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We present two active learning algorithms for sound deterministic negotiations. Sound deterministic negotiations are models of distributed systems, a kind of Petri nets or Zielonka automata with additional structure. We show that this additional structure allows to minimize such negotiations. The two active learning algorithms differ in the type of membership queries they use. Both have similar complexity to Angluin's 𝐿 * algorithm, in particular, the number of queries is polynomial in the size of the negotiation, and not in the number of configurations.

Introduction

The active learning paradigm proposed by Angluin [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF] is a method used by a Learner to identify an unknown language. The paradigm assumes the existence of a Teacher who can answer membership and equivalence queries. Learner can ask if a word belongs to the language being learned, or if an automaton she constructed accepts that language. This setting allows for much more efficient algorithms than passive learning, where Learner receives just a set of positive and negative examples [START_REF] De | Grammatical Inference: Learning Automata and Grammars[END_REF]. While passive learning has high theoretical complexity [START_REF] Gold | Complexity of automaton identification from given data[END_REF][START_REF] Trakhtenbrot | Finite Automata: Behavior and Synthesis[END_REF], Angluin's 𝐿 * -algorithm can learn a regular language with polynomially many queries to Teacher. Active learning algorithms have been designed for many extensions of deterministic finite automata: automata on infinite words, on trees, weighted automata, nominal automata, bi-monoids for pomset languages [START_REF] Angluin | Learning regular omega languages[END_REF][START_REF] Balle | Learning Weighted Automata[END_REF][START_REF] Cassel | Active learning for extended finite state machines[END_REF][START_REF] Drewes | Query Learning of Regular Tree Languages: How to Avoid Dead States[END_REF][START_REF] Marusic | Complexity of equivalence and learning for multiplicity tree automata[END_REF][START_REF] Michaliszyn | Learning Deterministic Automata on Infinite Words[END_REF][START_REF] Moerman | Learning nominal automata[END_REF][START_REF] Gerco Van Heerdt | Learning Pomset Automata[END_REF]. Following Angluin's original algorithm, several algorithmic improvements have been proposed [START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF][START_REF] Michael | An Introduction to Computational Learning Theory[END_REF][START_REF] Rivest | Inference of finite automata using homing sequences[END_REF], implemented in learning tools [START_REF] Bollig | libalf: The automata learning framework[END_REF][START_REF] Isberner | The opensource LearnLib -A framework for active automata learning[END_REF], and used in case studies [START_REF] De | Protocol State Fuzzing of TLS Implementations[END_REF][START_REF] Fiterau-Brostean | Combining Model Learning and Model Checking to Analyze TCP Implementations[END_REF][START_REF] Neider | Models, Mindsets, Meta: The What, the How, and the Why Not? -Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday[END_REF][START_REF] Smeenk | Applying Automata Learning to Embedded Control Software[END_REF][START_REF] Tappler | Model-Based Testing IoT Communication via Active Automata Learning[END_REF][START_REF] Frits | Model learning[END_REF].

Learning distributed systems is a particularly promising direction. First, because most systems are distributed anyway. Second, because distributed systems exhibit the state explosion phenomenon, namely, the state space of a distributed system is often exponential in the size of the description of the system. If we could learn a distributed system in time polynomial in the size of the description, we would be using state explosion to our advantage. Put differently, knowing , , . something about the structure of the system would allow to speed up the learning process exponentially.

The learning results cited above all rely on the existence of canonical automata, even though sometimes these automata may not be minimal. This is a main obstacle for learning distributed systems. Consider the following example that can be reproduced in many kinds of systems. Suppose we have two processes, 𝑝 1 and 𝑝 2 , both executing a shared action 𝑏. It means that on executing 𝑏 the two processes update their state. The goal of the two processes is to test if the number of actions 𝑏 is a multiple of 15. One solution is to make 𝑝 1 count modulo 3 and 𝑝 2 to count modulo 5. Each time when the two remainders are 0 they can declare that the number of 𝑏's they have seen is divisible by 15. The sum of the number of states of the two processes is 3 + 5 = 8. Another possibility is that 𝑝 1 stores the two lower bits of count modulo 15, and 𝑝 2 stores the two higher bits. The sum of the number of states of the two processes is 4 + 4 = 8. It is clear that there is no distributed system for this language with 2 + 5 states or with 3 + 4 states, as the number of global states would be 2 * 5 = 10 and 3 * 4 = 12, respectively. Thus we have two non-isomorphic minimal solutions. But it is not clear which of the two should be considered canonical. It is hard to imagine a learning procedure that would somehow chose one solution over the other. In this paper we avoid this major obstacle. The distributed automata we learn, sound deterministic negotiations, cannot implement any of the two solutions. The minimal solution for negotiations has 15 nodes and resembles the minimal deterministic automaton for the language.

Negotiations are a distributed model proposed by Esparza and Desel in [START_REF] Esparza | On Negotiation as Concurrency Primitive[END_REF], tightly related to workflow nets [START_REF] Wil | Process Mining -Data Science in Action[END_REF] and free-choice Petri nets. In one sentence, this model is a graphbased representation of processes synchronizing over shared actions. Figure 1 shows a negotiation corresponding to the workflow of an editorial board, with 4 processes 𝑁 𝐴 (new application), 𝑇 𝑆 (technical support), 𝐸𝐶 (editorial board chair), 𝐸𝑀 (editorial board member). Actions are written in blue, for instance svote (set-up vote) is a shared action of processes 𝐸𝐶 and 𝑇 𝑆. At node 𝑛3 processes 𝑇 𝑆, 𝐸𝐶 have the choice between actions svote and tech. Taking jointly svote leads process 𝑇 𝑆 to 𝑛6 and 𝐸𝐶 to 𝑛5. The semantics of a negotiation is a set of executions, namely sequences of actions that are executable from an initial to a final state. In our example, (appl) (setup) (dinit) (fin) (svote) (vote) (dec) is an [START_REF] Mazurkiewicz | Concurrent Program Schemes and their Interpretations[END_REF] because there is a natural independence relation between actions: if the domains of two actions are disjoint, the actions are independent, and otherwise not.

Negotiations that are deterministic and sound, as the one in Figure 1, turn out to have a close relationship with finite automata. Soundness is a variant of deadlock-freedom, and determinism means that every state has at most one outgoing transition on a given label. Our first result is a canonical representation for sound deterministic negotiations by finite automata, that also provides a minimization result.

Based on this canonical representation, one could just use the standard Angluin algorithm 𝐿 * for DFA to learn sound, deterministic negotiations in polynomial time. This results in a rather unrealistic setting where Teacher is supposed to have access to the graph representation of a negotiation. When learning the negotiation from Figure 1, this setting would e.g. require Teacher to answer with a local path in the graph, like for example the leftmost path (appl 𝑇 𝑆 ) (setup 𝑁 𝐴 ) (dec 𝐸𝐶 ) from 𝑛0 to 𝑛7. However, if the negotiation under learning is black-box, then equivalence queries need to be approximated by conformance testing [START_REF] Frits | Model learning[END_REF]. In this case local paths are not accessible to Teacher: he can only apply executions to the system under learning. Therefore we assume in this paper that when the two negotiations are not equivalent Teacher replies with a counter-example in form of an execution that belongs to one negotiation but not to the other.

As Teacher replies with executions to equivalence queries, the main challenge is to extract some information from a counter-example execution allowing to extend the negotiation under learning. In our first algorithm Learner can ask membership queries about local paths. Membership queries about local paths are arguably difficult to justify, yet the algorithm is relatively simple and serves as a basis for the second algorithm.

Our second learning algorithm uses only executions, both for membership and for equivalence queries. With a counterexample at hand, Learner needs to be able to find a place to modify the negotiation she constructed so far. For this the negotiation needs to have enough structure to allow to build executions for membership queries. Even though this induces an important conceptual complication, the complexity of our second algorithm is comparable to that of the standard 𝐿 * algorithm for DFA. Moreover, equivalence queries in this algorithm can be done in Ptime, if the negotiation to learn is given explicitly to Teacher.

Related work. The active learning paradigm was initially designed for regular languages [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF]. It is still the basis of all other learning algorithms. From the optimizations proposed in the literature [START_REF] Bollig | libalf: The automata learning framework[END_REF][START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF][START_REF] Michael | An Introduction to Computational Learning Theory[END_REF][START_REF] Rivest | Inference of finite automata using homing sequences[END_REF] we adopt two in this work. We use discriminator trees instead of rows, as this allows to gain a linear factor on the number of membership queries. We also use binary search to find a place where a modification should be made. This gives a reduction from 𝑚 to log(𝑚) membership queries to process a counterexample of size 𝑚. As it is also common by now, we add only those suffixes from a counter-example that are needed to create new states or transitions. These and some other optimizations are implemented in the TTT-algorithm [START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF].

There are many extensions of the active learning setting to richer models: 𝜔-regular languages, weighted languages, nominal languages, tree languages, series-parallel pomsets [START_REF] Angluin | Learning regular omega languages[END_REF][START_REF] Balle | Learning Weighted Automata[END_REF][START_REF] Cassel | Active learning for extended finite state machines[END_REF][START_REF] Drewes | Query Learning of Regular Tree Languages: How to Avoid Dead States[END_REF][START_REF] Marusic | Complexity of equivalence and learning for multiplicity tree automata[END_REF][START_REF] Moerman | Learning nominal automata[END_REF]. All of them rely on the existence of a canonical automaton for a given language. The algorithm for learning non-deterministic automata is not an exception as it learns residual finite state automata. Categorical frameworks have been recently proposed to cover the majority of these examples and provide new ones [START_REF] Colcombet | Learning Automata and Transducers: A Categorical Approach[END_REF][START_REF] Urbat | Automata Learning: An Algebraic Approach[END_REF][START_REF] Gerco Van Heerdt | CALF: Categorical Automata Learning Framework[END_REF].

To our knowledge the first active learning algorithm for concurrent models is [START_REF] Bollig | Learning Communicating Automata from MSCs[END_REF], where message-passing automata are learned from MSC scenarios. However, this algorithm requires a number of queries that is exponential in the number of processes and the channel bounds. Recently, an active learning algorithm for series-parallel pomsets was proposed [START_REF] Gerco Van Heerdt | Learning Pomset Automata[END_REF]. This algorithm learns bimonoids recognizing series-parallel pomsets, which may be exponentially larger than a pomset automaton accepting the language. It relies on a representation of series-parallel pomsets as trees, and learns a tree automaton accepting the set of representations. Note that languages of deterministic sound negotiations and of series-parallel pomsets are incomparable. For example, the pomsets corresponding to executions of the negotiation from Figure 1 are not series-parallel.

Negotiations have been proposed by Esparza and Desel [START_REF] Desel | Negotiation as concurrency primitive[END_REF][START_REF] Esparza | On Negotiation as Concurrency Primitive[END_REF]. It is a model inspired by workflow nets [START_REF] Wil | The Application of Petri Nets to Workflow Management[END_REF][START_REF] Wil | Process Mining -Data Science in Action[END_REF] but using processes like in Mazurkiewicz trace theory and Zielonka automata [START_REF]The Book of Traces[END_REF][START_REF] Mazurkiewicz | Concurrent Program Schemes and their Interpretations[END_REF][START_REF] Zielonka | Notes on finite asynchronous automata[END_REF]. Workflow nets have been studied extensively, in particular variants of black-box learning [START_REF] Wil | A Tour in Process Mining: From Practice to Algorithmic Challenges[END_REF], but we are not aware of any result about active learning of such nets.

Structure of the paper. In the next section we give an overview and the context of the paper. In Section 3 we define sound, deterministic negotiations. Section 4 presents the result on minimization. Section 5 recalls briefly Angluin's 𝐿 * algorithm. Sections 6, and 7 describe the two learning algorithms that are the main result of the paper. Omitted proofs can be found in the Appendix.

Overview

Before going into the technical content of our work we give a high-level overview of the key concepts and results.

A negotiation is like a finite automaton with many tokens. The behavior of a finite automaton can be described in terms of one token moving between states, that we prefer to call nodes, in the graph of the automaton. At first, the token is in the initial node. It can then take any transition outgoing from this node and move further. If the transition is labelled by 𝑏, we say that the automaton takes action 𝑏. With this view, words accepted by the automaton are sequences of actions leading the token from the initial node to a final one.

What happens if we put two tokens in the initial node? When we look at the sequences of actions that are taken we will get a shuffle of words in the language of the automaton. This is concurrency without any synchronization.

Negotiations are like finite automata with several tokens and a very simple synchronization mechanism. The number of tokens is fixed and each of them is called a process, say from a finite set Proc. The processes move from one node to another according to the synchronization mechanism described in the following. Every node has its (non-empty) domain dnode : 𝑁 → 2 Proc and a set of outgoing actions. The node's domain says which processes can reach it: process 𝑝 can reach only nodes 𝑛 with 𝑝 ∈ dnode(𝑛). The synchronization requirement is that all processes in dnode(𝑛) leave node 𝑛 jointly, after choosing a common outgoing action. Taking the same action at node 𝑛 means that processes from dnode(𝑛) "negotiate" which action they take jointly. As in the case of finite automata, an execution in a negotiation is determined by a sequence of actions labelling the transitions taken, except that now one action corresponds to a move of potentially several processes. The non-deterministic variant of this simple mechanism can simulate 1-safe Petri Nets or Zielonka automata, albeit with many deadlocks.

Recall the negotiation in Figure 1, with the four processes Proc = {𝑁 𝐴,𝑇 𝑆, 𝐸𝐶, 𝐸𝑀 }. Nodes are represented by horizontal bars. The initial node is on the top, and the final one at the bottom. The domain of every node, dnode(𝑛), is indicated just above the node to the right. Actions are written in blue, with Act = {appl, setup, . . . , dec}. From every node there are several outgoing transitions on the same action, one transition per process in the domain of the node. For example, from the initial node there is an action appl with four transitions, one for each process. We denote by appl 𝑇 𝑆 the transition labelled appl of process 𝑇 𝑆. Transition appl 𝑇 𝑆 leads 𝑇 𝑆 from 𝑛0 to 𝑛1. Node 𝑛1 has two outgoing transitions, info and setup. Both involve the two processes 𝑁 𝐴,𝑇 𝑆. Every transition from node 𝑛 involves all processes in the domain of 𝑛.

All processes start in the initial node 𝑛0. After action appl processes 𝑁 𝐴,𝑇 𝑆 reach node 𝑛1, from where they can take action setup leading 𝑇 𝑆 to node 𝑛3, and 𝑁 𝐴 to node 𝑛6. In parallel processes 𝐸𝐶, 𝐸𝑀 reach node 𝑛2 from where they can take action dinit, which makes 𝐸𝐶 rejoin 𝑇 𝑆 in node 𝑛3. They can continue like this forming an execution from 𝑛0 to 𝑛7: (appl) (setup) (dinit) (fin) (svote) (vote) (dec). Observe that the order of setup and dinit is not relevant because they appear concurrently. We say that the two actions are independent because they have disjoint domains. On the other hand dinit and svote cannot be permuted because 𝐸𝐶 is in the domain of the two actions. Actions are therefore partially ordered in an execution. We write 𝐿(N ) ⊆ Act * for the set of all (complete) executions of negotiation N .

