEEE VLSI
Test Symposium (VTS), and several others international conferences. He
has served as an Associate Editor of IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on Circuits
and Systems I: Regular Papers, IEEE Design & Test, and Springer Journal of
Electronic Testing: Theory & Applications.


