
HAL Id: hal-03808830
https://hal.science/hal-03808830v1

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fourier Transform approach to numerical
homogenization of periodic media containing sharp

insulating and superconductive cracks
Quy-Dong To, Guy Bonnet

To cite this version:
Quy-Dong To, Guy Bonnet. Fourier Transform approach to numerical homogenization of periodic me-
dia containing sharp insulating and superconductive cracks. Computer Methods in Applied Mechanics
and Engineering, 2023, 403 (Part A), pp.115710. �hal-03808830�

https://hal.science/hal-03808830v1
https://hal.archives-ouvertes.fr


Fourier Transform approach to numerical

homogenization of periodic media containing sharp

insulating and superconductive cracks

Quy-Dong Toa,∗, Guy Bonneta

aLaboratoire MSME, Univ Gustave Eiffel, CNRS UMR 8208, F-77454 Marne-la-Vallée,
France

Abstract

In the present paper, we propose a new FFT based numerical homogenization

method to compute the effective conductivity of fractured media involving

insulating and superconductive cracks. The governing Lippmann Schwinger

(LS) equations based on temperature jump and heat flux jump distribution

localized on crack lines are formulated and the geometry of sharp cracks is

described by exact expression of form factors. To solve the LS equations, the

bi conjugate gradient stabilized method is used and leads to fast convergence.

Numerical examples in 2D and 3D show a good accuracy when compared with

standard Finite Element Method solutions.

Keywords: Fast Fourier Transform, Numerical homogenization method,

Fractured media, Iteration scheme, insulating crack, superconductive crack

1. Introduction

Numerical homogenization is a special branch of computation methods

devoted to the determination of overall behavior of heterogeneous materi-

als from their constituents. Their objective is to solve the boundary value

problem on a Representative Volume Element (RVE) and then obtain the
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macroscopic relations between the averages of the local quantities. Numeri-

cal methods which have been used for this purpose can be decomposed into

two main ingredients: the discretization and the resolution. The former

transforms the governing equations involving the continuous quantities into

discrete forms, e.g the finite difference (Lei et al., 2019), finite volume (Am-

raei and Fallah, 2016), finite element (Belitschko et al., 2009; Cervera et al.,

2021), boundary element methods (Aliabadi, 2003) etc. for cracked and non

cracked media. The latter solves the discrete equations with a solver based

on a suitable algorithm e.g conjugate gradient, minimal residual iterative

schemes (see e.g Saad, 2003; Barrett et al., 1994, and the references therein).

Depending on the discretization schemes, solvers can be constructed based

on FFT techniques, e.g spectral Galerkin (Fata and Gray, 2009; Hu et al.,

2022), finite difference (Feng and S., 2020; Costa, 2022; Ren et al., 2022;

Willot et al., 2014), finite element (Schneider, 2022; Zeman et al., 2017), fi-

nite volume (Nunez et al., 2012), discrete element (Calvet et al., 2022),...

Among the numerical methods, the class of Fourier Transform methods used

in the present work has seen a fast development in the recent years, but

with very few developments for problems involving cracks. The method is

based on the formulation of Lippmann Schwinger (LS) type integral equa-

tions (Brown Jr, 1955; Kröner, 1977) involving periodic Green tensors and

the iterative resolution schemes to obtain the solution. Since the Green ten-

sors and their convolution action are generally known in frequency space,

the Fast Fourier Transform is useful to switch back and forth between the

physical space and the frequency space (Moulinec and Suquet, 1994; Michel

et al., 1999).

Many contributions have been proposed to improve the method and to ex-

tend it to different fields of physics. Eyre and Milton (1999) proposed an

accelerated scheme based on polarization basis and showed that the conver-
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gence rate is significantly increased. The LS equation can be viewed as a

linear equation and solved by Newton-Krylov solvers (Zeman et al., 2010;

Vondřejc et al., 2014; Schneider, 2019; Kabel et al., 2014). Alternatively, the

linear equations can be constructed from the variational principle at station-

ary state (Brisard and Dormieux, 2010). Willot et al. (2014) used a finite

difference scheme leading to a modified expression of Green tensors and im-

proving the results for infinite contrast cases. The methods can also avoid

fluctuations inherent to the Fourier series. For the methods based on original

Green tensors, the fluctuations near the interface can be attenuated by using

smoothing filters to post process the results (Morin et al., 2021). Another

method is to use composite voxels that improve significantly the quality of

solutions near the interfaces (Kabel et al., 2015).

The application of FFT methods to cracks is based on previous works re-

lated to porous materials. A porous material can be considered as a special

heterogeneous material with two distinct phases: the skeleton and the void.

The void can be considered empty or filled with air in the usual sense which

has a very small (zero) conductivity when compared with the skeleton. This

is called insulating pore. In the other extreme, the void can be occupied by

superconductive materials which have a very large (”infinite”) conductivity

with respect to the host material, e.g large water saturated pore surrounded

by low porosity matrix or graphene or carbon nanotube in reinforced con-

crete etc. Those two cases fall into the category of infinite contrast problems

which cause convergence issues to classical FFT algorithm. Furthermore, in

many cases of interest, the pore geometry is reduced to a crack where the

volume and thickness is equal to zero, making the problem more challenging.