More formally, actions in a negotiation are typed forming a distributed alphabet. Every action is assigned a set of processes participating in that action: dom : Act → 2 Proc . Going back to our example from Figure 1: dom(appl) is the set of all four processes, while dom(setup) = {𝑁 𝐴,𝑇 𝑆 } and dom(dinit) = {𝐸𝐶, 𝐸𝑀 }. For every node 𝑛 and action 𝑎 outgoing from 𝑛 we have dom(𝑎) = dnode(𝑛). This way executions of negotiations can be viewed as Mazurkiewicz traces [START_REF] Mazurkiewicz | Concurrent Program Schemes and their Interpretations[END_REF]. As the domains of setup, dinit are disjoint the two actions are independent, so their order can be permuted: for all 𝑢, 𝑣 ∈ Act * , 𝑢 (setup) (dinit)𝑣 ∈ 𝐿(N ) iff 𝑢 (dinit) (setup)𝑣 ∈ 𝐿(N ).

Two negotiations N 1 , N 2 over the same distributed alphabet are equivalent if 𝐿(N 1 ) = 𝐿(N 2 ). Since we will consider negotiations without deadlocks, and our systems are deterministic, this is equivalent to the two negotiations being strongly bisimilar. The goal of active learning is to allow Learner to find a negotiation equivalent to the one known by Teacher, assuming Learner can ask membership and equivalence queries to Teacher.

Sound, deterministic negotiations. Negotiations can simulate Petri nets or Zielonka automata. The three models suffer from the main obstacle described in the introduction. For deterministic negotiations this changes when we impose soundness. A negotiation is sound, if every execution starting from the initial node can be extended to an execution that reaches a final node. (Without loss of generality we will assume that there is only one final node in a negotiation.) So soundness is a variant of deadlock freedom. A negotiation is deterministic if for every process 𝑝 and action 𝑏 every node has at most one outgoing edge labeled 𝑏 and leading to a node with 𝑝 in its domain. The negotiation from Figure 1 is sound and deterministic.

Sound deterministic negotiations have many interesting properties. While soundness looks like a semantic property, it can be decided in Nlogspace for deterministic negotiations [START_REF] Esparza | Soundness in negotiations[END_REF]. Actually, soundness is characterized by forbidden patterns in the negotiation graph. Some quantitative properties of sound deterministic negotiations can be computed in Ptime, see [START_REF] Esparza | Static analysis of deterministic negotiations[END_REF]. But not everything is easy. Deciding if a given negotiation has some execution that belongs to a given regular language is Pspace-complete.

Our results. Our first contribution is the observation that sound deterministic negotiations can be minimized. This presents prospects for Angluin-style learning, as there is a canonical object to learn. It also provides a simple polynomialtime equivalence algorithm for such negotiations.

To explain the minimization result, we need one more notion. A local path in a negotiation is a labelled path in the negotiation graph, for example (appl 𝑇 𝑆 ) (setup 𝑁 𝐴 ) (dec 𝐸𝐶 ) in the negotiation from Figure 1. Since the negotiation is deterministic, the source node, the action, and the process uniquely determine the transition. We write appl 𝑇 𝑆 for the transition on appl of process 𝑇 𝑆. In general local paths are sequences over the alphabet 𝐴 dom = {𝑎 𝑝 : 𝑎 ∈ Act, 𝑝 ∈ dom(𝑎)}. We write Paths(N ) for the set of all local paths of N leading from the initial to the final node.

Negotiations can be minimized by simply minimizing the finite automaton for local paths, Proposition 4.4.1. This proposition suggests using Angluin-style learning for finite automata to learn sound negotiations. But this supposes that Learner asks questions about local paths, and Teacher replies with local paths as counter-examples. As already mentioned, we find it hard to justify this setting. Instead, we consider the scenario where Teacher replies with a complete execution (and not a local path).

Our first learning algorithm, Theorem 6.4, still allows Learner to ask membership queries about local paths. Admittedly, this may be not very realistic either, but the algorithm is instructive, using some concepts that are central for our second algorithm. The main challenge is how to extract from a counter-example given by Teacher some information allowing to modify a negotiation being learned. The crucial property is that when Learner runs a counter-example given by Teacher in a negotiation being learned then she can find an inconsistency in her information before the counter-example reaches a deadlock (Lemma 6.2).

In our second, main learning algorithm Learner can ask membership queries about executions, and not about local paths, Theorem 7.7. The challenge now is how to construct membership queries about executions, and how to extract useful information from the answers. In the first algorithm membership queries about local paths allowed to obtain information about the graph of the negotiation. It is not evident how to use executions to accomplish the same task. Even more so because the negotiations constructed by Learner are not necessarily sound at every stage of the learning process. Nevertheless we show that Learner is able to recover soundness just with membership queries. We use Mazurkiewicz traces of a special form to designate states of the negotiation to be learned, as well as for tests. Moreover, transitions cannot be just labelled by an action, but require trace supports. All these objects are controlled by invariants guaranteeing that Learner can always make progress. While conceptually more complex, the second algorithm has a similar estimate on the number of queries as the L * algorithm.

Basic definitions

A (deterministic) negotiation describes the concurrent behavior of a set of processes. At every moment each process is in some node. A node has a domain, namely the set of processes required to execute one of its actions. If at some moment all the processes from the domain of the node are in that node, then they choose a common action (outcome) to perform. In deterministic negotiations, as the ones we consider here, the outcome determines uniquely a new node for every process.

We fix a finite set of processes Proc. A distributed alphabet is a set of actions Act together with a function dom : Act → 2 Proc telling what is the (non-empty) set of processes participating in each action. More generally, for a sequence of actions 𝑤 ∈ Act * we write dom(𝑤) for the set of processes participating in 𝑤, so dom(𝑤) = ∪ |𝑤 | 𝑎 >0 dom(𝑎). → 𝑁 is a partial function defining the transitions. We also require that domains of nodes and actions match:

• if 𝑛 ′ = 𝛿 (𝑛, 𝑎, 𝑝) is defined then dnode(𝑛) = dom(𝑎), 𝑝 ∈ dom(𝑎) ∩ dnode(𝑛 ′ ), and 𝛿 (𝑛, 𝑎, 𝑞) is defined for all 𝑞 ∈ dom(𝑎). The size of N is |𝑁 | + |𝛿 |.
A configuration is a function 𝐶 : Proc → 𝑁 indicating for each process in which node it is. A node 𝑛 is enabled in a configuration 𝐶 if all processes from the domain of 𝑛 are at node 𝑛, namely, 𝐶 (𝑝) = 𝑛 for all 𝑝 ∈ dnode(𝑛). Note that any two simultaneously enabled nodes 𝑛, 𝑛 ′ have disjoint domains, dnode(𝑛) ∩ dnode(𝑛 ′ ) = ∅. We say that 𝑎 is an outgoing action from 𝑛 if 𝛿 (𝑛, 𝑎, 𝑝) is defined, denoted 𝑎 ∈ out (𝑛). If 𝑛 is enabled in 𝐶 and 𝑎 ∈ out (𝑛) then a transition to a new configuration 𝐶 𝑎 -→ 𝐶 ′ is possible, where 𝐶 ′ (𝑝) = 𝛿 (𝑛, 𝑎, 𝑝) for all 𝑝 ∈ dom(𝑎), and 𝐶 ′ (𝑝) = 𝐶 (𝑝) for 𝑝 ∉ dom(𝑎). As usual, we write 𝐶 -→ 𝐶 ′ when there is some 𝑎 with 𝐶 𝑎 -→ 𝐶 ′ , and * -→ is the reflexive-transitive closure of -→.

The initial configuration 𝐶 init is the one with 𝐶 init (𝑝) = 𝑛 init for all 𝑝. The final configuration 𝐶 fin is such that 𝐶 fin (𝑝) = 𝑛 fin for all 𝑝.

An execution is a sequence of transitions between configurations starting in the initial configuration

𝐶 init = 𝐶 1 𝑎 1 -→ 𝐶 2 𝑎 2 -→ . . . 𝑎 𝑖 -→ 𝐶 𝑖+1 .
Observe that an execution is determined by a sequence of actions. A successful execution is one ending in 𝐶 fin . The language 𝐿(N ) of a negotiation is the set of successful executions,

𝐿(N ) = {𝑤 ∈ Act * : 𝐶 init 𝑤 -→ 𝐶 fin }.
The graph of N has the set of nodes 𝑁 as vertices and edges 𝑛

(𝑎,𝑝) -→ 𝑛 ′ if 𝑛 ′ = 𝛿 (𝑛, 𝑎, 𝑝).
A local path is a path in this graph, and Paths(N ) denotes the set of local paths of negotiation N , leading from the initial node 𝑛 init to the final node 𝑛 fin . W.l.o.g. we assume that each node belongs to some local path from 𝑛 init to 𝑛 fin . In a deterministic negotiation there is at most one outgoing action for every pair action/process (𝑏, 𝑝). We prefer to write it as 𝑏 𝑝 . For example, (appl) 𝑁 𝐴 (setup) 𝑁 𝐴 (dec) 𝐸𝐶 is a local path in the negotiation from Figure 1. The alphabet of local paths is then 𝐴 dom = {𝑎 𝑝 : 𝑎 ∈ Act, 𝑝 ∈ dom(𝑎)}. Clearly, Paths(N ) is a regular language over alphabet 𝐴 dom . For a sequence 𝑤 ∈ Act * and a process 𝑝 we write 𝑤 | 𝑝 for the projection of 𝑤 on the set of actions having 𝑝 in their domain. Note that these projections are, in particular, local paths. We often consider projections 𝑤 | 𝑝 = 𝑎 1 . . . 𝑎 𝑘 as words over alphabet 𝐴 dom , namely (𝑎 1 ) 𝑝 . . . (𝑎 𝑘 ) 𝑝 ∈ 𝐴 * dom . Coming back to Figure 1, the projection on 𝑁 𝐴 of the complete execution (appl

) (setup) (dinit) (fin) (svote) (vote) (dec) is the lo- cal path (appl) 𝑁 𝐴 (setup) 𝑁 𝐴 (dec) 𝑁 𝐴 . A negotiation diagram is sound if every execution 𝐶 init * -→ 𝐶 can be extended to a successful one, so 𝐶 init * -→ 𝐶 * -→ 𝐶 fin .
A sound negotiation cannot have a deadlock, i.e., a configuration that is not final but from where no process can move. An example of a deadlock configuration is when process 𝑝 is at node 𝑛 𝑝 with domain containing {𝑝, 𝑞}, and process 𝑞 is at node 𝑛 𝑞 ≠ 𝑛 𝑝 also with the domain containing {𝑝, 𝑞}. Another possibility for a negotiation to be unsound is to have an execution that loops without the possibility of exiting the loop.

Sound, deterministic negotiations enjoy a lot of structure, in particular they can be decomposed hierarchically using finite automata and partial orders [START_REF] Esparza | Static analysis of deterministic negotiations[END_REF]. A notable property we will use often is that for every node 𝑛 there is a unique reachable configuration in which node 𝑛 is the unique enabled node: Theorem 3.2 (Configuration 𝐼 (𝑛) [START_REF] Esparza | Static analysis of deterministic negotiations[END_REF]). Let N be a sound and deterministic negotiation. For every node 𝑛 there exists unique configuration 𝐼 (𝑛) such that node 𝑛 is the only node enabled in 𝐼 (𝑛).

The uniqueness property from this theorem is very powerful, whenever we have an execution 𝐶 init * -→ 𝐶, and 𝑛 is the only node enabled in 𝐶 then we know that 𝐶 = 𝐼 (𝑛), so we know where all the processes are.

Mazurkiewicz traces. For a given distributed alphabet (Act, dom), an equivalence relation ≈ on Act * is defined as the transitive closure of 𝑢𝑎𝑏𝑣 ≈ 𝑢𝑏𝑎𝑣, for dom(𝑎) ∩dom(𝑏) = ∅, 𝑢, 𝑣 ∈ Act * . A Mazurkiewicz trace is a ≈-equivalence class, and a trace language is a language closed under ≈. Note that languages of negotiations are trace languages. We identify a word over Act with its ≈-equivalence class, so the trace it represents. Alternatively, a trace can be as a labeled partial order of a special kind. Finally let us introduce some notation about prefixes and suffixes of traces. When 𝑤 ∈ Act * , we write min(𝑤), for the set {𝑎 ∈ Act : 𝑤 ≈ 𝑎𝑤 ′ for some 𝑤 ′ ∈ 𝐴𝑐𝑡 * } of minimal actions of 𝑤. Given 𝑢, 𝑤 ∈ Act * we say that the 𝑢 is a trace-prefix of 𝑤 if there is some 𝑣 ∈ Act * such that 𝑢𝑣 ≈ 𝑤. In this case we call 𝑣 a trace-suffix of 𝑤, and we denote it by 𝑢 -1 𝑤.

Minimizing negotiations

We show now a close connection between sound deterministic negotiations and finite automata. An interesting consequence is that sound deterministic negotiations can be minimized, and that the minimal negotiation is unique.

Here we will work with local paths as defined in Section 3. Recall that these are sequences over alphabet 𝐴 dom = {𝑎 𝑝 : 𝑎 ∈ Act, 𝑝 ∈ dom(𝑎)} labelling paths in the graph of a negotiation. In particular a projection 𝑤 | 𝑝 of an execution 𝑤 is a local path. The following simple observation about projections will be useful. The automata we will consider in the paper are deterministic (DFA), but incomplete. A DFA A will be written as A = ⟨𝑆, 𝐴, out, 𝛿, 𝑠 0 , 𝐹 ⟩, with 𝑆 as a set of states, 𝛿 : 𝑆 ×𝐴 → 𝑆 a partial function, and out : 𝑆 → 2 𝐴 a map from states to their set of outgoing actions. Thus, 𝑎 ∈ out (𝑠) iff 𝛿 (𝑠, 𝑎) is defined. While out seems redundant, it is very convenient when learning incomplete automata, as we do in this paper. The next definition states a useful property of automata accepting Paths(N ). Definition 4.2 (Dom-complete automata). A finite automaton A over the alphabet 𝐴 dom is dom-complete if for every state 𝑠 of A and every 𝑎 𝑝 , 𝑎 𝑞 , 𝑏 𝑞 ∈ 𝐴 dom :

1.

