Hugo Gimbert

Corto Mascle

Anca Muscholl

Igor Walukiewicz

Distributed controller synthesis for deadlock avoidance

Keywords: 2012 ACM Subject Classification Theory of computation → Distributed computing models distributed synthesis, concurrent systems, lock synchronisation, deadlock avoidance 1

We consider the distributed control synthesis problem for systems with locks. The goal is to find local controllers so that the global system does not deadlock. With no restriction this problem is undecidable even for three processes each using a fixed number of locks. We propose two restrictions that make distributed control decidable. The first one is to allow each process to use at most two locks. The problem then becomes Σ P 2 -complete, and even in Ptime under some additional assumptions. The dining philosophers problem satisfies these assumptions. The second restriction is a nested usage of locks. In this case the synthesis problem is Nexptime-complete. The drinking philosophers problem falls in this case.

Introduction

Synthesis of distributed systems has a big potential since such systems are difficult to write, test, or verify. The state space and the number of different behaviors grow exponentially with the number of processes. This is where distributed synthesis can be more useful than centralized synthesis, because an equivalent, sequential system may be very big. The other important point is that distributed synthesis produces by definition a distributed system, while a synthesized sequential system may not be implementable on a given distributed architecture. Unfortunately, very few settings are known for which distributed synthesis is decidable, and those that we know require at least exponential time.

The problem was first formulated by Pnueli and Rosner [START_REF] Pnueli | Distributed reactive systems are hard to synthesize[END_REF]. Subsequent research showed that, essentially, the only decidable architectures are pipelines, where each process can send messages only to the next process in the pipeline [20,[START_REF] Madhusudan | Distributed controller synthesis for local specifications[END_REF][START_REF] Wang | The theory of deadlock avoidance via discrete control[END_REF]. In addition, the complexity is non-elementary in the size of the pipeline. These negative results motivated the study of distributed synthesis for asynchronous automata, and in particular synthesis with so called causal information. In this setting the problem becomes decidable for co-graph action alphabets [12], and for tree architectures of processes [14,[START_REF] Muscholl | Distributed synthesis for acyclic architectures[END_REF]. Yet the complexity is again non-elementary, this time w.r.t. the depth of the tree. Worse, it has been recently established that distributed synthesis with causal information is undecidable for unconstrained architectures [START_REF] Gimbert | Distributed asynchronous games with causal memory are undecidable[END_REF]. Distributed synthesis for (safe) Petri nets [10] has encountered a similar line of limited advances, and due to [START_REF] Gimbert | Distributed asynchronous games with causal memory are undecidable[END_REF], is also undecidable in the general case, since it is inter-reducible to distributed synthesis for asynchronous automata [START_REF] Beutner | Translating asynchronous games for distributed synthesis[END_REF]. This situation raised the question if there is any setting for distributed synthesis that covers some standard arXiv:2204.12409v1 [cs.LO] 26 Apr 2022 examples of distributed systems, and is manageable algorithmically.

In this work we consider distributed systems with locks; each process can take or release a lock from a pool of locks. Locks are one of the most classical concepts in distributed systems. They are also probably the most frequently used synchronization mechanism in concurrent programs. We formulate our results in a control setting rather than synthesisthis avoids the need for a specification formalism. The objective is to find a local strategy for each process so that the global system does not get stuck. For unrestricted systems with locks we hit again an undecidability barrier, as for the models discussed above. Yet, we find quite interesting restrictions making distributed control synthesis for systems with locks decidable, and even algorithmically manageable.

The first restriction we consider is to limit the number of locks available to each process. The classical example are dining philosophers, where each philosopher has two locks corresponding to the left and the right fork. Observe that we do not limit the total number of processes, or the total number of locks in the system. We show that the complexity of this synthesis problem is at the second level of the polynomial hierarchy. The problem gets even simpler when we restrict it to strategies that cannot block a process when all locks are available. We call them locally live strategies. We obtain an NP-algorithm for locally live strategies, and even a Ptime algorithm when the access to locks is exclusive. This means that once a process tries to acquire a lock it cannot switch to some other action before getting the lock.

The second restriction is nested lock usage. This is a very common restriction in the literature [START_REF] Kahlon | An automata-theoretic approach for model checking threads for LTL properties[END_REF], simply saying that acquiring and releasing locks should follow a stack discipline. Drinking philosophers [4] are an example of a system of this kind. We show that in this case distributed synthesis is Nexptime-complete, where the exponent in the algorithm depends only on the number of locks.

We formalize the distributed synthesis problem as a control problem [START_REF] Ramadge | The control of discrete event systems[END_REF]. A process is given as a transition graph where transitions can be local actions, or acquire/release of a lock. Some transitions are controllable, and some are not. A controller for a process decides which controllable transitions to allow, depending on the local history. In particular, the controller of a process does not see the states of other processes. Our techniques are based on analyzing patterns of taking and releasing locks. In decidable cases there are finite sets of patterns characterizing potential deadlocks.

The notion of patterns resembles locking disciplines [7], a tool frequently used to prevent deadlocks. An example of a locking discipline is "take the left fork before the right one" in the dining philosophers problem. Our results allow to check if a given locking discipline may result in a deadlock, and in some cases even list all deadlock-avoiding locking disciplines.

In summary, the main results of this work are: Σ P 2 -completeness of the deadlock avoidance control problem for systems where each process has access to at most 2 locks. An NP algorithm when additionally strategies need to be locally live. A Ptime algorithm when moreover lock access is exclusive. A Nexptime algorithm and the matching lower bound for the nested lock usage case. Undecidability of the deadlock avoidance control problem for systems with unrestricted access to locks.

Related work

Distributed synthesis is an old idea motivated by the Church synthesis problem [5]. Actually, the logic CTL has been proposed with distributive synthesis in mind [6]. Given this long history, there are relatively few results on distributed synthesis. Three main frameworks have been considered: synchronous networks of input/output automata, asynchronous automata, Petri games.

The synchronous network model has been proposed by Pnueli and Rosner [START_REF] Pnueli | On the synthesis of a reactive module[END_REF][START_REF] Pnueli | Distributed reactive systems are hard to synthesize[END_REF]. They established that controller synthesis is decidable for pipeline architectures and undecidable in general. The undecidability result holds for very simple architectures with only two processes. Subsequent work has shown that in terms of network shape pipelines are essentially the only decidable case [20,[START_REF] Madhusudan | Distributed controller synthesis for local specifications[END_REF][START_REF] Wang | The theory of deadlock avoidance via discrete control[END_REF]. Several ways to circumvent undecidability have been considered. One was to restrict to local specifications, specifying the desired behavior of each automaton in the network separately. Unfortunately, this does not extend the class of decidable architectures substantially [START_REF] Madhusudan | Distributed controller synthesis for local specifications[END_REF]. A further-going proposal was to consider only input-output specifications. A characterization, still very restrictive, of decidable architectures for this case is given in [13].

The asynchronous (Zielonka automata) model was proposed as a reaction to these negative results [12]. The main hope was that causal memory helps to prevent undecidability arising from partial information, since the synchronization of processes in this model makes them share information. Causal memory indeed allowed to get new decidable cases: co-graph action alphabets [12], connectedly communicating systems [START_REF] Madhusudan | The MSO theory of connectedly communicating processes[END_REF], and tree architectures [14,[START_REF] Muscholl | Distributed synthesis for acyclic architectures[END_REF]. There is also a weaker condition covering these three cases [START_REF] Gimbert | On the control of asynchronous automata[END_REF]. This line of research suffered however from a very recent result showing undecidability in the general case [START_REF] Gimbert | Distributed asynchronous games with causal memory are undecidable[END_REF].

Distributed synthesis in the Petri net model, Petri games, has been proposed recently in [10]. The idea is that some tokens are controlled by the system and some by the environment. Once again causal memory is used. Without restrictions this model is inter-reducible with the asynchronous automata model [START_REF] Beutner | Translating asynchronous games for distributed synthesis[END_REF], hence the undecidability result [START_REF] Gimbert | Distributed asynchronous games with causal memory are undecidable[END_REF] applies. The problem is Exptime-complete for one environment token and arbitrary many system tokens [10]. This case stays decidable even for global safety specifications, such as deadlock, but undecidable in general [9]. As a way to circumvent the undecidability, bounded synthesis has been considered in [8,[START_REF] Hecking-Harbusch | Efficient trace encodings of bounded synthesis for asynchronous distributed systems[END_REF], where the bound on the size of the resulting controller is fixed in advance. The approach is implemented in the tool AdamSYNT [15].

The control formulation of the synthesis problem comes from the control theory community [START_REF] Ramadge | The control of discrete event systems[END_REF]. It does not require to talk about a specification formalism, while retaining most useful aspects of the problem. A frequently considered control objective is avoidance of undesirable states. In the distributed context, deadlock avoidance looks like an obvious candidate, since it is one of the most basic desirable properties. The survey [33] discusses the relation between the distributed control problem and Church synthesis. Some distributed versions of the control problem have been considered, also hitting the undecidability barrier very quickly [START_REF] Rudie | Think globally, act locally: Decentralized supervisory control[END_REF]32,31,1].

We would like to mention two further results that do not fit into the main threads outlined above. In [34] the authors consider a different synthesis problem for distributed systems: they construct a centralized controller for a scheduler that would guarantee absence of deadlocks. This is a very different approach to deadlock avoidance. Another recent work [2] adds a new dimension to distributed synthesis by considering communication errors in a model with synchronous processes that can exchange their causal memory. The authors show decidability of the synthesis problem for 2 processes.

Outline of the paper

In the next section we define systems with locks, strategies, and the control problem. We introduce locally live strategies as well as the 2-lock, exclusive, and nested locking restrictions. This permits to state the main results of the paper. The following three sections consider systems with the 2-lock restriction. First, we briefly give intuitions behind the Σ p 2 -completeness in the general case. Section 4 presents an NP algorithm for the distributed synthesis problem for locally live strategies. Section 5 gives a Ptime algorithm under the exclusive restriction. Next, we consider the nested locking case, and show that the problem is Nexptime-complete. Finally, we prove that without any restrictions the synthesis problem for systems with locks is undecidable. Missing proofs are included in the appendix.

Main definitions and results

A lock-sharing system is a distributed system with components (processes) synchronizing over locks. Processes do not communicate, but they synchronize using locks from a global pool. Some transitions of processes are uncontrollable, intuitively the environment decides if such a transition is taken. The goal is to find a local strategy for each process so that the entire system never deadlocks. The strategy can observe only local transitions -it does not see transitions performed by other processes, nor states other processes are in. While the system is finite state, the challenge comes from the locality of strategies. Indeed, the unrestricted problem is undecidable. The main contribution of this work are restrictions that make the problem decidable, and even solvable in Ptime.

In this section we define lock-sharing systems, strategies, and the deadlock avoidance control problem, that is the topic of this paper. We then introduce restrictions on the general problem and state the main decidability and complexity results.

A finite-state process p is an automaton A p = (S p , Σ p , T p , δ p , init p) with a set of locks T p that it can acquire or release. The transition function δ p : S p × Σ p • → Op(T p) × S p associates with a state from S p and an action from Σ p an operation on some lock and a new state; it is a partial function. The lock operations are acquire (acq t) or release (rel t) some lock t from T p , or do nothing: Op(T p) = {acq t , rel t | t ∈ T p } ∪ {nop}. Figure 1 gives an example.

A local configuration of process p is a state from S p together with the locks p currently owns: (s, B) ∈ S p × 2 Tp . The initial configuration of p is (init p , ∅), namely the initial state with no locks. A transition between configurations (s, B)

B = B \ {t}. A local run (a 1 , op 1)(a 2 , op 2) • • • of A p is a finite or infinite sequence over Σ p × Op(T p) such that there exists a sequence of configurations (init p , ∅) = (s 0 , B 0) (a1,op1) -----→ p (s 1 , B 1) (a2,op2) -----→ p • • • While the
run is determined by the sequence of actions, we prefer to make lock operations explicit. We write Runs p for the set of runs of A p .

A lock-sharing system S = ((A p) p∈Proc , Σ s , Σ e , T) is a set of processes together with a partition of actions between controllable and uncontrollable actions, and a set T of locks. We have T = p∈Proc T p , for the set of all locks. Controllable and uncontrollable actions belong to the system and to the environment, respectively. We write Σ = p∈Proc Σ p for the set of actions of all processes and require that (Σ s , Σ e) partitions Σ. The sets of states and action alphabets of processes should be disjoint: S p ∩ S q = ∅ and Σ p ∩ Σ q = ∅ for p = q. The sets of locks are not disjoint, in general, since processes may share locks. Example 1. The dining philosophers problem can be formulated as control problem for a lock-sharing system S = ((A p) p∈Proc , Σ s , Σ e , T). We set Proc = {1, . . . , n} and T = {t 1 , . . . , t n } as the set of locks. For every process p ∈ Proc, process A p is as in Figure 1, with the convention that t n+1 = t 1 . Actions in Σ s are marked by dashed arrows. These are controllable actions. The remaining actions are in Σ e . Once the environment makes a philosopher p hungry, she has to get both the left (t p) and the right (t p+1) fork to eat. She may however choose the order in which she takes them; actions left and right are controllable.

A global configuration of S is a tuple of local configurations C = (s p , B p) p∈Proc provided the sets B p are pairwise disjoint: B p ∩ B q = ∅ for p = q. This is because a lock can be taken by at most one process at a time. The initial configuration is the tuple of initial configurations of all processes.

