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Rational representation of real functions

Wojciech Kucharz and Krzysztof Kurdyka

Abstract. Let X be an irreducible smooth real algebraic variety of dimension at least 2 and let
f : U → R be a function defined on a connected open subset U ⊂ X(R). Assume that for every
irreducible smooth real algebraic curve C ⊂ X, for which C(R) is the boundary of a disc embedded
in U , the restriction f |C(R) is continuous and has a rational representation. Then f has a rational
representation. This is a significant refinement of a recent result of J. Kollár and the authors.
The novelty is that existence of rational representation is tested on a much smaller and more rigid
class of curves. We also consider the case where U is not necessarily connected and test rationality
on subvarieties of dimension greater than 1. For semialgebraic functions our results hold under
slightly weaker assumptions.

Key words. Real algebraic variety, rational function, rational representation, semialgebraic
function, Nash function.
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1 Introduction
In this paper we continue the line of research initiated in [9, 10], see also our survey [17], and
obtain some new results on rational representation of functions defined on subsets of a real
algebraic variety. Here, as in [9, 10], a real algebraic variety is a quasi-projective variety X
defined over R (always reduced but possibly reducible). By a subvariety we mean a closed
subvariety. The set of real points is denoted by X(R) and endowed with the Euclidean
topology. It is well known that there is an affine open subset X0 ⊂ X that contains X(R).
Consequently, as in [2], one can always view X(R) as an algebraic subset of Rn for some n.
In particular, An(R) = Rn. If X is irreducible and smooth, then X(R) is either empty or it
is a C∞ manifold with dimX(R) = dimX.

Let f : U → R be a function defined on some subset U ⊂ X(R) and let R be a rational
function defined on the Zariski closure Y of U in X. We say that R is a rational represen-
tation of f or that f is represented by R if there exists a Zariski open dense subset Y 0 ⊂ Y
with

Y 0 ⊂ Y \ Pole(R) and f |U∩Y 0 = R|U∩Y 0 ,

where Pole(R) stands for the polar set of R (no restriction on the values of f on U ∩ (Y \ Y 0)
is imposed). More explicitly, regarding X(R) as an algebraic subset of Rn, the function f
has a rational representation if and only if there exist two polynomials p, q ∈ R[t1, . . . , tn]
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such that q is not identically equal to 0 on any irreducible component of Y (R) and f = p/q
on U ∩ {q 6= 0}. In [9, 10], f is called simply a rational function if it has a rational
representation.

According to [9], rationality of f can be tested on algebraic curves, that is, by imposing
suitable conditions on the restrictions of f to the intersections of U with real algebraic curves
C ⊂ X. In the present paper we give a new criterion for rationality of f , assuming that X
is smooth and U is an open subset of X(R). This new criterion involves only irreducible
smooth curves C such that, for U connected, C(R) is the boundary of a small disc embedded
in U . More generally, along with curves we consider also subvarieties of higher dimension.

Let Bk denote the closed unit ball in Rk,

Bk := {(x1, . . . , xk) ∈ Rk : x2
1 + · · ·+ x2

k ≤ 1},

where k ≥ 1. The boundary Sk−1 = ∂Bk is the unit sphere.

Notation 1.1. Let X be a smooth real algebraic variety of pure dimension at least 2,
U ⊂ X(R) a nonempty open subset, W an open cover of U , and d an integer satisfying
1 ≤ d ≤ dimX − 1. We denote by Sd(X;U, W) the collection comprised of all d-dimensional
irreducible smooth subvarieties S ⊂ X satisfying one of the following conditions:

(i) If U is connected, then S(R) is connected and there exists a C∞ embedding
ϕ : Bd+1 → X(R) such that ϕ(Bd+1) ⊂ W for some W ∈ W and ϕ(Sd) = S(R).

(ii) If U is disconnected, then S(R) has exactly 2 connected components and is not
contained in a single connected component of U . Furthermore, for each connected
component M of S(R) there exists a C∞ embedding ϕM : Bd+1 → X(R) such that
ϕM(Bd+1) ⊂ W for some W ∈ W and ϕM(Sd) = M .

First we give a criterion for rationality of semialgebraic functions.

Theorem 1.2. Let X be an irreducible smooth real algebraic variety of dimension at least 2,
f : U → R a function defined on a nonempty open subset U ⊂ X(R), W an open cover of U ,
and d an integer satisfying 1 ≤ d ≤ dimX−1. Assume that U is a semialgebraic set, f is a
semialgebraic function, and for every subvariety S ∈ Sd(X;U, W) the restriction f |S(R) has
a rational representation. Then f has a rational representation.

For functions that are not necessarily semialgebraic, our criterion takes the following
form.