𝑎 𝑝 ∈ 𝑜𝑢𝑡 (𝑠) iff 𝑎 𝑞 ∈ out (𝑠), and 
2. if {𝑎 𝑝 , 𝑏 𝑞 } ⊆ out (𝑠) then dom(𝑎) = dom(𝑏).
Moreover, we require that 𝑎 𝑝 ∈ out (𝑠 init ) for some 𝑎 with dom(𝑎) = Proc, where 𝑠 init is the initial state of A.

Remark 4.3. Observe that every trimmed DFA A accepting the language Paths(N ) for N sound and deterministic, is dom-complete, if N has at least one transition. (An automaton is trimmed if every state is reachable from the initial state and co-reachable from some final state). To see this consider a state 𝑠 of A. As A is trimmed, there is some 𝜋 ∈ 𝐴 * dom with 𝑠 0 𝜋 -→ 𝑠. Consider {𝑎 𝑝 , 𝑏 𝑞 } ⊆ out (𝑠). Once again thanks to trimness, 𝜋𝑎 𝑝 and 𝜋𝑏 𝑞 are prefixes of some words in Paths(N ). Since N is deterministic, 𝜋 induces a local path in N , from 𝑛 init to some node 𝑛. Hence, dom(𝑎) = dom(𝑏) = dnode(𝑛) by the definition of negotiation. The first property follows by a similar argument.

Let us spell out how to construct a negotiation from a dom-complete automaton. The conditions on the automaton are precisely those that make the result be a negotiation. Definition 4.4. Let A = ⟨𝑆, 𝐴 dom , out, 𝛿 A , 𝑠 0 , 𝑠 𝑓 ⟩ be a domcomplete DFA such that out (𝑠 𝑓 ) = ∅ for the unique final state 𝑠 𝑓 . We associate with A the negotiation N A = ⟨Proc, 𝑁 , dnode, Act, dom, 𝛿, 𝑛 init , 𝑛 fin ⟩ where

• 𝑁 = 𝑆, 𝑛 init = 𝑠 0 , and 𝑛 fin = 𝑠 𝑓 , • dnode(𝑠) = dom(𝑎) if 𝑎 𝑝 ∈ out (𝑠) for some 𝑎 ∈ Act
and 𝑝 ∈ Proc; moreover, dnode(𝑠 𝑓 ) = Proc, • 𝛿 (𝑠, 𝑎, 𝑝) = 𝛿 A (𝑠, 𝑎 𝑝 ) for all 𝑠, 𝑎, 𝑝.

The main result of this section says that the minimal automaton of Paths(N ) determines a sound deterministic negotiation. Recall that for a regular language 𝐿 any automaton accepting 𝐿 can be mapped homomorphically to the minimal automaton of 𝐿. For deterministic, sound negotiations we have the same phenomenon, where homomorphisms map nodes to nodes, so that transitions are mapped to transitions with the same label. 

Angluin learning for finite automata

We briefly present a variant of Angluin's 𝐿 * learning algorithm for finite automata. Our approach is particular because it works with automata that are not necessarily complete. This will be very useful when we extend the algorithm to learn negotiations. The automata coming from negotiations, dom-complete automata as in Definition 4.2, are in general not complete.

Angluin-style learning of finite automata relies on the Myhill-Nerode equivalence relation, which in turn accounts for the unicity of the minimal DFA of a regular language. A Learner wants to compute the minimal DFA A of an unknown regular language 𝐿 ⊆ 𝐴 * . For this she interacts with a Teacher by asking membership queries 𝑤 ∈ ? 𝐿 and equivalence queries 𝐿( A) = ? 𝐿, for some word 𝑤 or automaton A.

To the first type of query Teacher replies yes or no, to the second Teacher either says yes, or provides a word that is a counterexample to the equality of the two languages.

Angluin's algorithm maintains two finite sets of words, a set 𝑄 ⊆ 𝐴 * of state words and a set 𝑇 ⊆ 𝐴 * of test words. The sets 𝑄,𝑇 are used to construct a deterministic candidate automaton A for 𝐿. The elements of 𝑄 are the states of A. The set 𝑄 is prefix-closed and 𝜀 ∈ 𝑄 is the initial state of A.

The set of words 𝑇 ⊆ 𝐴 * determines an equivalence relation ≡ 𝑇 on 𝐴 * approximating Myhill-Nerode's right congruence ≡ 𝐿 of 𝐿: 𝑢 ≡ 𝑇 𝑣 if for all 𝑡 ∈ 𝑇 , 𝑢𝑡 ∈ 𝐿 iff 𝑣𝑡 ∈ 𝐿. Angluin's algorithm maintains two invariants, Uniqueness and Closure.

Uniqueness for all 𝑢, 𝑣 ∈ 𝑄, if 𝑢 ≡ 𝑇 𝑣 then 𝑢 = 𝑣 .

Observe that if 𝑢 ≡ 𝐿 𝑣 then 𝑢 ≡ 𝑇 𝑣. So ≡ 𝑇 has no more equivalence classes than the Myhill-Nerode's congruence ≡ 𝐿 . Since Angluin's algorithm adds at least one state in every round, the consequence of Uniqueness is that the number of rounds is bounded by the index of ≡ 𝐿 , or equivalently by the size of the minimal automaton for 𝐿.

In the original Angluin's algorithm the candidate automata maintained by Learner are complete, every state has an outgoing transition on every letter. When learning negotiations, it is more natural to work with automata that are incomplete. Because of this we have a third parameter besides 𝑄,𝑇 , which is a mapping out : 𝑄 → 2 𝐴 , telling for each state what are its outgoing transitions defined so far. The original closure condition of Angluin's algorithm now becomes:

Closure for all 𝑢 ∈ 𝑄, 𝑎 ∈ out (𝑢) there exists 𝑣 ∈ 𝑄 with 𝑢𝑎 ≡ 𝑇 𝑣 .

For (𝑄,𝑇 , out) satisfying Uniqueness and Closure we can now construct an automaton: A = ⟨𝑄, 𝐴, 𝛿, 𝑞 init , 𝐹 ⟩ with state space 𝑄 and alphabet 𝐴. The initial state is 𝜀, and the final states of A are the states 𝑢 ∈ 𝑄∩𝐿. The partial transition function 𝛿 : 𝑄 × 𝐴 . → 𝑄 is defined by: 𝛿 (𝑢, 𝑎) = 𝑣 if 𝑢𝑎 ≡ 𝑇 𝑣 and 𝑎 ∈ out (𝑢) .

Thanks to Uniqueness there can be at most one 𝑣 as above. While Closure guarantees that 𝛿 (𝑢, 𝑎) is defined iff 𝑎 ∈ out (𝑢).

The learning algorithm works as follows. Initially, 𝑄 = 𝑇 = {𝜀} and out (𝜀) = ∅. Note that (𝑄,𝑇 , out) satisfies Uniqueness and Closure. The algorithm proceeds in rounds. A round starts with (𝑄,𝑇 , out) satisfying both invariants. Learner can construct a candidate automaton A. She then asks Teacher if A and A are equivalent. If yes, the algorithm stops, otherwise Teacher provides a counter-example word 𝑤 ∈ 𝐴 * . It may be a positive counter-example, 𝑤 ∈ 𝐿 \ 𝐿( A), or a negative one, 𝑤 ∈ 𝐿( A) \ 𝐿. In both cases Learner extends (𝑄,𝑇 , out) while preserving the invariants. Then a new round can start. The details can be found in the Appendix.

Learning negotiations with local queries

We present our first algorithm for learning sound deterministic negotiations. This algorithm serves as intermediate step to the main learning algorithm of Section 7 that uses only executions as queries.

Recall that an execution is a sequence over Act; where Act is an alphabet of actions equipped with a domain function dom : Act → 2 Proc . Local paths are sequences over the alphabet 𝐴 dom = {𝑎 𝑝 : 𝑎 ∈ Act, 𝑝 ∈ dom(𝑎)}. They correspond to paths in the graph of the negotiation.

We assume that Teacher knows a sound deterministic negotiation N over the distributed alphabet (Act, dom : Act → 2 Proc ). Learner wants to determine the minimal negotiation N with 𝐿( N ) = 𝐿. By Corollary 4.4.2 this minimal negotiation is N A , with A the minimal automaton for the regular language Paths(N ). Our algorithm uses two types of queries:

• membership queries 𝜋 ∈ ? Paths(N ), to which Teacher replies yes or no; • equivalence queries: 𝐿( N ) = ? 𝐿(N ) to which Teacher either replies yes, or gives an execution 𝑤 ∈ Act * in the symmetric difference of 𝐿( N ) and 𝐿(N ).

The structure of the algorithm will be very similar to the one for DFA from Section 5. Let us explain two new issues we need to deal with. Learner will keep a tuple (𝑄,𝑇 , out), with 𝑄,𝑇 ⊆ 𝐴 * dom and out : 𝑄 → 2 𝐴 dom , satisfying invariants Uniqueness and Closure. This tuple defines an automaton A as in Section 5. Learner constructs from A a negotiation N as in Definition 4.4. She proposes N to Teacher, and if Teacher answers with a counter-example execution she uses it to extend (𝑄,𝑇 , out) and construct a new N . Compared to learning finite automata, we have two new issues. We need to impose additional invariants to obtain a dom-complete automaton A (Definition 4.2) as this is required to construct N . More importantly, we need to find a way how to exploit a counter-example that is an execution and not a local path (Lemmas 6.2 and 6.3).

We will write 𝐿 𝑃 as shorthand for Paths(N ). Since final nodes of negotiations do not have outgoing actions, 𝐿 𝑃 is prefix-free. Said differently, all words in 𝐿 𝑃 are ≡ 𝑇 equivalent as soon as 𝜀 ∈ 𝑇 . In particular, there will be a unique final state (with no outgoing transitions) in the automaton A constructed from (𝑄,𝑇 , out). We write Henceforth we use N to denote the negotiation N A and 𝐿 to denote the language of N .

The next two lemmas lay the ground to handle counterexamples provided by Teacher. Suppose (𝑄,𝑇 , out) satisfies all four invariants. Teacher replies with 𝑤 in the symmetric difference of 𝐿 and 𝐿. As 𝑤 is an execution, and not a local path, it can be seen as a (Mazurkiewicz) trace. We will use operations on traces introduced on page 5.

The main point of the next lemma is not stated there explicitly. An execution in a negotiation N may reach a deadlock. The lemma says that we do not have to deal with this situation because we can look backwards either for a place where we need to add a node (Node-mismatch) or a transition (Absent-trans). Processing counter-examples. We describe now how to deal with the two cases Absent-trans and Node-mismatch of Lemmas 6.2 and 6.3. Before we start we observe that Pref and Closure entail the following variant of Pref, that will be useful below:

Pref ' for every 𝑢 ′ ∈ 𝑄 and every 𝑎 𝑝 ∈ out (𝑢 ′ ) there is some 𝑡 ∈ 𝑇 such that 𝑢 ′ 𝑎 𝑝 𝑡 ∈ 𝐿 𝑝 . Indeed, using Closure we get some 𝑣 ∈ 𝑄 with 𝑢 ′ 𝑎 𝑝 ≡ 𝑇 𝑣, and because of Pref, there is some 𝑡 with 𝑣𝑡 ∈ 𝐿 𝑃 . So 𝑢 ′ 𝑎 𝑝 𝑡 ∈ 𝐿 𝑃 .

Absent-trans case. We have some node 𝑢 ∈ 𝑄 with 𝑢𝑟 | 𝑝 ∈ 𝐿 𝑃 , for 𝑟 ∈ Act * starting with 𝑏, and 𝑏 𝑝 ∉ out (𝑢) for all 𝑝 ∈ dom(𝑏).

For every 𝑝 ∈ dom(𝑏), we add 𝑏 𝑝 to out (𝑢) and (𝑏 -1 𝑟 )| 𝑝 to 𝑇 . For each 𝑏 𝑝 , one at a time, we check if there is some 𝑣 ∈ 𝑄 with 𝑢𝑏 𝑝 ≡ 𝑇 𝑣. If not, we add 𝑢𝑏 𝑝 to 𝑄 with out (𝑢𝑏 𝑝 ) = ∅. This step preserves Uniqueness and Domain. Also Pref holds if 𝑢𝑏 𝑝 is added to 𝑄, because of (𝑏 -1 𝑟 )| 𝑝 ∈ 𝑇 .

Finally, since 𝑇 changed, Closure must be restored. Closure holds for newly added 𝑢𝑏 𝑝 , since we set out (𝑢𝑏 𝑝 ) = ∅. The other 𝑢 ′ ∈ 𝑄 are those that were there already at the beginning of the round. If 𝑢 ′ ≠ 𝑢 then out (𝑢 ′ ) is unchanged, so Pref ' continues to hold. For 𝑢 ′ = 𝑢 we have established Pref ' by adding (𝑏 -1 𝑟 )| 𝑝 to 𝑇 . In both cases, if for some 𝑎 𝑝 ∈ out (𝑢 ′ ) there is no 𝑣 ∈ 𝑄 with 𝑢 ′ 𝑎 𝑝 ≡ 𝑇 𝑣 then we add 𝑢 ′ 𝑎 𝑝 to 𝑄, and set out (𝑢𝑎 𝑝 ) = ∅. Thanks to Pref ', invariant Pref holds after this extension. The other invariants are clearly preserved.

Node-mismatch case. We have a process 𝑝, a node 𝑢 ∈ 𝑄, a sequence 𝑣 ∈ Act * , and a local path Such an 𝑖 can be determined by binary search using 𝑂 (log(𝑘)) membership queries. We add 𝑎 𝑖+2 . . . 𝑎 𝑘 𝜋 to 𝑇 , 𝑢 𝑖 𝑎 𝑖+1 to 𝑄, and set out (𝑢 𝑖 𝑎 𝑖+1 ) = ∅. The invariants Uniqueness and Domain are clearly preserved. For Pref note that 𝑎 𝑖+1 already belonged to out (𝑢 𝑖 ), so thanks to Pref ', invariant Pref holds for 𝑢 𝑖 𝑎 𝑖+1 as well. For Closure we proceed as in case Absenttrans, by enlarging 𝑄, if necessary.