Such systems are asynchronous, with transitions between two configurations done by a single process:

C (p,a,op) -----→ C if (s p , B p) (a,op)
----→ p (s p , B p) and (s q , B q) = (s q , B q) for every q = p. A global run is a sequence of transitions between global configurations. Since our systems are deterministic we usually identify a global run by the sequence of transition labels. A global run w determines a local run of each process: w| p is the subsequence of p's actions in w.

A control strategy for a lock-sharing system is a tuple of local strategies, one for each process: σ = (σ p) p∈Proc . A local strategy σ p says which actions p can take depending on a local run so far: σ p : Runs p → 2 Σp , provided Σ e ∩ Σ p ⊆ σ p (u), for every u ∈ Runs p . This requirement says that a strategy cannot block environment actions.

A local run u of a system respects σ p if for every non-empty prefix v(a, op) of u, we have a ∈ σ p (v). Observe that local runs are affected only by the local strategy. A global run w respects σ if for every process p, the local run w| p respects σ p . We often say just σ-run, instead of "run respecting σ".

As an example consider the system for two philosophers from Example 1. Suppose that both local strategies always say to take the left transition. So hungry 1 , left 1 , acq 1 t1 , acq 1 t2 is a local run of process 1 respecting the strategy; similarly hungry 2 , left 2 , acq 2 t2 , acq 2 t1 for process 2. (We use superscripts to indicate the process doing an action.) The global run hungry 1 , hungry 2 , left 1 , left 2 , acq 1 t1 , acq 2 t2 respects the strategy and blocks, since each philosopher needs a lock the other one owns.

Definition 2 (Deadlock avoidance control problem). A σ-run w leads to a deadlock in σ if w cannot be prolonged to a σ-run. A control strategy σ is winning if no σ-run leads to a deadlock in σ. The deadlock avoidance control problem is to decide if for a given system there is some winning control strategy.

In this work we consider several variants of the deadlock avoidance control problem. Maybe surprisingly, in order to get more efficient algorithms we need to exclude strategies that can block a process by itself: Definition 3 (Locally live strategy). A local strategy σ p for process p is locally live if every local σ p -run u can be prolonged to a σ p -run: there is some b ∈ Σ p such that ub is a local run respecting σ p . A strategy σ is locally live if every local strategy is so.

In other words, a locally live strategy guarantees that a process does not block if it runs alone. Coming back to Example 1: a strategy always offering one of the left or right actions is locally live. A strategy that offers none of the two is not. Observe that blocking one process after the hungry action is a very efficient strategy to avoid a deadlock, but it is not the intended one. This is why we consider locally live to be a desirable property rather than a restriction.

Note that being locally live is not exactly equivalent to a strategy always proposing at least one outgoing transition. In our semantics, a process blocks if it tries to acquire a lock that it already owns, or to release a lock it does not own. But it becomes equivalent thanks to the following remark: Remark 4. We can assume that each process keeps track in its state which locks it owns. Note that this assumption does not compromise the complexity results when the number of locks a process can access is fixed. We will not use this assumption in Section 6, where a process can access arbitrarily many locks (in nested fashion).

Without any restrictions our synthesis problem is undecidable.

Theorem 5. The deadlock avoidance control problem for lock-sharing systems is undecidable. It remains so when restricted to locally live strategies.

We propose two cases when the control problem becomes decidable. The two are defined by restricting the usage of locks.

Definition 6 (2LSS).

A process A p = (S p , Σ p , T p , δ p , init p) uses two locks if |T p | = 2. A system S = ((A p) p∈Proc , Σ s , Σ e , T) is 2LSS if every process uses two locks.

Note that in the above definition we do not bound the total number of locks in the system, just the number of locks per process. The process from Figure 1 is 2LSS. Our first main result says that the control problem is decidable for 2LSS.

Theorem 7. The deadlock avoidance control problem for 2LSS is Σ p 2 -complete.

For the lower bound we use strategies that take a lock and then block. This does not look like a very desired behavior, and this is the reason for introducing the concept of locally live strategies. The second main result says that restricting to locally live strategies helps.

Theorem 8. The deadlock avoidance control problem for 2LSS is in NP when strategies are required to be locally live.

We do not know if the above problem is in Ptime. We can get a Ptime algorithm under one more assumption. Example 10. The process from Figure 1 is exclusive, while the one from Figure 2 is not. The latter has a state with one acq tp+1 and one rel tp outgoing transition. Observe that in this state the process cannot block, and has the possibility to take a lock at the same time. Exclusive systems do not have such a possibility, so their analysis is much easier.

Theorem 11. The deadlock avoidance control problem for exclusive 2LSS is in Ptime, when strategies are required to be locally live.

Without local liveness, the problem stays Σ p 2 -hard for exclusive 2LSS. Our last result uses a classical restriction on the usage of locks: Definition 12 (Nested-locking). A local run is nested-locking if the order of acquiring and releasing locks in the run respects a stack discipline, i.e., the only lock a process can release is the last one it acquired. A local strategy is nested-locking if all local runs respecting the strategy are nested-locking. A strategy is nested-locking if all local strategies are nestedlocking.

The process from Figure 1 is nested-locking, while the one from Figure 2 is not.

Theorem 13. The deadlock avoidance control problem is Nexptime-complete when strategies are required to be nested-locking.

Two locks per process

We give some intuitions as to why the deadlock avoidance problem for 2LSS is Σ p 2 -complete (Theorem 7), the details can be found in Appendix A.

When every process uses only two locks there are only few patterns of local lock usage that are relevant for deadlocks. A finite local run u of process p using locks t 1 , t 2 can be of one of the following four types: p owns both locks at the end of u; p owns no lock at the end of u; p owns only one lock, say t 1 , at the end of u, and the last lock operation of u is acq t1 ; p owns only one lock, say t 1 , at the end of u, and the last lock operation of u is rel t2 . A pattern of a run is its type, and the set of available actions at the end. If a run reaches a deadlock then the only available actions are to acquire locks owned by other processes.

We fix a 2LSS ({A p } p∈Proc , Σ s , Σ e , T) over the set of processes Proc. We assume that it satisfies Remark 4.

Given a strategy σ = (σ p) p∈Proc , we call a local σ-run risky if it ends in a state from which every outgoing action allowed by σ acquires some lock (this includes states with no outgoing transition). A local σ-run is neutral if it ends in a configuration (s, B) with B = ∅. Definition 14. We define the pattern of a risky σ p -run u p as follows. Let T owns be the set of locks that p owns after executing u p and T blocks the set of locks that outgoing transitions allowed by σ p after u p need to acquire.

The pattern of u p is the tuple (T owns , T blocks , ord) with:

If u p is of the form u 1 (a, acq t1)u 2 (b, rel t2)u 3 with no action on t 1 in u 2 and no action on either t 1 or t 2 in u 3 then ord = (t 1 , t 2).

Otherwise ord = ⊥.

Note that in light of Remark 4, T owns and T blocks are necessarily disjoint. Furthermore if ord is of the form (t 1 , t 2) then T owns = {t 1 }, and either T blocks = ∅ or T blocks = {t 2 }.

A strategy σ = (σ p) p∈Proc respects a family of sets of patterns (Patt p) p∈Proc if for all p ∈ Proc, the patterns of all risky σ p -runs belong to Patt p .

In this definition, T owns and T blocks serve as witnesses of deadlock configurations, in which all required locks are owned by another process, and no lock is owned by two different processes. Further, the ord component indicates the fourth case described before the definition.

Our key result in this part is Lemma 15. It gives simple, necessary and sufficient, conditions on the family of patterns of local σ-runs (u p) p∈Proc that lead to a deadlock under a suitable scheduling. The difficulty is to verify if there exists a global run which is a combination of those local runs. For that, all processes must own disjoint sets of locks at the end. The rest can be inferred from the types of runs listed above.

We describe how to schedule local runs into a global one depending on the four types listed before Definition 14.

In the first case we can assume that p's run is scheduled at the end of the global run, as it ends up keeping both locks anyway, so no other process will use them after p.

In the second case, we can assume that p's run is scheduled at the beginning of the global run, as it is neutral. In the third case, we can split p's run in two parts: a first, neutral part which can be scheduled at the beginning, and a second part in which p acquires t 1 and there is no lock operation afterwards. The second part can be scheduled at the end, because no other process will use t 1 after p.

In the final case, p acquires t 1 , never releases it but later uses t 2 . This can be a problem if for instance another process does the same with t 1 and t 2 reversed. The first process that takes its first lock would prevent the other from finishing its local run. We express these constraints by requiring the existence of a global order in which process take locks without releasing them. We check that those patterns (u p) p∈Proc meet the requirements of the lemma. Clearly as we are in a deadlock, all locks that some process wants are taken, hence the first condition is satisfied. Furthermore, no two processes can own the same lock, implying the second condition. Finally, let ≤ be a total order on locks given by the order of the last operations on each lock in u: we set t ≤ t iff the last operation on t in u is before the last one on t . Let p be a process, and suppose ord p is (t, t). Then u p has the form u 1 (a, acq t)u 2 (b, rel t)u 3 with no action on t in u 2 or u 3 . Hence, t ≤ t .

The other direction is a bit more complicated. Suppose that for each p there is a pattern (T p owns , T p blocks , ord p) ∈ Patt p such that those patterns satisfy all three conditions of the lemma. Let ≤ be a suitable total order on locks for the third condition, and let < be its strict part. For every p there exists a risky local run u p yielding the chosen pattern for p.

We start by executing all neutral runs u p one by one in some order. All locks are free after these executions.

For all p such that T p owns = {t} and ord p = ⊥, we can decompose u p as u 1 (a, acq t)u 2 with no action on locks in u 2 . We execute all runs u 1 , which are neutral and thus leave all locks free after execution.

Finally, we execute all u p such that ord p = ⊥ in increasing order on the first component of ord p according to ≤. For all such p, let (t, t) = ord p , so we have T p owns = {t} and t < t . As all T p owns are disjoint, before executing u p all locks greater or equal to t according to ≤ are free. In particular, t and t are free, thus we can execute u p . In the end all locks are free except the ones belonging to T p owns for those processes p. Now we execute the remaining part of the u p with T p owns = {t} and ord p = ⊥ (referred to as (a, acq t)u 2 before). Those runs do not contain any action on locks besides the first acquire. As all T p owns are disjoint, the locks they acquire are free, hence all those runs can be executed.

The remaining runs are the ones such that T p owns = {t, t }. As all T p owns are disjoint, both these locks are free, hence u p can be executed as p can only use these two locks.

We have combined all local runs into one global run reaching a configuration where all processes have to acquire a lock from p∈Proc T p blocks to keep running, and all locks in p∈Proc T p owns are taken. As p∈Proc T p blocks ⊆ p∈Proc T p owns , we have reached a deadlock.

The algorithm for Theorem 7 proceeds in four phases: guess a set of patterns Patt p , one for each process p, check that there are local strategies σ p such that the patterns of all runs belong to Patt p , let the adversary guess a pattern in each Patt p , check whether those patterns satisfy the conditions of Lemma 15. The alternation between guessing and adversarial guessing yields a Σ p 2 algorithm. The lower bound is obtained by a reduction from ∃∀-SAT. The system controls existential variables, the environment controls universal ones. There are two locks for each variable, acquiring one of them is interpreted as choosing the value of the variable. The processes enforcing the choice are displayed in Figure 3 in the appendix. Note that this construction relies on processes that take a lock and then block on their own in states with no outgoing transitions. In the following section we will forbid such unnatural behavior by considering only locally live strategies.

We use some extra processes to enforce that the system wins if and only if the valuation given by the choices of the two players satisfies the SAT formula. The interesting part is that even though it looks like the guessing values of variables is done concurrently by the system and the environment, the whole setting enforces a ∃∀ dependency.

Two locks per process with locally live strategies

We describe how to solve the control problem for 2LSS and locally live strategies in NP, as stated in Theorem 8. The full proof is in Appendix B.

We fix a 2LSS satisfying the assumption discussed in Remark 4. We will show that the relevant information about a strategy σ can be formalized as a finite lock graph G σ and a lockset family Locks σ ; the latter is a family of sets of sets of locks (see definitions below). This information is very similar to the one described by patterns in the previous section. As we work with locally live strategies, the set of possible patterns of local runs is more restricted and we can view this more conveniently as a graph.

Our algorithm first guesses an abstract lock graph G and lockset family Locks. Then it performs two checks:

Step 1 check if there is some strategy σ with G = G σ and Locks = Locks σ , and

Step 2 check if there is no deadlock scheme for G and Locks (see Definition 21 below). A deadlock scheme is some kind of forbidden situation. It is easy to get a co-NP algorithm for the second step: just guess the scheme and check that it has the right shape. The challenge is to do this in Ptime. This is necessary if we want to get an NP algorithm.

We introduce now some notions in order to define G σ and Locks σ conveniently. Consider a local run u of a process p:

(init p , ∅) = (s 0 , B 0) (a1,op1) -----→ p (s 1 , B 1) • • • (ai,opi) -----→ p (s i , B i) .
We say that u has set of locks B if B = B i . A σ p -run u is B-locked by the local strategy σ p if every transition in σ p (u) has as operation acq t for some t ∈ B. Process p is B-lockable by σ p if it has a neutral, B-locked σ p -run.