Among the works documented in literature, discrete Green tensors (Gasnier

et al., 2018) have been used to study cracks. However, in this method, the

pixel based formulation introduces a numerical thickness of the cracks equal

to the voxel size and zigzag geometry and non uniform thickness when they
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are not parallel to the grid axis. Another method to deal with a distribution

of cracks was to use an approach based on damage mechanics (Chen et al.,

2019). However, this method focuses on crack propagation and does not deal

with sharp cracks. In the present paper, a FFT method dealing with cracks

of zero thickness is presented. We note that the case of finite insulating pore

can be treated by LS equations derived for skeleton temperature (To and

Bonnet, 2020; To et al., 2021). It suggested that the method could be ex-

tended to insulating and superconductive cracks.

In the present paper, we consider fractured media involving insulating and

superconductive cracks. Starting from the LS equation for porous media, we

formulate the LS equations in the crack limit for temperature jump distribu-

tion (insulating crack) and flux jump distribution (superconductive crack).

Such a formulation requires the description of the crack geometry via form

factors, which are capable of modelling sharp cracks as polylines and poly-

gons of discontinuity at any location in space. The governing equations are

solved by a Krylov based method, specifically the bi conjugate gradient sta-

bilized method which proves to be fast and generate accurate results, when

combined with suitable post process smoothing filters. Numerical examples

in 2D and 3D cases show a good agreement with a Finite Element Method

solution and capture well the physics of heat transfer through cracked media.

2. Formulation and resolution method

2.1. Mathematical preliminaries

A V− periodic function u(x) of cartesian coordinates x(x1, x2, x3) can

be expressed as Fourier series

u(x) =
∑
ξ

û(ξ)eiξx (1)
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where û(ξ) is the Fourier transform of u(x):

û(ξ) = F [u(x)] =
1

V

∫
V

u(x)e−iξxdx, i =
√
−1 (2)

and ξ the wave vector with components ξ1, ξ2, ξ3

ξk = 2πnk/Lk, nk = 0,±1,±2, ...,±∞, k = 1, 2, 3 (3)

and L1, L2, L3 being the dimensions of the period V along directions x1, x2, x3.

Numerically, the number of wave vectors is limited by parameter N called

resolution parameter satisfying

−N < nk ≤ N k = 1, 2, 3 (4)

The convolution product ∗ of operator A on u in physical space can be

expressed as

A(x) ∗ u(x) =
∑
ξ

Â(ξ)û(ξ)eiξx (5)

and the normal product has the following form

A(x)u(x) =
∑
ξ

[Â(ξ) ∗ û(ξ)]eiξx (6)

with the discrete convolution product in Fourier space

Â(ξ) ∗ û(ξ) =
∑
ξ′

A(ξ − ξ′)u(ξ′) (7)

In the paper, we use a set of operators P , R and S whose expressions in the

Fourier space P̂ (ξ), R̂(ξ) and Ŝ(ξ) are explicit functions of wave vector ξ
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and the anisotropic reference conductivity Kr, for example

P̂ (ξ) =
ξ ⊗ ξ
ξKrξ

, R̂(ξ) =
iξ

ξKrξ
, Ŝ(ξ) =

1

ξKrξ
(8)

and null for ξ = 0

P̂ (0) = 0, R̂(0) = 0, Ŝ(0) = 0 (9)

Noting that for any function ϕ, we have the identity

−R ∗Kr∇ϕ = ϕ− 〈ϕ〉 (10)

with 〈ϕ〉 being the volume average of ϕ.

2.2. Integral equation for the matrix material

To determine the effective conductivity of the composite material whose

local conductivity K(x) is V−periodic function of coordinate x, we need to

solve the local problem using the set of equations

e = −∇T, j(x) = K(x)e(x), div j(x) = 0 (11)

where e is the (minus) periodic temperature gradient and j the periodic

heat flux. The effective conductivity Ke will then be obtained from relation

between the average of temperature gradient E and the average flux J

J = KeE, E = 〈e〉, J = 〈j〉 (12)

Since the physical temperature T is non periodic and thus not suitable for

Fourier analysis, we shall use the periodic temperature term θ defined as

follows

θ = −T −Ex (13)
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Let us consider the case of two phase composites: the ’matrix’ (also called

’skeleton’) of volume Ω, boundary Γ which has a finite and non vanishing

anisotropic conductivity Kr and the ’inclusion’ which is either an insulating

void K = 0 or superconductive K = kI with k = ∞ (see Fig. 1a). The

matrix is characterized by a characteristic function χ defined on V

χ(x) = 0 in Ω, χ(x) = 1 in V \Ω (14)

Since the solution in the inclusion phase is not unique, it is natural to find

the solution in the skeleton phase only with suitable boundary conditions at

the interface. The periodic skeleton temperature θr and gradient er of this

regular phase are related to θ and e, which is a periodic continuous extension

from Ω into V via the expressions

θr = χθ, er = χe = χ(E +∇θ) (15)