𝜋 such that 𝑣 | 𝑝 𝜋 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢𝜋 ∈ 𝐿 𝑃 . Moreover 𝐶 init 𝑣 -→ 𝐶 and 𝐶 (𝑝) = 𝑢. Let 𝑣 | 𝑝 = 𝑎 1 . . . 𝑎 𝑘 and 𝜀 𝑎 1 -→ 𝑢 1 . . .
Learning algorithm. We sum up the developments in this section in the learning algorithm shown below. The initialization step of our algorithm consists in asking Teacher an equivalence query for the empty negotiation N ∅ ; this is a negotiation consisting of two nodes 𝑛 init , 𝑛 fin and empty transition mapping 𝛿. Teacher either says yes or returns a positive example 𝑤 ∈ 𝐿. Note that the first action of 𝑤 must involve all the processes because the domain of the initial node is the set of all processes. So 𝑤 = 𝑏𝑤 ′ for some 𝑏 ∈ Act with dom(𝑏) = Proc. We initialize (𝑄,𝑇 , out) by setting 𝑄 = {𝜀}, 𝑇 = {𝑤 | 𝑝 : 𝑝 ∈ Proc}, and out (𝜀) = ∅. All invariants are clearly satisfied. Observe that we have here the Absent-trans case of Lemma 6.2 with 𝑏 ∈ Act as above, 𝑢 = 𝑣 = 𝜀 and 𝑟 = 𝑤. Procedure OUT (𝑤, 𝑄,𝑇 , out) adds missing transitions as described in case Absent-trans. It extends out, and possibly 𝑇 . After calling OUT the invariants Uniqueness, Pref, Domain are satisfied. Each OUT is followed by CLOS that restores the Closure invariant, as also described in case Absent-trans. It may happen that nothing is added by CLOS operation. Procedure BinS performs a binary search and extends 𝑄,𝑇 , out as described in the Node-mismatch case. After its call we are sure that Closure does not hold, so CLOS adds at least one new node. Thus in every iteration the algorithm extends at least one of out or 𝑄. For the complexity of Algorithm 1, see the appendix. Theorem 6.4. Algorithm 1 actively learns sound deterministic negotiations, using membership queries on local paths and equivalence queries returning executions. It can learn a negotiation of size 𝑠 using 𝑂 (𝑠 (𝑠 + |Proc| + log(𝑚))) membership queries and 𝑠 equivalence queries, with 𝑚 the size of the longest counter-example.

(
It is possible to modify Algorithm 1 so that equivalence queries are asked only for N sound. We do this in our second, main Algorithm 2. Here the presentation is clearer without this step.

Learning negotiations by querying executions

Our second learning algorithm asks membership queries about executions and not about local paths. The immediate consequence is that 𝑄 and 𝑇 are built from executions and not from local paths. Executions are sequences of actions from Act, but since Act is a distributed alphabet we consider them as (Mazurkiewicz) traces. The trace structure of executions will be essential. The challenge is how to construct membership queries about executions, and how to extract useful information from the answers.

Throughout the section we fix the sound deterministic negotiation N we want to learn. We use the same notations as in Section 6, namely 𝐿, N, 𝐿. The negotiation N will always be deterministic, but not necessarily sound. Yet, we will show that Learner can extend it to a sound negotiation with just membership queries. So N will be sound at every equivalence query. This greatly simplifies dealing with counter-examples.

The construction is spread over several subsections. First, we describe how we use Mazurkiewicz traces to identify nodes in a negotiation (Figure 2). Building on this we can identify transitions in negotiations. In Section 7.2 we describe our representation of nodes and transitions of a negotiation in a learning algorithm. We also state there the invariants of the construction. Section 7.3 describes two operations for extending N . They are used in Sections 7.4 and 7.5 where we show how to handle counter-examples. Section 7.5 explains how to restore soundness of N . Finally, we present a learning algorithm in Section 7.6.

Technical set-up

We describe how to use traces to talk about nodes and transitions in a negotiation. We start with a couple of definitions.

We use 𝑢, 𝑣, 𝑤, 𝑠, 𝑟, 𝑡 ∈ Act * for sequences of actions and often consider them as partial orders, i.e., as Mazurkiewicz traces. Recall that we write 𝑢 ≈ 𝑣 when 𝑢, 𝑣 represent the same Mazurkiewicz trace. For all other notations related to traces and configurations we refer to the end of Section 3. We will use extensively Theorem 3.2 stating the existence and uniqueness of the configuration 𝐼 (𝑛) enabling precisely node 𝑛.

We start by defining two main kinds of traces used throughout the section (see Figure 2). • 𝑡 ∈ 𝐴𝑐𝑡 * is co-prime if 𝑡 has a unique minimal element in the trace order. In other words, there is some 𝑏 ∈ Act such that every 𝑣 ∈ 𝐴𝑐𝑡 * with 𝑡 ≈ 𝑣 starts with 𝑏.

We write 𝑏 = min(𝑡) and dmin(𝑡) for the domain of min(𝑡), namely, dmin(𝑡) = dom(𝑏).

• 𝑠 ∈ 𝐴𝑐𝑡 * is a (𝑏, 𝑝)-step if 𝑝 ∈ dom(𝑏), 𝑠 = 𝑏𝑠 ′ is co-
prime and 𝑏 is the only action involving 𝑝 in 𝑠, namely, 𝑝 ∉ dom(𝑠 ′ ).

The next two lemmas explain the link between co-prime traces and nodes of the negotiation. Lemma 7.2 roughly says that while process 𝑞 goes from node 𝑚 to node 𝑛 by action 𝑏, the remaining processes execute 𝑢, after which 𝑛 is the unique executable node. See also Figure 2 for an illustration. Lemma 7.1. If 𝑢𝑡 ∈ 𝐿 and 𝑡 is co-prime then:

• 𝐶 init 𝑢 -→ 𝐶 is an execution of N with 𝐶 = 𝐼 (𝑛) for some node 𝑛, and dnode(𝑛) = dmin(𝑡).

• If 𝑢𝑡 ′ ∈ 𝐿 for some 𝑡 ′ then 𝑡 ′ is also co-prime, and dmin(𝑡 ′ ) = dmin(𝑡). -→ 𝑛 if and only if 𝑢 is a (𝑏, 𝑝)step.

The last lemma exhibits a structural property of sound deterministic negotiations in terms of co-prime traces and (𝑏, 𝑝)-steps.

Lemma 7.3 (Crossing Lemma). If 𝑤𝑠 1 𝑡 1 ∈ 𝐿 and 𝑤𝑠 2 𝑡 2 ∈ 𝐿,
where 𝑡 1 , 𝑡 2 are co-prime, 𝑝 ∈ dmin(𝑡 1 ) ∩ dmin(𝑡 2 ), and 𝑠 1 , 𝑠 2 are (𝑏, 𝑝)-steps, then

• dmin(𝑡 1 ) = dmin(𝑡 2 ),

• 𝑤𝑠 1 𝑡 2 ∈ 𝐿.

The learned negotiation

The negotiation learned by our algorithm is built from the following sets:

• 𝑄 ⊆ Act * is a set of traces, we often call them nodes.

There should be a unique node in 𝑄 that is also in 𝐿.

• 𝑇 ⊆ Act * is a set of co-prime traces, plus the empty trace 𝜀. From (𝑄,𝑇 , 𝑆) satisfying all invariants we can construct the negotiation N such that:

• 𝑄 is the set of nodes of N ,

• dnode(𝑢) = dmin(𝑡) if 𝑢𝑡 ∈ 𝐿 for some co-prime 𝑡 ∈ 𝑇 , and dnode(𝑢

) = Proc if 𝑢 ∈ 𝐿, • 𝑢 (𝑏,𝑝)
-→ 𝑣 if 𝑆 (𝑢, 𝑏, 𝑝) defined and 𝑢 𝑆 (𝑢, 𝑏, 𝑝) ≡ 𝑇 𝑣,

• 𝑛 init = 𝜀, and 𝑛 fin is the unique node in 𝑄 ∩ 𝐿.

Notice the use of supports in defining transitions. We cannot simply use actions to define transitions as 𝑇 contains only co-prime traces. Lemma 7.5. For every (𝑄,𝑇 , 𝑆) satisfying the invariants, the negotiation N is deterministic and satisfies the following conditions:

• The domain dnode(𝑢) is well-defined for every node 𝑢 ∈ 𝑄. • If 𝑆 (𝑢, 𝑏, 𝑝) is defined then dnode(𝑢) = dom(𝑏).

• If 𝑢

(𝑏,𝑝) -→ 𝑣 then 𝑝 ∈ dnode(𝑢) ∩ dnode(𝑣).

Note that N need not be sound. In particular, even if (𝑄,𝑇 , 𝑆) defines a sound negotiation, the triple (𝑄 ′ ,𝑇 ′ , 𝑆 ′ ) obtained after an application of Lemma 7.4 may not be sound. We will see how to restore soundness in Section 7.5. Before this we describe two operations that extend 𝑇 ′ and 𝑆 ′ .

Two operations to extend N

In response to an equivalence query Teacher may give a counter-example that Learner then analyses in order to extend N . This is described in Sections 7.4, 7.5 that follow. Here we present two operations used in these sections to actually extend N .

Absent-trans(𝑢, 𝑟 ). Suppose that we have 𝑢 ∈ 𝑄, 𝑟 coprime with 𝑢𝑟 ∈ 𝐿, but min(𝑟 ) ∉ out (𝑢). Since 𝑢𝑟 ∈ 𝐿 we know that dmin(𝑟 ) = dnode(𝑢) by Lemma 7.1. Let 𝑎 = min(𝑟 ). For every process 𝑝 ∈ dom(𝑎), consider the decomposition 𝑟 = 𝑎𝑟 ′ 𝑟 𝑝 , where 𝑝 ∉ dom(𝑟 ′ ), and 𝑟 𝑝 is either the co-prime trace with 𝑝 ∈ dmin(𝑟 𝑝 ), or 𝑟 𝑝 = 𝜀. We set 𝑆 (𝑢, 𝑎, 𝑝) = 𝑎𝑟 ′ . Since we do it for all 𝑝 ∈ dom(𝑎), invariant Domain holds. We add 𝑟 𝑝 to 𝑇 to satisfy invariant Pref '. This way we restore invariants Uniqueness, Pref, Domain, and Pref '. The Closure invariant can be restored by Lemma 7.4.

Target-mismatch(𝑢 ′ (𝑏,𝑝) -→ 𝑢, 𝑟 ). Assume we have a transition 𝑢 ′ (𝑏,𝑝) -→ 𝑢 of N and a co-prime trace 𝑟 such that 𝑢 ′ 𝑆 (𝑢 ′ , 𝑏, 𝑝)𝑟 ∈ 𝐿 ̸ ⇔ 𝑢𝑟 ∈ 𝐿. Note that 𝑝 ∈ dnode(𝑢) because of 𝑢 ′ (𝑏,𝑝) -→ 𝑢 and Lemma 7.5. Also, 𝑝 ∈ dmin(𝑟 ) because either 𝑢𝑟 ∈ 𝐿 and 𝑝 ∈ dnode(𝑢), or 𝑢 ′ 𝑆 (𝑢 ′ , 𝑏, 𝑝)𝑟 ∈ 𝐿 and Pref '. We add 𝑟 to 𝑇 . Clearly all the invariants but Closure continue to hold. Since Closure does not hold, applying Lemma 7.4 will add at least one new node to 𝑄. Afterwards all invariants are restored.

We end with a very useful lemma allowing to detect the Target-mismatch case.

Lemma 7.6. Let 𝜀 𝑎 1 ,𝑝 1 -→ 𝑢 1 𝑎 2 ,𝑝 2 -→ • • • 𝑎 𝑘 ,𝑝 𝑘
-→ 𝑢 𝑘 be a local path in N , and 𝑠 𝑖 = 𝑆 (𝑢 𝑖-1 , 𝑎 𝑖 , 𝑝 𝑖 ) be the support of the 𝑖-th transition. Let also 𝑟 be a co-prime trace such that 𝑝 𝑘 ∈ dmin(𝑟 ) and 𝑢 𝑘 𝑟 ∈ 𝐿 ̸ ⇔ 𝑠 1 . . . 𝑠 𝑘 𝑟 ∈ 𝐿. There exists some index 𝑖 such that 

𝑢 𝑖-1 𝑠 𝑖 . . . 𝑠 𝑘 𝑟 ∈ 𝐿 ̸ ⇔ 𝑢 𝑖 𝑠 𝑖+1 . . . 𝑠 𝑘 𝑟 ∈ 𝐿 Moreover 𝑢 𝑖-1 𝑎 𝑖 ,

Handling a negative counter-example

Suppose Teacher replies to an equivalence query with a negative counter-example to the equivalence between N and N :

𝑤 ∈ 𝐿 \ 𝐿 .
We show how to find a Target-mismatch case with 𝑂 (log(|𝑤 |)) membership queries.

Let 𝑣 1 be the longest prefix of 𝑤 executable in N . Let us suppose first that 𝑣 1 = 𝑤, so 𝐶 init 𝑤 -→ 𝐶 ≠ 𝐶 fin in N . Since N is sound there must exist some action 𝑎 executable in 𝐶. Assume now that 𝑤 = 𝑣 1 𝑏𝑣 2 , and chose some 𝑝 ∈ dom(𝑏). Consider the projection 𝑣 1 | 𝑝 = 𝑎 1 . . . 𝑎 𝑘 and the local path

𝜀 𝑎 1 ,𝑝 -→ 𝑢 1 . . . 𝑎 𝑘 ,𝑝 -→ 𝑢 𝑘 𝑏,𝑝 -→ 𝑢 ′ in N . Let also 𝑠 𝑖 = 𝑆 (𝑢 𝑖 , 𝑎 𝑖+1 , 𝑝),
and set 𝑢 := 𝑢 𝑘 . By the invariants of N there are some 𝑡, 𝑡 ′ ∈ 𝑇 with 𝑢𝑡 ∈ 𝐿, 𝑢 ′ 𝑡 ′ ∈ 𝐿. Also, we have 𝑢𝑆 (𝑢, 𝑏, 𝑝)

≡ 𝑇 𝑢 ′ , so 𝑢𝑆 (𝑢, 𝑏, 𝑝)𝑡 ′ ∈ 𝐿. Suppose that 𝑢 ≡ 𝑇 𝑠 1 . . . 𝑠 𝑘 holds. Then 𝑠 1 . . . 𝑠 𝑘 is executable in N because of 𝑠 1 . . . 𝑠 𝑛 𝑡 ∈ 𝐿. Consider now 𝑡 ′′ := 𝑆 (𝑢, 𝑏, 𝑝)𝑡 ′ and observe that 𝑠 1 . . . 𝑠 𝑘 𝑡 ′′ ∉ 𝐿: if 𝐶 init 𝑣 1 -→ 𝐶 and 𝐶 init 𝑠 1 ...𝑠 𝑘 -→ 𝐶 ′ then 𝐶 (𝑝) = 𝐶 ′ (𝑝)
, so action 𝑏 is impossible in N after executing 𝑠 1 . . . 𝑠 𝑘 . Therefore we have 𝑢𝑡 ′′ ∈ 𝐿 ̸ ⇔ 𝑠 1 . . . 𝑠 𝑘 𝑡 ′′ ∈ 𝐿. We can conclude by applying Lemma 7.6 to the local path 𝜀

𝑎 1 ,𝑝 -→ 𝑢 1 . . . 𝑎 𝑘 ,𝑝
-→ 𝑢 𝑘 and 𝑡 ′′ , obtaining an instance of the Target-mismatch case.

