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ABSTRACT 
Acoustic emission signals specific to the incremental advance of fatigue cracks can be detected,
cycle  after  cycle,  during  crack  propagation  tests.  They  were  termed  acoustic  multiplets  in
reference to repeating earthquakes. Detecting such multiplets would give information about the
fracturing process and provide early warnings when monitoring industrial parts in service. We
developed a clustering method to extract multiplets signals from all signals and noise of fatigue
tests.  This  method  is  based  on  the  computation  of  the  cross-correlation  function  between
waveforms. On the distribution  of the cross-correlation matrix, signals belonging to multiplets
are clearly identified and permit to automatically clustered.  This paper developps the steps of
the  method,  presents  results  obtained  on  a  dataset  of  a  fatigue  test  and   shows  its  noise
robustness.
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1 Introduction 

Despite many efforts over the last hundred years to understand its causes and detect its
possible precursors, cyclic fatigue of materials  remains one of the major causes of failure of
industrial parts [1]. The problem is “How to alert in real time when a crack is likely to lead to the
ruin of the part ?”. Acoustic emission (AE) is a key method of non-destructive testing, as it
enables  the  recording  of  transient  elastic  waves  occurring  during  damage  of  materials  and
structures. Numerous works carried out with this method have shown that there is a correlation
between the global acoustic activity and damage, including during fatigue [2]. However, this
correlation only becomes significant near the final failure and thus far too late [3]. Indeed, the
monitoring of slow crack growth from a global measurement is difficult and very sensitive to the
signal to noise ratio (SNR). Moreover, the non-specific nature of these AE measurements makes
the identification of sources difficult [4]. 

 A new approach, recently proposed [4, 5], allows the detection of acoustic emissions
specific  of  fatigue  crack  growth,  called  "acoustic  multiplets"  in  reference  to  the  analogous
phenomenon in seismology [6]. These so-called acoustic multiplets are characterized by highly
correlated waveforms (figure 1 a), signature of a unique source. They are repeatedly triggered
over many successive loading cycles at almost the same stress level (figure 1 c, d and e) and
originate from a single location (figure 1 a). They are considered to mark the slow, incremental
propagation of a crack at each cycle (see striations on figure 1 b), or the rubbing along its faces
(fretting). Being specific to incremental fatigue cracking, they can therefore potentially be used
as early warnings of global failure of industrial parts [5].



Fig. 1 :  Acoustic multiplets as a signature of fatigue crack growth (from [4]) - a) Waveforms of
acoustic signal belonging to a multiplet during fatigue of Aluminum at 0.1 Hz, and location of
the corresponding AE signals on the specimen ; b) Striations on a post-mortem SEM image of
the crack face of the sample ; c) Acoustic activity during a fatigue test on aluminum : stress vs

number of cycles. Magenta, cyan and orange clusters correspond to typical examples of
multiplets ; d) Enlargement on a specific multiplet and e) on some loading cycles.

 A key point in  this  approach is  the choice of an appropriate  and robust measure of
waveforms similarity.  Due to the classical procedure to detect acoustic bursts from threshold
crossing and the noise that affect the signal, nearly identical signals can be shifted by a little time
delay and are then non-aligned. It means that the method of measure needs to be able to quantify
the similarity between 2 waveforms regardless of the delay.    

The cross-correlation function is often chosen for this kind of problematic [7,8,9]. In the
field of acoustic emission, the cross-correlation function has been sometimes used to improve the
localisation  of acoustic sources [9]. A cross-correlation matrix over all the AE signals signals of
a channel  recorded during a mechanical  test  on concrete  has been used to  investigate  very
quickly changes in the physical properties of the ray path of events from one cluster [8]. Another
application of the cross-correlation matrix has been proposed to filter noise in fatigue test [10].
This article offers a robust way based on cross-correlation matrix distribution to extract highly
correlated populations of signals, in order to identify multiplets in fatigue crack growth tests.