Moreover, we have the relations

er = ∇θr +Eχ+ (nδ)Γθ, (16)

and the identity (To and Bonnet, 2020)

(nδ)Γθ = 2(nδ)Γθr (17)

Here, n is the outward normal vector (directed into the void) and δ the delta

Dirac distribution on Γ. The distribution (nδ)Γ admits the Fourier transform

(̂nδ)Γ(ξ) =
1

V

∫
Γ

n(x)e−iξxds (18)

The heat flux j for the whole material defined as j = Krer, is expected to

be in equilibrium with the source term div j + s = 0. As a result we can
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write

R ∗Kr(∇θr +Eχ+ (nδ)Γθ) + S ∗ s = 0 (19)

Applying the identity (10) to the above equation, we obtain the integral

equation for temperature θr in skeleton phase

θr = Θr +R ∗Kr(Eχ+ (nδ)Γθ) + S ∗ s (20)

where the interior temperature θr is linked to the boundary value via the term

(nδ)Γθr. The parameter Θr is the average of θr and can be set arbitrarily.

Let us define the distribution ω on V attached to the value on Γ

ω = (nδ)Γθ (21)

To obtain er, differentiating both sides of (20) and using the expression (16)

for er leads to :

er = Eχ+ ω − P ∗Kr(Eχ+ ω) +R ∗ s (22)

Figure 1: Sketch of the problem. Left: general porous material. Center: Media with
insulating crack. Right: Media with superconductive crack.
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2.2.1. Sharp insulating crack limit

In the case of a sharp crack, the boundary Γ is reduced to two faces

corresponding to the upper face Γ+ and the lower face Γ− located at the

same position Γ (see Fig. 1b). The distribution ω now becomes

ω = −(nδ)ΓJθK (23)

where JθrK = θ+ − θ− is the temperature jump across the crack and n the

normal vector of the lower face. At the crack limit, χ = 1∀x and without

the source term s = 0, all the relations for θr and er are reduced to

θr = Θr +R ∗Krω, er = E + ω − P ∗Krω (24)

Since the crack surface is flux free, ner vanishes on both Γ+ and Γ−. Using

the projector n⊗ n, we find that

(n⊗ nδ)Γ(P ∗Krω − ω −E) = 0 (25)

The latter can be arranged as a linear equation

A� ω = b (26)

with the linear operators A� and b representing

A� ω = (P ∗Krω − ω)(n⊗ nδ)Γ, b = E(n⊗ nδ)Γ (27)

After resolving ω by (26) and then the local field θr, er by (24), the effective

conductivity is given by the equation

EKeE = 〈erKrer〉 (28)
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or by the average relation

KeE = Kr〈er〉 (29)

2.2.2. Sharp superconductive crack limit

We consider first the situation where the superconductive domain V \Ω
has non vanishing dimensions. The source term s is localized at the boundary

Γ representing the heat transfer between two phases

s = (jnδ)Γ (30)

The infinite conductivity condition implies that e vanishes in V \Ω and the

periodic temperature part θ must be linear in x in this domain. As a result,

we have

θ = C −Ex on Γ (31)

Averaging θ on the boundary yields the expression of constant C

C =
1

|Γ|

∫
Γ

(θ +Ex)dx =
〈δΓ(θ +Ex)〉
〈δΓ〉

(32)

At the crack limit we find that the temperature θ is continuous across Γ+

and Γ− and the term (nδ)Γrθ vanishes. On the other hand, the normal heat

flux jn is discontinuous on Γ+ and Γ−. This is equivalent to a distribution

s localized on the crack line

s = (JjKnδ)Γ (33)

where JjK = j+− j− is the normal flux jump across the crack. The equation

for θr and er becomes

θr = Θr + S ∗ s, er = E +R ∗ s (34)
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Setting the constant Θr = 0 (which does not affect our results), multiplying

both sides of (34) with δΓ and using (31,32), we obtain an integral equation

for the source term s

(S ∗ s+Ex− 1

〈δΓ〉
〈δΓ(S ∗ s+Ex)〉)δΓ = 0 (35)

This equation can be arranged as

A ? s = b (36)

with the linear operator A ? s and b being

A ? s =

(
S ∗ s− 〈δΓS ∗ s〉

〈δΓ〉

)
δΓ, b =

(
〈ExδΓ〉
〈δΓ〉

−Ex
)
δΓ (37)

After obtaining s by solving (36) and then the local field θr, er by (34),

the effective conductivity is given by the same equation as for the case of

insulating crack.