Handling a positive counter-example

Consider now the case where Teacher provides a positive counter-example:

𝑤 ∈ 𝐿 \ 𝐿
Compared to negative counter-example case, here we need to assume that N is sound, in order to be able to use the Crossing Lemma 7.3. We can show that Learner can determine an instance either of Absent-trans or of the Target-mismatch situation with 𝑂 (log(|𝑤 |) membership queries. The details can be found in the appendix.

Making N sound

Making N sound is important for two reasons. The first one is that we use the soundness of N when handling positive counter-examples. The second reason is that if Learner asks equivalence queries only when N is sound, then Teacher can answer them in Ptime, according to Cor. 4.4.3.

After handling counter-examples N is extended as described for the cases Absent-trans and Target-mismatch in Section 7.3. These do guarantee that the result satisfies the invariants, but do not guarantee that the result is sound. In the proposition below we show how N can be made sound by Learner using only membership queries.

We assume that N satisfies all the invariants of Section 7.2. A local path in N , 𝜋 = (𝑎 1 , 𝑝 1 ) . . . (𝑎 𝑘 , 𝑝 𝑘 ) determines nodes through which it passes 𝜀

𝑎 1 ,𝑝 1 -→ 𝑢 1 𝑎 2 ,𝑝 2 -→ • • • 𝑎 𝑘 ,𝑝 𝑘 -→ 𝑢 𝑘 in N .
We write 𝑆 (𝜋) for the trace 𝑆 (𝑢 0 , 𝑎 1 , 𝑝 1 ) . . . 𝑆 (𝑢 𝑘-1 , 𝑎 𝑘 , 𝑝 𝑘 ) concatenating the supports of the transitions of 𝜋. As we have observed in Lemma 7.6 this trace is co-prime. We say that 𝜋 as above is a 𝑝-path if 𝑝 𝑖 = 𝑝 for 𝑖 = 1, . . . , 𝑘. Proof. We assume throughout the proof that N is minimal. Checking whether a deterministic negotiation is sound is an Nlogspace-complete problem [START_REF] Esparza | Soundness in negotiations[END_REF]. A negotiation is not sound if and only its graph contains one of the following patterns:

F: A local path from 𝑛 init to some node 𝑛, action 𝑎 ∈ Act, two nodes 𝑛 1 , 𝑛 2 and two processes 𝑝 1 , 𝑝 2 such that ). If it is not the case then using Cor 7.6.1 she can find an instance of the Target-mismatch case with 𝑂 (log(𝑠)) membership queries, where 𝑠 is the size of N (𝑠 bounds the lengths of the paths 𝜋𝜋 1 , 𝜋𝜋 2 ). The overall number of membership queries here is 𝑂 (𝑠 |𝑇 | + log(𝑠)), accounting for all prefixes.

• {𝑝 1 , 𝑝 2 } ⊆ dom(𝑛) ∩ dom(𝑛 1 ) ∩ dom(𝑛 2 ); • for 𝑖 = 1,
We show that the remaining case is impossible. Towards contradiction suppose 𝑢 ′ 𝑖 ≡ 𝑇 𝑆 (𝜋𝜋 ′ 𝑖 ) for all prefixes 𝜋 ′ 𝑖 of 𝜋 and 𝑖 = 1, 2. By invariant Pref, both 𝑆 (𝜋𝜋 1 ) and 𝑆 (𝜋𝜋 2 ) are executable in N . Since every support 𝑆 (𝑢, 𝑏, 𝑝) is a (𝑏, 𝑝)step the trace 𝑆 (𝜋) induces the local path 𝜋 in N from 𝑛 init to some node 𝑛 with outcome 𝑎 and both 𝑝 1 , 𝑝 2 in its domain (because 𝑆 (𝜋)𝑎 is executable in N ). Similarly, 𝑆 (𝜋𝜋 1 ) induces the local 𝑝 1 -path 𝜋 1 in N , from 𝑛 to some node 𝑛 1 with both 𝑝 1 , 𝑝 2 in its domain (because of {𝑝 1 , 𝑝 2 } ⊆ dnode(𝑢 1 ) and the Pref invariant applied to 𝑢 1 ∈ 𝑄). Same applies to 𝑆 (𝜋𝜋 2 ): it induces the local 𝑝 2 -path 𝜋 2 in N , from 𝑛 to some node 𝑛 2 with both 𝑝 1 , 𝑝 2 in its domain. The two paths 𝜋 1 , 𝜋 2 are disjoint because the corresponding nodes in N are ≡ 𝑇 -inequivalent and N is minimal. Since N is sound this implies 𝑛 1 = 𝑛 2 , therefore 𝑆 (𝜋𝜋 1 ) ≡ 𝐿 𝑆 (𝜋𝜋 2 ), so in particular 𝑆 (𝜋𝜋 1 ) ≡ 𝑇 𝑆 (𝜋𝜋 2 ). We obtain a contradiction to 𝑢 1 ̸ ≡ 𝑇 𝑢 2 , using our assumption 𝑢 1 ≡ 𝑇 𝑆 (𝜋𝜋 1 ) and 𝑢 2 ≡ 𝑇 𝑆 (𝜋𝜋 2 ).

The two remaining cases, for (C) and (B) patterns, are presented in the appendix. □

Learning algorithm

We assemble all the components presented until now into a learning algorithm. We assume there is an external call EquivQuery( N ) giving Teacher's answer to the equivalence query 𝐿( N ) ?

= 𝐿(N ). The answer can be either true or a pair of a form (𝑝𝑜𝑠, 𝑤), (𝑛𝑒𝑔, 𝑤). In the latter case 𝑤 is a counterexample to the equivalence and the first component indicates if this counter-example is positive or negative. Counterexamples are handled by procedure BinS(ans, 𝑄,𝑇 , 𝑆). It does a binary search on a counter-example and returns an instance of Absent-trans or Target-mismatch, as described in Sections 7.4 and 7.5. The result of BinS(ans, 𝑄,𝑇 , 𝑆) is either a tuple (𝑎𝑏𝑠, 𝑢, 𝑟 ) for which Absent-trans(𝑢, 𝑟 ) holds, or a tuple (𝑚𝑡, 𝑢 1 , 𝑏, 𝑝, 𝑢 2 , 𝑟 ) for which Target-mismatch(𝑢 1 , 𝑏, 𝑝, 𝑢 2 , 𝑟 ) holds. The procedures OUT and TRG extend (𝑄,𝑇 , 𝑆) as described in Section 7.3. Then procedure CLOS restores invariant Closure as described in Lemma 7.4. Finally, IsSound ( N ) checks if N is sound; if not, it either returns an instance of Absent-trans (res = (𝑎𝑏𝑠, 𝑢, 𝑟 )) or of Target-mismatch (res = (𝑚𝑡, 𝑢 1 , 𝑏, 𝑝, 𝑢 2 , 𝑟 )), as described in Sections 7.5. The complexity bound for this algorithm is roughly by a factor 𝑠 bigger than that of Angluin's algorithm for finite automata. This increase is due to the part making N sound. Observe though that each time algorithm makes N sound, it adds at least one state or one transition, so the number of equivalence queries decreases.

Conclusions

We have proposed two algorithms for learning sound deterministic negotiations. Due to concurrency, negotiations can be exponentially smaller than equivalent finite automata. Yet the complexity of our algorithms, measured in the number of queries, is polynomial in the size of the negotiation, and even comparable to that of learning algorithms for finite automata.

An immediate further work is to implement the algorithms. In particular, we have not discussed how to implement equivalence queries in our active learning algorithms. If Teacher has a negotiation given explicitly then the equivalence query can be done in Ptime. In more complicated cases this task is closely related to conformance checking [START_REF] Dorofeeva | FSM-based conformance testing methods: A survey annotated with experimental evaluation[END_REF], a field developing methods to check if a system under test conforms to a given model. Examples of ingenious ways of implementing the equivalence test can be found in [START_REF] Smeenk | Applying Automata Learning to Embedded Control Software[END_REF]. Extension of these methods to distributed systems, such as negotiations, is an interesting research direction.

A Appendix

A.1 Angluin's 𝐿 * algorithm for DFA The first case is when there is no run of A on 𝑤. This can only happen when 𝑤 ∈ 𝐿 \ 𝐿( A). Let 𝑤 = 𝑤 ′ 𝑏𝑤 ′′ , such that 𝜀 𝑤 ′ -→ 𝑢 and there is no 𝑏-transition from 𝑢 in A. Learner adds 𝑏 to out (𝑢). Then she checks if 𝑢𝑏 ≡ 𝑇 𝑣 for some 𝑣 ∈ 𝑄. If this is not the case, she adds 𝑢𝑏 to 𝑄, setting out (𝑢𝑏) = ∅. Note that both invariants are preserved. The steps from this case can be repeated until 𝑤 has a run in A. The overall number of membership queries used in this step is at most |out| • |𝑇 |.

The second case is the same as for Angluin learning of complete DFA: there is a run of A on 𝑤, but 𝑤 belongs to the symmetric difference of 𝐿(A) and 𝐿( A). Assume that the run of A on 𝑤 = 𝑎 1 . . . 𝑎 𝑚 ∈ 𝐴 * is:

𝜀 𝑎 1 -→ 𝑢 1 𝑎 2 -→ 𝑢 2 . . . 𝑎 𝑚 -→ 𝑢 𝑚 .
Since (𝑤 ∈ 𝐿) ̸ ⇔ (𝑢 𝑚 ∈ 𝐿) there exists some 0 ≤ 𝑖 < 𝑛 such that 𝑢 𝑖 𝑎 𝑖+1 . . . 𝑎 𝑚 ∈ 𝐿 ̸ ⇔ 𝑢 𝑖+1 𝑎 𝑖+2 . . . 𝑎 𝑚 ∈ 𝐿. Such an index 𝑖 can be found with binary search, so that 𝑂 (log(𝑚)) membership queries are required. Learner adds 𝑎 𝑖+2 . . . 𝑎 𝑚 to 𝑇 . Now 𝑢 𝑖 𝑎 𝑖+1 ̸ ≡ 𝑇 𝑢 𝑖+1 , so 𝑢 𝑖 𝑎 𝑖+1 is added to 𝑄. Setting out (𝑢 𝑖 𝑎 𝑖+1 ) = ∅ restores the Uniqueness invariant.

The Closure invariant is also easy to restore. Suppose after adding 𝑎 𝑖+2 . . . 𝑎 𝑚 to 𝑇 for some 𝑢 ∈ 𝑄, and 𝑎 ∈ out (𝑢) there is no 𝑣 ∈ 𝑄 with 𝑢𝑎 ≡ 𝑇 𝑣. In this case add 𝑢𝑎 to 𝑄, and set out (𝑢𝑎) = ∅. This operation does not invalidate Uniqueness.

Restoring Closure after adding one element to 𝑇 requires |out| membership queries since for every 𝑢 ∈ 𝑄, 𝑎 ∈ out (𝑢) there is a unique possible 𝑣 to check, the one that was suitable before extending 𝑇 .

The For the converse inclusion we show a stronger statement: if 𝑤 is an execution of N A then it is an execution of N . The statement is stronger as we do not require that 𝑤 is complete.

Let 𝑤 = 𝑢𝑎𝑣 be an execution in N A . Suppose that 𝑢 can be executed in N . We show that 𝑢𝑎 can be executed in N as well. We have

𝐶 init 𝑢 -→ 𝐶 in N and 𝐶 ′ init 𝑢 -→ 𝐶 ′ 𝑎 -→ 𝐶 ′′ in N A . Consider the projection 𝑢 | 𝑝 on some process 𝑝. By the definition of N A we have 𝐶 ′ (𝑝) = 𝛿 A (𝑠 0 , 𝑢 | 𝑝 ).
Since 𝑎 is enabled in 𝐶 ′ and by Lemma 4.1, there is some state 𝑠 of A with 𝑎 𝑞 ∈ out (𝑠) and 𝛿 A (𝑠 0 , 𝑢 | 𝑞 ) = 𝑠 for all 𝑞 ∈ dom(𝑎). For every 𝑝 ∈ dom(𝑎) consider now the node 𝑛 𝑝 reached by the path 𝑢 | 𝑝 in N . By Lemma 4.1, 𝐶 (𝑝) = 𝑛 𝑝 . Because 𝑢 | 𝑝 𝑎 𝑝 is a prefix of a complete path from Paths(N ), we get 𝑎 ∈ out (𝑛 𝑝 ) and 𝑝 ∈ dnode(𝑛 𝑝 ). If 𝑛 𝑝 ≠ 𝑛 𝑞 for some 𝑝, 𝑞 ∈ dom(𝑎) then 𝐶 would be a deadlock, which is impossible as N is sound. Hence, 𝑎 is enabled in 𝐶. Finally, if 𝑤 is a complete execution of N A then it is complete in N as well, because the set of local paths is prefix-free.

It Proof. The first possibility is that 𝑣 = 𝑤 but 𝐶 is not a final configuration in N . Since 𝑤 ∉ 𝐿, for some process 𝑝 we have that 𝑢 = 𝐶 (𝑝) is not the final node. Hence 𝑢 ∉ 𝐿 𝑃 while 𝑤 | 𝑝 ∈ 𝐿 𝑃 by Corollary 4.4.1. We get the Node-mismatch statement of the lemma for 𝜋 = 𝜀.

For the rest of the proof consider some 𝑏 ∈ min(𝑣 -1 𝑤). Since 𝑏 is not enabled in 𝐶 we have one of the two cases:

Case 1: 𝐶 (𝑝) = 𝑢 for all 𝑝 ∈ dom(𝑏). This is possible only when 𝑏 𝑝 ∉ out (𝑢) for some 𝑝, but then by invariant Domain, the same holds for all 𝑞 ∈ dom(𝑏). Take 𝑟 = 𝑣 -1 𝑤. 

𝐶 init 𝑤 -→ 𝐼 (𝑚) 𝑠 1 -→ 𝐼 (𝑛 1 ) 𝑡 1 -→ 𝐶 fin 𝐶 init 𝑤 -→ 𝐼 (𝑚) 𝑠 2 -→ 𝐼 (𝑛 2 ) 𝑡 2 -→ 𝐶 fin . Now, Lemma 7.2 gives 𝑛 1 = 𝑛 2 = 𝑛 because 𝑚 (𝑏,𝑝) -→ 𝑛 1 , 𝑚 (𝑏,𝑝)
-→ 𝑛 2 and N being deterministic. So dmin(𝑡 1 ) = dmin(𝑡 2 ) by Lemma 7.1. This also entails: Proof. Suppose that for some 𝑢 ∈ 𝑄 and 𝑆 (𝑢, 𝑏, 𝑝) there is no 𝑣 ∈ 𝑄 with 𝑢 𝑆 (𝑢, 𝑏, 𝑝) ≡ 𝑇 ′ 𝑣. Add 𝑢 𝑆 (𝑢, 𝑏, 𝑝) to 𝑄 and make 𝑆 (𝑢 𝑆 (𝑢, 𝑏, 𝑝)) undefined for all actions. Observe that the invariants are preserved, in particular, 𝑢 𝑆 (𝑢, 𝑏, 𝑝) satisfies invariant Pref because of Pref '.

