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ABSTRACT Shared Mobility Systems (SMS) facilitate on-demand journeys using one or more transporta-
tion modes such as car-sharing, bike-sharing, or ride-sharing. As a result, SMS often face challenges such as
finding suitable facility locations, efficient routing of shared vehicles, matching and re-distributing available
resources with dynamic demands. Most existing surveys study how a particular challenge is addressed using
artificial intelligence, machine learning, and optimisation techniques. However, these surveys fail to address
the crucial “Whole System Design” point of view, which includes the “whole system” of interconnected
stakeholders, entities, and subsystems that participate in, impact, and influence the success of each other and
system a whole. Such a survey is highly required with the growing demand for flexible SMS that supports
autonomous decision-making and offers multi-modal and inter-operable transportation services catered for
highly dynamic traffic conditions in urban areas. This paper attempts to fill this gap by categorising the SMS’
interconnected challenges in different transportation modes and reviewing how offered solutions across all

modes address these challenges as a unified system.

INDEX TERMS Artificial intelligence, software system, on-demand mobility, shared mobility.

I. INTRODUCTION

As an answer to the growing interest of citizens for fast,
efficient, and relatively cheap transportation solutions, intel-
ligent Shared Mobility Systems (SMS) are being widely
deployed and becoming increasingly popular in urban
areas [1]-[7]. Consumers (demand), companies (supply),
government (regulator), and environmental benefit are the
key factors that influence the development of shared mobil-
ity [8]. From a whole system design perspective, we define
intelligent shared mobility systems as a set of software sys-
tems that facilitate the sharing of physical transportation
infrastructure. These software systems operate using a series
of algorithms to perform tasks such as identifying optimal
service locations, matching rides, finding optimal routes, and
redistributing vehicles. A whole system design perspective
looks at optimising the entire system, not just the individual
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components. Therefore, every system component must be
considered simultaneously and analysed to identify advan-
tages, as well as undesirable interactions and impacts [9].
Different taxonomies of SMS have been proposed in the lit-
erature [10], [11]. SMS allow on-demand journeys to be made
by sharing a vehicle simultaneously [12], [13] and/or succes-
sively [14], [15]. For instance, bike-sharing relies on the suc-
cessive use of the same bike by different users [4], [7], [16],
[17], while ride-sharing implies that multiple riders share the
same vehicle for the part of/the entirety of their journeys [12],
[13], [18]-[21]. Furthermore, SMS are usually more attrac-
tive than traditional transportation options such as public
transport and individual taxi services, as they address specific
mobility needs that the others cannot fulfil. For example,
ride-sharing services offer a cheaper transportation option
than individual services and a more convenient one than
public transport. Some examples of shared mobility include
public transit, micro-mobility (e.g., bike-sharing, mopeds-
sharing, and scooter-sharing), automobile-based modes
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such as car-sharing (i.e., one-way/free-floating and two-
way/round-trip), rides on-demand/ride-hailing/ride-sourcing,
micro-transit (e.g., vans or cutaways), and commute-based
modes or ride-sharing including car-pooling/slugging, van-
pooling, taxi sharing, and peer-to-peer (P2P) ride-sharing.
Ride-sourcing is suitable for first/last-mile connections at
times/in areas that are difficult to serve with fixed-route.
These shared-use mobility services enhance mobility as a
result of the reduced cost of transportation. However, they
may leave different footprints on the transportation system
and the environment [22]. Hybrid public mobility service
systems incorporate both SMS and public transit modes [23].
Fig. 1 illustrates an overview of SMS, including its most
common modes of transport and challenges. A trip can start
with a user request followed by possible ride options from ser-
vice providers that might include one or more transportation
modes.
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FIGURE 1. The overview of the shared mobility systems (SMS).

As illustrated in Fig. 1, shared mobility services are often
offered using various platforms and modes of transport such
as car-sharing, ride-sharing, and bike-sharing. Bike-sharing
services can address last-mile requests, and car-sharing [14],
[15] is a popular option that can address the transporta-
tion demand in areas without public transport. Unlike tradi-
tional public transport with fixed timetables and individual
taxi services answering one request per vehicle at a time,
SMS must deal with real-time demand while managing the
fluctuating number of vehicles, matching ride requests on
the fly, navigating the vehicles, redistributing them, and
many more issues. To do so, various artificial intelligence
techniques (clustering [3], [7], [16], learning [21], [24],
[25], multi-objective optimisation [20], [26]-[29]) and algo-
rithms are used to make these systems intelligent and their
decision-making process smooth.

Regardless of the provided modes of transport, SMS often
deal with interconnected challenges such as resource assign-
ment (i.e., rider-vehicle assignment) [2], [15], [19], [20],
re-distribution/ re-balancing of resources (e.g., autonomous
cars) [1], [26], [28], [30] and/or routing [16], [31]-[34]. For
example, in ride-sharing or vehicle-sharing, SMS must con-
stantly redistribute the resources/vehicles as they move in a
city while serving demands. The solutions to such challenges
usually impact the performance of other functions of the
system. For example, a ride-sharing service that uses the state
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of the art techniques for passenger matching but does not
address the redistribution of the resources will impact the
whole system’s performance.

A. MOTIVATION

In addition to addressing the above-mentioned interconnected
challenges, SMS face even more significant challenges when
deployed in real-world situations. Such challenges include
addressing the need for autonomous decision-making capa-
bilities for multiple stakeholders (e.g., riders, drivers, ser-
vice providers), practical and efficient multi-modal and
inter-operable transportation services that are catered for
highly dynamic traffic conditions in urban areas, meeting the
ever-growing scale of demand on flexible shared mobility
services, and being able to work and integrate with other ser-
vices already in place such as public transport. Therefore, it is
essential to understand the whole system design perspective
in the shared mobility domain, identify its requirements and
study the challenges that such systems face as interconnected
challenges, since they impact each other and the system
performance in the short or long term.

B. EXISTING SURVEYS

There are two categories of survey papers in the SM'S domain.
The first category investigates how the literature tackles a
specific challenge, such as optimising resource assignment,
re-balancing of resources, vehicle routing, and focusing only
on one service configuration or mode of transport (i.e., ride-
sharing [22], car-sharing [35], bike-sharing, and autonomous
car-sharing [36]). For example, the potential contributions of
integrating autonomous vehicles within SMS is reviewed in
Hao and Yamamoto [37], and the real-time vehicle assign-
ment challenge in ride-sharing services is reviewed in surveys
Agatz et al. [38], Molenbruch et al. [39] and Ho et al. [40].

This category of surveys lacks a perspective on inter-
connected challenges that exist in SMS, regardless of their
offered mode of transport or configuration of the service.
Although these works present an extensive view on solutions
to tackle a particular challenge in SMS, they do not discuss
the impact of such solutions on other challenges or the system
as a whole. For example, how an optimised resource assign-
ment in ride-sharing can impact the performance of vehicle
routing.

The second category of survey papers reviews char-
acteristics of SMS, challenges, and future directions.
Furuhata er al. [12] and Machado et al. [41] provide an
up-to-date description of the existing SMS, their bene-
fits, most popular implementation schemes, economic mod-
els, and open challenges. Kamargianni et al. [42] adopted
the Mobility-as-a-Service (MaaS) perspective. The review
provides a comparison of the implemented shared mobil-
ity services according to the integration level of the ser-
vices within MaaS. By comparing the implemented MaaS
schemes, the authors have highlighted integration levels
and the end user-oriented capacity of the MaaS services.
Mourad et al. [29] provided a comprehensive description of
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SMS, combining the mobility of goods and people with an
overview of the specific constraint and optimisation issues
involved in such a combination. Butler et al. [43] identified
SMS as one of the six main smart mobility innovations
among intelligent transport systems, alternative fuel systems,
driving automation systems, demand responsive transport,
and integrated mobility systems. Golbabaei et al. [44] focused
specifically on Shared Autonomous Vehicles (SAV) systems
with a systematic survey that aims at detailing existing ser-
vices and their expected impact at different levels (mobility,
infrastructure, environment, travel behaviour, etc.).

Although the existing reviews highlight many opportuni-
ties and future research directions, they lack a discussion on
identifying the interconnected components of SMS. They do
not explore how and to what extent these components will be
able to address requirements such as autonomous decision-
making, multi-modal and inter-operable implementations
of transportation services, and meeting the ever-growing
demand for flexible shared mobility services, as well as being
able to work and integrate with other services already in
place.

Table 1 includes the prominent survey papers in the SMS
domain and summarises their main contribution and focus
(i.e., the modes of transport, challenges, and system require-
ments addressed). From this table, it is clear that none of
these works reviews the literature from a whole system design
perspective, which includes all the available transportation
modes with their challenges and requirements.