2.3. Resolution by an iteration scheme

We can solve the distribution ω for an insulating crack problem or s

for a superconductive crack problem by iterations. Taking the first case as

example, the simplest method would be to use the recurrence relation

ω(n+1) = ω(n) + α(A� ω(n) − b) (38)

with α being a constant. However, it is more efficient to employ a Krylov

method. Since operator A is generally non symmetric (see appendix A), we

have chosen to use the biconjugate gradient stabilized (BICGSTAB) method,

leading to the following algorithm:
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Algorithm 1 Biconjugate gradient stabilized (BICGSTAB) iteration scheme
for linear problem A� ω = b

Initialization ω(0) = 0
r(0) = b and choose r′ = r(0)

Set p(0) = r(0)

for j=0,1,2,... do
1. α(j) = (r(j)r′)/((A� p(j))r′),
2. s(j) = r(j) − α(j)(A� p(j))
if ‖s(j)‖/‖EδΓ‖ < ε then
ω(j+1) = ω(j) + α(j)p(j)

BREAK
end if
3. γ(j) = ((A� s(j))s(j))/((A� s(j))(A� s(j)))
4. ω(j+1) = ω(j) + α(j)p(j) + γ(j)s(j)

5. r(j+1) = s(j) − γ(j)(A� s(j))
if ‖r(j+1)‖/‖EδΓ‖ < ε then

BREAK
end if
6. β(j) = α(j)/γ(j)(r(j+1)r′)/(r(j)r′)
7. p(j+1) = r(j+1) + β(j)(p(j) − γ(j)A� p(j))
if ‖r(j+1)r′‖/‖EδΓ‖2 < ε′ then
r′ = r(j+1)

p(j+1) = r(j+1)

end if
end for

Introducing a tolerance ε, the scheme is based on the residual r(j+1) and

stopped when

‖r(j+1)‖
‖EδΓ‖

< ε (39)

We note that the residual r(j+1) can be viewed as a delta distribution on Γ

whose strength tends to zero as the scheme converges and the error is thus

chosen by normalizing the residual with EδΓ. Due to the singular nature of

delta function, the norm is defined at a finite resolution N . Moreover, to
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avoid divergence when ‖r(j+1)r′‖ is close to 0, another small control parame-

ter ε′ is also used to restart the algorithm. In all studies, we adopt the values

ε = 10−3 and ε′ = 10−6.

2.4. Form factors for sharp cracks

The form factor for crack function is given in the general formula

̂(n⊗ nδ)Γ(ξ) =
1

V

∫
Γ

n(x)⊗ n(x)e−iξxds

δ̂Γ(ξ) =
1

V

∫
Γ

e−iξxds, (̂xδ)Γ(ξ) =
1

V

∫
Γ

xe−iξxds (40)

Depending on 2D and 3D problems, Γ is the collection of all discontinuity

curved lines (in 2D) or surfaces (in 3D) which can be separated or inter-

connected. We note that general complex lines and surfaces can be ap-

proximated by polylines or polysurfaces constituted of straight and planar

segments whose form factor can be evaluated more easily. For straight or

planar Γ, posing c as the centroid of Γ, x′ being such that x = c + x′ and

using the fact that the normal vector n is constant for those line and planar

objects, we have

̂(n⊗ nδ)Γ(ξ) = (n⊗ n)δΓ(ξ), δ̂Γ(ξ) =
1

V
e−iξc

∫
Γ

e−iξ||x
′
ds

(̂xδ)Γ(ξ) =
1

V
e−iξc

[
c

∫
Γ

e−iξ||x
′
ds+

∫
Γ

x′e−iξ||x
′
ds

]
(41)

where ξ|| is the projection of ξ on Γ. Additionally we have the relation

(̂xδ)Γ(ξ) = i
d

dξ
δ̂Γ(ξ) (42)

As a result, the form factor for any wave vector ξ can be deduced from the

form factor for the projection of ξ on Γ. In the following, we present the

exact expressions for several elementary cases of interests.
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Figure 2: Geometry of Γ in 2D polyline (left) and in 3D polygon (right)

For a straight line segment in 2D problems (see Fig. 2a) connected between

two vertices v1 and v2 (To et al., 2021), we have

δ̂Γ(ξ) =
2l

V
e−iξcsinc(ξl)

(̂xδ)Γ(ξ) =
2l

V
e−iξc

[
il

(ξl)
[cos(ξl)− sinc(ξl)] + csinc(ξl)

]
(43)

with

c =
1

2
(v1 + v2), l =

1

2
(v2 − v1), l = |l| (44)

When ξ|| = 0 or ξl = 0, we have the identities

δ̂Γ(ξ) =
2l

V
e−iξc, (̂xδ)Γ(ξ) =

2l

V
e−iξcc (45)

For planar polygons in 3D problems (see Fig. 2b) with corners v1,v2,v3, ...,vJ

in counterclockwise direction with respect to n, from Wuttke (2021) and (42)
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we have

δ̂Γ(ξ) =
2i

V ξ2
||
.

J∑
j=1

ξ||(l
j × n)sinc(ξlj)e−iξc

j

(̂xδ)Γ(ξ) =
2

V ξ2
||
.

J∑
j=1

[ξ||(l
j × n)]e−iξc

j

[
icjsinc(ξlj)− lj

(ξlj)
[cos(ξlj)− sinc(ξlj)]

]

+
2

V ξ2
||
.