𝐶 init 𝑤 -→ 𝐼 (𝑚) 𝑠 1 -→ 𝐼 (𝑛)
Let us count the membership queries. There are two cases. If 𝑆 (𝑢, 𝑏, 𝑝) was defined, then there was some 𝑣 ∈ 𝑄 with 𝑢 𝑆 (𝑢, 𝑏, 𝑝) ≡ 𝑇 𝑣. We need to ask only membership queries for 𝑢 𝑆 (𝑢, 𝑏, 𝑝)𝑡 ′ and 𝑣𝑡 ′ with 𝑡 ′ ∈ 𝑇 ′ \ 𝑇 . Otherwise, if 𝑆 ′ (𝑢, 𝑏, 𝑝) is new we need membership queries 𝑢 𝑆 ′ (𝑢, 𝑏, 𝑝)𝑡 ′ for all 𝑡 ′ ∈ 𝑇 ′ . □ Lemma 7.5: For every (𝑄,𝑇 , 𝑆) satisfying the invariants, the negotiation N is deterministic and satisfies the following conditions:

• The domain dnode(𝑢) is well-defined for every node 𝑢 ∈ 𝑄. • If 𝑆 (𝑢, 𝑏, 𝑝) is defined then dnode(𝑢) = dom(𝑏).

• If 𝑢 (𝑏,𝑝) -→ 𝑣 then 𝑝 ∈ dnode(𝑢) ∩ dnode(𝑣).

Proof. Note first that the domain dnode(𝑢) is well-defined according to Lemma 7.1 and invariant Pref.

For the second statement suppose that 𝑆 (𝑢, 𝑏, 𝑝) is defined. By Pref ', 𝑢𝑆 (𝑢, 𝑏, 𝑝)𝑡 ∈ 𝐿 for some 𝑡 ∈ 𝑇 which is either empty or has 𝑝 ∈ dmin(𝑡). In both cases, by Lemma 7.1 and the definition of domains we obtain dnode(𝑢) = dmin(𝑆 (𝑢, 𝑏, 𝑝)𝑡) = dom(𝑏).

For the last statement, the transition 𝑢 (𝑏,𝑝) -→ 𝑣 entails 𝑢 𝑆 (𝑢, 𝑏, 𝑝) ≡ 𝑇 𝑣. Moreover, by Pref ' there is 𝑡 ∈ 𝑇 with 𝑢 𝑆 (𝑢, 𝑏, 𝑝) 𝑡 ∈ 𝐿 and either 𝑡 = 𝜀 or 𝑝 ∈ dmin(𝑡). Hence 𝑣𝑡 ∈ 𝐿, so 𝑝 ∈ dnode(𝑣) holds in both cases by the definition of node domains. We also have 𝑝 ∈ dnode(𝑢) by the second statement of the lemma. □

Handling a positive counter-example. In this part we need to assume that N is sound, in order to be able to use the Crossing Lemma 7.3.

We start by taking the longest trace-prefix 𝑣 1 of 𝑤 executable in N . We get 𝑤 = 𝑣 1 𝑏𝑟 1 and 𝐶 init 𝑣 1 -→ 𝐶 1 with 𝑏 not enabled in 𝐶 1 : there is 𝑝 ∈ dom(𝑏) with 𝑢 𝑏 = 𝐶 1 (𝑝) having no outgoing transition on 𝑏. The sequence 𝑏𝑟 1 is trace-equivalent to 𝑣 2 𝑏𝑟 2 , with 𝑏𝑟 2 co-prime. For 𝑣 = 𝑣 1 𝑣 2 we have that 𝑤 and 𝑣𝑏𝑟 2 are trace-equivalent, and 𝑣𝑡 ∉ 𝐿 for every co-prime 𝑡 starting with 𝑏.

It may happen that there is no run 𝐶 init 𝑣 -→, so we introduce a notation. We write 𝐶 init We show that 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑝)𝑡 𝑘 ∈ 𝐿 is impossible. Observe that 𝑝 ∈ dmin(𝑡) ∩ dmin(𝑡 𝑘 ) because 𝑝 ∈ dom(𝑛 𝑘 ) ∩ dnode(𝑢 𝑘 ). This allows us to apply Crossing Lemma 7.3 to 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑝)𝑡 𝑘 ∈ 𝐿 and 𝑣 𝑘-1 𝑠 𝑘 𝑡 ∈ 𝐿. We get 𝑣 𝑘-1 𝑠 𝑘 𝑡 𝑘 = 𝑣 𝑘 𝑡 𝑘 ∈ 𝐿, contradicting the assumption [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF]. □ Lemma A.2. Suppose we have 𝑣 𝑘 , and a co-prime trace 𝑡 𝑘 such that for some 𝑢 𝑘 :

𝐶 init 𝑣 𝑘 ↦ -→ 𝑢 𝑘 𝑢 𝑘 𝑡 𝑘 ∉ 𝐿 𝑣 𝑘 𝑡 𝑘 ∈ 𝐿 (2) 
Then either Target-mismatch holds for some transition going into 𝑢 𝑘 and trace 𝑡 𝑘 , or we can find a shorter 𝑣 𝑘-1 and some 𝑡 𝑘-1 for which either the conditions (2) or the conditions of Lemma A.1 hold.

Observe that conditions (2) hold for 𝑣 𝑘 = 𝑣, 𝑢 𝑘 = 𝑢 𝑏 , and 𝑡 𝑘 = 𝑏𝑟 2 . Thus the positive case will be complete by proving Lemma A.2:

Proof of Lemma A.2. Consider the last letter of 𝑣 𝑘 , say 𝑐, and some process 𝑞 ∈ dom(𝑐). In N we have 𝑢 𝑘-1 𝑐,𝑞 -→ 𝑢 𝑘 for some 𝑢 𝑘-1 . By the invariants for N there exists a support 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞) such that 𝑢 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞) ≡ 𝑇 𝑢 𝑘 .

If 𝑢 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 𝑘 ∈ 𝐿 then 𝑢 𝑘-1 𝑐,𝑞 -→ 𝑢 𝑘 together with 𝑡 𝑘 forms a Target-mismatch case.

We are left to consider 𝑢 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 𝑘 ∉ 𝐿. We need to find 𝑣 𝑘-1 with 𝐶 init This holds as 𝐶 init 𝑣 𝑘-1 𝑠 𝑘 ↦ -→ 𝑢 𝑘 and 𝑠 𝑘 is a (𝑐, 𝑞)-step. If 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 𝑘 ∈ 𝐿 we get properties (2) for 𝑣 𝑘-1 and 𝑡 𝑘-1 = 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 𝑘 .

The last case is when 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 𝑘 ∉ 𝐿. By invariants for N , there is 𝑡 ∈ 𝑇 such that 𝑢 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 ∈ 𝐿. We claim that 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 ∉ 𝐿, giving us conditions (1) of Lemma A.1 for 𝑡 𝑘-1 = 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡. To see the claim, suppose to the contrary that 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 ∈ 𝐿. Since 𝑣 𝑘-1 𝑠 𝑘 𝑡 𝑘 ∈ 𝐿 the Crossing Lemma 7.3 implies 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑞)𝑡 𝑘 ∈ 𝐿, but we have assumed the contrary. □ Proof of Proposition 7.6.1. We present the remaining two cases of the proof.

Assume now that Learner finds some pattern C (nondominant cycle). This means that N has some local paths 𝜋 1 , 𝜋 2 , with 𝜋 1 from 𝜀 to some node 𝑢 ∈ 𝑄, and 𝜋 2 a cycle from 𝑢 to 𝑢 with no node containing in its domain all processes on the cycle. If 𝑢 ̸ ≡ 𝑇 𝑆 (𝜋 1 𝜋 𝑘 2 ) for some 𝑘 then Learner finds an instance of the Target-mismatch case. We claim that this holds for 𝑘 = 𝑠, where 𝑠 is the size of N . Since Learner
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 1 Figure 1. A sound, deterministic negotiation

Lemma 4 . 1 .

 41 Let N be a deterministic negotiation, 𝐶 𝑢 -→ 𝐶 ′ an execution in N , and 𝑝 a process. The projection 𝑢 | 𝑝 of 𝑢 on 𝑝 is a local path in N from 𝐶 (𝑝) to 𝐶 ′ (𝑝).

Proposition 4 . 4 . 1 .

 441 Let N be a sound deterministic negotiation and A the minimal DFA accepting Paths(N ). Then 𝐿(N ) = 𝐿(N A ). Moreover N A is deterministic and sound. Corollary 4.4.1. Let N be sound and deterministic, and let 𝑤 ∈ Act * be such that 𝑤 | 𝑝 ∈ Paths(N ) for all 𝑝 ∈ Proc. Then 𝑤 ∈ 𝐿(N ).

Corollary 4 . 4 . 2 .

 442 Let N be sound, deterministic, and let A be the minimal DFA accepting Paths(N ). Then there is a homomorphism from N to N A .Corollary 4.4.3. Language equivalence of sound, deterministic negotiations can be checked in Ptime.

Lemma 6 . 2 .

 62 Consider a positive counter-example 𝑤 ∈ 𝐿 \ 𝐿. Let 𝑣 be the maximal trace-prefix of 𝑤 executable in N . So we have 𝐶 init 𝑣 -→ 𝐶 in N , and no action in min(𝑣 -1 𝑤) can be executed from 𝐶. With at most |Proc| membership queries Learner can determine one of the following situations: Absent-trans: An action 𝑏 ∈ min(𝑣 -1 𝑤), a node 𝑢 ∈ 𝐴 * dom of N , and a sequence 𝑟 ∈ Act * starting with 𝑏 such that for every 𝑝 ∈ dom(𝑏): 𝑢 𝑟 | 𝑝 ∈ 𝐿 𝑃 and 𝑏 𝑝 ∉ out (𝑢) .

  : A process 𝑝, and a local path 𝜋 ∈ 𝐴 * dom such that 𝑣 | 𝑝 𝜋 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢 𝜋 ∈ 𝐿 𝑃 with 𝑢 = 𝐶 (𝑝) . The case of negative counter-examples is much simpler, and we get the Node-mismatch case as in Lemma 6.2 for 𝜋 = 𝜀: Lemma 6.3. Consider a negative counter-example 𝑤 ∈ 𝐿\𝐿, and let 𝐶 init 𝑤 -→ 𝐶. With at most |Proc| membership queries Learner can find a process 𝑝 such that 𝑤 | 𝑝 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢 ∈ 𝐿 𝑃 for 𝑢 = 𝐶 (𝑝) .

  𝑎 𝑘 -→ 𝑢 𝑘 the run of A on 𝑣 | 𝑝 (this run exists since 𝐶 init 𝑣 -→ 𝐶). We have 𝑢 = 𝑢 𝑘 and 𝑎 1 . . . 𝑎 𝑘 𝜋 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢 𝑘 𝜋 ∈ 𝐿 𝑃 . So there is some 𝑖 ∈ {1, . . . , 𝑘 -1} such that 𝑢 𝑖 𝑎 𝑖+1 . . . 𝑎 𝑘 𝜋 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢 𝑖+1 𝑎 𝑖+2 . . . 𝑎 𝑘 𝜋 ∈ 𝐿 𝑃

Figure 2 .

 2 Figure 2. Partial order of execution 𝑢𝑠𝑡. The blue part 𝑠 is a (𝑐, 𝑞)-step, of some process 𝑞 ∈ dom(𝑏) ∩ dom(𝑐). No action of 𝑞, besides 𝑐, appears in 𝑠. Both 𝑡 and 𝑠𝑡 are coprime. Actions 𝑐, 𝑏 are outcomes of two nodes, and process 𝑞 participates in both.

Lemma 7 . 2 .

 72 Let 𝐶 init * -→ 𝐼 (𝑚) 𝑢 -→ 𝐼 (𝑛) * -→ 𝐶 fin be an execution of N . We have 𝑚 (𝑏,𝑝)

Lemma 7 . 4 .

 74 Uniqueness and Closure are the basic invariants, as in Sections 5 and 6. Domain and Pref are the counterparts of the invariants in Section 6. Note that Pref ' is not a direct consequence of Pref and Closure because it puts an additional condition on dmin(𝑡). The next lemma shows how to restore the Closure invariant once the other four hold. If a triple (𝑄,𝑇 , 𝑆) satisfies all invariants Uniqueness, Pref, Domain, Pref ', Closure, and (𝑄,𝑇 ′ , 𝑆 ′ ) with 𝑇 ⊆ 𝑇 ′ and 𝑆 ⊆ 𝑆 ′ satisfies all invariants but Closure, then Learner can extend 𝑄 and restore all five invariants using 𝑂 (|𝑆 |(|𝑇 ′ \ 𝑇 |) + (|𝑆 ′ \ 𝑆 |)|𝑇 ′ |) membership queries.

  Chose some 𝑝 ∈ dom(𝑎) and consider the projection 𝑤 | 𝑝 = 𝑎 1 . . . 𝑎 𝑘 . In N we have a local path 𝜀 𝑎 1 ,𝑝 -→ 𝑢 1 . . . 𝑎 𝑘 ,𝑝 -→ 𝑢 𝑘 = 𝑢 and 𝑢 ∈ 𝐿 by assumption (𝑤 ∈ 𝐿). Let 𝑠 𝑖 = 𝑆 (𝑢 𝑖-1 , 𝑎 𝑖 , 𝑝) be the support of the 𝑖-th transition. If 𝑢 ≡ 𝑇 𝑠 1 . . . 𝑠 𝑘 then 𝑠 1 . . . 𝑠 𝑘 ∈ 𝐿. But this is impossible, as (𝑠 1 . . . 𝑠 𝑘 )| 𝑝 = 𝑤 | 𝑝 , so 𝐶 init 𝑠 1 ...𝑠 𝑘 -→ 𝐶 ′ with 𝐶 ′ (𝑝) = 𝐶 (𝑝). So 𝑢 ̸ ≡ 𝑇 𝑠 1 . . . 𝑠 𝑘 and we obtain by Corollary 7.6.1 an instance of the Target-mismatch case, after adding one trace to 𝑇 .

Proposition 7 . 6 . 1 .

 761 Learner can check in Ptime if N is sound. If the answer is no, then Learner can find either an instance of Absent-trans or of Target-mismatch, with 𝑂 (𝑠 |𝑇 | + log(𝑚)) membership queries.