The intuition is that in order to get a deadlock, a B-lockable process can be scheduled first. It can do a run leading to a state where it requires some of the locks in B without holding any locks. So, the process will be blocked if we ensure that all locks in B are already taken. For example, consider the process in Figure 1. The run hungry, left is {t p }-locked, as the unique next action is acq tp . The process is {t p }-lockable by σ p if e.g. σ p always chooses the left action. Indeed, in this case the run hungry, left is a neutral σ p -run, which is {t p }-locked. Process p is not {t p+1 }-lockable by a strategy σ p choosing always the left action, as there is no neutral σ p -run leading to acq tp+1 .

Definition 16 (Lockset family Locks σ). A lockset for a local strategy σ

p is a set L p ⊆ 2 Tp of sets B such that p is B-lockable by σ p . A lockset family for σ is Locks σ = (L p) p∈Proc .
Definition 17 (Lock graph G σ). For a strategy σ, a lock graph G σ = T, E σ has an edge t 1 p -→ t 2 whenever there is some σ p -run u of p that has {t 1 } and is {t 2 }-locked. If there is such a run u where the last lock operation in u is acq t1 then the edge is called green, and otherwise it is called blue.

We will say that σ allows a blue edge t 1 p -→ t 2 or a green edge t 1 p -→ t 2 . We write t 1 p -→ t 2 when the color of the edge is irrelevant.

For example, a strategy choosing the left action in Figure 1 yields the green edge t p p -→ t p+1 . Lockset families say on which sets of locks each process can block while not holding any lock. An edge t 1 p -→ t 2 in the lock graph corresponds to a run of p where P owns lock t 1 (the source of the edge) and waits for the other lock t 2 (the target of the edge).

A lockset represents a run of the second type in the previous section, a green edge a run of the third type, and a blue edge a run of the fourth type with no similar run of the third type. The first type cannot appear in a deadlock when strategies are locally live, as processes always have an available action.

Since we have assumed nothing about how strategies are given, it is not clear how to compute G σ . Instead of restricting to, say, finite memory strategies, we will work with arbitrary lock graphs and lockset families. This is possible thanks to Lemma 19 below, that allows to check if a graph is the lock graph of some strategy. For this we need to define lockset families and lock graphs abstractly. Notice that the size of both these objects is bounded, as the set of locks per process is fixed for 2LSS.

Definition 18. A lockset family is a tuple of sets of locks indexed by processes

(L p) p∈Proc , with L p ⊆ 2 Tp . A lock graph is an edge-labeled graph G = T, E ⊆ T × Proc × {blue, green} ×
T where nodes are locks from the set T and every edge is labeled by a process and a color. A cycle in G is called proper if all its edges are labeled by different processes. It is denoted as green if it contains at least one green edge; otherwise, so if all edges are blue, it is denoted blue.

At this point we have enough notions to carry out the first step on page 10.

Lemma 19. Given a lock graph G and a lockset family Locks, it is decidable in

Ptime if there is a locally live strategy σ such that G = G σ and Locks σ = Locks.
The proof is by reduction to model-checking a fixed-size MSOL formula over a given regular tree. For every process p we need to check if there is a local strategy σ p satisfying the conditions imposed by G and Locks = (L p) p∈Proc . Consider the regular tree of all local runs of process p. The formula says that there is a strategy tree inside this regular tree such that L p contains exactly those sets B such that the subtree has some neutral, B-locked path; and for every edge in G labelled by p there is a path of the required shape in the subtree. This can be expressed by an MSOL formula of constant size, as the process uses only 2 locks. From the MSOL formula we get a tree automaton of constant size. The emptiness check of its product with the tree automaton accepting the unfolding of the automaton A p can be done in Ptime.

In the rest of the section we discuss the second step. We first define a Z-deadlock scheme for some set Z of locks. Intuitively, this is a situation showing that there is a run blocking all locks in Z. Then a deadlock scheme is a Z-deadlock scheme for some Z big enough to block all processes.

Definition 20 (Z-deadlock scheme). Let G = T, E be a lock graph, Locks = (L p) p∈Proc a lockset family, and Z a set of locks. We define Proc Z as the set of processes whose both accessible locks are in Z,

Proc Z = {p ∈ P roc : T p ⊆ Z}. A Z-deadlock scheme is a function ds Z : Proc Z → E ∪ {⊥} such that: For all p ∈ Proc Z , if ds Z (p) = ⊥ then ds Z (p) is an edge of G labeled by p. If p ∈ Proc Z and L p = ∅ then ds Z (p) = ⊥.
For all t ∈ Z there exists a unique p ∈ Proc Z such that ds Z (p) is an outgoing edge from t.

The subgraph of G, restricted to ds Z (Proc Z) does not contain any blue cycle.

The main point of this definition is that for every lock in Z there is an outgoing edge in ds Z . Intuitively, it means that we have a run where every lock from Z is taken, and every process in Proc Z requires a lock from Z. Definition 21 (Deadlock scheme). A deadlock scheme for G and Locks = (L p) p∈Proc is a Z-deadlock scheme such that for every process p ∈ Proc \ Proc Z there is B ∈ L p with B ⊆ Z.

Thus a deadlock scheme represents a situation where all processes are blocked, since every process not in Proc Z can be brought into a state where it needs a lock from Z, but all these locks are taken.

The next lemma says that the absence of deadlock schemes characterizes winning strategies. We could reuse the patterns defined above to obtain a shorter proof but we prefer to give a slightly longer but elementary one.

Lemma 22.

A locally live control strategy σ is winning if and only if there is no deadlock scheme for its lock graph G σ and its lockset family Locks σ .

Proof. Suppose σ is not winning. Then there exists a global σ-run u leading to a deadlock. As a consequence, in the deadlock configuration all processes must be trying to acquire some lock that is already taken.

We then construct a deadlock scheme (BT , ds) as follows. Let BT be the set of locks taken in the deadlock configuration, and for all p ∈ Proc, define ds(p) as:

⊥ if p does not own any lock in the deadlock configuration, t 1 p --→ t 2 if p owns t 1 and is trying to acquire t 2 in the deadlock configuration (the color of the edge is determined by the run, it is irrelevant for the argument).

Clearly for all p ∈ Proc the value ds(p) is either ⊥ or a p-labeled edge of the lock graph G σ .

Suppose ds(p) = ⊥, and let t 1 , t 2 be the two locks accessible by p. As the final configuration is a deadlock, all actions allowed by σ p are necessarily acq t1 or acq t2 . So p is {t 1 , t 2 }-lockable. Furthermore, as we are in a deadlock, the lock(s) blocking p are in BT (if they were free, p would be able to advance), therefore p is BT -lockable.

For every t ∈ BT , there is a process p holding t in the final configuration. As we are in a deadlock, p is trying to acquire its other accessible lock t (recall that the definition of control strategy demands that at least one action be available to each process at all times). Thus ds(p) is an edge from t to t . Furthermore t cannot be free as we are in a deadlock, thus t ∈ BT . There are no other outgoing edges from t as no other process can hold t while p does.

Finally let

t 1 p1 -→ t 2 • • • p k
-→ t k+1 be a cycle with t 1 = t k+1 in the subgraph of G σ restricted to BT and ds(Proc). One of the locks t i was the last lock taken in the run u (say by process p i). We show now by contradiction that the edge t i pi -→ t i+1 is green. If p i would have released t i+1 after the last acq ti in u, then p i+1 would have done its last acq ti+1 later, a contradiction. The subgraph of G σ restricted to BT and ds(Proc) has therefore no blue cycles, therefore (BT , ds) is a deadlock scheme.

For the other direction, suppose we have a deadlock scheme (BT , ds) for the lock graph G σ . As (BT , ds(Proc)) does not contain a blue cycle, we can pick a total order ≤ on locks such that for all blue edges p . We now combine these runs to get a run respecting σ ending in a deadlock configuration. For each process p such that ds(p) = ⊥, execute the local run u p . Since u p is neutral, all locks are available after executing it. The only possible actions of p after this run are to acquire some locks from BT .

Next, for every process p such that ds(p) is a green edge, execute the local run u 1 p . This is also a neutral run. After this run p is in a state where σ p allows to take lock t 1 p , but p does not own any lock.

Next, in increasing order according to ≤, for every lock t with an outgoing blue edge ds(p) = t p -→ t execute the run u p , except for the last acq t action. After this run lock t is taken by p, and all actions allowed by σ p are acq t actions. Since there is only one outgoing edge from every lock, and since we are respecting the order ≤, both t and t are free before executing that run. Hence it is possible to execute this run.

Finally, we come back to processes p such that ds(p) is a green edge. For every such process we execute acq t 1 p followed by u 2 p . This is possible because t 1 p is free as there is a unique outgoing edge from t 1 p . After executing these runs every process p with ds(p) = ⊥ is in a state when the only possible action is acq t 2 p . At this stage all locks that are sources of edges from ds(Proc) are taken. Since every lock in BT is a source of an edge, all locks from BT are taken. Thus no process p with ds(p) = ⊥ can move as it needs some lock from BT . Similarly, no process p with ds(p) = ⊥ can move, as they need locks pointed by targets of the edges ds(p), and these are in BT too. So we have constructed a run respecting σ and reaching a deadlock.

From now on we concentrate on deciding if there is some deadlock scheme for a given graph G along with a lockset family Locks. Our approach will be to repeatedly eliminate edges from G or add locks to Z, and construct a deadlock scheme on Z at the same time.

As a preparatory step we observe that we can almost ignore the lockset family. Examining the definition of Z-deadlock scheme we see that the only information about Locks it uses is whether L p = ∅ or not. Hence we call a process solid if L p = ∅, and fragile otherwise. The second condition in the definition of Z-deadlock scheme becomes: if p ∈ Proc Z is solid then ds Z (p) = ⊥.

The next lemma gives an important composition principle for deadlock schemes. Suppose we already have a set of "kernel" locks Z on which we know how to construct a Z-deadlock scheme. Then the lemma says that in order to get a deadlock scheme for G it is enough to consider the remaining part G \ Z. Lemma 23. Let Z ⊆ T be such that there is no edge labeled by a solid process from a lock of Z to a lock of T \ Z in G. Suppose ds Z : Proc Z → E ∪ {⊥} is a Z-deadlock scheme. Then there is a deadlock scheme for G if and only if there is one equal to ds Z over Proc Z .

The rest of the proof is a sequence of stages. We start with H = G and Z = ∅. At each stage we remove some edges in H or extend Z. This process continues till some obstacle to the existence of a deadlock scheme is found, or till Z is big enough to be a deadlock scheme. We use three invariants:

Invariant 1. G admits a deadlock scheme if and only if H does.

Invariant 2. There are no edges labeled by a solid process from Z to T \ Z in H. Invariant 3. There exists a Z-deadlock scheme.

The relatively long proof of the following proposition is presented in Appendix B.2. Proposition 24. There is a polynomial time algorithm to decide if a lock graph G and a lockset family Locks have a deadlock scheme.

The final argument behind Theorem 8 is as follows. We start by non-deterministically guessing G and Locks. These are of polynomial size with respect to the size of the 2LSS. We can check in polynomial time that there exists a strategy σ giving G and Locks (Lemma 19). If that is not the case, we reject the input. Otherwise we check if G and Locks admit a deadlock scheme (Proposition 24). By Lemma 22, the strategy σ is winning if and only if the check says that there is no deadlock scheme in G and Locks.

Solving the exclusive case in Ptime

In this section we study exclusive 2LSS. We have shown an NP algorithm for the deadlock avoidance control problem when restricting to locally live strategies. Here we show that the problem is in Ptime if the 2LSS is exclusive (Definition 9). This is possible because the exclusive assumption simplifies the structure of lock graphs, and makes the lockset family unnecessary.

Throughout this section we fix an exclusive 2LSS, call it S. The exclusive property prohibits situations as in Figure 2 where a state has one outgoing acq tp+1 transition, and one rel tp transition. Compared to the previous section we do not need to make a difference between solid and fragile processes. We can even ignore colors on the arrows. This is a consequence of the following two lemmas.

-→ t 2 in G, process p is {t 1 , t 2 }-lockable.
Thanks to these simplifications there is a much more direct way of checking if a strategy is winning. Take a locally live strategy σ. Consider a decomposition of G σ into strongly connected components (SCC). We say that an SCC is a direct deadlock if it contains at least two nodes, and:

either it has an edge that is not a double edge:

t 1 p - -→ t 2 but not t 1 p ←--t 2 ,
for some p; or all edges in the component are double edges and there is a proper cycle, i.e., all edges are labeled by different processes. A deadlock SCC is a direct deadlock SCC or an SCC that can reach some direct deadlock SCC. Let BT σ be the set of all the locks appearing in some deadlock SCC. We obtain a simple characterization of winning strategies. Proposition 27. A strategy σ is winning if and only if there exists a process that is not BT σ -lockable.

Building on this result we can give a method to decide if there is a winning strategy in the system S. For every process p and every set of edges between two locks of p we check if there is a local strategy inducing exactly these edges. This can be done in a similar way as Lemma 19. We say that an edge la belled by p is unavoidable if all the local strategies σ p induce this edge. Let G S be the graph whose nodes are locks and edges are unavoidable edges.

We calculate a set BT S in a similar way as BT σ in the previous proposition except that we use slightly more general basic SCCs of G S . A direct semi-deadlock SCC is either a direct deadlock SCC or an SCC containing at least two nodes, only double edges, and two locks t 1 and t 2 such that for some process p not inducing a double edge between t 1 , t 2 in G S : every strategy for p induces at least one edge between t 1 and t 2 . Then a semi-deadlock SCC is an SCC that can reach some direct semi-deadlock SCC, or is itself a direct semi-deadlock SCC.