J∑
j=1

[
[ξ||(l

j × n)]
2ξ||
ξ2
||
− (lj × n)

]
sinc(ξlj)e−iξc

j

(46)

with

cj =
1

2
(vj + vj−1), lj =

1

2
(vj − vj−1), v0 ≡ vJ (47)

In the above expression, ξ|| and ξlj appear in the denominator and we need

to examine the limit when ξ|| = 0 and ξlj = 0. When ξ|| = 0, from (41) we

have

δ̂Γ(ξ) =
|Γ|
V
e−iξc, (̂xδ)Γ(ξ) =

|Γ|
V
e−iξcc (48)

and we also note that when ξlj = 0, the expressions with ξlj in the denomi-

nator are also well defined due to the limit

lim
ξlj→0

cos(ξlj)− sinc(ξlj)

(ξlj)
= 0 (49)

The area of the polygon Γ is given by the expression

|Γ| = 1

2
n

J∑
j=1

vj−1 × vj (50)

The delta functions δΓ and (xδ)Γ using form factor formula can be visualized

in real space. We take a quadrilateral on an inclined plane as an example

and fix the resolution parameter N = 128, defined as the number of points
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along one direction. Next, we adopt a cutting plane coinciding with the

quadrilateral plane and examine the value on the plane (see Fig. 3). We can

see that the colored field reflects well the properties of the delta functions.

The values inside the quadrilateral are very large while the values outside

are very small. For the functions δΓ, the values inside the quadrilateral are

more or less uniform while for x1δΓ, the values change gradually depending

on the coordinate x1.

Figure 3: Delta functions δΓ and (x1δ)Γ in real space of a single quadrilateral crack on
an inclined plane. The functions are computed in Fourier space using the form factor
formulas at resolution N = 128 and transformed back to real space. The crack is in a unit
square box V defined by −0.5 ≤ xi ≤ 0.5 and i = 1, 2, 3. For the sake of clarity, the three
axes x1, x2, x3 of the coordinate system are shifted to the box corner.

2.5. Other numerical aspects

Due to the nature of the delta Dirac function, a fine resolution for ̂(n⊗ nδ)Γ(ξ)

is required to ensure the accuracy of the solution. In most of applications, the

form factor of the crack ̂(n⊗ nδ)Γ(ξ) is computed by using a double resolu-

tion, say 2N , with respect to the base resolution N of solution θ̂r(ξ), êr(ξ).

All the operations in the algorithm are performed in the Fourier space in-

cluding the convolution, which is done using Fast Fourier Transform. The

final solution of ω, θr, er is obtained in Fourier space ξ, then the real physical

quantities are recovered by standard inverse Fourier transform.
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The resolution based on Fourier series can exhibit fluctuations of the physical

quantities near the crack tip. To attenuate the spurious oscillations, it is pos-

sible to adopt smoothing techniques. The traditional procedure is to modify

the frequency space before doing inverse transform into physical space, e.g

using low pass filters. Specifically, to smooth out the function ϕ(x), instead

of using direct inverse transform ϕ(x) = F−1[ϕ̂(ξ)], we employ a filter f̂(ξ)

as follows

ϕ(x) ' F−1[f̂(ξ)ϕ̂(ξ)] (51)

There are many low pass filters documented in literature which have appli-

cations in a broad range of domains related to data processing of signal and

image etc...(see e.g Nixon and Aguado, 2019) As an example, the present

work will use three smoothing filters as follows.

For a Gaussian filter of parameter σξ, we have

f̂(ξ) = e−|ξ|
2/2σ2

ξ (52)

with the typical value of σξ of order N/L.

For a spline smoothing filter of parameters s,m, we have (Craven and Wahba,

1978)

f̂(ξ) =
1

1 + s(ξ2m
1 + ξ2m

2 + ξ2m
3 )

(53)

Generally, we take m = 1 and s = 10−5L2m − 10−6L2m.

The last smoothing method is to take the local average value over a small

volume, i.e square box Va(x) of dimension 2a, centered at point x under
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consideration. Using the Fourier series expression, we obtain

ϕ(x) ' 1

8a3

∫
Va(x)

ϕ(x′)dx′ =
∑
ξ

ϕ̂(ξ)eiξx
1

8a3

∫
Va(x)

eiξ(x
′−x)dx′

=
∑
ξ

ϕ̂(ξ)eiξx
1

8a3

∫
Va(0)

eiξx
′
dx′ =

∑
ξ

ϕ̂(ξ)f̂(ξ)eiξx (54)

In this case the filter f(ξ) becomes a sinc filter in frequency space as follows

f̂(ξ) =
1

8a3

∫ a

−a

∫ a

−a

∫ a

−a
eiξx

′
dx′ = sinc(ξ1a)sinc(ξ2a)sinc(ξ3a) (55)

The typical value of a is a = L/2N which is the size of the pixel.

All smoothing filters have the properties that they attribute decreasing weights

for high frequencies which are responsible for the strong fluctuation. Using

very large value of σξ and very small value of s corresponds to an unsmoothed

solution.