C. PAPER CONTRIBUTIONS

As shown in Table 1, the contribution of this paper is to
survey SMS from a holistic view to meet emerging demands
for multi-model transport demand and end-to-end shared
mobility. Specifically, it presents a category of interconnected
challenges that SMS face regardless of their provided mode of
transport and reviews the current techniques for overcoming
these challenges. This will bridge the gap in current litera-
ture review papers that solely review a particular mode of
transport (e.g., ride-sharing), as most of these challenges are
shared, and the existing solutions can be reused. Furthermore,
it proposes a list of key, whole system design requirements
that SMS must fulfil before deploying as a real-world appli-
cation and studies how the state-of-the-art methods address
these requirements. Finally, possible future work and several
high-level considerations for their real-world implementation
are discussed.

D. PAPER ORGANISATION

This paper is organised as follows. Section II discusses the
common SMS challenges, Section III reviews various ser-
vice configurations and modes of transport and how their
specific challenges link with the common challenges dis-
cussed in Section II. Section IV suggests several key system
requirements that must be fulfilled when deploying SMS in
real-world configuration followed by a review and analysis of
current solutions. Section V offers a discussion and presents
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future work directions. Finally, Section VI concludes the
paper.

Il. INTERCONNECTED CHALLENGES

SMS require addressing similar and interconnected chal-
lenges regardless of the mode of transport they offer.
Such challenges include effectively determining locations
for required facilities, demand-based distribution of the
resources (i.e., vehicles), matching the available resources
and dynamic requests, and efficient routing. This section
categorises the common interconnected challenges of SMS!
and studies the various methods used in the literature to tackle
them. The objective of this section is to give the reader a clear
perspective on existing reusable techniques addressing the
challenges in SMS that might have been overlooked merely
because of the different modes of transport on which they
focused.

A. FACILITY LOCATION

Facility location refers to strategic planning for the deploy-
ment of required infrastructure for SMS such as car-sharing
and bike-sharing systems [46], [47]. The required infrastruc-
ture includes the stations to pick up and drop off cars [47],
or bikes [46]. Particularly, strategic planning tries to find the
optimal number, location, and capacity of required infras-
tructure to satisfy the demand on a particular shared mobil-
ity system with the lowest possible cost. Recently, these
infrastructures have also started providing charging facilities
for electric vehicles [48]-[54], or even geo-fence [55] for
regulating the parking behaviour of bike travellers (i.e., the
users cannot lock the bike to stop charging fees in geo-fenced
areas). The service region design, described in [52], has a sim-
ilar meaning as the facility location. In this paper, the service
region design covers the service capacity planning, besides
the location planning. Different techniques, such as genetic
algorithms [46], [54], approximation algorithms [49], [53],
heuristic simulation [48], [50], [55], and queuing theory [47]
are used to find the best location for facilities to maximise
the quality of service while minimising the operational cost.
Park and Sohn [56] proposed an optimisation-based approach
for bike station deployment to reduce short car trips in the
Gangnam-gu district within the city of Seoul, Korea.

The recent integration of autonomous vehicles as part
of Mobility-on-Demand systems creates an opportunity to
operate a fleet that does not need any physical facility sta-
tion, assuming cars can drive off themselves when they are
empty. This can impact traffic negatively. Zhang et al. [18]
and Zhang and Guhathakurta [19] propose strategies to plan
public parking spaces to mitigate this issue.

B. RESOURCE ASSIGNMENT

Resource assignment focuses on the dynamic matching of

supply and demand. The demand is composed of requests for
I There are other challenges such as dynamic pricing, role switching that

are particular to a particular mode of transport, which we are not addressing

in this paper.
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TABLE 1. A summary of prominent survey papers in the SMS domain, their contributions, modes of transport, challenges and requirements covered.

[ Modes of Transport |

Common Challenges | System Requirements

7} - on 7 )

218 £ 25 -z 88 f = EzlE % 0B 2

Survey Papers and Their Contributions _§ £ j:(: g S =g 'g E § g % .§ Z 2 %
ilg s188 £3/87 218 sl £ 5 3
S & = < < g > B~ I

Agatz et al. [38]: This paper systematically outlines the

characteristics a.nd. prgblems of dynamic ride-sharing systems ~ N % ~ v <« 0 . e

and surveys optimisation models to address resource

assignment.

Furuhata et al. [12]: This paper presents a classification of

current ride-sharing systems, from business function,

implementation mfch);nisms, etc. The objective is to identify X N X X i o BE B X

remaining challenges and provide future directions.

Ferrero et al. [35]: This paper introduces a five-level

taxonomy of car-sharing in mode, engine, optimisation

objective, time horizon and methodologies, and derives v X X X v X v I X v v X X v

general trends from the operational level, user behaviours,

service demand, and business development.

Wang and Yang [45]: This paper proposes a general

framework to describe the interactions between endogenous

and exogenous variables in ride-sourcing systems. It

summarises research problems and solutions from diverse X | X Vv X X v v v v v x X VY

perspectives, including demand and pricing, supply and

incentives, platform operations, and competition, impacts, and

regulations.

Narayanan et al. [36]: This paper offers a description of the

Shared Autonomous Vehicles (SAV) services by highlighting X [ X X v X v v v X v x| X X

the various configurations and modelling strategies.

Golbabaei et al. [44]: This paper highlights how SAV systems

are studied in the light of a set of impact performance

indicators incluclingg urban mobility, l;aciliriy location, land use, x X X v v v X X % v x X v

environment, travel behaviour, etc.

Tafreshian et al. [22]: This paper covers the major studies on

Peer-.to-‘peer (P2P) rlqe—sharmg systems, W{th a focus on % . % v v a A A W

classifying the operational features, modelling, and solution

methodologies for matching, routing, and scheduling.

Our paper: First SMS survey from a whole system design

perspective to meet emerging demands for multi-model v vV v v v v v vV v v v Y

transport demand and end-to-end shared mobility as a service.

shared rides submitted to the system dynamically by the users
(i.e., passengers), and the supply is the quantity of currently
(or shortly) available means of transport such as shared cars
or bikes.

Centralised resource assignment approaches assume the
presence of a central third party entity, which is ubiqg-
uitous and fully aware of the supply and demand [27],
[57]-[62]. Decentralised and distributed resource assignment
approaches rely on the shared information between multiple
stakeholders that provide mobility services (e.g., autonomous
cars, taxi drivers). In decentralised approaches, the mobility
network is divided into sub-networks and each sub-network
is monitored and managed by an independent entity matching
local requests with available vehicles [13], [16], [20], [30],
[34], [63]-[66]. Distributed approaches assume drivers to be
independent decision-makers that can make their own choices
and manage the emerging requests locally as self-organised
systems [21], [25], [67]-[69].

C. RE-BALANCING
Re-balancing in SMS represents the challenging task of real-
locating resources to ensure that the supply matches the
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expected demand in services such as car-sharing or bike-
sharing. The distribution of available vehicles should satisfy
the ever-changing amount of customer trip requests. The mea-
surement methodology of vehicle supply depends on whether
or not a station exists:

« Since the stations’ capacity is limited in station-based
systems, the supply is the number of available vehicles
at each station. [16], [70], [71].

o A road network is discretised into zones within which
the vehicles are distributed locally in the station-less
systems. [24], [59], [67].

The effectiveness of re-balancing methods depends on how
well the demand is predicted. For example, in their predic-
tions, [3] considered the impact of both common contextual
factors, such as time and weather, and opportunistic contex-
tual factors, such as social and traffic events. [4] proposed
a spatio-temporal mobility model to predict traffic for each
station with sub-hour granularity. The re-balancing process
in [28] has an advanced 24 hours reservation system to
enhance the demand prediction. The number of completed
trips can measure the evaluation of re-balancing [70] or the
ratio of failed requests [28] after re-balancing.
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Centralised re-balancing solutions use single or multi-
objective optimisation techniques such as mixed-integer
linear programming [1], [28], [71]-[74], heuristic search
algorithms [5], [15], [16], evolutionary computation [75],
stochastic processes [6] and deep reinforcement learning [69]
to re-balance supply and demand within the whole road
network. Additionally, to minimise the staff operation cost,
an incentive is used to encourage drivers to pick up vehicles
from a particular station that has a higher supply [70], [71].

Decentralised re-balancing approaches decompose the
road network into multiple sub-networks through clustering
adjacent stations [16] or form disjoint multi-regions [20],
[30]. The re-balancing scope narrows into each sub-network,
which decreases the relocation solution’s spatial complexity.
Regional decision-makers assign vehicles within their region
to match the supply and demand in their stations or zones,
which results in self-sufficient regional re-balancing. Agent-
based re-balancing methods used in Shared Autonomous
Vehicle (SAV) systems are some examples of decentralised
techniques [24], [25], [67]. Also, reinforcement learning
techniques are used to present a new relocation strategy with
a cumulative incentive reward, which is normally represented
by vehicle occupancy, travelled miles, and trip cost.