Let BT S be the set of locks appearing in semi-deadlock SCCs of G S . Theorem 11 follows from the next proposition.

Proposition 28. Let S be an exclusive 2LSS. There is a winning locally live strategy for the system if and only if there exists a locally live strategy σ p for some process p preventing it from acquiring any lock from BT S .

The algorithm computes BT S , and then checks if for some process p the condition from the proposition holds. This check amounts to solving a safety game on a finite graph -the transition graph of process p. The complete proof is presented in Appendix C.

Nested-locking strategies

We switch to another decidable case, where we require that locks are acquired and released in stack-like manner. Our goal is Theorem 13 saying that the deadlock avoidance control problem is Nexptime-complete when restricted to nested-locking strategies (cf. Definition 12).

In the context of this section we cannot assume that a process knows which locks it has (cf. Remark 4). In consequence, it is not realistic to require that a strategy is locally live. Yet, the lower bound works also for locally live strategies.

We will use some notions about local runs as defined on page 10.

Definition 29.

A stair decomposition of a local run u is

u = u 1 acq t1 u 2 acq t2 . . . u k acq t k u k+1
where in the configuration reached by u 1 acq t1 u 2 acq t2 . . . u i the set of locks held by the process is {t 1 , . . . , t i-1 } for every i > 0, and there is no operation on t i in u i+1 . . . u k+1 . (We omit the actions associated with each operation as they are irrelevant here).

Every nested-locking run has a unique stair decomposition.

Without the locally live assumption we may have runs simply ending because there are no outgoing actions. Recall that given a strategy σ, a risky σ-run is a local σ-run ending in a state from which every outgoing action allowed by σ acquires some lock. We define patterns of risky local runs that will serve as witnesses of reachable deadlocks. Definition 30. Consider a stair decomposition u 1 acq t1 u 2 acq t2 • • • u k acq t k u k+1 of a risky σ-run u of a process p. Suppose the run is T blocks -blocked, and let T owns = {t 1 , . . . , t k }. We associate with u a stair pattern (T owns , T blocks ,), where is the smallest partial order on the set T p of locks of p satisfying: for all i, for all t ∈ T p , if the last operation on t in the run is after the last acq ti then t i t. A behavior of σ is a family of sets of stair patterns (P p) p∈Proc , where P p is the set of stair patterns of local risky σ-runs of p.

Similarly to Lemma 22 Clearly, if there is a winning nested-locking strategy then the procedure can accept by guessing the family of patterns corresponding to this strategy. For this family the check from Lemma 32 does not fail, and one of the conditions of Lemma 31 must be violated.

Conversely, if the decision procedure concludes that there exists a winning strategy, then let (P p) p∈Proc be the guessed family of sets of patterns. We know that there exists a strategy σ with behaviors (P p) p∈Proc such that P p ⊆ P p for all p ∈ Proc. Furthermore, as there are no patterns in (P p) p∈Proc satisfying the requirements of Lemma 31, there cannot be any in the P p either. Hence σ is a winning strategy.

The proof of the matching lower bound and the missing lemmas are in Appendix D.

7

Undecidability for unrestricted lock-sharing systems

In this section we show that the deadlock avoidance control problem for lock-sharing systems is undecidable for three processes with a fixed number of locks. Three locks used in nonnested fashion allow to synchronize two processes in lock-step manner. This is an essential ingredient for the undecidability proof.

We have defined lock-sharing systems so that initially all locks are free. First we show the undecidability result supposing that we are allowed to start with a designated distribution of locks. Later we describe how to implement initial lock distributions using extra locks.

Lemma 34. The control problem for lock-sharing systems with 3 processes, fixed initial configuration and fixed number of locks per process is undecidable.

The proof uses the usual recipe for the undecidability of distributed synthesis [26,[START_REF] Pnueli | On the synthesis of a reactive module[END_REF]. Two processes P and P synchronize with a third process C over a stream of bits chosen by their strategy. The process C is partially controlled by the environment, which selects non-deterministically an interleaving of the two streams and parses the interleaving with a finite automaton. This is enough to get undecidability by a reduction from an infinite Post Correspondence Problem (PCP). Consider an instance (α i , β i) i∈I of PCP on the alphabet {0, 1}. A solution is an infinite sequence i 1 i 2 . . . ∈ I ω such that α i1 α i2 . . . = β i1 β i2 The two streams sent by P and P to C, are α = α i1 i 1 α i2 i 2 . . . and β = β j1 j 1 β j2 j 2 . . . , resp. With finite memory C can check equality of the two words (α i1 α i2 • • • = β j1 β j2 . . .) or equality of the two index sequences (i 1 i 2 . . . = j 1 j 2 . . .). Since P and P are not aware of what C does, the streams are fixed by the strategies and do not depend on what C is checking.

The locks used in the proof are {c, s 0 , s 1 , p, c, s 0 , s 1 , p}. Process C and P use locks from {c, s 0 , s 1 , p} to synchronize and similarly for C, P and {c, s 0 , s 1 , p}.

It remains to explain the synchronization mechanism. The two processes P and C synchronize over a bit of information, say bit 0, by executing specific finite runs using the locks {s 0 , c, p} in non-nested fashion. Initially, C owns {s 0 , c} and P owns {p}. First, C releases lock s 0 and P acquires it, which we denote as C s0 -→ P . Here, P is waiting for C to release s 0 , and the two actions rel s0 of C and acq s0 of P are ordered. The rest of the run follows a similar pattern: at each step, one of the processes is waiting to take a lock released by the other process. With the same notation, the run proceeds with P p --→ C, and continues until each process owns the same locks it owned at the start: each lock is sent twice, from its initial owner to the other process, and back. To sum up, the exchange of bit 0 between C and P corresponds to:

C s0 -→ P p -→ C c -→ P s0 -→ C p -→ P c -→ C .
In other words, processes C and P respectively perform two local runs: C : rel s0 acq p rel c acq s0 rel p acq c P : acq s0 rel p acq c rel s0 acq p rel c

Observe that P and C need to execute these sequences in lock-step manner, as one of the two processes waits for a lock from the other. In order to synchronize over bit 1, the two processes perform a similar synchronization, using s 1 instead of s 0 . The communication between C and P is identical, except that it uses locks from {c, s 0 , s 1 , p}.

In each round, P and C must agree beforehand on a bit they are going to synchronize on, either s 0 or s 1 . Otherwise the two processes get blocked, and P will get blocked too, as it needs locks held by C.

A bit stream between C and P is encoded as a concatenation of such runs, and similarly for C, P . The content of the two bit streams is chosen by the strategies of P, P , C. Since the strategy has infinite memory, there is no upper bound on the complexity of the streams.

Interestingly, two locks are not enough for two processes to synchronize over a bit stream.

The next lemma shows a generic reduction of the control problem with initial configuration to the one where all locks are initially free.

Lemma 35. There is a polynomial-time reduction from the control problem for lock-sharing systems with initial configuration to the control problem where all locks are initially free. The reduction adds |Proc| new locks.

We sketch the proof idea. Assume that we have pairwise disjoint sets (I p) p∈Proc of locks, and a lock-sharing system S in which each process p initially owns exactly the locks in I p . We build another lock-sharing systems S ∅ that starts with all locks initially free, makes every process acquire all locks in I p , and then simulates S.

It is important that the initialization phase of S ∅ does not interfere with the simulation of S. We ensure this by using one additional lock k p per process, called the "key" of p.

For process p, the initialization sequence consists of three steps.

1.

First, p takes one by one (in a fixed arbitrary order), all its initial locks in I p .

2.

Second, p takes and releases, one by one (in a fixed arbitrary order) all the keys of the other processes (k q) q =p .

3.

Finally, p acquires its key k p and keeps it forever.

After acquiring k p process p reaches the initial state in S.

In order to prevent the initialization phase to create extra deadlocks, there is a local nop loop on every state of the initialization sequence. This way, a deadlock may only occur if all processes have finally completed their initialization sequences.

Let us explain why the initialization phase does not interfere with the simulation of S. The exchange of keys guarantees that up to the moment where a process p has completed the initialization in S ∅ , no other process has used any lock from I p . The details of the construction are presented in Appendix E.

Conclusions

Motivated by a recent undecidability result for distributed control synthesis [START_REF] Gimbert | Distributed asynchronous games with causal memory are undecidable[END_REF] we have considered a model for which the problem has not been investigated yet. With hindsight it is strange that the well-studied model of lock synchronization has not been considered in the context of distributed synthesis. One reason may be the "non-monotone" nature of the synthesis problem. It is not the case that for a less expressive class of systems the problem is necessarily easier because the controllers get less powerful, too.

The two decidable classes of lock-sharing systems presented here are rather promising. Especially because the low complexity results cover already non-trivial problems. All our algorithms are based on analyzing lock patterns. While in this paper we consider only finite state processes, the same method applies to more complex systems, as long as solving the centralized control problem in the style of Lemma 19 is decidable. This is for example the case for pushdown systems.

There are numerous directions that need to be investigated further. We have focused on deadlock avoidance because this is a central property, and deadlocks are difficult to discover by means of testing or verification. Another option is partial deadlock, where some, but not all, processes are blocked. The concept of Z-deadlock scheme from Definition 20 should help here, but the complexity results may be different. Reachability, and repeated reachability properties need to be investigated, too.

We do not know if the upper bound from Theorem 8 is tight. The algorithm for verifying if there is a deadlock in a given strategy graph, Proposition 24, is already quite complicated, and it is not clear how to proceed when a strategy is not given.

Another research direction is to consider probabilistic controllers. It is well known that there are no symmetric solutions to the dining philosophers problem but there is a randomized one [START_REF] Lehmann | On the advantages of free choice: A symmetric and fully distributed solution to the dining philosophers problem[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF]. Symmetric solutions are quite important for resilience issues as it is preferable that every process runs the same code. The Lehmann-Rabin algorithm is essentially the system presented in Figure 2 where the choice between left and right is made randomly. This is one of the examples where randomized strategies are essential. Distributed synthesis has a potential here because it is even more difficult to construct distributed randomized systems and prove them correct.

A Two locks per process: Σ P 2 -completeness

In this section we prove Theorem 7, as recalled below:

Theorem 7. The deadlock avoidance control problem for 2LSS is Σ p 2 -complete.

Thanks to Lemma 15, in order to decide if there is a winning strategy for a given system we need to come up with a set of patterns Patt p for each process p and show two things: these sets of patterns do not meet the conditions given in Lemma 15. there is a strategy σ whose local runs on each process p all match a pattern of Patt p .

Note that in the second condition we only require an inclusion because it is clear from the previous lemma that the less patterns a strategy allows, the less chances there are it leads to a deadlock.

We start by showing that we can check the second condition in polynomial time.

Lemma 36. Given a family (Patt p) p∈Proc of sets of patterns, it is decidable in Ptime whether there exists a strategy σ = (σ p) p∈Proc such that for all p and all σ p -runs u p of p, the pattern of u p is in Patt p .

Proof. First of all note that we only need to check for each p that there exists a local strategy σ p that does not allow any risky runs whose pattern is not in Patt p .

Let p ∈ Proc, let A p be its transition system. We extend it in a similar way as in Remark 4, by adding some information in the states. We already assumed that the states contained the information of which locks are currently owned by p. We duplicate the states where p only owns one lock t 1 , in order to add a bit of information saying whether p released its other lock t 2 since acquiring t 1 for the last time.

This way, the risky nature of local runs and their patterns depend only on the state in which they end and its outgoing transitions. For instance if a state has no outgoing transitions and is such that when reaching it p holds t 1 and released t 2 since acquiring it, then the pattern of runs ending there is ({t 1 }, ∅, (t 1 , t 2)). If this pattern is not in Patt p then we declare this state as bad.

Formally, we define as good all states such that there exists a set of outgoing transitions containing all environment transitions and such that either it contains a transition with no acquire operation or the set B of locks gotten by those transitions is such that runs ending in that state have a pattern in Patt p .

We define the other states as bad. If all states of the system have that property then clearly there is a suitable strategy.

Otherwise a local control strategy cannot allow any run to reach a bad state without getting a pattern outside of the input set, hence the following algorithm. It resembles the usual algorithm for solving safety games, except that we do not simply want to avoid some states, but we want to avoid having to allow some sets of actions from some states.

We simply iteratively delete bad states and all their ingoing transitions. If one of those transitions is controlled by the environment, we declare its source state as bad (as reaching that state would allow the environment to take that transition, leading us to a bad state). Note that deleting transitions may create more bad states by reducing the choice of the system. If we end up deleting all states, we conclude that there is no suitable strategy. Otherwise the subsystem we obtain only has good states, allowing us to get a strategy matching the input set of patterns.

Proposition 37. The deadlock avoidance control problem for 2LSS is decidable in Σ

P 2 .
Proof. We first non-deterministically guess a set of patterns Patt p for each process p (each set is of bounded size). By Lemma 36, we can then check in polynomial time if there exists a strategy σ respecting that set of patterns.

If it exists, then we have an adversarial selection of a pattern pat p ∈ Patt p for each p, as well as an adversarial guess of a total order on locks ≤. It is then easy to check in polynomial time if these patterns meet the conditions of Lemma 15.

If they do, we reject the input, otherwise we accept it.

If there exists a winning strategy then we take the sets of patterns it allows, we conclude that the system wins by Lemma 15.