As suggested by Morin et al. (2021), a smoothing filter can be applied in

two situations:

- to post process the results after solving the governing equations

- to pre process the microstructure before solving the governing equations

The latter in fact, is equivalent to bringing a smooth change of materials’

properties at the interface. In our method, the filter can be applied to smooth

the delta functions, i.e δΓ(ξ) and (n⊗ nδ)Γ(ξ).

3. Computation examples

3.1. Single crack problems

In this section we shall apply the FFT method developed previously

to single insulating or superconductive crack problems. Those cracks are

straight lines of discontinuity whose geometrical form factor has been given
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in Section 2.4. The performance and the accuracy of the method will be as-

sessed by comparison with the standard solution obtained by Finite Element

Method (FEM) with details provided in Appendix B.

In the first problem, we study a 2D geometry where a single insulating crack

is embedded in a matrix of conductivity kr = 1 [W/mK] or Kr = krI. The

crack has a length of l = 0.6 [m], is parallel to axis x1 and located at the

center of a unit volume V with dimensions L1 = L2 = 1 [m]. The prescribed

macroscopic flux is directed along direction x2, E = i2 [K/m]. For the res-

olution N = 256 and tolerance ε = 0.001, the scheme stops at 21 iterations

and yields the effective conductivity along direction 2 equal to Ke
2 = 0.744

[W/mK] which is in good agreement with FEM 0.748 [W/mK]. Qualitatively

looking at the solution fields in Fig. 4, we recover the discontinuity of tem-

perature at the crack line and a high value of temperature gradient near the

crack tip as expected.

Figure 4: Periodic temperature field θr [K] (left) and temperature gradient field er2 [K/m]
(right) for the case of insulating crack. The macroscopic gradient is along direction 2, i.e
E = i2 [K/m]

To investigate the accuracy of the local field, we plot the temperature and

temperature gradient on axes x1 and x2 and compare with FEM. Figure 5
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shows an excellent agreement between the FFT and FEM solution concern-

ing the temperature θr and er2 on the axis x2. Regarding er1 on axis x1,

the agreement is also globally good. While the solution far from the crack

tip agrees well with the FEM solution, oscillation near the crack tip is ob-

served in the unsmoothed FFT solution. Such a fluctuation is associated to

Gibbs phenomenon and can be attenuated by a smoothing filter (sinc filter

for example) and thus extend further the agreement near the crack tip zone.
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Figure 5: Periodic temperature θr [K] and temperature gradient er2 [K/m] profile on axis
x2 (left) and temperature gradient er2 [K/m] on axis x1 for 2D slit crack (right). The
smoothed results for temperature gradient er2 [K/m] on axis x1 are obtained by sinc filter
post process (right).

Next, the superconductive crack of the same dimension will be considered.

The prescribed macroscopic flux is directed along direction x1, E = i1 [K/m].

The algorithm converges after 14 iterations. The effective conductivity along

x1 is Ke
1 = 1.34 [W/mK], which is in good agreement with 1.35 [W/mK]

by FEM. In contrast to the case of insulating crack, we obtain a continuous

temperature field θr with higher values of |θr| near the crack tips (see Fig.

6). In terms of temperature gradient er1, we find very high values near the

crack tip as expected.

The comparison between FFT and FEM also shows an excellent agreement
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Figure 6: Periodic temperature field θr [K] (left) and temperature gradient field er1 [K/m]
(right) for the case of superconductive crack. The macroscopic gradient is along direction
1, i.e E = i1 [K/m].

between the two methods (see Fig. 7). The temperature θr on axis x1 is

linear on the superconductive crack and tends to 0 at the periodic boundary.

Like in the case of insulating crack, the solution has a good accuracy, except

that now the oscillation of er1 is found in a large part of the curve. The

smoothed values are in very good agreement with the FEM solution.

We note that although the FFT method obtains the effective property of

the cracked material with a good accuracy, to reproduce the local singularity

r−0.5 near the crack tip, it is necessary to adopt a fine mesh or high resolution

N . This is due to the fact that the method is based on a regular grid in phys-

ical space. The log-log plot in figure 8 shows what happens near the crack

tip when N increases and from the slope, we find a power relation between

r and er1, er2 at small r. Specifically, at highest N value N = 1024, we have

er1 ∼ rα with α = −0.51 for insulating cracks α = −0.49 for superconductive

crack, which is close to the value α = −0.5 predicted by the theory.

As shown above, for both types of cracks, the temperature gradient fields

exhibit a fluctuation near the crack tip where theoretically the singularity of
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Figure 7: Periodic temperature θr [K] (left) and temperature gradient er1 [K/m] profile
on axis x1 (right) for 2D superconductive crack. The smoothed results are obtained by
sinc filter post process.
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crack. Left: Effect of post process smoothing filters. Right: Comparison of pre and post
smoothing (spline smoothing with the same parameters) and FEM solution

type r−0.5 is present. Such spurious oscillations can be attenuated using low

pass filters introduced earlier in Section 2.5. In the above example, we have

used sinc filter. Let us now examine the Gaussian filter and the spline filter.