4 Proposition 4 . 4 . 1

 4441 algorithm terminates, as in each case either 𝑄 or out grows. Note that |𝑇 | ≤ |𝑄 | since 𝑇 is extended only in the second case, where 𝑄 is extended too. The algorithm ends with A being the minimal DFA of 𝐿. In total it uses at most 𝑂 (|𝑄 |(|out| + log(𝑚)) membership queries, where 𝑚 is the maximal length of counter-examples given by Teacher. The number of equivalence queries is bounded by |𝑄 | + |out|. Note that Angluin's algorithm for complete DFA uses |𝑄 | equivalence queries and 𝑂 (|𝑄 |(|𝑄 ||𝐴| + log(𝑚))) membership queries[START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF]. However, the size |𝑜𝑢𝑡 | of the target DFA may be much smaller than |𝑄 ||𝐴|, in particular if 𝐴 is very large compared to the maximal out-degree of states.A.2 Missing proofs from Section Let N be a sound deterministic negotiation and A the minimal DFA accepting Paths(N ). Then 𝐿(N ) = 𝐿(N A ). Moreover N A is deterministic and sound.Proof. By definition N A is deterministic.We show first 𝐿(N ) ⊆ 𝐿(N A ). Let 𝑤 ∈ 𝐿(N ) and suppose that 𝑢 ≼ 𝑤 is the maximal trace-prefix of 𝑤 ∈ Act * that is executable inN A . Let also 𝐶 init 𝑢 -→ 𝐶 in N and 𝐶 ′ init 𝑢 -→ 𝐶 ′ in N A . Assume first that |𝑢 | < |𝑤 |and let 𝑎 be the first letter after 𝑢 in 𝑤: 𝑤 = 𝑢𝑎𝑢 ′ . Since 𝑎 is enabled in 𝐶 there is some node 𝑛 with 𝐶 (𝑝) = 𝑛 for all 𝑝 ∈ dom(𝑎). By Lemma 4.1 the projection 𝑢 | 𝑝 of 𝑢 on 𝑝 is a local path in N , from 𝑛 init to 𝑛. This means that (𝑢 | 𝑝 ) -1 Paths(N ) = (𝑢 | 𝑞 ) -1 Paths(N ) for all 𝑝, 𝑞 ∈ dom(𝑎). Since A is the minimal DFA for Paths(N ), there is a state 𝑠 of A such that for every process 𝑝 ∈ dom(𝑎), A reaches 𝑠 after reading 𝑢 | 𝑝 . So in 𝐶 ′ we have 𝐶 ′ (𝑝) = 𝑠 for all 𝑝 ∈ dom(𝑎); by Lemma 4.1. Hence, 𝑎 is enabled in 𝐶 ′ , a contradiction to the assumption that 𝑎 is not executable in 𝐶 ′ .It remains to consider the case where 𝑢 ≈ 𝑤. Here we have that 𝑤 | 𝑝 ∈ Paths(N ) for every process 𝑝, so 𝑤 | 𝑝 is a local path in N A from the initial to the final node. This entails 𝑤 ∈ 𝐿(N A ) by Lemma 4.1.

  : A process 𝑝, and a local path 𝜋 ∈ 𝐴 * dom such that 𝑣 | 𝑝 𝜋 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢 𝜋 ∈ 𝐿 𝑃 with 𝑢 = 𝐶 (𝑝) .

𝑡 2 -Lemma 7 . 4 :

 274 → 𝐶 fin . □ If a triple (𝑄,𝑇 , 𝑆) satisfies all invariants Uniqueness, Pref, Domain, Pref ', Closure, and (𝑄,𝑇 ′ , 𝑆 ′ ) with 𝑇 ⊆ 𝑇 ′ and 𝑆 ⊆ 𝑆 ′ satisfies all invariants but Closure, then Learner can extend 𝑄 and restore all five invariants using 𝑂 (|𝑆 |(|𝑇 ′ \ 𝑇 |) + (|𝑆 ′ \ 𝑆 |)|𝑇 ′ |) membership queries.

𝑣 3 ↦ 4 - 3 ↦

 343 -→ 𝑢 if for the maximal executable trace-prefix of 𝑣 4 of 𝑣 3 we have 𝐶 init 𝑣 → 𝐶 and 𝐶 (𝑝) = 𝑢 for some 𝑝. So 𝐶 init 𝑣 -→ 𝑢 means that by executing the maximal possible trace-prefix of 𝑣 3 some process reaches node 𝑢 in N . Thus we have 𝐶 init 𝑣 ↦ -→ 𝑢 𝑏 , for 𝑣, 𝑢 𝑏 defined in the previous paragraph.If 𝑢 𝑏 𝑏𝑟 2 ∈ 𝐿 then we are in the Absent-trans case. Hence suppose 𝑢 𝑏 𝑏𝑟 2 ∉ 𝐿. We show below how Learner finds an instance of Target-mismatch in N . For this we use two auxiliary lemmas:Lemma A.1. Suppose we have 𝑢 𝑘 , 𝑣 𝑘 , 𝑡 𝑘 and co-prime 𝑡 with the following properties:𝐶 init 𝑣 𝑘 ↦ -→ 𝑢 𝑘 𝑢 𝑘 𝑡 𝑘 ∈ 𝐿 𝑣 𝑘 𝑡 𝑘 ∉ 𝐿 𝑣 𝑘 𝑡 ∈ 𝐿 (1)Then either Target-mismatch holds for some transition going into 𝑢 𝑘 and trace 𝑡 𝑘 , or we can find 𝑣 𝑘-1 shorter than 𝑣 𝑘 , and 𝑢 𝑘-1 , 𝑡 𝑘-1 for which properties (1) hold.Proof. Because 𝑡 is assumed to be co-prime we have in N a run of the form 𝐶 init𝑣 𝑘 -→ 𝐼 (𝑛 𝑘 ) 𝑡 -→ 𝐶 fin .Consider the last letter of 𝑣 𝑘 , say 𝑐, and some process 𝑝 ∈ dom(𝑐). We must have 𝑛 𝑘-1 𝑐,𝑝 -→ 𝑛 𝑘 for some node 𝑛 𝑘-1 in N . We get a decomposition of the above run as 𝐶 init𝑣 𝑘-1 -→ 𝐼 (𝑛 𝑘-1 ) 𝑠 𝑘 -→ 𝐼 (𝑛 𝑘 ) 𝑡 -→ 𝐶 fin with 𝑠 𝑘 a (𝑐, 𝑝)-step.In N we have a corresponding transition 𝑢 𝑘-1 𝑐,𝑝 -→ 𝑢 𝑘 . If 𝑢 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑝)𝑡 𝑘 ∉ 𝐿 then we have the Target-mismatch case for this transition and 𝑡 𝑘 .So we suppose 𝑢 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑝)𝑡 𝑘 ∈ 𝐿 for the rest of the proof. Observe that 𝐶 init 𝑣 𝑘-1 ↦ -→ 𝑢 𝑘-1 . If 𝑣 𝑘-1 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑝)𝑡 𝑘 ∉ 𝐿 then we get the conclusion of the lemma for 𝑡 𝑘-1 = 𝑆 (𝑢 𝑘-1 , 𝑐, 𝑝)𝑡 𝑘 and the co-prime trace 𝑠 𝑘 𝑡.

𝑣 𝑘- 1 ↦

 1 -→ 𝑢 𝑘-1 . For this we take a run in N : 𝐶 init 𝑣 𝑘 -→ 𝐼 (𝑛 𝑘 ) 𝑡 𝑘 -→ 𝐶 fin . It exists as 𝑣 𝑘 𝑡 𝑘 ∈ 𝐿, and 𝑡 𝑘 is a co-prime trace so the intermediate configuration must be of the form 𝐼 (𝑛 𝑘 ) for some 𝑛 𝑘 . Since 𝑐 is the last letter of 𝑣 𝑘 , we have a transition 𝑛 𝑘-1 𝑐,𝑞 -→ 𝑛 𝑘 in N , for some 𝑛 𝑘-1 . Lemma 7.2 allows us to decompose this run further into 𝐶 init 𝑣 𝑘-1 -→ 𝐼 (𝑛 𝑘-1 ) 𝑠 𝑘 -→ 𝐼 (𝑛 𝑘 ) 𝑡 𝑘 -→ 𝐶 fin with 𝑠 𝑘 being a (𝑐, 𝑞)step, and 𝑣 𝑘-1 some strict prefix of 𝑣 𝑘 . We claim 𝐶 init 𝑣 𝑘-1 ↦ -→ 𝑢 𝑘-1 .

𝑛 init is the initial node, 𝑛 fin the final one, and dnode(𝑛 init ) = dnode(𝑛 fin ) = Proc; • 𝛿 : 𝑁 × Act × Proc .

  

	Definition 3.1. A negotiation diagram over a distributed
	alphabet (Act, dom) is a tuple N = ⟨Proc, 𝑁 , dnode, Act, dom,
	𝛿, 𝑛 init , 𝑛 fin ⟩, where
	• Proc = {𝑝, 𝑞, . . . } is a finite set of processes;
	• 𝑁 = {𝑚, 𝑛, . . . } is a finite set of nodes, each node 𝑛 has
	a non-empty domain dnode(𝑛) ⊆ Proc;
	•

  [𝑢] 𝑇 for the ≡ 𝑇 -class of 𝑢 ∈ 𝐴 * dom . The learning algorithm will preserve the following invariants for a triple (𝑄,𝑇 , out): Uniqueness For all 𝑢, 𝑣 ∈ 𝑄, 𝑢 ≡ 𝑇 𝑣 implies 𝑢 = 𝑣. Closure For every 𝑢 ∈ 𝑄, 𝑎 ∈ out (𝑢) there exists 𝑣 ∈ 𝑄 with 𝑢𝑎 ≡ 𝑇 𝑣. Pref For every 𝑢 ∈ 𝑄 there is some 𝑡 ∈ 𝑇 with 𝑢𝑡 ∈ 𝐿 𝑃 . Domain For every 𝑢 ∈ 𝑄 and every 𝑎 𝑝 , 𝑎 𝑞 ∈ 𝐴 dom : 𝑎 𝑝 ∈ 𝑜𝑢𝑡 (𝑠) iff 𝑎 𝑞 ∈ out (𝑠). The first two invariants are the same as in Section 5. The third one is important to determine the domain of a node: if 𝑢 can be extended to a complete path, we know one outgoing action from 𝑢, and this determines the domain of 𝑢. The last invariant is the first condition of dom-completeness (Definition 4.2). Note that Closure and Pref entail the other condition of dom-completeness: if {𝑎 𝑝 , 𝑏 𝑞 } ⊆ out (𝑢) for 𝑢 ∈ 𝑄 then 𝑢𝑎 𝑝 and 𝑢𝑏 𝑞 are local paths because of Closure

and Pref ; so 𝑢 leads in N to some node 𝑛 with outgoing actions 𝑎, 𝑏, hence dom(𝑎) = dom(𝑏) = dnode(𝑛). Lemma 6.1. If (𝑄,𝑇 , out) satisfies all four invariants Uniqueness, Closure, Pref, Domain then the associated automaton A is dom-complete, so a deterministic negotiation N = N A can be defined, see

Definition 4.4. 

  res, 𝑤) ← EquivQuery(N ∅ ); if (res = true) then return N ∅ ; (𝑄,𝑇 , out) ← ({𝜀}, {𝑤 |

	// add missing transitions
	if (Node-mismatch) then BinS(𝑤, 𝑄,𝑇 , out);
	// add new state	
	CLOS(𝑄,𝑇 , out) ;	// restore Closure
	end	
	Algorithm 1: Learning sound negotiations with mem-
	bership queries about local paths.

𝑝 : 𝑝 ∈ Proc}, out (𝜀) = ∅) OUT (𝑤, 𝑄,𝑇 , out) ; // add missing transitions CLOS(𝑄,𝑇 , out) ; // restore Closure while (res = false) do N ← Negotiation(𝑄,𝑇 , out); // build N (res, 𝑤) ← EquivQuery( N ) ; // ask Teacher if (res = true) then return N ; if (Absent-trans) then OUT (𝑤, 𝑄,𝑇 , out);

  • 𝑆 : 𝑄 × Act × Proc → Act * is a partial function giving supports for transitions: if defined, 𝑆 (𝑢, 𝑏, 𝑝) is a (𝑏, 𝑝)step. The use of co-prime traces for𝑇 is motivated by Lemma 7.1, as runs from configurations of the form 𝐼 (𝑛) are co-prime traces. The support function is new. It is a generalization of the mapping out from Sections 5 and 6. As described by Lemma 7.2, when a process 𝑝 executes an action 𝑏 reaching a new node 𝑛, other processes need also to progress until 𝑛 becomes the only executable node; such a progress is a trace, and the support 𝑆 (𝑢, 𝑏, 𝑝) is one such trace.Our construction will preserve the following invariants: Uniqueness For every 𝑢, 𝑣 ∈ 𝑄, 𝑢 ≡ 𝑇 𝑣 implies 𝑢 = 𝑣.Pref For every 𝑢 ∈ 𝑄 there is 𝑡 ∈ 𝑇 such that 𝑢𝑡 ∈ 𝐿.

Domain If the support 𝑆 (𝑢, 𝑏, 𝑝) is defined then 𝑆 (𝑢, 𝑏, 𝑞) is defined for all 𝑞 ∈ dom(𝑏). Pref ' If the support 𝑆 (𝑢, 𝑏, 𝑝) is defined then there exists some 𝑡 ∈ 𝑇 with 𝑢 𝑆 (𝑢, 𝑏, 𝑝) 𝑡 ∈ 𝐿. Moreover, if 𝑡 ≠ 𝜀 then 𝑝 ∈ dmin(𝑡). Closure If the support 𝑆 (𝑢, 𝑏, 𝑝) is defined then there is some 𝑣 ∈ 𝑄 with 𝑢𝑆 (𝑢, 𝑎, 𝑝) ≡ 𝑇 𝑣.