2. Method to extract highly correlated populations

2.1  Cross-correlation function

Cross-correlation consists  in the displaced dot product between two signals. It is often
used to quantify the degree of similarity or interdependence between two signals [7]. In the case
of AE, since all measurements were recorded using digital acquisition systems, signals have been
discretized, so that the cross-correlation between two signals v and w with the same N samples
length is expressed by equation 1.

(1)

When the discrete time series  v and  w match, the value of  corr[v,w] is maximized. We
called the maximizing point  tm : it corresponds to the time delay between the two waveforms.
This is explained when peaks (positive areas) are aligned, making a large contribution to the
summation.
In the case of  AE waveforms, the two parameters  n0 and N define a cross-correlation window.
Because acoustic waveforms are transient waves and contain a pre-trigger, an impulsive part and



a coda, the choice of this window has to be set precisely for an adequate determination of the
maximizing point. 

2.2 Cross-correlation matrix

By calculating all  cross-correlation functions for each pair of waveforms for a single
channel,  and searching for  the  maximum of  these  functions,  it  is  possible  to  build  a  cross-
correlation  matrix.  Hence, the  coefficients  contain  a  value  in  [0,  1]  corresponding  to  the
normalized measure of similarity by cross-correlation (see equation 2).

(2)

An example is presented in fig. 2 showing a cross-correlation matrix of 198 signals compared to
each others. By construction, it is a symmetrical matrix with a diagonal full of 1. Then, only half
of the matrix is computed. 

Fig.  2 Example of cross-correlation matrix calculated from a fatigue crack growth test on steel

Since multiplets are groups of highly similar waveforms emitted close in time, multiplets appear
as yellow squares on fig. 2.  In the rest of the article, for the sake of simplicity, the term 'cross-
correlation'  will  refer  to  the  value  taken  by  a  coefficient  of  the  cross-correlation  matrix  as
described in equation 2.

2.3 Distribution of cross-correlation

An operator  can  visually  identify  groups  of  waveforms  highly  similar  in  the  cross-
correlation  matrix,  but  an automatized  way is  possible  by calculating  the distribution  of  the
matrix.  In a fatigue test  characterized by acoustic  multiplets,  two peaks are expected in this
distribution  (see  fig.  3)  :  one  narrow peak close  to  1  containing  cross-correlations  between
waveforms  belonging  to  multiplets,  and  a  wider  one  corresponding  to  uncorrelated  source
signals. The remaining correlation of these uncorrelated source signals results from the resonant
nature of the AE sensors. Indeed, due to the acquisition chain, and particularly to the frequency
domain of the sensor, the cross-correlation between two totally different source signals is larger
than zero. Nevertheless, a distribution of cross-correlations computed on a set of data from an
experiment without multiplets would not exhibit the peak of high cross-correlations. 

 



Fig. 3 Schematic cross-correlation distribution for a fatigue test emitting multiplets

From this distribution, it is easy to extract automatically multiplets by setting a threshold
on the cross-correlation , e.g. 0.8 for the schematic figure above. All waveforms implicated in
cross-correlations above the threshold are collected and labelled as “multiplets”.  

4. Application to a fatigue crack growth test

This  method has  been  applied  to several  acoustic  emission  dataset  recorded  during

fatigue crack growth tests.  Here,  results  from a load-imposed fatigue test  ( R=
σmin
σmax

=0.1 )

performed on compact tension (CT) specimen of a 5083 aluminium alloy are presented. 

Two nano30 sensors, from PAC, were coupled on the specimen surface as depicted on
fig.  4.  The PCI2 system triggered recording waveforms sampled at  5  MHz when the signal
exceeds the threshold of 43 dB. After the test, no filtering process was applied. Cross-correlation
matrices and distributions were directly computed on the waveforms, independently for the both
channels. 