Theorem 1.3. Let X be an irreducible smooth real algebraic variety of dimension at least 2,
f : U → R a function defined on a nonempty open subset U ⊂ X(R), W an open cover of U ,
and d an integer satisfying 1 ≤ d ≤ dimX − 1. Assume that U has finitely many connected
components, and for every subvariety S ∈ Sd(X;U, W) the restriction f |S(R) is continuous
and has a rational representation. Then f has a rational representation. Furthermore,
if f is represented by a rational function R on X, then P := U ∩ Pole(R) has codimension
at least 2 in U and f |U\P = R|U\P .

In Theorem 1.3, the restrictions f |S(R) are required not only to have rational represen-
tations but to be continuous as well. Without the latter condition the function f need
not have a rational representation [9, Example 1.8]. Moreover, by [9, Example 2.3], the
assumptions in Theorem 1.3 do not imply continuity of f .

Our results show that rationality of functions can be tested on very special subvarieties.
Such results have not been known heretofore even forX equal to affine space An or projective
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space Pn. The case d = 1 is a refined version of [9, Theorem 2.4]; the novelty is that in the
present paper we deal with a much more rigid class of curves, which substantially complicates
the problem. In order to overcome the difficulties arising in this context we develop some
new ideas, involving approximation of C∞ manifolds by real algebraic subvarieties (Lemma
2.4) and a nonstandard application of Bertini’s theorem (Lemma 2.9).

The description of Sd(X;U, W) and proofs of Theorems 1.2 and 1.3 are slightly simpler
if the set U is connected. However, X(R) can have several connected components (always
finitely many) and therefore it is better not to require that U be necessarily connected.
Taking W = {U} would not simplify the issue in a significant way.

Theorems 1.2 and 1.3 are proved in Section 2 by making use of suitable embeddings of
real algebraic varieties in projective space. In Section 3 we prove an embedding result, not
needed in Section 2, which is of independent interest.

Further algebraic and geometric properties of real rational functions are discussed in
[4, 5, 9, 10, 15, 19]. Applications of rational functions to topics on the borderline between
real algebraic geometry and topology are given in [12, 13, 14, 16] and other papers cited
therein.

2 Embeddings and approximation
Let X be a real algebraic variety and letW ⊂ X(R) be some subset. We say that a function
f : W → R is regular if for each point x ∈ W there exist a Zariski open neighborhood
Xx ⊂ X of x and a regular function ϕ on Xx such that f |W∩Xx = ϕ|W∩Xx . We say that a
map g = (g1, . . . , gk) : W → Rk is regular if all its components gi are regular functions.

The following fact will be useful.

Lemma 2.1. Let X ⊂ Pr be a real subvariety and let f : X(R)→ R be a regular function.
Then there exist two homogeneous polynomials F,G ∈ R[t0, . . . , tr], which are of the same
even degree, such that G has no zero in Rr+1 \ {0} and

f(x0 : · · · : xr) = F (x0, . . . , xr)
G(x0, . . . , xr)

for all (x0 : · · · : xr) ∈ X(R).

Proof. We can find a positive integer k, and for each i = 1, . . . , k two homogeneous polyno-
mials Fi, Gi ∈ R[t0, . . . , tr], which are of the same degree, such that

X(R) ⊂
k⋃
i=1

(Pr(R) \ Vi) and

f(x0 : · · · : xr) = Fi(x0, . . . , xr)
Gi(x0, . . . , xr)

for all (x0 : · · · : xr) ∈ X(R) \ Vi,

where Vi ⊂ Pr is the hypersurface defined by Gi = 0. Multiplying both Fi and Gi by a
suitable power of t20 + · · · + t2r (depending on i), we may assume that Fi and Gi are of the
same degree, say m, for all i. In the case where Fi and Gi are of odd degree we first multiply
both of them by Gi.

Setting

P :=
k∑
i=1

FiGi and Q :=
k∑
i=1

G2
i ,

we get
f(x0 : · · · : xr) = P (x0, . . . , xr)

Q(x0, . . . , xr)
for all (x0 : · · · : xr) ∈ X(R).
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Let H1, . . . , Hl ∈ R[t0, . . . , tr] be homogeneous polynomials that generate the homoge-
neous ideal of the subvariety X of Pr. If nj = degHj and n = max{n1, . . . , nl}, then

H :=
l∑

j=1
(t20 + · · ·+ t2r)n−njH2

j

is a homogeneous polynomial of degree 2n and

X(R) = {(x0 : · · · : xr) ∈ Pr(R) : H(x0, . . . , xr) = 0}.

Setting q = max{m,n}, we readily see that the homogeneous polynomials

F := (t20 + · · ·+ t2r)q−mP and G := (t20 + · · ·+ t2r)q−mQ+ (t20 + · · ·+ t2r)q−nH

satisfy all the requirements.

Next we introduce a certain class of subvarieties.