Conversely if we find sets of patterns not meeting the requirements of Lemma 15 and such that there is a strategy σ respecting them, then the sets of patterns allowed by σ are subsets of the ones we guessed and therefore they do not meet the conditions of Lemma 15 either. Hence σ is a winning strategy.

We provide the matching lower bound.

Proposition 38. The deadlock avoidance control problem for 2LSS is Σ P

2 -hard, even when restricted to exclusive systems.

Proof. We reduce from the ∃∀-SAT problem. We are given a boolean formula in 3-disjunctive normal form k i=1 α i ; each clause α i is a conjunction of three literals i 1 ∧ i 2 ∧ i 3 over a set of variables {x 1 , . . . , x n , y 1 , . . . , y m }. The question is whether the formula ∃x 1 , . . . , x n ∀y 1 , . . . , y m , k i=1 α i is true.

We construct a 2LSS for which there is a winning strategy iff the formula is true. The 2LSS will use locks:

{t i | 1 ≤ i ≤ k} ∪ {x i , x i | 1 ≤ i ≤ n} ∪ {y j , y j | 1 ≤ j ≤ m} .
For all 1 ≤ i ≤ n we have a process p i with four states, as depicted in Figure 3. In that process the system has to take both x i and x i , and then may release one of them before being blocked in a state with no outgoing transitions. Similarly, for all 1 ≤ j ≤ m we have a process q j , in which the environment has to take y j or y j , and then is blocked.

For each clause α i we also have a process p(α i) which just has one transition acquiring lock t i towards a state with a local loop on it. Hence to block all those processes the environment needs to have all t i taken by other processes.

It can do that with our last kind of processes. For each clause α i and each literal of α i there is a process p i (). There the environment has to acquire t i and then before entering a state with a self-loop.

The only way to block p i () is to have either the t i or the lock taken by another process. Intuitively, in the first case the environment accepts that the literal is true while in the second case the environment claims that the literal is false and has to prove his claim.

A strategy for the system amounts to choosing whether p i should release x i or x i , for each i = 1, . . . , n. It may also choose to release neither. Since the environment has a global view of the system, it can afterwards choose one of y j , y j in process q j , for each j = 1, . . . , m. Those choices represent valuations, the free lock remaining being the satisfied literal. In order to win, the environment has to ensure that no lock t j is free (otherwise some p(C j) would not be blocked), by choosing a literal j whose corresponding lock is not free for every formula α j and taking t j in p j (j). This means that the environment wins if and only if for all formulas α i , one of the literals of α i is taken. It is therefore never in the interest of the system to release neither x i nor x i . We can assume that it always releases one of them.

Equivalently, the system wins if and only if there exists a valuation of the x's such that for every valuation of the y's there is at least one α j whose three literals are all satisfied. This concludes our reduction.

B Two locks per process with locally live strategies

We provide missing proofs and constructions from Section 4.

B.1 Characterization of winning strategies (Lemma 22)

Lemma 22 states that the information given by the lock graph and lockset family of a locally live strategy is enough to determine if it is winning. Furthermore, it gives us a goal for the verification of such witnesses: We have to check whether there exists a deadlock scheme. We prove the lemmas necessary to our polynomial-time algorithm checking the existence of a deadlock scheme.

Lemma 23.

Let Z ⊆ T be such that there is no edge labeled by a solid process from a lock of Z to a lock of T \ Z in G. Suppose ds Z : Proc Z → E ∪ {⊥} is a Z-deadlock scheme. Then there is a deadlock scheme for G if and only if there is one equal to ds Z over Proc Z .

Proof. Suppose (BT, ds) is a deadlock scheme for G σ . We construct another one ds which is equal to ds Z over Proc Z . For every process p ∈ Proc, we define ds (p) as:

ds Z (p) if p ∈ Proc Z ,
⊥ if p labels an edge from Z to T \ Z, ds(p) otherwise. We assumed that edges from Z to T \ Z could not be labeled by solid processes, thus all processes mapped to ⊥ are fragile. Every lock t ∈ BT has at most one outgoing edge in ds , since it can only come from ds Z , if t ∈ Z, or from ds, if t ∈ BT \ Z. We verify that there is at least one outgoing edge. By definition of Z-deadlock scheme there is one outgoing edge from every lock in Z. A lock t ∈ BT \ Z has exactly one outgoing edge in ds(Proc), and this edge stays in ds (p).

Finally, there cannot be any blue cycle in ds (Proc) as there are none within Z or BT \ Z and all edges between the two sets are towards Z.

B.2 PTIME procedure to check the existence of a deadlock scheme

We recall the proposition we want to prove Proposition 24. There is a polynomial time algorithm to decide if a lock graph G and a lockset family Locks have a deadlock scheme.

We will describe several polynomial-time algorithms operating on graph H = (T, GE) and a set Z of locks. Observe that H will always have all locks as nodes. Each of those algorithms will either eliminate some edges from H or extend Z, while maintaining Invariants 1-3, recalled below.

Invariant 1. G admits a deadlock scheme if and only if H does.

Invariant 2. There are no edges labeled by a solid process from Z to T \ Z in H. Invariant 3. There exists a Z-deadlock scheme.

We start with H being the given G σ and Z = ∅. The invariants are clearly satisfied. There is a simplification we can make: for most of the algorithm we will not use all of Locks σ but simply distinguish between solid processes that are not B-lockable for any B (i.e., that will necessarily be mapped to an edge in a deadlock scheme) and the others (called fragile). Definition 39. A process p is called solid if L p = ∅ and fragile otherwise.

Definition 40 (Double and solo solid edges). Consider a solid process p. We say that there is a double solid edge t 1

p ← → t 2 in H if both t 1 p -→ t 2 and t 1 p ← -t 2 exist in H. We say that t 1 p -→ t 2 in H is a solo solid edge if there is no t 1 p ← -t 2 in H.
Our first algorithm looks for a solo solid edge t 1 p -→ t 2 and erases all other outgoing edges from t 1 . It is correct as a deadlock scheme for H has to map p to the edge t 1 p -→ t 2 and there must be at most one outgoing edge from every lock.

Algorithm 1 Trimming the graph:

1: Find t ∈ H \ Z with a solo solid edge t p -→ t ∈ EH and some other outgoing edges 2: If there is no such edge then stop and report success. 3: for every edge t q -→ t ∈ HE from t with q = p do 4: if q is solid and t q ← -t / ∈ HE then 5:

return "Fail: no H-deadlock scheme"

6: else 7: Erase t q -→ t 8:
end if 9: end for We repeat this algorithm till no edges are removed. If some call to of the algorithm fails then there is no full deadlock scheme for H. Otherwise the resulting H satisfies the property:

(Trim) if a lock t in H \ Z has an outgoing solo solid edge then it has no other outgoing edges.

We call H trimmed if it satisfies property (Trim).

Lemma 41. Suppose (H, Z) satisfies Invariants 1-3. If Algorithm 1 fails then there is no H-deadlock scheme. After a successful execution of the algorithm all the invariants are still satisfied. If a successful execution does not remove an edge from H then H satisfies (Trim).

Proof. Let H be the graph after an execution of Algorithm 1. Observe that the algorithm does not change Z. If H = H then (Trim) holds. If the algorithm fails then there is a lock with two solo solid outgoing edges. Thus it is impossible to find a H-deadlock scheme.

Finally, if the algorithm succeeds but H is smaller than H, we must show that all the invariants hold. Since the algorithm does not change Z, Invariants 2 and 3 continue to hold. For Invariant 1, suppose t p -→ t is the edge found by the algorithm. Observe that if ds H is an H-deadlock scheme then ds H (p) must be this edge. So ds H is also a deadlock scheme for H . In the other direction, an H -deadlock scheme is also an H-deadlock scheme as H is a subgraph of H and Proc H = Proc H . The latter holds because H has the same locks as H.

Our second algorithm searches for cycles formed by solid edges and eventually adds them to Z. If the found cycle has a green edge then it can be added to Z. If the cycle is blue, it may still be the case that its reversal is green. More precisely it may be the case that for every solid edge t i pi --→ t i+1 in the cycle there is also a reverse edge t i pi ←--t i+1 (and it is solid by definition). If the reversed cycle is also blue then there is no H-deadlock scheme. If it does, Z can be added to H. The result still satisfies the invariants thanks to (Trim) property of H.

Algorithm 2 Find solid cycles and add them to Z if possible.

1: Find a simple cycle of solid edges t 1

p1 -→ t 2 • • • p k -→ t k+1 = t 1 not intersecting Z, all t i distinct 2:
if there is no such cycle, stop and report success. if for some j there is no reverse edge t j pj ← -t j+1 ∈ EH then 5:

return "Fail: no H-deadlock scheme"

6:

else if all edges t j pj ← -t j+1 are blue then 7:

return "Fail: no H-deadlock scheme" 8:

end if 9: end if 10: Z ← Z ∪ {t 1 , . . . , t k } 11:
For every t i remove from H all edges outgoing from t i but those that are on the cycle. 12: if some solid process p has no edge in H then 13:

return "Fail: no H-deadlock scheme" 14: end if 15: repeat 16:

Apply Algorithm 1 17: until No more edges are removed from H Lemma 42. Suppose (H, Z) satisfies the invariants Invariants 1-3 and H has property (Trim). If the execution of Algorithm 2 does not fail then the resulting H and Z also satisfy the invariants and (Trim). If the execution fails then there is no H-deadlock scheme.

Proof. Suppose the algorithm finds a simple cycle t

1 p1 -→ t 2 • • • p k -→ t k+1 = t 1
where all p i are solid processes, and all t i are distinct. By definition of a simple cycle, all p i are distinct as well. If there is a H-deadlock scheme then it should assign either t i pi

-→ t i+1 or t i pi ← -t i+1 to p i .
We examine the cases when the algorithm fails. The first reason for failure may appear when all the edges on the cycle are blue. If for some j there is no reverse edge t j pj ← -t j+1 in EH then a H-deadlock scheme, call it ds H , should assign the edge t j pj -→ t j+1 to p j . In consequence, as ds H has to give each t i at most one outgoing edge, all the edges in the cycle should be in the image of ds H . This is impossible as the cycle is blue. When there are reverse edges t i pi ← -t i+1 ∈ EH for all i, algorithm fails if all of them are blue. Indeed, there cannot be an H-deadlock scheme in this case. The last reason for failure is when there is some solid process p and p-labeled edges were removed by the algorithm. These must be edges of the form t i p --→ t that are not on the cycle, for some i = 1, . . . , k. Those edges cannot be taken in a deadlock scheme as it has to take the cycle in one direction or the other and thus cannot take other edges from nodes on that cycle. As a deadlock scheme cannot assign any edge to p, and p solid, there cannot be a deadlock scheme in that case.

If the algorithm does not fail then either the cycle

t 1 p1 -→ t 2 • • • p k -→ t k+1 = t 1
is not blue, or its reverse is not blue. Let (H , Z) be the values after execution of the algorithm. So Z = Z ∪ {t 1 , . . . , t k }, and H is H after removing edges in line 11. We show that the invariants hold.

For Invariant 2, we observe that for every lock in Z there is exactly one outgoing edge in H . So there is no solid edge from Z to H \ Z if there was none from Z.

For Invariant 3, we extend our Z-deadlock scheme to Z . We choose the cycle found by the algorithm or its reversal depending on which one is not blue. For every p i we define ds Z (p i) to be the edge in the chosen cycle. We set ds Z (p) = ⊥ for all p ∈ Proc Z \ Proc Z other than p 1 , . . . , p k . We must show that such a p is necessarily fragile. Indeed, in this case p must have one of its locks t in Z, and the other one, t , in Z \ Z. By Invariant 2, there is no solid edge from t to t in H. In H all edges from t to t are removed. So p is fragile as the algorithm does not fail at line 12.

For Invariant 1 suppose there is a deadlock scheme on H . Then it is also a deadlock scheme on H, as H is a subgraph of H over the same set of locks. For the other direction take a deadlock scheme ds H on H. By Lemma 23, as we showed that Invariant 2 is maintained, we can assume that ds H is equal to ds Z on Z . We define a deadlock scheme ds H on

H . If ds H (p) = ⊥ then ds H (p) = ⊥. If the source edge of ds H (p) is in H \ Z then ds H (p) = ds H (p)
. This edge is guaranteed to exist in H . If the two locks of p are both in Z let ds H (p) = ds H (p) = ds Z (p). The remaining case is when ds(p) is an edge t p -→ t with t ∈ Z and t ∈ H \ Z . In this case p is fragile as Z has no solid arrows leaving it, and all solid arrows in Z \ Z stay in Z . We can then set ds H = ⊥. It can be verified that ds H is a deadlock scheme.

Lemma 43. If Algorithm 2 succeeds but does not increase Z or decrease H then (H, Z) satisfies three properties: H1 H is trimmed. H2 There is no cycle of solid edges intersecting T \ Z in H. H3 Every solid process has an edge in H.

Proof. Since H was not modified, Algorithm 1 did not find any solo solid edge t p -→ t with other outgoing edges from t, hence property H1 is satisfied.

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8
This graph does not have a deadlock scheme (all processes are solid). However a first execution of Algorithm 1 has no effect as all edges come with a reverse edge. By Lemma 42, Invariant 2 is satisfied, hence any cycle intersecting T \ Z in H must be entirely in T \ Z. However if such a cycle existed then Algorithm 2 would not have stopped on line 2 and thus would have either failed or increased Z. There are therefore no such cycle intersecting T \ Z, hence property H2 is also satisfied.

p
If H3 was not satisfied then Algorithm 2 would have failed on lines 12-13.