D. ROUTING

Routing is one of the fundamental problems in shared mobil-
ity. A vehicle or a fleet of vehicles needs to be assigned to
the least-cost routes to finish specific tasks while satisfying
certain constraints. Generally, for a single trip, there are
two types of routing problems, Shortest Path Finding (SPF),
which generates the least-cost route given an origin and des-
tination; and Travelling Salesman Problems (TSP), in which
the least-cost route should traverse all given destinations.

SPF and its variations, especially the dial-a-ride prob-
lem, are commonly seen in the literature of ride-sharing
services [13], [25], [31], [32], [34], [76]-[78], in which a
set of routes with the minimum cost will be found to satisfy
the user requests. Furthermore, [32] introduces the concept
of “insertion” in a dynamic setting of SPF, in which drivers
re-evaluate their routes in the event of new user requests.
The suggested routes usually aim at maximising the rev-
enue, or users’ satisfaction [13], [32], [34], [77], [78] under
constraints such as users’ waiting time and travel time for
incurred detour [13], [25], [31], [32], [76], [78].

TSP has a broader range of applications, it can be seam-
lessly integrated as a necessary step for re-balancing the
supply and demand of car or bike-sharing services [16], [72],
[79], [80]. Specifically, these problems seek the least cost
for a group of vehicles to implement the goal by traversing
necessary stations to pick up or drop off a certain number
of cars or bikes. Additionally, combined with large-scale
trajectory data and artificial intelligence technologies, the
probability of a notorious broken bike issue can be predicted
well in advance. Thus, they can be efficiently recycled by a
vehicle fleet [33], which is a typical application of TSP.
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IIl. MODES OF TRANSPORT AND THEIR CHALLENGES
Various transportation modes and service configurations can
be used to provide shared mobility services. As shown in
Fig 1, the service can be performed by human drivers or
automated vehicles (Shared Autonomous Vehicles (SAV)).
According to the service configuration, the vehicle can be
shared simultaneously (e.g., ride-sharing) or successively
(e.g., car-sharing, scooters, bikes) by multiple users. Shared
services such as bike-sharing, car-sharing, ride-sharing, and
SAV are among the most common mobility services used
in literature and practice. This section briefly explores the
shared mobility services offered using these modes and
reviews their most common challenges.

A. SHARED SERVICES DRIVEN BY HUMAN

1) CAR-SHARING

Car-sharing separates the ownership and the use of a car
so that a user can avoid the expenses of owning and main-
taining a car [35]. As opposed to ride-sharing, in which a
user shares a trip with multiple other travellers, car-sharing
promotes sharing a car multiple times by different drivers.
It potentially mitigates road congestion, increases vehicle
utilisation rate, and reduces greenhouse gas emissions and
trip costs [81], [82].

Three main challenges must be addressed in the car-sharing
context: facility location, re-balancing, and routing. A typical
version of the facility location challenge is to find optimal
planning for the locations and capacity of designated car
stations, which enables these stations to satisfy the users’
demand, with the minimum possible cost (e.g., the number
of required stations and vehicles per station). For instance,
Biondi et al. [47] proposed a queuing theory-based method
to model the stochastic demand for car pick-ups at specific
locations. A recent version of the facility location chal-
lenge in car-sharing focuses on the optimal placement of
charging points for electric vehicles to satisfy their charging
demand. For instance, Du et al. [49] proposed an approximate
algorithm, called the fast charger-based greedy algorithm,
to speed up the solution for this NP-hard problem using a real
data set from the city of Beijing, China.

Re-balancing re-adjusts vehicle supply for each station
to better fit the demand of the car-sharing service, while
minimising the fleet size and the number of staff [1], [83].
In an optimised reservation-based system, users need to book
their trips in advance, which can effectively increase the level
of service [14], [28], [84]. The feedback dynamic pricing
methodology [68], [71], [85] has been well studied in the lit-
erature for regulating users demand based on the existing car
station capacity. The commonly used optimisation techniques
in this context include linear programming [14], mixed inte-
ger programming [28], and particle swarm optimisation [15].

Routing in car-sharing refers to the execution of a
re-balancing strategy so that a group of service provider staff
can provide the target number of vehicles at each station with
minimum travel cost [86] when relocating the cars from one
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point to another. Researchers formulate this as an optimi-
sation problem to maximise or minimise single or multiple
objectives (e.g., facility coverage, service success rate, rout-
ing cost.) using exact (e.g., mixed-integer linear program-
ming) or heuristic algorithms (e.g., genetic algorithm [87],
[88]) considering various constraints [1], [26], [28].

a: ANALYSIS

Car-sharing research in recent years has focused on the
re-balancing and vehicle relocation problems [26], [28], [30],
[47], [87]-[89]. The routing problem also plays an essential
role in the operation of re-balancing, and it is often studied
in a well-integrated way with re-balancing problem [15],
[47]. However, as this combined problem is inherently an
NP-hard problem, the performance of proposed solutions
has usually been validated on a simulation platform with
comparisons to rather simplistic benchmark solutions [14],
[67], [68], [90]. Thus, it calls for a theoretical improvement
or a better heuristic that can provide a good enough solution
in real-time and more general settings. In recent years the
amount of research being conducted on the traditional facility
location challenge has decreased. However, it is worth noting
that with increasing interest in shared electric vehicles [50],
[67], [91], the facility location challenge has become more
difficult, as it is required to take into account new factors such
as the location and capacity of various charging points.

2) BIKE-SHARING

Bike-sharing increases the accessibility of bikes for short or
medium trips, solving the first/last-mile problem due to its
high flexibility compared to other modes of transport. In addi-
tion, there are societal and environmental benefits if more
citizens use bikes. Therefore, many cities are now promoting
the use of bicycles to replace other transportation modes,
particularly private vehicles, whenever possible [92]. Facility
location, re-balancing and routing are three main challenges
in the bike-sharing research community.

Facility location, traditionally, refers to the approach of
deploying bike stations to maximise the satisfaction of users
demands, with minimum possible infrastructure cost [46],
[93]. Recent facility location research for bike-sharing has
also investigated the optimal planning of geo-fence stations,
which are virtual stations that encourage users to park the
bikes in the designated areas inside the geo-fence [55].
In [46], [55], the authors proposed bike-sharing network opti-
misation approaches to efficiently and accurately determine
the suitable station locations.

Re-balancing the bike supply over multiple locations to
meet the dynamic users demand is a well-studied chal-
lenge [16], [72], [75], [94]-[97]. The core of re-balancing
is often solved by using the mixed integer programming
approach [5], [16], [72], [98]. Reservation scheme [2],
demand prediction [3], [4], [7], [93], [93], [99]-[101], as well
as monetary incentives [69], [70], [102], [103], can effec-
tively increase the performance of re-balancing.
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Routing becomes important when supply must be
re-balanced with the least possible travel cost. Routing prob-
lems are often cast into variations of TSP, which can be
solved using hierarchical-based method [16], [69] or heuristic
approaches [5], [104]. These routing approaches are also
applicable for practical bike-sharing challenges, such as plan-
ning bike lanes [105] and recycling broken bikes [33].

a: ANALYSIS

Facility location [46], [55], [93], routing [16], [33], [72],
[101], and re-balancing [6], [16], [69], [72], [97], [103]
challenges have been well-studied in the bike-sharing
context. Some use re-balancing and routing methodolo-
gies proposed for car-sharing systems [16], [72], which
utilise mixed-integer programming for solving a constrained
multi-objective optimisation problem. Others use deep neural
networks to predict user demand at the station and cluster
level (i.e., partitioning the stations into clusters) [3], [4],
[93], [99], [100] to achieve a better re-balancing and rout-
ing solution. The facility location of bike-sharing systems
is not limited to planning the placement of bike docks,
it can also be used for the planning of ‘“‘electric fences”
(or virtual docks) [55] in dockless bike-sharing systems
to avoid inappropriate parking. In the future, we expect
to see more work on the impact that bike-sharing has
on integrating and easing access to multi-modal transport,
as well as reducing greenhouse gas emissions and fuel
consumption.

3) RIDE-SHARING

Individual travellers can share a vehicle via dynamic, P2P,
or bi-modal ride-sharing services [12]. This reduces travel
costs while potentially reducing the number of cars on
the road and increasing vehicle occupancy rates. Dynamic
ride-sharing services can match rides for once-off rides,
as opposed to car-pooling in which shared trips are scheduled
for an extended period. Moreover, drivers in such systems
drive to perform activities of their own, rather than merely
transport riders. In P2P dynamic ride-sharing, once-off ride-
sharing is managed with any form of agreement, whether
it is on-the-fly or prearranged, between peer drivers and
riders [106]. In bi-modal ride-sharing, private providers of
on-demand mobility services offer to drop off a passenger at
a transit station. From here, the passenger uses the transit net-
work to reach another transit station, and the service provider
guarantees to pick the passenger up to take them to their
final destination [107]. The main challenges in ride-sharing
include resource (i.e., vehicle-rider) assignment, routing, re-
balancing, and pricing.