Definition 2.2. Let X be a smooth real algebraic variety. A d-dimensional real subvariety
Z ⊂ X is said to be admissible if Z(R) is contained in the nonsingular locus of Z and can
be written as Z(R) = ϕ(∂Ω), where Ω is a (d+ 1)-dimensional compact C∞ manifold with
boundary ∂Ω, and ϕ : Ω→ X(R) is a C∞ embedding with trivial normal bundle.

We need the following result on embeddings in projective space.

Proposition 2.3. Let X be a smooth projective real algebraic variety of pure dimension
n ≥ 2, d an integer satisfying 1 ≤ d ≤ n − 1, and Z ⊂ X a d-dimensional admissible
subvariety. Then there exist an algebraic embedding e : X → PN and an (N − n + d)-
dimensional plane L ⊂ PN such that e(X(R)) intersects L(R) transversally in PN(R) and
e(Z(R)) = e(X(R)) ∩ L(R).

Proof. Set c := n − d. Since the subvariety Z ⊂ X is admissible, it follows from [11,
Lemma 2.2] that one can find a C∞ map g : X(R)→ Rc for which 0 ∈ Rc is a regular value
and Z(R) = g−1(0). By the relative Weierstrass approximation theorem [2, Lemma 12.5.5],
there exists a regular map

f = (f1, . . . , fc) : X(R)→ Rc,

arbitrarily close to g in the C∞ topology, such that f(x) = 0 for all x ∈ Z(R). It follows
that 0 ∈ Rc is a regular value of f and Z(R) = f−1(0).

We may assume that X ⊂ Pr for some positive integer r. Then, according to Lemma 2.1,
for each i = 1, . . . , c there exist two homogeneous polynomials Fi, Gi ∈ R[t0, . . . , tr], which
are of the same even degree, such that Gi has no zero in Rr+1 \ {0} and

fi(x0 : · · · : xr) = Fi(x0, . . . , xr)
Gi(x0, . . . , xr)

for all (x0 : · · · : xr) ∈ X(R).

Multiplying Fi and Gi by a suitable power of t20 + · · · + t2r (depending on i), we may as-
sume that Fi, Gi are of the same degree, say m, for all i. Let N :=

(
r+m
m

)
− 1 and let

vm : Pr → PN be the Veronese embedding of degree m. Let Li ⊂ PN be the hyperplane
corresponding to Fi. Then L := L1 ∩ . . . ∩ Lc is an (N − n + d)-dimensional plane in PN .
If e : X → PN is the restriction of vm, then e(X(R)) intersects L(R) transversally in PN(R)
and e(Z(R)) = e(X(R)) ∩ L(R), as required.

4



Next we describe how to construct admissible subvarieties which have some additional
properties.

Lemma 2.4. Let X be an irreducible smooth projective real algebraic variety of dimen-
sion n ≥ 2, and d an integer satisfying 1 ≤ d ≤ n − 1. Let Ω be a (d + 1)-dimensional
compact C∞ manifold with boundary ∂Ω, ϕ : Ω → X(R) a C∞ embedding with trivial
normal bundle, and x0 ∈ ϕ(∂Ω) some point. Then there exists a C∞ diffeomorphism
σ : X(R)→ X(R), arbitrarily close to the identity map in the C∞ topology, such that
σ(x0) = x0 and σ(ϕ(∂Ω)) = Z(R), where Z is a d-dimensional irreducible smooth ad-
missible subvariety of X. Furthermore, for a suitable algebraic embedding X ⊂ PN , the
subvariety Z can be written as Z = X ∩ L, where L ⊂ PN is an (N − n + d)-dimensional
plane which intersects X transversally.

Proof. Set c = n − d. In view of [11, Lemma 2.2], there exists a C∞ map g : X(R)→ Rc

for which 0 ∈ Rc is a regular value and g−1(0) = ϕ(∂Ω). By the relative Weierstrass
approximation theorem [2, Lemma 12.5.5], there exists a regular map f : X(R) → Rc,
arbitrarily close to g in the C∞ topology, such that f(x0) = 0. Then 0 ∈ Rc is a regular
value of f and there exists a C∞ diffeomorphism τ : X(R) → X(R), close to the identity
map in the C∞ topology, such that

τ(ϕ(∂Ω)) = τ(g−1(0)) = f−1(0) and τ(x0) = x0.

Furthermore, the Zariski closure V ⊂ X of f−1(0) is an admissible subvariety with

V (R) = f−1(0).

Thus, according to Proposition 2.3, we may assume that X ⊂ PN and

V (R) = X(R) ∩ Λ(R),

where Λ ⊂ PN is an (N−n+d)-dimensional plane such that Λ(R) intersects X(R) transver-
sally in PN(R).