Since in the rest of the algorithm we increase Z and do not modify H, the three properties form the lemma will continue to hold. We will refer to them as H1-H3.

Definition 44. For a pair (H, Z), we define an equivalence relation between locks in T :

t 1 ≡ H t 2 if t 1 , t 2 ∈ Z
and there is a path of double solid edges between t 1 and t 2 .

Intuitively, once we have trimmed the graph and eliminated simple cycles of solid edges with Algorithm 2, the equivalence classes of ≡ H are "trees" made of double solid edges.

Lemma 45. If H satisfies property H1 and t

1 p -→ t 2 is in H for a solid process p then either the ≡ H -equivalence class of t 1 is a singleton, or t 1 p ← -t 2 is in H, hence t 2 ≡ H t 1 .
Proof. Suppose there exists t 3 such that t 1 ≡ H t 3 , then there is a double solid edge from t 1 . By (Trim) property, there cannot be solo outgoing edges from t 1 . Lemma 46. Suppose H satisfies properties H1 and H2. Let t 1 , t 2 ∈ T \ Z. If t 1 ≡ H t 2 then there is a unique simple path of solid edges from t 1 to t 2 .

Z Z

Figure 5 Illustration of Algorithm 3, with dotted fragile edges and full solid ones. The black edges in the second figure are the ones selected in the deadlock scheme when we extend them in the proof of the algorithm.

Proof. If t 1 = t 2 then any non-empty simple path of solid edges from t 1 to t 2 would contradict property H2, hence the empty path is the only simple path from t 1 to t 2 .

If t 1 = t 2 then by definition of ≡ H there is a path of solid double edges from t 1 to t 2 , hence there is a simple path from t 1 to t 2 .

Suppose there exist two distinct simple paths from t 1 to t 2 , then by Lemma 45 all the locks on those paths are in the equivalence class of t 1 and t 2 . Hence as t 1 / ∈ Z, there is a cycle of double solid edges intersecting H \ Z, contradicting property H2.

Our third algorithm looks for an edge t 1 p -→ t 2 with t 1 / ∈ Z and t 2 ∈ Z, and adds the full ≡ H -equivalence class C of t 1 to Z. This step is correct, as we can extend a Z-deadlock scheme to (Z ∪ C)-deadlock scheme by orienting edges in C. Proof. Let (H , Z) be the pair obtained after execution of Algorithm 3. Observe that H = H, hence Invariant 1 holds. For the same reason H1 and H3 are still satisfied. Furthermore, as Z can only increase, so H2 continues to hold.

Let Z m be the value of Z when entering the loop, and Z m the value of Z at the end of m-th iteration. So Z m+1 = Z m ∪ {t ∈ T | t ≡ H t 1 }, where t 1 p -→ t 2 is the edge found in the guard of the while statement. We verify that Z m+1 satisfies Invariants 2 and 3 if Z m does.

For Invariant 2, Lemma 45 says that there are no outgoing solid edges from the ≡ Hequivalence class of t 1 , unless that class is a singleton. If it is a singleton, there are no outgoing solid edges from t 1 or t 1 p -→ t 2 is the only outgoing edge of t 1 . In both cases, there are no solid edges from Z m+1 to T \ Z m+1 in H.

For Invariant 3 we extend a Z m -deadlock scheme to Z m+1 . So we are given ds m and construct ds m+1 . If the two locks of some process q are in Z then ds m+1 (q) = ds m (q). We set ds m+1 (q) to be the edge t 1 q -→ t 2 found by the algorithm. Let C be the equivalence class of t 1 : C = {t ∈ T | t ≡ H t 1 }. By Lemma 46 there is a unique simple path from t ∈ C to t 1 . Let t q -→ t be the first edge on this path. We set ds m+1 (q) to be this edge. We set ds m+1 (q) = ⊥ for all remaining processes q.

We verify that ds m+1 is a Z m+1 -deadlock scheme. By the above definition every lock in C has a unique outgoing edge in ds m+1 , hence every lock in Z m+1 does. It is also immediate that the image of ds m+1 does not contain a blue cycle as it would need to be already in the image of ds m (every lock has exactly one outgoing edge in ds m+1 and the path obtained by following those edges from an element of C leads to Z m). It is maybe less clear that ds m+1 = ⊥ for every solid q ∈ Proc Zm+1 . Let q be a solid process in Proc Zm+1 , and suppose ds m+1 is not defined by the procedure from the previous paragraph. If both of locks of q are in Z m then ds m+1 (q) must be defined because ds m (q) is. If q = p, the process labeling the transition chosen by the algorithm, then ds m+1 (q) is defined. Otherwise both locks of q are in C. Say these are t and t . If neither t q -→ t is on the shortest path from t to t 1 , nor is t q ← -t on the shortest path from t to t 1 then there must be a cycle in C. But this is impossible as we assumed that there are no cycles of solid edges intersecting T \ Z (property H2) and Z ⊆ Z m . Hence ds m+1 (q) is defined, and ds m+1 is a Z m+1 -deadlock scheme.

All that is left to prove is that H has no edges from T \ Z to Z, which is immediate as otherwise Algorithm 3 would not have stopped.

Algorithm 4 Incorporating green cycles 1: if there exists a green cycle t 1 p1

-→ t 2 • • • p k -→ t k+1 = t 1 with t 1 p k -→ t 1 green then 2: Z ← Z ∪ k i=1 {t | t ≡ H t i } 3: end if
Lemma 48. Suppose H satisfies H1-H3, (H, Z) satisfies Invariants 1-3, and moreover there are no edges from T \ Z to Z. After an execution of Algorithm 4 H satisfies H1-H3, and (H, Z) satisfies Invariants 1-3.

Proof. Let (H , Z) be the pair obtained after execution of Algorithm 3. Observe that H = H, hence Invariant 1 holds. For the same reason H1 and H3 are still satisfied. Furthermore, as Z can only increase, so is H2. It remains to verify Invariants 2 and 3.

Consider the green cycle found by the algorithm:

t 1 p1 -→ t 2 • • • p k -→ t k+1 = t 1
For Invariant 2, Lemma 45 says that there are no outgoing solid edges from the ≡ Hequivalence class of t 1 , unless that class is a singleton. If it is a singleton, there are no outgoing solid edges from t 1 or t 1 p -→ t 2 is the only outgoing edge of t 1 . In both cases, there are no solid edges from Z m+1 to T \ Z m+1 in H.

For Invariant 3 we extend a Z-deadlock scheme ds Z to Z . For every lock t ∈ Z \ Z let j be the biggest index among 1, . . . , k with t ≡ H t j . If t = t j then set ds Z (p j) to be the edge t j pj -→ t j+1 . Otherwise, take the unique path from t to t j in the ≡ H -equivalence class of the two locks; this is possible thanks to Lemma 46. If the path starts with t p -→ t then set ds Z (p) to this edge. Then set ds Z (p) = ⊥ for all remaining processes p.

We claim that ds Z is a Z -deadlock scheme. First, there is an outgoing ds Z edge from every lock in Z because of the definition. Moreover it is unique.

We need to show that ds Z (p) is defined for every solid process p. This is clear if the two locks, t and t , of p are in Z. If both locks are not in Z then either t ≡ H t or there is a solo solid edge between the two, say t p -→ t . In the latter case this is the only edge from t, as H is trimmed. As the equivalence class of t is then a singleton, this must be an edge on the cycle and ds Z (p) is defined to be this edge. Suppose t ≡ H t and ds Z (p) is not defined. Let j be the biggest index among 1, . . . , k such that t ≡ H t j . If neither t p -→ t is on the shortest path from t to t j , nor t p ← -t is on the shortest path from t to t j then there must be a cycle in C. But this is impossible as we assumed that there are no cycles of solid edges intersecting T \ Z m in H (property H2). The remaining case is when one of the locks of p is in Z and another in Z \ Z. There is no solid edge leaving Z by Invariant 2. There is no solid edge entering Z by the assumption of the lemma. So p is a solid process labeling no edge in H which contradicts H3.

The last thing to verify is that there is no blue cycle in ds Z . We first check that ds Z contains t k p k -→ t 1 . This is because t k is necessary the last from its equivalence class. A blue cycle cannot contain locks from Z as there are no edges entering Z in ds Z . Let

t 1 p 1 -→ t 2 . . . p l
-→ t l+1 = t 1 be a hypothetical blue cycle in Z \ Z using transitions in ds Z . Consider x such that t 1 ≡ H t j for j ≤ x but t 1 ≡ H t x+1 . By definition of ds Z we must have that t x is the last lock among t 1 , . . . , t k equivalent to t 1 , say it is t y . As each lock only has one outgoing transition in the image of ds Z , and as there is a path from t y to t k in that image, t k must be on that cycle, and thus the green edge t k p k -→ t 1 as well, contradicting the assumption that this is a blue cycle.

Algorithm 5 below is the complete algorithm as required by Proposition 24. Its correctness is stated in the next lemma. Proof. Let (H , Z) be the values at the end of the execution of the algorithm.

Suppose the algorithm fails. If it is before line 13 then using the previous lemmas and Invariant 1 we get that G σ does not have a deadlock scheme. If the algorithm fails in line 14 then there exists a process p with one of its locks outside of Z and not Z-lockable. Suppose towards a contradiction that there is a deadlock scheme ds H for H. It must have an edge from a lock of p that is not in Z, say from t. By definition, every lock with an incoming edge in ds H must also have an outgoing edge in ds H . Following these edges we get a cycle in H. During the last iteration of lines 9-12, Z was not increased, hence by Lemma 47 there are no edges from T \ Z to Z. This cycle is therefore outside Z. It has to be a green cycle by definition of a deadlock scheme, which is a contradiction because Algorithm 4 did not increase Z in its last application.

If the algorithm succeeds then there is a Z-deadlock scheme, say ds Z . It may still not be a deadlock scheme on G σ because Proc Z may be a strict subset of Proc. We construct a deadlock scheme (Z, ds) for G σ . First, we set ds(p) = ds Z (p) for all p ∈ Proc. Let us take p ∈ Proc \ Proc Z , as the algorithm did not fail in lines 13-14, p is Z-lockable and thus we can map it to ⊥.

Finally, this algorithm operates in polynomial time as all steps of all loops in the algorithms either decrease H or increase Z. Furthermore, the condition on line 13 is easily verifiable by checking in the lockset family {L p } p∈Proc of σ whether there exists B ∈ L p such that B ⊆ Z.

C

Solving the exclusive case in Ptime Lemma 25. Let σ be a locally live control strategy and G σ its lock graph. For all t 1 , t 2 ∈ T , if G σ has a blue edge t 1 p -→ t 2 then it has a green edge t 2 p -→ t 1 .

Proof. Suppose there is a blue edge t 1 p -→ t 2 , then there is a process p and a local run of A p of the form u = u 1 (a 1 , acq t1)u 2 (a 1 , rel t2)u 3 (a 3 , acq t2) respecting σ, with no rel t1 in u 2 or u 3 . Hence there is a point in the run at which p holds both locks.

It is not possible that there is always a release between two acquire operations in u, as then the run would never hold both locks. So there are two acquires in u with no release in-between. Thus there is a green edge between the first lock taken and the second one because 2LSS is exclusive. As t 1 p -→ t 2 is blue, the only possibility is that there is a green edge t 2 p -→ t 1 . Lemma 26. Let σ be a locally live control strategy and G σ its lock graph. For every edge

t 1 p -→ t 2 in G, process p is {t 1 , t 2 }-lockable.
Proof. By definition of G σ , as t 1 p -→ t 2 is an edge, there exists a local σ-run u p of p acquiring t 1 . Consider the first acquire transition in the run u p = u(a, acq ti)u for some i ∈ {1, 2} and u containing only local actions. As our 2LSS is exclusive, this means that u makes p reach a configuration with only one outgoing transition acquiring t i , and p not having any lock. Hence p is {t i }-lockable and thus {t 1 , t 2 }-lockable. Proposition 27. A strategy σ is winning if and only if there exists a process that is not BT σ -lockable.

The left-to-right direction is handled by the lemma below.

Lemma 50. If all processes are BT σ -lockable then σ is not winning.

Proof. We construct a BT σ -deadlock scheme for (G σ , Locks σ) as follows: for all t ∈ BT σ we select an outgoing edge in BT σ , say t pt -→ t to some t ∈ BT σ , and a green one if possible. Such an edge always exists by definition of BT σ . We define ds as ds(p t) = t pt -→ t for all t ∈ BT σ , and ds(p) = ⊥ for all other p ∈ Proc.

We show that ds is a BT σ -deadlock scheme for (G σ , Locks σ). Hence it is also just a deadlock scheme because BT σ locks all processes.

Clearly for all p ∈ Proc, ds(p) is either ⊥ or a p-labeled edge within BT σ . Furthermore as all processes are BT σ -lockable, in particular the ones mapped to ⊥ by ds are. It is also clear that all locks of BT σ have an unique outgoing edge. Now suppose there is a blue cycle in ds(Proc), then by Lemma 25 there is a reverse cycle of green edges between the same locks. This means all those locks have an outgoing green edge within BT σ , which is a contradiction as we have chosen for ds green outgoing edges whenever possible.

For the right-to-left direction we first prove an auxiliary lemma.