Rider(s)-vehicle assignment is the process of pairing
drivers with one or multiple riders on the same trip. Several
ride-sharing patterns (e.g., sharing an identical trip, a part of
a trip, or implying a detour) can be observed depending on
the way a trip is matched (see [12] for a full classification).
Thus, ride-sharing often requires both drivers’ and passen-
gers’ flexibility to adapt their route and pick-up/drop-off
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location [13], [108]-[110]. Modular or hierarchical [13],
[20], [34], [64], [111], agent-based [21], [32], [66], [78],
[112]-[114], decentralised optimisation [65], [67], and
learning-based approaches [24] have been used in this
context. Also, federated optimisation architecture [13],
heuristic, greedy or approximation [115], [116] and dynamic
programming algorithms [32], search space reduction [13],
[20], [60], [76], [117]-[120], and recommendation sys-
tems [121] have been proposed. [122] presented a novel
Graph-based Many-to-One ride-Matching (GMOMatch)
algorithm for the dynamic many-to-one matching problem
in the presence of traffic congestion. To compensate for the
spatio-temporal sparsity and increase the number of served
rider requests, a multi-hop P2P rider(s)-vehicle assignment
is formulated as a many-to-many problem in which a rider
can travel by transferring between drivers (i.e., providing
multi-hop itineraries for riders), and a driver can carry multi-
ple riders. In [106], the authors mathematically modelled the
many-to-many ride-matching problem as a binary program in
a time-expanded network and proposed a pre-processing pro-
cedure to reduce the size of the input sets of this optimisation
problem.

When addressing the routing problem, Golpayegani
et al. [123] and [124] highlighted that the rider’s and driver’s
preferences must be taken into account. This needs to be
done while minimising the operating costs, travel mileage,
waiting time, and detours while maximising customer satis-
faction [125]. The routing is addressed in literature with tech-
niques such as data pre-processing [126], [127] and caching
mechanisms for the computation of the shortest path [76],
indexing methods [76], [128], and dynamic route calculation
[109], [129].

Ride-sharing approaches have addressed re-balancing
by distributing the idle vehicles among popular pickup
locations using predictions [21], [24], [57], [58], [130],
[131], decentralised reinforcement learning [21], [24],
heuristic strategy [58], queuing theory and integer linear
programming [107].

The optimal pricing strategy for ride-sharing platforms is
another important challenge because it requires economic
models that capture the incentives of both drivers and passen-
gers [132]. There have been a few works in the literature to
address pricing [21], [111], [117], [126], [133]. For example,
the origin-based differentiated, profit-maximizing pricing
to determine spatially and temporally differentiated minute
prices [134], a price-aware decentralised auction-based
matching algorithm [111], and a parallelism-based technique
for computing the shared cost [127].

a: ANALYSIS

The four main challenges of ride-sharing applications
include assignment, routing, re-balancing, and pricing, as any
assignment decisions will be based on the trip price and
travel time/distance. Vehicle-user assignment (e.g., [13],
[108]-[110]), routing (e.g., [25], [34], [61]), and re-balancing
(e.g., [21], [24], [57], [58], [130]) are well addressed in the
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literature. However, only a few papers address pricing [21],
[111], [117], [126], [133], [135], parking constraints [18],
[19], [136], and switching driver/rider roles challenges [108].

Multi-agent-based solutions can provide a more detailed
characterisation of the problem by employing entities with
varying sensitivity to price and delays [137] and facilitating
their negotiation process [113]. This modelling paradigm can
simulate near real-world systems, as well as test the system
requirements. It achieves this by giving each entity autonomy
and decision-making power.

B. SHARED AUTONOMOUS VEHICLES

Shared Autonomous Vehicles (SAV) systems refer to shared
services making use of fully Autonomous Vehicles (AV).
SAV might include various configurations: from ride-sharing
services [24], [25], [57], [62], [130], [138] to vehicle-sharing
services [27], [58], [139] such as autonomous taxis [77],
[112], [139], [140]. These can be summoned by the user
who plans a trip in advance (i.e., Autonomous Mobility-on-
Demand). Driver-less vehicles are the main feature of an SAV
fleet, they enable operating without dedicated stations by
picking up passengers directly on the street [19]. However,
it requires highly dynamic routing and re-balancing strategies
to face current [141] or upcoming demand [25].

The vehicle-rider assignment problem has been studied
in literature, with strategies such as, static [142], heuristic-
based [139] and optimisation-based [14], [74] assignment
being investigated. For a SAV system to provide a ride-
sharing service, a dynamic resource assignment mechanism is
required to manage the supply and demand for rides in a short
time window [139]. Such a mechanism needs to take into
consideration the decision-making capabilities of the SAV,
as well as its potential ability to communicate (connected
SAV). Shen and Lopes [143] proposed an algorithm to auto-
matically and effectively dispatch autonomous vehicles in an
AMoD system while accounting for a better passenger expe-
rience. Other multi-objective assignment strategies have been
proposed [60], [78], [144] and more recent work showed the
efficiency of learning-based approaches [24], [25]. Moreover,
additional constraints such as dynamic fleet sizing [25], [60]
or the need for electric AVs charging [67] further complicates
the vehicle-riders assignment stage. Including the choice
between different modes of transport such as public trans-
portation [136], [145], or private (human-driven) cars [73] is
a more recent trend.

The re-balancing problem becomes of paramount impor-
tance since without (or with very limited [19], [67]) static
facility locations. Re-balancing is the only way to ensure
accessibility and sufficient supply for the end-users. Most of
existing research focuses on the relocation of empty (or idle)
vehicles to pending (ride-sharing) requests [24], [25], [57],
[62], [130]. The most used strategy is to partition the road
network into blocks [58], [59], or zones [24], [25], [62], [146],
[147], that gathers the current number of pending requests.
Real-time information is used to anticipate the re-balancing
of empty SAV based on current demand [18], [24], [25], [60],
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[147] while there were some attempts to build prediction
models based on historical demand [27], [31], [59], [137].
Static routing strategies [77] are limited in the context
of SAVs as the dynamic nature of the demand and other
traffic related characteristics must be considered. For exam-
ple, an efficient routing strategy is required to minimize the
average arrival distance of all passengers and to avoid the
concentration of the SAVs on high-demand links. Dynamic
routing strategies have been investigated [18], [24], [62], [74],
[78], [130], [142], [146]. Optimisation can be carried out
to achieve shortest and/or fastest trips [31], [61]. However,
multi-objective and heuristic-based approaches [18], [27],
[148] tend to better capture the different requirements of
ride-sharing enabled systems (e.g., minimising the waiting
times of end-users, while reducing the distance travelled
by AVs). However, SAV share the road network with other
vehicles that could impact their operation, thus the integra-
tion of a congestion-aware routing process [25], [61] can
reduce potential delays before a passenger pick-up, during re-
balancing, or while driving to the final destination.

1) ANALYSIS

The SAV application is systematically addressed from the
perspective of the rider-vehicle assignment [14], [18], [19],
[24], [25], [27], [31], [571-(60], [62], [67], [73], [77], [78],
[112], [130], [133], [140], [142]-[149], but only a few
approaches [25], [27], [61], [62], [73], [74], [130] consider
the extensive chain of decisions impacting the performance of
the whole system. Among these papers, some [27], [61], [62],
[74], [130] implemented centralised assignment algorithms
achieving a highly practical procedure, while only [25] has
decentralised the decision-making by modelling autonomous
vehicles as agents.

The future step should be to develop SAV systems that
use distributed and decentralised architectures, such as using
connected vehicles technologies. Through congestion-aware
dynamic routing or travel time prediction within the assign-
ment and re-balancing stages, it would be possible to imple-
ment more efficient systems.

IV. KEY WHOLE SYSTEM DESIGN REQUIREMENTS

When deployed in the real world, in addition to the intercon-
nected challenges reviewed in Section II, SM'S must meet sev-
eral whole system design requirements. These requirements
arise from the interconnectedness of components, each of
which must handle a large volume of real-time data. Deci-
sions involving multiple stakeholders (passengers, drivers,
service providers, etc.) must be made autonomously, in real-
time, and offer multi-modal and inter-operable transportation
services. Therefore, any solutions tackling the challenges
reviewed in the previous section should also satisfy key sys-
tem requirements such as scalability, efficiency, robustness,
autonomy, and practicability to be suitable for real-world
implementation. This is an important contribution of this
paper, as one cannot evaluate a solution while neglecting
how it meets these key requirements. For example, a routing
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algorithm that does not scale or a resource assignment
algorithm that does not consider the possibility of working
with multiple modes of transport when applied in a highly
inter-operable setting will not be helpful.