Taking the case of superconductive crack as an example, Figure 9a shows

that both Gaussian and spline filters with suitable parameters (σξ = 4N/L

for Gaussian filter and s = 5 × 10−6L2 for spline filter) successfully reduce

the fluctuation of the solution near the crack tip, while almost unmodifying

the far field solution. By examining the effect of pre and post smoothing

on the obtained solution, we use spline smoothing with the same parameters

s = 5× 10−6L2 (see Fig. 9b). We find that the pre smoothing does provide

smoother solution but affects the accuracy of the solution and the perfor-

mance (more iterations are required). It is because pre smoothing modifies

the delta functions by smearing out the sharp crack and thus the governing

equations. In this case, the post smoothing is clearly better, agreeing well

with the FEM results.
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3.2. Multiple isolated and intersecting cracks

In this section, we investigate 2D media containing multiple cracks. In

this example, 12 cracks have the same length 0.3 but random positions and

orientations. Like in the previous examples, the algorithm for insulating

cracks and superconductive cracks cases converge fast with 57 and 31 itera-

tions respectively.

Figure 10: Periodic temperature field θr for cracked media: insulating crack media subject
to E = i1 [K/m] (left) and E = i2 [K/m] (right).

Let us look first at the insulating crack case (see Fig. 10). From the color

field, we can observe a temperature jump across each crack corresponding to

the opposite direction of E, i.e higher temperature on the right and lower

temperature on the left for E = i2 [K/m], and higher temperature at the

top and lower temperature at the bottom for E = i1 [K/m]. As a global

behavior, the three intersecting insulating cracks in the middle form a large

composite crack blocking the flux along the direction of macroscopic gradient

E and generating the most significant temperature jump.

Regarding the case of superconductive cracks (see Fig. 11), the tempera-

ture is shown as before to be continuous with a gradual change along the
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Figure 11: Periodic temperature field θr [K] for cracked media: superconductive crack
subject to E = i1 [K/m] (left) and E = i2 [K/m] (right).

direction of the macroscopic gradient E, especially for areas in the middle

of the sample. We note that the periodic temperature θr in each crack is

θr = C − Ex. As a result, θr concentration is pronounced at the cracks at

two ends of the sample and affects the temperature distribution around these

locations.

Until now, we have only considered 2D problems involving cracks as lines

of discontinuity. In the final example, we shall demonstrate the performance

of the method in the 3D case with cracks as surfaces of discontinuity. A 3D

crack system composed of 4 quadrilateral cracks is generated for the study.

All the cracks have the same shape but random locations and orientations.

They intersect and form a large complex crack as seen in Fig 12. The analyti-

cal form factors for planar polygonal shape δΓ and xδΓ are used. The sample

of insulating cracks is subject to macroscopic gradient E = i3 [K/m] and

the case of superconductive crack E = i1 [K/m]. Both examples converge

after 50 iterations. Due to the complex solution field, we shall extract the

solution on the plane of the quadrilateral in the middle that intersects the

three remaining cracks. The physical temperature T = −θr −Ex instead of
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the periodic temperature θr will be plotted in the graphics.

Figure 12: System of four intersecting quadrilateral cracks of the same shape but with
different locations and orientations. For the sake of clarity, the three axes x1, x2, x3 of the
coordinate system are shifted to the box corner.

Again for the case of insulating cracks (see Fig. 13), we observe a discontinu-

ity of temperature T across the intersection of 3 out-of-plane cracks. We also

note that the temperature discontinuity of the in-plane crack is along the

normal direction and can not be seen in the cut. Despite the discontinuity,

the variation of T in the plane reflects well the directions of E, i.e higher

temperature from low altitude x3 and lower temperature from high altitude

x3.

For the case of superconductive cracks (see Fig. 14), the temperature conti-

nuity is everywhere. Due to the connectivity, the temperature of the in-plane
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Figure 13: Physical temperature field T = −Ex − θr [K] on the plane of a quadrilateral
insulating crack. The prescribed macroscopic gradient is E = i3 [K/m].
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Figure 14: Physical temperature field T = −Ex− θr [K] on the plane of a quadrilateral.
The prescribed macroscopic gradient is E = i1 [K/m]
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crack is uniform T = cst and the same as the three out-of-plane cracks. The

global variation of T also agrees with the direction of E along x1.

4. Concluding remarks

In this paper, we have presented a FFT based method to solve con-

ductive fractured problems with sharp insulating or superconductive cracks.

Although these problems are encountered frequently in engineering applica-

tions, they pose two major difficulties to the classical FFT method: infinite

contrast ratio and zero dimension geometry associated to discontinuities and

singularities of physical quantities. Those difficulties cause convergence is-

sues and affect the accuracy of the previous pixel based techniques.

Based on previous works for porous material (To and Bonnet, 2020; To et al.,

2021), the new LS governing equations can be derived when the pore tends

to the crack limit. In this case, the temperature jump and the heat flux

jump are unknown and can be solved in the new formulation. They are

described by using specific delta functions localized on the crack lines and

surfaces whose form factors are known analytically. Finally, the Krylov space

iteration method is employed to obtain the solutions and proves to be fast

and accurate. The method described in this work can be easily extended to

deal with cracks in elastic domains. This will be studied in a future work.