Lemma 51. If ds is a Z-deadlock scheme for (G σ , Locks σ) then Z ⊆ BT σ .

Proof. Suppose there exists t ∈ Z \ BT σ , then there exists p such that ds(p) = t p -→ t for some t . By definition of BT σ , there are no edges from T \ BT σ to BT σ in G σ , hence t ∈ Z \ BT σ . By iterating this process we eventually discover a proper cycle in G σ outside of BT σ , which is impossible as this cycle should be part of a direct deadlock component, and thus be included in BT σ .

Lemma 52. If some process p is not BT σ -lockable then σ is winning.

Proof. Suppose there exists p that is not BT σ -lockable.

Towards a contradiction assume that σ is not winning, hence there is a Z-deadlock scheme ds for σ. As p is not BT σ -lockable, it is not Z-lockable either, hence ds(p) is not ⊥. So ds(p) must be an edge t 1 p -→ t 2 from G σ and t 1 , t 2 ∈ Z. By previous lemma t 1 , t 2 ∈ BT σ . By Lemma 26, p is {t 1 , t 2 }-lockable, and therefore also BT σ -lockable, yielding a contradiction.

This completes the proof of Proposition 27.

Proposition 28. Let S be an exclusive 2LSS.

There is a winning locally live strategy for the system if and only if there exists a locally live strategy σ p for some process p preventing it from acquiring any lock from BT S .

Proof. One direction is easy: if all strategies make all processes able to acquire a lock from BT S then there is no winning strategy. Let σ be a control strategy, and G σ its lock graph and its SCCs. Note that G S is a subgraph of G σ , hence every SCC in G σ is a superset of an SCC in G S . Observe that if an SCC in G σ contains a direct semi-deadlock SCC of G S then it is direct deadlock. Indeed, if an SCC in G S is a direct semi-deadlock but not a direct deadlock then σ adds an edge t 1 p -→ t 2 to this SCC in G σ . As t 1 , t 2 are in that SCC of G S , there is a simple path from t 2 to t 1 not involving p. Hence, a direct semi-deadlock SCC becomes a direct-deadlock SCC. This implies BT S ⊆ BT σ . Let p ∈ Proc, as there is a run of p acquiring a lock of BT S , either p is BT S -lockable (and thus BT σ -lockable) or there is an edge labeled by p towards BT S , meaning that both locks of p are in BT σ and thus that p is BT σ -lockable by Lemma 26. As a consequence, all processes are BT σ -lockable. We conclude by Proposition 27. p∈Proc T p blocks ⊆ p∈Proc T p owns , the sets T p owns are pairwise disjoint, there exists a total order , on the set of all locks T , compatible with all p .

Proof. Suppose σ is not winning, let w be a run leading to a deadlock. For all p let T p owns be the set of locks owned by p after w. Take u p the local run of p in w. Since w leads to a deadlock every u p is risky. For every p, consider the stair pattern (T p owns , T p blocks , p) of u p . This way we ensure it is a pattern from P p .

We need to show that these patterns satisfy the requirements of the lemma. Since the configuration reached after w is a deadlock, every process waits for locks that are already taken so T p blocks ⊆ q∈Proc T q owns , for every process p, proving the first condition. We have that T p owns is the set of locks that p has at the end of the run w. So the sets T p owns are pairwise disjoint.

For the last requirement of the lemma take an order on T satisfying: t t if the last operation on t appears before the last operation on t in w.

Let For the converse implication, suppose that there are patterns satisfying all the conditions of the lemma. We need to construct a run w ending in a deadlock. For every process p we have a stair pattern (T p owns , T p blocks , p) coming from a local σ-run u p of p, with

u = u p 1 acq t p 1 u p 2 acq t p 2 • • • u p k acq t p k u p k+1 as stair decomposition.
There is also a linear order compatible with all p . Let ≺ be its strict part. Let t 1 . . . t k be the sequence of locks from p T p listed in ≺ order (which is possible as the T owns are disjoint and thus no lock appears twice in that sequence), and let {p 1 , . . . , p n } = Proc. We claim that we can get a suitable run w as u p1 1 . . . u pn 1 w where w is obtained from t 1 . . . t k by substituting each t p i by acq t p i u p i+1 . All u p i are neutral, hence after executing u p1 1 . . . u pn 1 all locks are free. Let t p i ∈ T p , suppose we furthermore executed all acq t q j u q j+1 with t q j ≺ t p i . Then the set of non-free locks is {t q j | t q j ≺ t q i }. As is compatible with all p , all locks t used in acq t p i u p i+1 are such that t p i t. Moreover, all t q j that were taken before are such that t q j ≺ t p i , thus acq t p i u p i+1 only uses locks that are free and can therefore be executed.

As a result, w can be executed. It leads to a deadlock as T p blocks ⊆ q T q owns .

Lemma 32. Given a lock-sharing system ((A p) p∈Proc , Σ s , Σ e , T), a process p ∈ Proc and a set of patterns P p , we can check in polynomial time in |A p | and 2 |T | whether there exists a nested-locking local strategy σ p with set of patterns included in P p .

Proof. For every process p we proceed as follows We extend the states of p to store in it the stair profile of the current run. This increases the number of states by the factor |T |!2 |T | 2 . As the set of locks owned by p is now a function of the current state, this also allows us to eliminate all non-realizable transitions which acquire a lock that p owns or release one it does not have.

Then the risky nature and the stair pattern of a run u depend only on the state it ends in and the choice of transitions of the system from that state after executing u.

We focus on states with only outgoing transitions acquiring locks (including those with no outgoing transition). Those states force the runs entering them to be risky. The choices of transitions of the system in that state will then determine the stair pattern of each run entering it. We mark such states as bad if all choices of transitions of the system yield a stair pattern that is not in P p .

We iteratively delete all bad states and all their ingoing transitions, as we need to ensure that we never reach them. If we delete an uncontrollable transition then we mark its source state as bad as reaching that state would make the environment able to reach a bad state. As we deleted some transitions, we may have reduced the choices of the system in some states, therefore we check again all states and mark as bad all the ones in which no choice of transitions of the system yields a pattern in P p . We again delete all bad states, and so on.

At some point we reach a system with no bad state. If it is empty, then we conclude that there is no suitable strategy. If not, we construct a strategy by selecting for each state a set of outgoing transitions that either contains a transition not acquiring a lock or allows runs reaching this state to match a pattern of P p . This strategy ensures that all risky runs have a pattern in P p .

In the third phase, process q has to take and then immediately release lock and then lock before it reaches a state dominoes.

Every state in the three phases before dominoes has a local loop on it, meaning that q cannot deadlock while being in one of these states.

In state dominoes, the system chooses to take two dominoes Each choice leads to a different state s d,d . From there transitions force the system to take every lock t(d) and t(d), except for t(d) and t(d) in order to reach a state win with a local loop on it and no other outgoing transitions. We now describe process p. It starts by taking the lock lock, which it never releases. Then the environment chooses to take one of 0 x i and 1 x i and one of 0 y i and 1 y i for all 1 ≤ i ≤ n. Finally, the system chooses a domino d and takes the lock t(d) before reaching a state with no outgoing transitions.

Process p behaves identically, but uses locks with a bar. We need to show that if there is a tiling til : {0, . . . , 2 n -1} 2 → D then there is a winning strategy. The strategy for q is to respond with the correct tiles: if environment chooses #x, #y, #x, #y the strategy chooses locks corresponding to d 1 and d 2 with d 1 = til(#x, #y) and d 2 = til(#x, #by). The strategy of p does the same but uses inverse encoding of numbers: considers 0 as 1, and 1 as 0. Similarly for p.

Assume for contradiction that the strategy is not winning, so we have a run leading to a deadlock. First, observe that the environment must have q pass the lock phase before p and p start running, because all states before lock have a self-loop, so q cannot block there. If p or p starts before q has passed the lock phase, then q can never pass it as one of lock, lock will never be available again.

If q passed the lock phase then process p has no choice but to take lock, and then the remaining locks among x, y. Similarly for p. At this stage strategy σ is defined so that the three processes will never take the same lock. So q cannot be blocked before reaching state win. Thus deadlock is impossible.

For the other direction, suppose there is a winning strategy σ for the system. Observe that the strategy σ p for process p should decide which domino to take after the environment has decided what x and y locks to take. So σ p defines a function til : {0, . . . , 2 n -1} 2 → D. Similarly σ p defines til.

We first show that til(i, j) = til(i, j) for all i, j ∈ {0, . . . , 2 n -1}. If not then consider the run where environment chooses equality and then x, x to be the representations of i, and y, y to be representations of j. So q reaches state dominoes. Next the environment makes processes p and p to choose locks corresponding to dominoes til(i, j) and til(i, j). The two processes p and q reach a deadlock state. Since these are two different dominoes, q cannot reach state win from any state s d,d . Hence there is a deadlock run, that we have assumed impossible.

Once we know that the strategies σ p and σ p define the same tiling function it is easy to see that in order to be winning when environment chooses vertical, horizontal or b lef t , b right , b down , b up actions, the tiling function should be correct. formed into a new system S ∅ with additional locks. The transformation introduces one extra lock per process, denoted k p and called the key of p. Each process uses in addition to T p the |Proc| extra locks.

The transition system A p of process p is extended with new states and transitions, which define a specific finite run called the init sequence. The new states and transitions can occur only during the init sequence. When a process p completes his init sequence in S ∅ , he owns precisely all locks in I p , plus the key k p , and has reached his initial state init p in A p . After that, further actions and transitions played in S ∅ are actions and transitions of S, unchanged. All the new actions are uncontrollable, thus there is no strategic decision to make for the controller of a process p until his init sequence is completed.

The init sequence.

For process p, the init sequence consists of three steps. 1. First, p takes one by one (in a fixed arbitrary order) all locks in I p . 2. Second, p takes and releases, one by one (in a fixed arbitrary order) all the keys of the other processes (k q) q =p . 3. Finally, p acquires his key k p and keeps it forever. After acquiring k p process p reaches the initial state init p in A p .

In order to prevent the init sequence to create extra deadlocks, every state used in the initialisation sequence is equipped with a local self-loop on the nop operation. This way, a deadlock may only occur if all processes have finally completed their init sequences.

Linking runs in S ∅ and S.

When a process completes his init sequence, he has been until that point the sole owner of its initial locks: Claim 55. Let p be a process and u ∅ a run of S ∅ such that the last action of u ∅ is acq kp by process p. Let t ∈ I p , then p is the only process to acquire t in u ∅ .

Proof. By contradiction, let t ∈ I p and q = p and assume that u ∅ factorizes as u ∅ = u 0 • (acq t , q) • u 1 • (acq kp , p) (we abuse the notation and denote (acq t , q) and (acq kp , p) the transitions where q and p respectively acquire t and k p). Process p must take and release k q before taking k p , thus the transition δ = (acq kq , p) occurs either in u 0 or in u 1 . However δ cannot occur in u 0 : the init sequence of p requires that p owns t permanently in the interval between the occurence of δ and the occurence of (acq kp , p), thus (acq t , q) cannot occur in the meantime. Hence δ occurs in u 1 . But this leads to a contradiction: since t is not an initial lock of q, process q is not allowed to acquire t during his init sequence, hence q has completed his init sequence in u 0 . After u 0 , q owns permanently k q , but then it is impossible that δ = (acq kq , p) occurs during u 1 .

There is a tight link between runs in S ∅ and runs in S.

Claim 56. Let u ∅ be a global run in S ∅ in which all processes have completed their init sequences. There exists a global run u in S (with initial lock ownership (I p) p∈Proc) with the same local runs as u ∅ , except that the init sequences are deleted.

Proof. The proof is by induction on the number N of transitions in u ∅ which are not transitions of the init sequence. In the base case N = 0, then u ∅ is an interleaving of the init sequences of all processes and u is the empty run. Assume now N > 0. Let δ be the

Figure 1

 1 Figure 1 A dining philosopher p. Dashed transitions are controllable.

Figure 3

 3 Figure 3The processes used in the reduction in Proposition 38. Transitions of the system are dashed.

3 :

 3 if all the edges on the cycle are blue then 4:

 d and d such that: If the environment chose equality then d = d If it chose vertical then up d = down d If it chose horizontal then right d = lef t d If it chose b lef t (resp. b right , b up , b down) then lef t d = b (resp. right d , up d , down d).

 Definition 9 (Exclusive systems). A process p is exclusive if for every state s ∈ S p : if s has an outgoing transition with some acq t operation then all outgoing transitions of s have the same acq t operation. A system is exclusive if all its processes are.

			rel tp		
	think	hungry	left	acq tp	acq tp+1
			right	acq tp+1	acq tp
			rel tp+1		
			rel tp , rel tp+1	
	Figure 2 A flexible philosopher p. She can release a fork if the other fork is not available.

 on T such that for all p, if ord p = (t, t) then t ≤ t .Proof. Suppose σ is not winning, let u be a run ending in a deadlock. For each process p let u p be the corresponding local run. The local run u p is risky, as otherwise u p could be extended in a longer run consistent with σ. Thus u p has a pattern (T p owns , T p blocks , ord p) ∈ Patt p .

	there exists a total order ≤
	Lemma 15. Let σ = (σ p) p∈Proc be a control strategy. For all p let Patt p be the set of
	patterns of local risky σ p -runs of p. The control strategy σ is not winning if and only if
	there exists for each p a pattern (T p owns , T p blocks , ord p) ∈ Patt p such that:
	p∈Proc T p blocks ⊆ p∈Proc T p owns ,
	the sets T p owns are pairwise disjoint,

 ∈ ds(Proc), we have t 1 ≤ t 2 . By definition of the lock graph, for each process p ∈ Proc we can take a local run u p of A p respecting σ with the following properties.

	t 1 p then there is u p of the form u 1 p --→ t 2 p -p (a, acq t 1 p)u 2 p (a , acq t 2 p) without rel t 1 p → t 2 If ds(p) = t 1 p transition in u 2 p . Moreover if ds(p) is green then we know that there is no rel t 2 p transition in u 2

If ds(p) = ⊥ then p is BT -lockable. So there exists a neutral run u p leading to a state where all outgoing transitions require locks from BT .