This section identifies several key system requirements for
SMS and reviews the solutions proposed for the common
SMS challenges that address them.

A. KEY SYSTEM REQUIREMENTS

The real-world environment characteristics might impose
new requirements that strongly affect the solution design
when a shared mobility system is deployed in practice. In this
section, we have identified several such requirements. How-
ever, we do not claim that this list is extensive and believe that
it can be updated based on the specification of a particular
system.

1) SCALABILITY
In the literature, the scalability of a system is examined by
how it can be applied to a real-world-sized transportation
network, addressing millions of trips per second in the pres-
ence of thousands of vehicles [150]. However, the range of
acceptable values to claim scalability is not a shared concept
within the literature and may vary in different works.
Practically, the papers that claim for a scalable implemen-
tation of SMS are exemplifying it by an application to a
large or real-world network [3], [21], [91], [98]. Furthermore,
in some of the related work, the autonomy of the system
through decentralised architectures [13], [21], [65], [111],
[151] can also support its scalability properties. However, it is
not a prerequisite when designing scalable systems.

2) EFFICIENCY

The efficiency of SMS depends on the algorithms and tech-
niques used to optimise and speed up the system’s operation.
SMS must be able to perform in real-time, in the presence
of millions of ride requests, multiple modes of transport, and
thousands of vehicles. This definition encompasses the notion
of an algorithm’s complexity [152] and an optimised archi-
tecture [13], [30], [62], [72]. Efficiency can be also claimed
by reducing the problem dimensions through pre-processing
of data [7], [16], [28], [91] or optimising a cost function,
such as minimising the number of requests aborted because
of insufficient supply [50], [55].

3) ROBUSTNESS

A robust SMS design ensures that its operation and perfor-
mance are not impacted drastically when a sudden change
or unusual situation occurs in its environment. The robust-
ness of a system can be impacted by design decisions such
as the architecture choice. For example, choosing a decen-
tralised architecture over a centralised one to provide some
degrees of resilience when operating in volatile environ-
ments [151], or designing pro-active algorithms to cope with
unusual demand profiles [153]. As another example, Lu [153]
implemented robust fleet allocation models for bike-sharing
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systems by addressing uncertain origin-destination demands.
It is formulated as a robust optimisation problem and seeks to
minimise the total system cost in the worst-case or the case
of maximum demand scenarios derived from the uncertainty
sets.

4) AUTONOMY

In some SMS, multiple entities must coordinate and make
decisions to offer a service. When such entities can choose
from the available options, it can be claimed that they have
some levels of autonomy. For example, in ride-sharing, if the
passengers and drivers are given the option to accept or
decline a suggested ride, it can be claimed that each of these
entities has some degree of autonomy and are not solely
following the instructions of a central decision-making entity.

SMS can be organised as a network of agents (e.g., rider,
driver, autonomous car, fleet manager) with a specific archi-
tecture (centralised, decentralised). The autonomy of this
system depends on the degree of decentralisation and its
self-organisation abilities [154].

The implementation of autonomy in SMS is very sim-
ilar to that implemented in the Internet of Things (IoT)
context [155], [156]. In IoT, a distributed network of
devices/sensors can be defined so that each entity can act
autonomously by performing its tasks or allocating tasks to
others in a decentralised manner. So, different architectures
such as decentralised, federated, or distributed can enhance
the level of autonomy [151], [154], [156], [157].

5) PRACTICABILITY

In SMS, the practicability of a designed solution concerns
any aspect of the software that would ease its transfer from
a working and fully operational prototype to a real-world
configuration. For instance, any assumptions on computa-
tional complexity must be compliant with real-time service
requirements [98], or when a data-driven solution is proposed
it must also work with the sheer volume of real data generated
under realistic traffic conditions [25], [50], [70].

B. ADDRESSING KEY SYSTEM REQUIREMENTS

In this section, we analyse how and to what extent the current
solutions to the challenges reviewed in Section II address the
key system requirements.

1) RIDER(S)-VEHICLE ASSIGNMENT

In real-world applications, the assignment of millions of
trips per second in the presence of thousands of taxis is
challenging and requires scalable solutions that are linear in
the number of trips. Distributed taxi-sharing algorithm [64],
decentralised or multi-agent approaches [21], [65], [111],
and federated optimisation architecture (i.e., a sequence of
linear assignment problems) [13] are common approaches to
capture the stochastic supply and demand dynamics in large-
scale ride-sharing scenarios. In [111], the authors proposed
a price-aware, decentralised, auction-based matching algo-
rithm as a scalable and efficient fair pricing model for the
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rider, driver, and platform provider. To improve scalability,
branch and bound [158], heuristic, greedy or approximation
algorithms [115] can be used to solve assignment problems,
especially in centralised solutions. Greedy, randomised solu-
tions are computed initially and then a local search is per-
formed to improve the solution. For instance, in [32], the
authors proposed a novel dynamic programming algorithm
to decrease the number of candidate workers planning to
serve a request. Processing requests hierarchically to reduce
the scope of searching [117], reducing the size of the candi-
date set by filtering taxis that are not matching the incom-
ing request, using mutual geographic location [13] by mov-
ing object indexing methods [76] or time constraints [118],
reduced networks (i.e., disjoint regions) known as regional
ride-sharing model [20], [119], and blocks/zones to discretise
a road network [60] are some of the approaches to reduce
the size of an assignment problem to conquer the scalability
challenge. Some data pre-processing tasks such as using a
spatio-temporal index to quickly retrieve candidate taxis, pre-
computed distance and travel time of shortest paths [126],
and cache layout for pre-computed shortest paths to facilitate
queries [127] improve the scalability of a proposed solution.
In [127], the authors proposed using intra-request parallelism
when computing the sharing cost of each taxi for a pick-up
request and inter-partition parallelism in periods of low taxi
activity to improve the scalability. In the literature, real city-
wide taxi data sets contain millions of trips used to examine
the scalability of the assignment algorithms [32], [34], [61],
[126], [127], [144].

The efficiency of a solution to the assignment challenge is
evaluated by how fast it can process a request in a system
with millions of other requests and vehicles An efficient
approach needs to capture the highly dynamic nature of the
distributed ride-sharing environment [34] and improve the
accuracy of identifying the participants to better improve
the computational efficiency [159]. In [108], the authors
presented an efficient symmetry breaking model to reduce
the search space by considering the complex switching rider
problem. In this problem, both drivers and passengers have
to travel within a time window and are willing to switch roles
(known as shifters). To investigate the potential transporta-
tion mode change, Rodier et al. [160] simulated ride-sharing
using an activity-based travel demand model. The model
identified users that could be potential clients of a dynamic
ride-sharing system. In distributed or modular/hierarchical
approaches [13], [20], [21], [34], [111] each driver carries a
small number of riders and has its preferences independently,
and thus even an exhaustive search can be performed in real-
time. Also, all candidate drivers can perform the search in par-
allel, so these approaches can decrease the latency. Examples
of modular/hierarchical approaches can be seen in [20] where
the authors introduce the regional vehicle ride-sharing assign-
ment problem, in [24], where the authors propose a decen-
tralised reinforcement learning-based approach to address
assignment efficiently, or in [34], where the authors proposed
an algorithm that can handle multiple incoming requests in
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parallel to reduce the waiting time. The authors of [106]
proposed a finite decomposition algorithm to solve a multi-
hop P2P ride-sharing problem in a very short period, enabling
the implementation of multi-hop ride-sharing. In [118], the
authors used a binary search strategy to quickly and effi-
ciently retrieve candidate taxis that are likely to satisfy a
trip request. Heuristic approaches also address efficiency,
for instance, in [115], the authors proposed a greedy ran-
domised adaptive search procedure to solve the static version
of the taxi sharing problem with predefined time windows.
Learning-based methods are the other efficient approaches in
which there is no need to design a sophisticated weighting
scheme for the matching algorithms [21]. A weighted graph
colouring algorithm has also been used in [110] to create
clusters of people who can travel together, these clusters
have lower dimensions and have the flexibility to incorporate
other factors to promote ride-sharing efficiency. Some liter-
ature works concentrated on reducing the road network and
then processing the assignment [119], so network-dependent
computations (e.g., shortest paths) can be done much faster
on the reduced network. Decreasing the number of candi-
date riders or shrinking the driver set for each rider using a
time-expanded feasible network [119], reducing the search
space [117], and using time windows and dividing time into
epochs [115], [117] are the other approaches addressing the
assignment efficiency challenge. Caching mechanisms such
as the Least Recently Used caching scheme are proposed
for the fast shortest path computation and fast dynamic
matching algorithm [76]. In [76], the authors proposed using
spatial indexing methods for fast retrieval of moving taxis,
or in [128], the authors used an inverted index data structure
to store and retrieve shortest route nodes to increase the
calculation speed of matches. Assessing flow propagation
and optimising the fleet size according to congestion or time
period [31], and optimisation of the extra time acceptance for
the end-user [146] are some other efforts to make ride-sharing
approaches more efficient. In the literature, the efficiency
metric is evaluated using extensive experiments and consid-
erations for the computation time [32], [126].