 We selected a part of 1000 consecutive waveforms containing 2 multiplets for this study.

 fig. 4 Geometry of CT specimen and sensors locations

4.1 Selection of the cross-correlation window

As explained in part 2.1, a proper window has to be set for the cross-correlation between
two AE waveforms. In order to select the starting and ending point of time series, respectively n0

and N, cross-correlation distributions are computed for different window lengths. 

The pre-trigger of 20 µs is not taken into account in the calculation  :  n0  is fixed, while
N takes values to select [20, 40, 60, 80, 100, 120, 160] µs of the waveforms. Fig. 5 show an
example of a waveform  from the dataset and the different windows used for cross-correlations. 



Fig. 5 Example of a waveform and the different cross-correlation windows.  Each window starts
at t = 0 µs

Fig. 6 Distributions of cross-correlation for different windows. Right : Zoom around the peak of
high cross-correlations .

The overall shape of the expected distribution presented in section 2.3 for all 7 windows
can be found in Figure 6. By extracting signals involved in cross-correlations above 0.8, we
clustered, as predicted, multiplets signals into one cluster. 

But if the window is to short or too long, some multiplets signals are miss-classified.
Extending  the  length  of  the  cross-correlation  window  shifts  the  low  cross-correlation  peak
towards 0 and modifies the large cross-correlation peak level. A cross-correlation performed on
too short windows raises the risk to miss the right alignement resulting in an imprecise similarity
measure, e.g. distributions computed on windows of 20, 40 and 60 µs whose maximums do not
exceed 25 000 cross-correlations.. On the opposite, a too long window contains a large part of
the waveforms codas which are less correlated and are characterized by a lower SNR. Hence, the
distribution computed on windows of 160 µs has a lower maximum than distributions computed
on windows of 80 and 120 µs. That is why the choice of the window is essentially ruled  by the
level  of  the  large  cross-correlation  peak  :  the  best  clustering  performance  is  obtain  by



maximizing  the  number  of  cross-correlation  in  the  highest  cross-correlation  peak.  Here,  the
window has to be set between [80,120] µs.

In addition, one observes that all distributions exhibit three peaks. One in low cross-correlation
range and two in the large cross-correlation range. The second peak in the large cross-correlation
range between 0.92 and 0.97 in  fig.  6,  not  presented in  part  2.3,  contains  cross-correlations
performed between waveforms belonging to different multiplets emitted by the same type of
sources.  Selecting  a  threshold  between  these  two  close  peaks  allows  to  separate  different
multiplets  thanks  to  an  algorithm  (not  detailed  here)  by  adding  information  of  the  signals
emission time. 

4.2 Noise effect

The noise robustness of our method is evaluated by adding white Gaussian noise to all
waveforms. Distributions of cross-correlations are computed for different levels of SNR and are
represented on fig. 7. 

Fig. 7 Cross-correlation distributions for different SNR

From SNR = 100 to SNR = 0.1, the global shape of the distribution including high and low
cross-correlations is preserved and shifted towards lower cross-correlation values, as expected.
While the shape of the peak of low cross-correlations remains essentially unchanged, the two
peaks of high cross-correlations are widening and merge. The method then is still applicable for
low SNR, down to 0.1,  by moving the cross-correlation  threshold to  separate  highly similar
waveforms, belonging to multiplets,  from uncorrelated ones . Nevertheless,  below SNR = 1
many errors are reported in the classification and below SNR = 5, it is not possible to distinguish
the two peaks of high cross-correlations.



6. Conclusion

This paper presents a method to automatically cluster groups of highly similar signals by
computing the distribution of the cross-correlation matrix. This matrix is obtained by extracting
the maximum of the cross-correlation function of each pair of waveforms from a fatigue test.
The  selection  of  the  cross-correlation  window is  discussed  and  optimized  by  applying  this
method  on  several  window  lengths.  And  we  show  that  this  method  is  efficient  to extract
mulitplets, acoustic signature of fatigue crack growth, even if waveforms are polluted by noise. 
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