Lemma 25 .

 25 Let σ be a locally live control strategy and G σ its lock graph. For all t 1 , t 2 ∈ T , if G σ has a blue edge t 1 Let σ be a locally live control strategy and G σ its lock graph. For every edge t 1

	p -→ t 2 then it has a green edge t 2	p -→ t 1 .
	Lemma 26. p	

 we can show that the family of patterns for a strategy determines if it is winning. Lemma 31. A nested-locking control strategy σ with behavior (P p) p∈Proc is not winning if and only if for every p ∈ Proc there is a stair pattern (T p owns , T p blocks , p) ∈ P p such that: p∈Proc T p blocks ⊆ p∈Proc T p owns , the sets T p owns are pairwise disjoint, there exists a total order , on the set of all locks T , compatible with all p . Similarly to Lemma 19 we can check if there is a strategy whose set of patterns has only patterns from a given family. Observe that the depth of nesting is bounded by the number of locks. Given a lock-sharing system ((A p) p∈Proc , Σ s , Σ e , T), a process p ∈ Proc and a set of patterns P p , we can check in polynomial time in |A p | and 2 |T | whether there exists a nested-locking local strategy σ p with set of patterns included in P p . The deadlock avoidance control problem is decidable for lock-sharing systems with nested-locking strategies in non-deterministic exponential time. Proof. The decision procedure guesses a set of patterns P p for each process p, of size at most 2 2|T | |T |! ≤ 2 O(|T | log(|T |) . Then it checks if there exist local strategies yielding subsets of those sets of patterns. This takes exponential time by Lemma 32. If the result is negative then the procedure rejects. Otherwise, it checks if some condition from Lemma 31 does not hold. It it finds one then it accepts, otherwise it rejects.

	Lemma 32. Proposition 33.

 . It then concludes that there is no deadlock scheme as p 7 and p 8 both label only one edge, and both those edges are from t 7 .

		p 2					p 6		
	p 3								p 5
		1					p 4		
		p 7						p 9	
					p 8				
	t 3							t 6	
										We apply Algorithm 2 (up to line
	p 3	p 2	t 2				p 6		p 5	edges, erases all other edges going out 14), which finds two cycles of solid
	t 1	p 1 p 7	t 7		p 8	t 4 t 8	p 4	p 9	t 5	of those cycles, and makes sure that those cycles have a green edge. We now finish the execution of Al-
	t 3							t 6		gorithm 2, which applies Algorithm 1
	again. It detects that t 8 has an outgo-ing edge t 8 p9 -→ t 5 , p 9 is solid and there is no edge t 5 p9 t 8 p8 -→ t 7 t 1 p 1 p 4 t 4 -→ t 8 , thus it erases p 3 p 5 t 2 p 2 p 6
		p 7	t 7	!	p 8	t 8		p 9	t 5
	Figure 4 Illustration of Algorithm 1 and Algorithm 2.

 Algorithm 5 fails if and only if (G σ , {L p } p∈Proc) admits a deadlock scheme. The algorithm works in polynomial time.

		Lemma 49.	
		Algorithm 5 Complete algorithm	
	1: H ← G σ	
	2: Z ← ∅	
	3: repeat	
	4:	Apply Algorithm 1	
	5: until No more edges are removed from H	
	6: repeat	H is trimmed
	7:	Apply Algorithm 2	
	8: until No more edges are removed from H	
	9: repeat	From now on H satisfies properties H1-H3
	10:	Apply Algorithm 3	no edges from T \ Z to Z
	11:	Apply Algorithm 4	
	12: until Z does not increase anymore	
	13: if there is a process p ∈ Proc \ Proc Z that is not Z-lockable then
	14:	return "Fail: σ is winning"	
	15: else	
	16:	return "σ is not winning"	
	17: end if	

 p ∈ Proc, let u p = u p 1 acq t p

	1 i , the distinguished acq t p u p 2 acq t p 2 • • • u p k acq t p k As p never releases t p , is the last operation on t p u p k+1 be the stair decomposition of u p . i in the global run. i Consequently, for all t we have t p i t whenever t is used in u p i+1 acq t p i+1

Distributed controller synthesis for deadlock avoidance

In the other direction we suppose that there exists a process p and a strategy σ p forbidding p from acquiring a lock of BT S . We construct a strategy σ such that p is not BT σ -lockable. This will show that σ is winning.

Let F T = T \BT S be the set of locks not in BT S . In G S , no node of F T can reach a direct semi-deadlock SCC. In particular, there is no direct semi-deadlock SCC in G S restricted to F T . We construct a strategy σ such that, when restricted to F T , the SCC's of G σ and G S are the same.

Let us linearly order SCC components of G S restricted to F T in such a way that if a component C 1 can reach a component C 2 then C 1 is before C 2 in the order.

We use strategy σ p for p. For every process q = p we have one of the two cases: (i) either there is a local strategy σ q inducing only the edges that are already in G S ; (ii) or every local strategy induces some edge that is not in G S . In the second case there are no q-labeled edges in G S , and for each of the two possible edges there is a strategy inducing only this edge.

For a process q from the first case we take a strategy σ p that induces only the edges present in G S .

For a process q from the second case, If both locks of q are in BT S then take any strategy for p.

If one of the locks of q is in BT S and the other in F T then choose a strategy inducing an arrow from the BT S lock to the F T lock.

If both locks of q are in F T then choose a strategy inducing an edge from a smaller to a bigger SCC.

Consider the graph G σ of the resulting strategy σ. Restricted to F T this graph has the same SCCs as G S . Moreover, there are no extra edges in G σ added to any SCC included in F T , and there are no edges from F T to BT S . As a result, we have BT S = BT σ .

As p cannot acquire any lock from BT S , it is not BT S -lockable and thus not BT σ -lockable either.

D Nested-locking strategies

By abuse of language we will denote in this section a run u, not necessarily initial, as neutral if every lock acquired in u is also released within u.

Lemma 53. Every local run u that respects a nested-locking strategy has a unique stair decomposition.

Proof. We set u = u 1 acq t1 u 2 acq t2 • • • u k acq t k u k+1 such that {t 1 , . . . , t k } is the set of locks held by p at the end of the run, and the distinguished acq ti are the last time these locks were taken in u. Consequently, there is no operation on t i in u i+1 , . . . , u k+1 .

Observe that u k+1 must be neutral because the process owns {t 1 , . . . , t k } at the end of u. If some u i , i ≤ k, is not neutral, then there exists t ∈ T such that t / ∈ {t 1 , . . . t i } and p holds t after u 1 acq t1

This problem is well-known to be Nexptime-complete.

Let n, Σ, D, b be an instance of that problem. We construct a lock-sharing system as follows: We have three processes p, p and q. Process p will use locks 0 x i , 1 x i , 0 y i , 1 y i , for 1 ≤ i ≤ n, together with t(d) for each domino d ∈ D, and an extra lock lock. Process p will use analogous locks but with a bar: 0 x i , 1 x i , 0 y i , 1 y i , t(d),lock. Process q will use all the locks. Let us describe process q. In the initial state the environment can choose between several actions: equality, vertical, horizontal, b lef t , b right , b up and b down . Each of these actions leads to a different transition system, but the principle behind all systems is the same. In the first phase, for each 1 ≤ i ≤ n, the environment can choose to take either 0 x i or 1 x i , and then take either 0 x i or 1 x i . In the second phase the same happens for y locks. After these two phases environment has chosen two pairs of n-bit numbers, call them #x, #y and #x, #y. Where the three systems differ is how the choice of x's and y's is limited in these two phases. This depends on the first action done by the environment.

If it is equality then #x = #x and #y = #y.

If it is b down (resp. b up) then #y = 0 (resp. 2 n -1). These constraints are easily implemented. For example, equality is checked by forcing the environment to take the same bit for x after choosing each bit for x (similarly for y).

Distributed controller synthesis for deadlock avoidance

horizontal equality b direction Figure 7 Transition system for process q, dashed arrows are controlled by the system, every state before dominoes has a self-loop that is not drawn and acq S means that there is a sequence of forced transitions with the operations acq t for each t ∈ S (in some order). We only drew the subsystem used when the environment chooses vertical.

E

Undecidability for unrestricted lock-sharing systems

E.1 Initial ownership of locks

In a lock-sharing system all locks are assumed to be initially free. We consider now the variant where some of the locks are initially owned by some processes.

The input is a lock-sharing system S = ((A p) p∈Proc , Σ s , Σ e , T) and an initial configuration C init = (init p , I p) p∈Proc with pairwise disjoint sets I p ⊆ T . The question is whether there exists a control strategy that guarantees that no run from C init deadlocks.

It turns out that this generalization of the deadlock-avoidance control problem is not more difficult than our original problem, as stated in Lemma 35: Lemma 35. There is a polynomial-time reduction from the control problem for lock-sharing systems with initial configuration to the control problem where all locks are initially free. The reduction adds |Proc| new locks. Proof. The system S = (A p) p∈Proc , Σ s , Σ e , T) with initial ownership (I p) p∈Proc is trans-Distributed controller synthesis for deadlock avoidance last transition played in u ∅ which is not part of an init sequence, and Z ⊆ Proc the set of processes that have not yet completed their init sequence when δ occurs. Then u ∅ factorizes as

where u ∅ is an interleaving of infixes of the init sequences of processes in Z.

Assume first that u ∅ is empty. We apply the inductive hypothesis to u ∅ , get a global run ν and set u = ν • δ. Then u has the same local runs as u ∅ , after deletion of init sequences.

We now reduce the general case to the special case where u ∅ is empty. Let q be the process operating in δ and (a, op) the corresponding pair of action and operation on locks. Since δ is not part of an init sequence, then q ∈ Z and op is not an operation on one of the keys. Moreover, according to Claim 55, neither is op an operation on one of the initial locks of processes in Z. Thus (a, op) can commute with all transitions in u ∅ and become the last transition of the global run, while leaving the local runs unchanged, and we are back to the case where u ∅ is empty.

We turn now to the proof of the theorem.

Claim 57. The system wins in S ∅ if and only if it wins in S with initial lock ownership (I p) p∈Proc .

Since in S ∅ there is no strategic decision to make during the init sequence, the strategies in S ∅ are in a natural one-to-one correspondence with strategies in S. For a fixed strategy we show that there is some deadlock in S if and only if there is some deadlock in S ∅ .

If there is a deadlock in S then there is also one in S ∅ , by executing first all init sequences, and then the deadlocking run of S. The execution of all init sequences is in two steps: first each process p acquires its initial locks I p and acquires and releases the keys k q , q = p of other processes. Second, each process p acquires (definitively) its key k p .

Suppose now that there is a deadlocking run u ∅ in S ∅ . Observe first that all processes p ∈ Proc have completed their init sequences in u, because all states used in this sequence have local nop self-loops. By Claim 56 there exists a global run u of S which has the same local runs as u ∅ (apart from the init sequences). Since u ∅ is deadlocking, so is u.

E.2 Undecidability

In this section we show that the deadlock-avoidance control problem becomes undecidable if we do not limit the maximal number of locks that processes can use.

Lemma 34. The control problem for lock-sharing systems with 3 processes, fixed initial configuration and fixed number of locks per process is undecidable.

We reduce from the question whether a PCP instance has an infinite solution. Let (α i , β i) m i=1 be a PCP instance with α i , β i ∈ {0, 1} * . We construct below a system with three processes P, P , C, using locks from the set {c, s 0 , s 1 , p, s 0 , s 1 , p} .

Process P will use locks from {c, s 0 , s 1 , p}, process P from {c, s 0 , s 1 , p}, and C all seven locks.

Processes P, P are supposed to synchronize over a PCP solution with the controller process C. That is, P and C synchronize over a sequence α i1 α i2 . . . , whereas P and C synchronize over a sequence β j1 β j2 The environment tells C at the beginning whether she should check index equality i

For the initial configuration we assume that P owns p, P owns p and C owns c, s 0 , s 1 , s 0 , s 1 . We describe now the three processes P, P , C. Define first for b = 0, 1: The automaton of A P (A P , resp.) allows all possible action sequences from (u P (0) + u P (1)) ω ((u P (0)+u P (1)) ω , resp.). If e.g. process P manages to execute a sequence u P (b 1)u P (b 2) . . . Proof. If, say, b = 0 and b = 1 then C releases s 0 but P wants to acquire s 1 , so that P deadlocks. Since C wants to acquire p as second step, she deadlocks, too. Process P will deadlock as well, because he is waiting for either s 0 or s 1 .

Suppose now that b = b , say with b = 0. Then there is only one possible run alternating between steps of u C (P, 0) and u P (0), until C finally acquires c. Then both C and P have finished the execution of u C (P, 0) and u P (0), respectively. Moreover, C re-owns {c, s 0 , s 1 } and P re-owns {p}.