The practicability of a ride-sharing solution is tested when
a service is put in place for practical use by exploiting a
real city road network, the enormous historical taxi trajectory
data, and addressing real-world requests [126]. In the liter-
ature, the practicability of proposed assignment approaches
is tested by using real-world data, producing realistic traf-
fic conditions, and/or using the algorithm in a real applica-
tion [13], [14], [19], [25], [32], [61], [64], [66], [74], [76],
[114], [117], [142], [144], [158]. Decentralised optimisation
agents fit more with the realistic-size instances of metropoli-
tan areas because they reduce computation time extensively
and provide near-optimal results [65], [67]. Using the reduced
network in the network-dependent computations [119] and
clustering the requests [112] are other effective approaches
to address practicability on large-scale networks. Optimising
the fleet size according to the demand and acceptance param-
eters of the end-user (i.e., maximum waiting time/delay or
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extra travel time) [144] and finding pair riders that have over-
lapping routes [110] are some of the efforts that impact the
practicability of the proposed approaches. Moreover, using
an incentive mechanism to encourage road users to use appli-
cations and emphasising pseudonymity and location privacy
are important issues that can improve practicability [161].

A resource assignment solution must include a dispatch
strategy that is robust against potential hardware or connec-
tivity failures, passengers’ demand, and the uncertainty of
vehicle mobility patterns to guarantee an acceptable success
rate. Distributed approaches are more reliable and robust
than centralised approaches where hardware or connectivity
failures are possible. Using mean-field approximations to
address population size or a variable number of active drivers
helps to improve the training stability and robustness of an
algorithm [21]. Also, predicting ride requests increases the
robustness of a solution against the potential uncertainties of
both requests and vehicle mobility patterns [20]. In [110],
the service quality is guaranteed through fixing customers’
costs and maximising the operator revenue. In [117], robust-
ness is improved by providing service guarantees in which
customers are always guaranteed a ride by considering expo-
nential penalties for providers who fail to serve customers’
requests. Flexible control of the taxi count, preventing failing
to find a valid taxi [118], not blocking taxis until receiving a
confirmation, and handling multiple requests in parallel [34]
increase the ride-sharing robustness and consequently its suc-
cess rate. In [34], asynchronous localised communication is
used to estimate the current location of taxis and limits the
effects of message losses resulting from their movements.

A resource assignment solution grants autonomy to riders,
and drivers by allowing them to make their own decisions
such as drivers accepting a ride based on their prefer-
ences [78]. Decentralised learning in agent-based techniques
allows for more autonomy of concerned entities [66], [114].
For instance, in [24], a decentralised learning-based approach
is used to allow each car to learn its behaviour. Agent-based
entity modelling is used to help the driver and rider to make
their own decisions using decision-making parameters such
as waiting time or cost [32], [78].

a: ANALYSIS

In the literature the scalability [13], [20], [21], [32], [34], [60],
[61], [64], [65], [76], [111], [115], [117]-[119], [126], [127],
[144], [158], efficiency [13], [20], [21], [21], [24], [31], [32],
[34], [76], [108], [110], [111], [115], [117]-[119], [126],
[128], [146] and practicability [13], [14], [19], [25], [32],
[61], [64]-[67], [76], [110], [112], [114], [117], [119], [121],
[126], [127], [142], [144], [158], [161] are well-studied.
However, there is a few works that address robustness [20],
[21], [34], [110], [117], [118], [121] and autonomy [24],
[32], [66], [78], [114]. The literature has focused on the
usage of decentralised, greedy, or optimisation algorithms
and reducing the scope of searching. These approaches are
aided by several techniques, such as parallelism, efficient
indexing schemes, and the pre-computing of shortest paths
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and travel times. Features such as time, distance, and price
are used extensively by these approaches. However, there is
not much work on how to identify preferences that influence
customer decisions to increase their satisfaction and make
the assignment decision-making process more autonomous.
Some approaches succeed in introducing some levels of
autonomy in the system, however, it remains unclear how this
new characteristic might impact the other requirements such
as practicability, efficiency, and robustness.

To address generating a robust matching system, it is
possible to batch requests that arrive within a short time to
further optimise the total travel distance [111], [126], demand
forecasting in scheduling and re-balancing to improve qual-
ity of service [13] and modelling road congestion for bet-
ter route proposition [34]. Training data with new features
could be added to the ride-matching system including money
constraints, gender or friendship [64], [118], users’ social
links, interests, influences, concerns for the level of service
quality and travel activity patterns, drivers’ willingness [159],
drivers’ different preferences on how to search for clients
and their reasoning [137], and characteristics of tours and
trips [160]. The future of work is being shaped by studying the
uncertainty in preferences of users [121], training on new data
arriving sequentially in online learning [159] and conceptual
models to evaluate the interrelationship and causal effects
among the parties [162]. Addressing privacy concerns [12],
bid estimation [65], and travel cost distribution policies [162]
should be studied to improve the system reliability.

2) RE-BALANCING

The solutions provided to address the challenge of
re-balancing empty or unused vehicles often address effi-
ciency, scalability, or practicability requirements, while the
autonomy or robustness requirements are mainly neglected
in the literature.

Offering an efficient re-balancing solution often implies
improving the time complexity of the process in order to
speed up the system’s operations [7], [13], [16], [28], [30],
[62], [72], [91], reducing costs/improving profits [3], [15],
[21], [26], [75], [95], [98] or converging to an acceptable
pricing strategy [5], [71], [96], [103]. The time complexity
is improved by problem parallelisation or spatial/temporal
simplifications. A re-balancing problem can be addressed
using linear programming [72] combined with parallel com-
puting [13], through a distributed set of decision-makers act-
ing in parallel [30] or in batches [70]. A spatial simplification
can be done by putting the closest stations together as a cluster
and applying re-balancing strategies within each cluster or
dealing with a hierarchical re-assignment of the vehicles to
clusters, then to the stations [7], [16], [28]. A temporal simpli-
fication of the problem can be performed by aggregating the
time period and assuming that the re-balancing should only
occur at a specific time period or at regular intervals [91].

The proposed re-balancing strategies address the scalabil-
ity requirement by dividing the road networks into sub-areas
or zones. The discretisation process relies on predefined
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blocks when the re-balancing concerns autonomous vehicles
without stations [13], [24], [25], while it is mainly addressed
through clustering processes [7], [16] or hierarchical descent
algorithms [72] when re-balancing bikes [7], [16], [72] or
cars [20], [28] to stations. The scalability may be claimed
for fully centralised re-balancing systems, which are assessed
on real-world data sets [1]-[3], [14], [21], [89], [91], [98].
Nevertheless, this assessment on the limited number of real
data sets does not guarantee good performance when scaling
up on a variety of road networks.

The practicability of proposed solutions is mainly
addressed through the use of real-world data sets to assess
the real demand emitted by end-users and/or to reproduce
an existing system [1], [2], [7], [14], [15], [21], [24]-[26],
[28], [30], [61], [701, [73], [89], [93], [95]. A few authors
have implemented re-balancing strategies in pilot sites [70]
or assessed the computing compliance with real-time appli-
cations [98], while most are interested in including some
realistic parameters into the performance analysis of the re-
balancing strategy. Such parameters include parking avail-
ability [18], [19], the ratio of privately-owned autonomous
vehicles versus commercial fleets [58], adverse weather, traf-
fic events [3] or the need for recharging [91].

The robustness of re-balancing strategies is partially
addressed in most of the literature by incorporating predicted
demand profiles to anticipate the relocation needs [27], [60],
[61], [93], [137]. However, their reliability when coping with
unpredictable demand is rarely addressed [3], [30], [95],
[98]. [95], [98] evaluated a re-balancing strategy which con-
sidered a set of scenarios with access to inaccurately pre-
dicted demand, while [30] introduced a robust, multi-period
algorithm to deal with various time-periods. [28] divided the
demand into two sub-sets: online requests versus in-advance
requests in order to ensure enough reaction time for the
system to meet the demand. For instance, [24], [25] divided
the environment into zones and recomputed the re-balancing
strategy at run-time when the zones change.