  𝑝 𝑖 -→ 𝑢 𝑖 together with 𝑠 𝑖+1 . . . 𝑠 𝑘 𝑟 is an instance of the Target-mismatch case. Such an index 𝑖 can be found with 𝑂 (log(𝑘)) membership queries.Proof. By assumption, 𝑢 𝑘 𝑟 ∈ 𝐿 ̸ ⇔ 𝑠 1 . . . 𝑠 𝑘 𝑟 ∈ 𝐿 for 𝑟 coprime with 𝑝 𝑘 ∈ dmin(𝑟 ). Setting 𝑢 0 = 𝜀 we see that we cannot have 𝑢 𝑖-1 𝑠 𝑖 . . . 𝑠 𝑘 𝑟 ∈ 𝐿 ⇔ 𝑢 𝑖 𝑠 𝑖+1 . . . 𝑠 𝑘 𝑟 ∈ 𝐿 for all 𝑖 = 1, . . . , 𝑘. Finding such an 𝑖 is done with binary search.In order to have get a Target-mismatch case we need to verify that 𝑠 𝑖+1 . . . 𝑠 𝑘 𝑟 is co-prime. Recall that each 𝑠 𝑖 is coprime with minimal element 𝑎 𝑖 . Since 𝑎 𝑖 and 𝑎 𝑖+1 have a process in common, 𝑎 𝑖+1 is after 𝑎 𝑖 in 𝑠 𝑖 𝑠 𝑖+1 , hence all elements of 𝑠 𝑖+1 are after 𝑎 𝑖 in 𝑠 𝑖 𝑠 𝑖+1 . Repeating this argument we obtain that 𝑠 𝑖 . . . 𝑠 𝑘 is co-prime. Finally, 𝑠 𝑖 . . . 𝑠 𝑘 𝑟 is co-prime because 𝑟 is co-prime and 𝑝 𝑘 ∈ dmin(𝑠 𝑘 ) ∩ dmin(𝑟 ). 𝑎 𝑘 ,𝑝 𝑘 -→ 𝑢 𝑘 be a local path in N , and 𝑠 𝑖 = 𝑆 (𝑢 𝑖 , 𝑎 𝑖+1 , 𝑝 𝑖+1 ) be the support of the 𝑖-th transition. If 𝑢 𝑘 ̸ ≡ 𝑇 𝑠 1 . . . 𝑠 𝑘 then with 𝑂 (log(𝑘)) queries one can find 𝑢 𝑖 𝑎 𝑖 ,𝑝 𝑖 -→ 𝑢 𝑖+1 and 𝑠 𝑖+1 . . . 𝑠 𝑘 𝑟 forming an instance of the Target-mismatch case.

			□
	Corollary 7.6.1. Let 𝜀	𝑎 1 ,𝑝 1 -→ 𝑢 1	𝑎 2 ,𝑝 2 -→ • • •

  2 there exists a 𝑝 𝑖 -path 𝜋 𝑖 from node 𝛿 (𝑛, 𝑎, 𝑝 𝑖 ) to node 𝑛 𝑖 ; and • 𝜋 1 and 𝜋 2 are disjoint. C: A local path which is a cycle and has no node 𝑛 on it with dom(𝑛) containing all processes occurring in the cycle; moreover this cycle is reachable. B: A node that is reachable from 𝑛 init by a 𝑝-path, but has not 𝑝-path to 𝑛 fin . Assume first that Learner finds some pattern of type F (fork) in N . This means that she finds some words 𝑢, 𝑢 1 , 𝑢 2 ∈ 𝑄 with 𝑢 1 ≠ 𝑢 2 , {𝑝 1 , 𝑝 2 } ⊆ dnode(𝑢) ∩dnode(𝑢 1 ) ∩dnode(𝑢 2 ), and local paths 𝜋, 𝜋 1 , 𝜋 2 ∈ 𝐴 * dom with 𝜀 𝑢 𝑖 , and 𝜋 𝑖 ∈ 𝑎 𝑝 𝑖 𝐴 * dom , for 𝑖 = 1, 2. Moreover, every support in 𝑆 (𝜋 1 ) is a (𝑏, 𝑝 1 )-step for some 𝑏, and every support in 𝑆 (𝜋 2 ) is a (𝑐, 𝑝 2 )-step, for some 𝑐. 𝑢 𝑖 . For every prefix 𝜋 ′ 𝑖 of 𝜋 𝑖 Learner verifies if 𝑢 ′ 𝑖 ≡ 𝑇 𝑆 (𝜋𝜋 ′ 𝑖

	Consider the local paths 𝜀	𝜋 -→ 𝑢	𝜋 𝑖 -→

𝜋

-→ 𝑢 𝜋 𝑖 -→

  The set of 𝑇 of test traces is extended by OUT and TRG, by one for each new transition and each new state, respectively. Init: ans ← EquivQuery(N ∅ ); if (ans = true) then return N ∅ ; (𝑄,𝑇 , out) ← ({𝜀}, {𝑤 }, 𝑆 = empty function) ; // OUT (𝜀, ans.𝑤, 𝑄,𝑇 , 𝑆) ; 𝑢, 𝑟 ) then OUT (𝑢, 𝑟, 𝑄,𝑇 , 𝑆); if res = (𝑚𝑡, 𝑢 1 , 𝑏, 𝑝, 𝑢 2 , 𝑟 ) then TRG(𝑢 1 , 𝑏, 𝑝, 𝑢 2 , 𝑟, 𝑄,𝑇 , 𝑆); |𝑇 | ≤ |𝑄 | + |𝑆 |. Because in each iteration of the whileloop either 𝑄 or 𝑆 is extended, the number of equivalence queries is at most |𝑄 |+|𝑆 |. As in previous sections, to simplify the complexity bound we use just one parameter 𝑠 for the size of the negotiation, namely the sum of the number of nodes and the number of transitions. By 𝑚 we denote the maximal size of counter-examples. For the membership queries we observe that: • CLOS uses overall |𝑇 ||𝑆 | ∈ 𝑂 (|𝑆 | 2 ), so 𝑂 (𝑠 2 ) membership queries (see Lemma 7.4). • Handling a counter-example 𝑤 uses each 𝑂 (log(|𝑤 |) membership queries, so overall 𝑂 (𝑠 log(𝑚)). • Making N sound uses 𝑂 (𝑠 |𝑇 | + log(𝑚)) membershipqueries. So the overall number here is 𝑂 (𝑠 (𝑠 2 +log(𝑚))). We summarize the developments of this section in the following theorem.

		//
	CLOS(𝑄,𝑇 , 𝑆) ;	// restore Closure
	while (ans ≠ true) do	
	N ← Negotiation(𝑄,𝑇 , 𝑆) ;	// build N
	ans ← EquivQuery( N ) ;	// ask Teacher
	if (ans = true) then return N ; // if OK, stop
	res ← BinS(ans, 𝑄,𝑇 , 𝑆) ;	// process
	repeat	
	if res = (𝑎𝑏𝑠, CLOS(𝑄,𝑇 , 𝑆) ;	// restore Closure
	res ← IsSound ( N )	
	until res ≠ true;;	// N sound
	end	
	Algorithm 2: Learning algorithm with membership
	queries about executions.	
	Thus, Theorem 7.7. Algorithm 2 actively learns sound determin-
	istic negotiations, using membership queries on executions
	and equivalence queries returning executions. It can learn
	a negotiation of size 𝑠 using 𝑂 (𝑠 (𝑠 2 + log(𝑚))) membership
	queries and 𝑠 equivalence queries, where 𝑚 is the maximal
	length of counter-examples.	

  𝐶 ′ fin in N A and assume that no action is executable in 𝐶 ′ . By the previous paragraph, we have 𝐶 init 𝐶 fin for some 𝑣 ∈ Act * . Once again by the above, the complete execution 𝑢𝑣 of N gives us a complete execution of N A . Hence 𝐶 is not a deadlock configuration, because 𝑣 can be executed from 𝐶. Consider a positive counter-example 𝑤 ∈ 𝐿 \ 𝐿. Let 𝑣 be the maximal trace-prefix of 𝑤 executable in N . So we have 𝐶 init 𝑣 -→ 𝐶 in N , and no action in min(𝑣 -1 𝑤) can be executed from 𝐶. With at most |Proc| membership queries Learner can determine one of the following situations:Absent-trans: An action 𝑏 ∈ min(𝑣 -1 𝑤), a node 𝑢 ∈ 𝐴

	𝑢 -→ 𝐶. Since N is
	sound we get 𝐶
	□
	A.3 Missing proofs from Section 6
	Lemma 6.2:

remains to show that N A is sound. Let 𝐶 ′ init 𝑢 -→ 𝐶 ′ ≠ 𝑣 -→ * dom of N , and a sequence 𝑟 ∈ Act * starting with 𝑏 such that for every 𝑝 ∈ dom(𝑏): 𝑢 𝑟 | 𝑝 ∈ 𝐿 𝑃 and 𝑏 𝑝 ∉ out (𝑢) .

  If 𝑢 𝑟 | 𝑝 ∈ 𝐿 𝑃 for every 𝑝 ∈ dom(𝑏) then we get the Absenttrans statement of the lemma. Otherwise we get the Nodemismatch statement since 𝑣 | 𝑝 𝑟 | 𝑝 = 𝑤 | 𝑝 ∈ 𝐿 𝑃 .Case 2: 𝐶 (𝑝) = 𝑢 𝑝 ≠ 𝑢 𝑞 = 𝐶 (𝑞) for some 𝑝, 𝑞 ∈ dom(𝑏). Hence 𝑢 𝑝 ̸ ≡ 𝑇 𝑢 𝑞 by the Uniqueness invariant. Let 𝑡 ∈ 𝑇 be such that 𝑢 𝑝 𝑡 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢 𝑞 𝑡 ∈ 𝐿 𝑃 . Observe also that 𝑣𝑏 is executable in N since it is a trace-prefix of 𝑤 ∈ 𝐿. Thus there is some node 𝑛 such that 𝑛 init𝑣 | 𝑝 -→ 𝑛 and 𝑛 init 𝑣 | 𝑞 -→ 𝑛 in the minimal negotiation for 𝐿. This implies 𝑣 | 𝑝 ≡ 𝐿 𝑝 𝑣 | 𝑞 , so in particular 𝑣 | 𝑝 ≡ 𝑇 𝑣 | 𝑞 . Hence either 𝑢 𝑝 𝑡 ∈ 𝐿 𝑃 ̸ ⇔ 𝑣 | 𝑝 𝑡 ∈ 𝐿 𝑃 or 𝑢 𝑞 𝑡 ∈ 𝐿 𝑃 ̸ ⇔ 𝑣 | 𝑞 𝑡 ∈ 𝐿 𝑃 . Sowe get the Node-mismatch statement of the lemma with 𝜋 = 𝑡. With at most |Proc| membership queries Learner can find a process 𝑝 such that 𝑤 | 𝑝 ∈ 𝐿 𝑃 ̸ ⇔ 𝑢 ∈ 𝐿 𝑃 for 𝑢 = 𝐶 (𝑝) . . Since 𝑤 ∈ 𝐿, all nodes in configuration 𝐶 (𝑝) are accepting. By definition of N , for every process 𝑝, the node 𝑢 = 𝐶 (𝑝) is such that 𝑢 ∈ 𝐿 𝑃 . On the other hand, by Corollary 4.4.1 there is 𝑝 such that 𝑤 | 𝑝 ∉ 𝐿 𝑃 . Learner can find this 𝑝 with at most |Proc| membership queries. We get 𝑤 | 𝑝 ∉ 𝐿 𝑃 and 𝑢 ∈ 𝐿 𝑃 . □ Let us analyze the complexity of the learning algorithm of Section 6.The number of equivalence queries is equal to the number of iterations of the loop. By the above, it is bounded by the size of the negotiation (that is the sum of the number of nodes and the number of transitions). Note also that |𝑇 | ≤ |𝑄 | + |out|, since OUT adds one element to 𝑇 for each new transition, respectively BinS adds one element per call. Let us estimate the number of membership queries. The calls of OUT altogether make 𝑂 (|out||𝑇 |) membership queries, We can over-approximate this by 𝑂 (|out| 2 ). The same complexity holds for the calls of CLOS because this procedure checks 𝑢 ′ , 𝑎 𝑝 , 𝑣 with 𝑢 ′ 𝑎 𝑝 ≡ 𝑇 𝑣 before enlarging 𝑇 , only w.r.t. newly added words in 𝑇 . Finally, checking whether case Absent-trans or Node-mismatch holds accounts for |𝑄 | • |Proc| membership queries. A.4 Missing proofs from Section 7 Crossing Lemma, Lemma 7.3: Suppose that N is sound and deterministic. If 𝑤𝑠 1 𝑡 1 ∈ 𝐿 and 𝑤𝑠 2 𝑡 2 ∈ 𝐿, with 𝑡 1 , 𝑡 2 co-prime, 𝑝 ∈ dmin(𝑡 1 ) ∩ dmin(𝑡 2 ), and 𝑠 1 , 𝑠 2 are (𝑏, 𝑝)-steps then • dmin(𝑡 1 ) = dmin(𝑡 2 ), • 𝑤𝑠 1 𝑡 2 ∈ 𝐿. Proof. We observe that 𝑠 1 𝑡 1 and 𝑠 2 𝑡 2 are co-prime traces. By Lemma 7.1 we have two executions:

	Proof

□ Lemma 6.3: Consider a negative counter-example 𝑤 ∈ 𝐿 \ 𝐿, and let 𝐶 init 𝑤 -→ 𝐶.

does not know 𝑠, she needs to repeat the equivalence test for 𝑘 = 2, 4, 8, . . . . So she needs log(𝑠) tests. The overall number of membership queries here is again 𝑂 (log(𝑠)|𝑇 |).

It remains to prove the claim from the previous paragraph. Assume conversely that 𝑢 ≡ 𝑇 𝑆 (𝜋 1 𝜋 𝑠 2 ). In particular, 𝑆 (𝜋 in N that has no dominant node. This contradicts the fact that N is sound.

The last case is where Learner finds some pattern B (blocking) in N . So we assume that there is some 𝑝-path 𝜀 𝜋 -→ 𝑢 and 𝑢 has no 𝑝-path to the unique accepting state of N . If 𝑢 ̸ ≡ 𝑇 𝑆 (𝜋) then by Corollary 7.6.1 Learner finds an instance of the Target-mismatch case with 𝑂 (log(𝑠)) membership queries (𝑠 is an upper bound on the length of 𝜋).

So assume that 𝑢 ≡ 𝑇 𝑆 (𝜋). In particular, using invariant Pref we infer the existence of some 𝑡 ∈ 𝑇 such that 𝑆 (𝜋)𝑡 ∈ 𝐿. Since 𝑢 ∉ 𝐿, 𝑡 must be non-empty. Moreover, invariant Pref ' tells us that 𝑝 ∈ dmin(𝑡). Consider the decomposition 𝑡 = 𝑡 1 𝑡 2 . . . 𝑡 𝑘 , with 𝑡 𝑖 . . . 𝑡 𝑘 all co-prime suffixes of 𝑡 with 𝑝 in the domain of the minimal action 𝑎 𝑖 of 𝑡 𝑖 . Take the 𝑝-path 𝜋 ′ = (𝑎 1 , 𝑝) . . . (𝑎 𝑘 , 𝑝). If the 𝑝-path 𝜋 ′ is not possible from 𝑢 in N then Learner finds the Absent-trans case for some 𝑡 𝑖 . . . 𝑡 𝑘 . So assume that the path 𝑢