Appendix A. Symmetry study of operator A

By definition, operator A� is symmetric if the following scalar product

equality holds for all u,v

1

V

∫
V

(A� u)vdx =
1

V

∫
V

(A� v)udx, ∀u,v (A.1)
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or equivalently in Fourier space∑
ξ

̂(A� u)(ξ)v̂(−ξ) =
∑
ξ

̂(A� v)(ξ)û(−ξ) (A.2)

We are also limited to the special case where Kr is isotropic and Kr = krI

and P ∗Kr and S can be simplified as P ′ and S ′ with expressions

P̂ ′(ξ) =
ξ ⊗ ξ
ξ2

, Ŝ′(ξ) =
1

krξ2
(A.3)

Furthermore, we consider that Γ is a straight line so that the normal vector

n is constant or (n⊗ nδ)Γ = n⊗ nδΓ .

In the case of insulating crack, operator A� has the form

A� ω = (P ′ ∗ ω − ω)(n⊗ nδ)Γ (A.4)

From the definition, it is clear that the action of (n ⊗ nδ)Γ is symmetric.

However, we shall show that the product (n⊗nδ)ΓP
′ is not symmetric, which

makes A� non symmetric. Indeed, let us take the two fields u = u0e
iξ0x and

v = v0e
iξ′0x as two test functions with u0 and v0 being two constant vectors

and ξ0 and ξ′0 two constant wave vectors. We find that P ′∗u = P̂ ′(ξ0)u0e
iξ0x

and thus

1

V

∫
V

[(n⊗ nδ)ΓP
′ ∗ u]vdx = (n⊗ n)(P̂ ′(ξ0)u0)v0

1

V

∫
Γ

ei(ξ0+ξ′0)dx

= (n⊗ n)(P̂ ′(ξ0)u0)v0δ̂Γ(−ξ0 − ξ′0) (A.5)

Analogously, we have P ′ ∗ v = P̂ ′(ξ′0)v0e
iξ′0x and

1

V

∫
V

[(n⊗ nδ)ΓP
′ ∗ v]udx = (n⊗ n)(P̂ ′(ξ′0)v0)u0δ̂Γ(−ξ0 − ξ′0)

(A.6)
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Since the two terms P̂ ′(ξ0) and P̂ ′(ξ′0) are generally different for different

wave vectors ξ′0 and ξ0, (A.5) is different from (A.6), which confirms that A

is non symmetric.

For the case of superconductive crack, operator A? has the form

A ? s =

(
S ∗ s− 〈δΓS ∗ s〉

〈δΓ〉

)
δΓ (A.7)

Again, to prove that A? is non symmetric, we adopt the same strategy as

before and consider two trial functions u = u0e
iξ0x and v = v0e

iξ′0x. Thus,

we have

S ∗ u = Ŝ(ξ0)u0e
iξ0x, S ∗ v = Ŝ(ξ′0)v0e

iξ′0x (A.8)

The scalar product involving A ? u and v becomes

1

V

∫
V

(A ? u)vdx = Ŝ(ξ0)u0v0[δΓ(−ξ0 − ξ′0)− 1

〈δΓ〉
δΓ(−ξ0)δΓ(−ξ′0)]

(A.9)

Comparing with the similar expression for the scalar product involving A? v

and u

1

V

∫
V

(A ? v)udx = Ŝ(ξ′0)u0v0[δΓ(−ξ0 − ξ′0)− 1

〈δΓ〉
δΓ(−ξ0)δΓ(−ξ′0)]

(A.10)

we find that it is sufficient to choose two different wave vectors ξ0 and ξ′0 to

obtain the two different scalar products. As a result, we can confirm that A?

is non symmetric.
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Appendix B. Information on the FEM model

The crack line is located at the center of the unit cell of size 1 [m] with

the length of 0.6 [m] on axis x1. Due to the symmetry of the problem, only

1/4 of the model limited by the inequality 0 ≤ x1, x2 ≤ 0.5 [m] and x2 = 0,

0 ≤ x1 ≤ 0.3 [m] for the crack line is studied with suitable boundary condi-

tions. Specifically, we have

- Insulating crack with E = i2 [K/m]: zero normal flux jn = 0 [W/m2]

on the axis of symmetry x2 and the right boundary parallel to x2 and on the

crack line. Zero temperature T = 0 [K] prescribed on the axis of symmetry

x1 (except the crack line) and T = −0.5 [K] on the upper boundary.

- Superconductive crack with E = i1 [K/m]: zero normal flux jn = 0 [W/m2]

on the axis of symmetry x1 (except the crack line) and the upper bound-

ary parallel to x1, zero temperature T = 0 [K] prescribed on the crack line,

T = −0.5 [K] on the right boundary.

Figure B.15: Finite Element mesh of the model
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Figure B.15 shows a fine mesh of the FEM model containing 2614 linear

triangular elements. The commercial code COMSOL is used for the simula-

tion.
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