The autonomy of the proposed re-balancing strategies is
mainly addressed by multi-agent and reinforcement learning
models [21], [24], [25] which rely on the choices made by
independent drivers/agents. Autonomy of drivers is also con-
sidered to some extent in a centralised re-balancing system,
in which drivers can accept or decline a re-balance request
based on a predefined probability distribution.

a: ANALYSIS

The main difficulties in re-balancing vehicles (bikes, shared
and/or autonomous cars) over the pick-up stations/areas
include the need for dynamic prediction and assessment of
the demand and real-time redistribution algorithms to meet
the demand. While the real-time requirements are widely
studied in centralised systems, the robustness of the imple-
mented systems to unpredictable demand [95] or the mod-
elling of the autonomy [20], [21], [25], [30] are not fully
explored. Usually, a re-balancing solution is based on normal
demand trends [27], [60], [61], [93], [137], but the high
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variability of data when unexpected events occur and the traf-
fic dynamic changes are rarely addressed [3], [30], [95], [98].
The robustness of such solutions could be enhanced by the
introduction of highly reactive demand prediction processes
based on supervised or reinforcement learning for instance,
and/or through pro-active modelling processes such as the
addition of “‘ghost” requests emitted by stations/areas with
low service availability in its surroundings to attract vehicles.
Furthermore, the robustness is impacted by having access
to realistic travel time estimation for vehicles to re-balance.
Finally, the autonomy challenge is poorly treated in relation
to re-balancing. In the context of centralised systems, it can
be explained by the fact that it only affects drivers’ decisions
to re-balance a vehicle, when it is in the economic interests
of the driver to re-balance. The introduction of parameters
that include the drivers’ preferences [75], [137] may help
to reach a more acceptable re-balancing solution. Consider-
ing a decentralised system with autonomous agents making
decisions [21], [24], [25], the autonomy is automatically
implemented. The challenge lies in sharing enough infor-
mation between agents to perform an efficient and practical
self-organised re-balancing. Some efforts in the multi-agent
modelling structures are expected on this topic to refine
the multi-agent interactions supported by Artificial Intelli-
gence (AI) methods, especially concerning the negotiation
procedure between agents.

3) ROUTING

The scalability of a routing algorithm can be tested when
addressing a large number of routing requests under city-
wide maps. For example, a simulation [77] based on the city
of Berlin, Germany, used MATSim’s dynamic vehicle rout-
ing problem engine, simulating up to 250,000 autonomous
taxis operating on a full city map. Compared to static rout-
ing algorithms that find the shortest travel distance, [31] is
a congestion-aware routing solution using a link transmis-
sion model which is more computationally expensive. It is
reported that this routing method has been successfully tested
on over ten thousand SAV on a simple small grid network.
Tong et al. [32] fundamentally improved the routing algo-
rithm efficiency for SMS, so that it can deal with up to 50k
users under the New York City map. A recent work [34] with
a distributed routing strategy for taxi sharing demonstrated
that it can process a realistic data set that lasts over three
years ranging from January 2013 to July 2017 in the city of
Chicago, USA.

The efficiency of a routing solution focuses on the reduc-
tion of the required computation time and storage, given the
same amount of input (i.e., routing requests). Although the
first type of routing problem, which is the implementation of
the re-balancing strategy, has proven to be NP-hard, literature
has proposed many techniques to improve its efficiency using
heuristics. For example, Schuijbroek ez al. [16] proposed a
cluster MIP approach with heuristics that can find better solu-
tions within 5 minutes, as opposed to the classical full MIP,
which needs around 2 hours. Pal and Zhang [72] proposed
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an advanced heuristic search with variable candidate solu-
tion size. This solution can achieve up to 500 times faster
performance than the exact search solution. Levin [31] pro-
posed a congestion-aware routing which can provide a faster
route instead of the shortest distance route. Tong et al. [32]
improved the routing algorithm efficiency using a dynamic
programming-based solution to reduce its time complexity
from cubic or quadratic down to linear time.

The robustness of routing strategies corresponds to the
success rate of routing requests under unpredictable condi-
tions such as the extremely high demand for routing and re-
routing. In particular, Tian et al. [76] cached road network
data to accelerate the shortest path algorithm to guarantee
the service quality under configurable waiting time and the
number of detours. A recent fully distributed routing mecha-
nism [34] increased the ride-sharing success rate by handling
multiple incoming passenger requests in parallel with a huge
reduction in blocked requests.

The autonomy of a routing strategy depends on how
much human intervention is allowed during route selection
along the full journey. The routing engine is mostly cen-
tralised such as [32], which can reject passengers’ routing
requests that may lead to excessive travel distance. However,
there are a few works such as [78] that offered a degree
of autonomy by allowing end-users to make their routing
decisions. Gueriau et al. [25] also delivered routing decisions
in a distributed way, which enables a congestion-aware rout-
ing feature. A mixed-autonomy routing strategy proposed by
Yu et al. [34] models a centralised server, which receives the
routing requests from passengers, validates if the insertion
(i.e., new requests) can exceed a cost constraint, and finally
confirms with passengers for execution.

Thanks to the rise of the IoT and big data, there is a
clear trend in the literature that the practicability of routing
solutions’ are being validated using real data in realistic
products. In [72], a routing strategy was validated on a syn-
thetic scenario for computational study. The work of Bischoff
and Maciejewski [77] was based on a realistic map and a
demographic data set was used for a city-wide ride-sharing
simulation for Berlin, Germany. Gueriau et al. [25] applied
congestion-aware routing in the simulator using a real city
map and taxi demand data set, while Li ef al. [74] imple-
mented a Link Transmission Model to reproduce synthetic
traffic conditions. Tong et al. [32] tested a unified routing
engine using realistic routing request data set from the taxi
and ride-sharing services of two cities: New York City, USA,
and Chengdu, China. Zhang et al. [33] applied a routing strat-
egy for recycling bikes using a field study in Haidian district,
Beijing.

a: ANALYSIS

Although a considerable amount of work has already
advanced the efficiency of SMS by proposing a better rout-
ing solution, the most challenging aspect that needs fur-
ther enhancement is efficiency [13], [16], [31], [32], [72].
There have been breakthroughs to accelerate insertion-based
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routing requests, with the time complexity reduced from
cubic down to linear, but addressing the other type of routing
requests, which is the implementation of re-balancing strat-
egy, or a variation of the vehicle routing problem remains
difficult. The efficiency of routing solutions is critical as it
can hugely impact the scalability of a system. Improvements
to efficiency can be achieved by processing large size maps
and numerous routing requests in constrained time and thus,
increasing the response rate of routing requests [34], [76],
[79], [80]. The validation of most routing strategies has been
done at the city scale, which is an ideal scalability level.
The realistic data set used for validation is coming from
multiple sources, and the framework used is shifting from
simulation to a real production environment. The possibilities
for a better robust system using routing can also include a
vehicle re-routing strategy that can adapt to en-route events,
which normally makes certain roads unavailable without
prior notice. Last but not least, the trend of including more
autonomous vehicles has also improved the level of autonomy
in making routing decisions in a distributed manner.

4) FACILITY LOCATION

The scalability that a facility location solution mainly
accounts for is the number of stations as well as the cus-
tomer demands that the group of stations can support. For
the bike-sharing system, Liu et al. [46] claimed that their
prediction-based genetic optimisation plan can improve the
deployment of up to 320 stations in the Manhattan and
Brooklyn area in New York City. Zhang et al. [55] validated
their solution on the Mobike data set which contains tra-
jectory data for nearly 300k bikes, with about 7,500 elec-
tric fences across the city of Shanghai. For the car-sharing
system, Biondi et al. [47] showed that their simulation can
run on with a deployment plan of over 1000 stations. The
facility location solutions for electric car-sharing systems are
even more complicated as it needs to consider the electricity
demand. Bi et al. [48] reported that their heuristic method can
support about 2,500 charging stations with 20,000 electric
vehicles. [49]’s Fast-CG algorithm can provide the deploy-
ment of 139 stations from thousands of candidates.

The efficiency of a location strategy is mainly improved
through maximising the utilisation of stations and minimising
the number of stations (or the cost of building stations).
Liu et al. [46] proposed an Artificial Neural Network (ANN)
based station demand prediction model for improving the
quality of deployment. The results show that this method
can reduce the number of unbalanced stations from 86 to 56.
Biondi et al. [47] applied queuing theory which can signifi-
cantly reduce the cost of station deployment by keeping the
quality of service for users. Park and Sohn [56] focused on
replacing short car trips by optimal bike station deployment,
with the comparison of two proposed location-allocation
methods: the minimum impedance (p-median) model, which
favours equal bike access spatially; and the Maximum Cov-
erage Location Problem (MCLP) model, which can satisfy
more bike-sharing service demand. Du et al. [49] designed
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a greedy approximation algorithm with a reduced time com-
plexity with respect to the number of charging stations and
the number of points of interest. Zhang et al. [55] can ensure
at least 95.8% of all bikes can be docked at one of the planned
electric fences. [50]’s data-driven simulation showed its smart
station placement in just 8% of city zones can ensure enough
electricity for all electric vehicles trips.

The literature of facility location methodologies has also
shown a widespread high level of practicability using a
realistic map and trajectory data of cities such as New York,
Atlanta, Seoul, Beijing, Shanghai, Luxembourg [19], [46],
[47], [49], [53], [55], [56]. Moreover, Cocca et al. [50] used
a data set from four real cities: Turin, Berlin, Milan, and
Vancouver. However, due to the significant cost incurred,
we have rarely seen any work demonstrating a realistic imple-
mentation for the optimal station deployment strategy.

a: ANALYSIS

The future work of facility location should mainly focus on
the practicability side of shared mobility. The high practica-
bility level can be achieved using large-scale (i.e., larger map
size and the number of stations) realistic data sets. A series
of research attempts to improve the efficiency and scalability
in the last decade [46]-[50], [S3]-[56], and the advantages of
their new facility location method are mainly demonstrated
in numerical studies with scenario-specific heuristic solu-
tions, which might not be suitable when applied to different
cities in practice. It is well-understood that excessive cost
is required to put the proposed solution into practice. How-
ever, some research starts to move a step further by using
real user demand data sets [50], [53], [55] to verify if a
newly suggested facility location is valid for a bike-sharing
system, as the cost of facility location of the bike-sharing
system is rather acceptable compared to car-sharing. It is
expected to see more practical research of facility location on
Electric Vehicle (EV)-based car-sharing systems with more
realistic data set supported simulation. As the facility loca-
tion is generally a one-off solution which neither users nor
service providers can change once the decision is made, the
discussion about autonomy is eliminated. We also merged
the analysis of robustness into the efficiency part, as one of
the objectives to optimise a facility location strategy is to
maximise the station utilisation rate, which implicitly impacts
the robustness level when satisfying a higher demand.

V. FURTHER DISCUSSION AND FUTURE WORK
DIRECTIONS

As discussed earlier, SMS must meet the identified key
whole system design requirements when providing a solu-
tion to address their interconnected challenges. Neglecting
such requirements during the solution design will result in
systems that would not operate when their simulated models
are deployed in real-world configurations. Therefore, it is
essential to understand such requirements and their impact on
the particular challenge being tackled and, more importantly,
on the overall system performance.
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TABLE 2. Summary of solution domains over five system requirements of shared mobility services.
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This paper also offers a comprehensive perspective on
SMS as a whole, guiding the researchers to (1) identify the
less explored aspects of a specific transportation mode and the
solution addressing each challenge, (2) understand the inter-
connected challenges that different transportation modes face
and guiding them to the explored solutions in other domains
or modes that might be reusable, (3) more importantly, the
comprehensive perspective presented helps researchers to
perceive SMS not only as a simple ride-sharing or bike-
sharing service but rather a comprehensive system that must
address multiple challenges (e.g., facility location, resource
assignment, re-balancing, routing) and simultaneously fulfil
various system requirements.

Table 2 reports the solutions that have addressed the iden-
tified key requirements from which we can conclude that
robustness and autonomy are the less addressed requirements
in the literature. Table 3, 4, and 5 report the extent to which
each identified requirement is addressed in a particular trans-
portation mode and in each solution domain (i.e., the solu-
tions to the identified challenges in section II). For example,
we can see that amongst all the transportation mode-specific
literature reviewed in this paper, there is a serious lack of
focus on the robustness and autonomy compared with the
other three system requirements. Ride-sharing (43%) and
bike-sharing (35%) are the two modes with the highest cov-
erage for robustness (see Table 4). However, this shows
how the robustness requirement is neglected in transportation
modes such as SAV, where the AV needs a robust assign-
ment, routing, and re-balancing mechanism when operating
in ever-changing and dynamic traffic environments. Through
the understanding we have created on the common inter-
connected challenges of transportation modes, we can also
explore the re-usability of the solutions offered for different
transportation modes. For example, the SAV literature has
extensively explored re-balancing, which is a common chal-
lenge in ride-sharing and car-sharing as well (see Table 5).
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TABLE 3. The percentage of each common challenge related paper, over
the total number of common challenge related paper surveyed for each
system requirement. (E.g., out of total 77 common challenges related
paper surveyed that are addressing the scalability system requirement,
26% of them are about the assignment common challenge.)

Scalability | Efficiency Robustness | Autonomy Practicability
78 76 28 7 80
=8 Assignment 26% 24% 25% 29% 29%
g %u Re-balancing 34% 31% 36% 24% 34%
£ Routing 26% 25% 21% 29% 21%
O 5 | Facility location 14% 20% 18% 18% 16%

TABLE 4. The percentage of papers related to each mode of transport,
over the total number of mode of transport related papers surveyed for
each system requirement. (E.g., out of total 67 mode of transport related
paper surveyed that are addressing the scalability system requirement,
18% of them are about the car-sharing mode of transport.)

Scalability = Efficiency Robustness = Autonomy Practicability
67 56 23 12 64
Wz Car-sharing 18% 18% 13% 0% 20%
3 § Bike-sharing 22% 30% 35% 17% 24%
2 £ | Ride-sharing 39% 36% 43% 58% 36%
=& SAV 21% 16% 9% 25% 20%

TABLE 5. The percentage of each mode of transport related paper, over
the total number of mode of transport related paper surveyed for each
common challenge. (E.g., out of total 46 mode of transport related paper
surveyed that are addressing the assignment common challenge, 4% of
them are about the car-sharing mode of transport.)

Common challenges
Assi 1 g Facility location = Routing
46 62 19 38
=g Car-sharing 4% 24% 37% 11%
2 % Bike-sharing 2% 32% 37% 18%
=2 £ | Ride-sharing 68% 21% 10% 42%
= SAV 26% 23% 16% 29%

This suggests where to locate potential reusable re-balancing
solutions that can be applied in ride-sharing or car-sharing.

In the light of our analysis of existing work on SMS, several
avenues that need further investigation and could contribute
to more efficient, scalable, robust, autonomous, and practica-
ble shared mobility services are highlighted.

A. DESIGN A SYSTEM AS A WHOLE
As discussed in the previous sections, SMS solutions often
address one or two of the listed challenges. However, when
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put into practice, a shared mobility system is not only a
routing algorithm or vehicle-user assignment model rather a
whole system that requires addressing all the shared mobility
requirements. This requires a system that addresses all the
listed challenges and key system requirements. Therefore,
it is interesting to see a system architecture that includes all
the puzzle pieces in one place, studying the impact of each
challenge and the proposed solution on the rest of the chal-
lenge. For example, can a centralised routing mechanism be
selected if a distributed solution for vehicle-users assignment
is adopted?

B. AUTONOMY AT A HIGHER LEVEL

It would be interesting to design SMS with autonomy and
adaptability implemented at the entity and system levels,
allowing it to self-heal and self-organise in response to unpre-
dicted events, which is highly expected in mobility contexts.
The autonomy of systems will significantly impact their effi-
ciency, robustness, and practicability when handling unseen
situations. This can be achieved by decentralising data and
decision-making power, allowing multiple entities in various
roles to make decisions.

C. TOWARDS AN INTEGRATING PLUG-AND-PLAY
ARCHITECTURE

As discussed in the previous sections, there are many algo-
rithms and techniques in one application area from which oth-
ers can benefit. Furthermore, although the mode of transport
might impose some constraints on a solution, the abstraction
and generalisation of such components can increase their
re-usability and decrease the cost of building a system. To this
end, a plug-and-play architecture can be introduced, specify-
ing various components of SMS and their requirements for
working together. Furthermore, the architecture can introduce
parameter tuning to include all modes of transport, allowing
for design systems with more than one mode of transport.

D. TOWARDS A MULTI-HOP AND MULTI-MODE SHARED
MOBILITY

Our review sheds light on the variety of existing and newly
developed SMS. Each of them is generally proposing a
promising mobility solution for a part of the user’s trip.
However, several mobility solutions can be available or in
competition, and it is to the user’s discretion to choose from
them or combine them efficiently. While this problem is not
exclusive to shared mobility solutions, the advancement of
communication technologies that enabled these new systems
in the first place could leverage door-to-door solutions for
users that could account for individuals’ preferences [123]
and achieve better load balancing at a city scale.

VI. CONCLUSION

This paper carefully analysed SMS from different perspec-
tives, enabling the researchers to identify the gaps in a par-
ticular mode of transport, its challenges, and how to identify
reusable well-studied solutions from different domains. Also
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in this paper, researchers will find a comprehensive overview
that enables them to perceive the higher level and critical
requirements SMS must meet so that they can perform well
in a real-world configuration as a whole system. Two of these
less explored requirements are that the introduced solutions
must be robust facing unexpected behaviours or events, and
the system components must be autonomous, to reduce inter-
dependencies and ensure better resilience. This remains the
main challenge to face within the upcoming years since the
subsistence and the key to success for SMS rest on the accep-
tance by end-users. Unreliable systems with repetitive break-
down or congestion will put off the end-users. Considering
mobility as a whole service dedicated to the end-user is of
paramount importance, which suggests paying attention to
the coordination between the mode of transport on one side
and between the key system requirements on the other.
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