We express Λ as the intersection Λ = Λ1 ∩ . . .∩Λc of c hyperplanes Λi ⊂ PN . Each Λi is
defined by Ai = 0 for some linear form Ai ∈ R[t0, . . . , tN ]. Choose hyperplanes H1, . . . , HN

in PN with H1 ∩ . . . ∩ HN = {x0}. Each Hj is defined by Bj = 0 for some linear form
Bj ∈ R[t0, . . . , tN ]. Given a real matrix α = (αij), consider the linear forms

Aαi := Ai +
N∑
j=1

αijBj, i = 1, . . . , c.

For general αij, close to 0 ∈ R, let Li ⊂ PN be the hyperplane defined by Aαi = 0. Then
L := L1 ∩ . . . ∩ Lc is an (N − n + d)-dimensional plane in PN which intersects X transver-
sally. Consequently, Z := X ∩ L is a d-dimensional smooth subvariety of X. By [18,
Theorem 3.3.3], Z is also irreducible. If the αij are sufficiently close to 0 ∈ R, then there ex-
ists a C∞ diffeomorphism θ : X(R)→ X(R), close to the identity map in the C∞ topology,
such that

θ(V (R)) = Z(R) and θ(x0) = x0.

Setting σ = θ ◦ τ , we get

σ(ϕ(∂Ω)) = Z(R) and σ(x0) = x0.

In particular, Z is an admissible subvariety. The proof is complete.
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Lemma 2.4 provides information on the collection of subvarieties Sd(X;U, W) in Nota-
tion 1.1. For the sake of clarity, recall that any vector bundle on Bd+1 is trivial.

Lemma 2.5. Let X be an irreducible smooth projective real algebraic variety of dimen-
sion n ≥ 2, U ⊂ X(R) a nonempty open subset, W an open cover of U , and d an integer
satisfying 1 ≤ d ≤ n − 1. Let U0 ⊂ U be a connected open subset, U1 ⊂ U0 a nonempty
open subset, and x0 ∈ U0 some point. Assume that U0 ⊂ W0 for some W0 ∈ W. Then there
exists a subvariety S ∈ Sd(X;U, W) such that S(R)∩U0 is a connected component of S(R),
x0 ∈ S(R), and S(R) ∩ U1 6= ∅. Furthermore, for a suitable algebraic embedding X ⊂ PN ,
the subvariety S can be written as S = X ∩L, where L ⊂ PN is an (N −n+ d)-dimensional
plane which intersects X transversally.

Proof. Suppose that the set U is connected. We can find a C∞ embedding ϕ : Bd+1 → X(R)
such that ϕ(Bd+1) ⊂ U0, x0 ∈ ϕ(Sd), and ϕ(Sd)∩U1 6= ∅. In view of Lemma 2.4, we obtain
S with the required properties.

Now suppose that the set U is disconnected, and let U ′ be a connected component of U
which is disjoint from U0. Choose W1 ∈ W with U ′ ∩W1 6= ∅. Setting

Ω := ({0} × Bd+1) ∪ ({1} × Bd+1),

we can find a C∞ embedding ψ : Ω→ X(R) such that ψ({0}×Bd+1) ⊂ U0, x0 ∈ ψ({0} × Sd),
ψ({0}× Sd)∩U1 6= ∅, and ψ({1}×Bd+1) ⊂ U ′ ∩W1. Making use of Lemma 2.4, we obtain
S with the required properties.

Henceforth we will frequently appeal to Bertini’s theorem [18, Theorems 3.3.1 and 3.3.3]
to produce irreducible smooth subvarieties. Given integers k and N with 1 ≤ k ≤ N , we
denote by Gr(k,N) the Grassmann variety of k-dimensional planes in PN .

Lemma 2.6. Let X be an irreducible smooth projective real algebraic variety of dimension
at least 2, f : U → R a function defined on a nonempty open subset U ⊂ X(R), W an
open cover of U , and d an integer satisfying 1 ≤ d ≤ dimX − 1. Assume that U is a
semialgebraic set, f is a semialgebraic function, and for every subvariety S ∈ Sd(X;U, W)
the restriction f |S(R) has a rational representation. Then, for each nonempty open subset
U ′ ⊂ U , there exists a connected open subset U0 ⊂ U ′ such that the restriction f |U0 has a
rational representation.

Proof. Let U ′ ⊂ U be a nonempty open subset. By definition of semialgebraic function,
there exist a connected open subset U0 ⊂ U ′ and an irreducible hypersurface Y ⊂ X × A1

such that the graph of f |U0 is contained in Y . Then f |U0 has a rational representation if
and only if the first projection π1 : Y → X is birational.

Suppose to the contrary that π1 is not birational, that is, π1 has degree m > 1. Accord-
ing to Lemma 2.5, we may assume that X ⊂ PN and there exists a k-dimensional plane
L0 ⊂ PN , where k := N −dimX+d, such that L0 intersects X transversally, the subvariety
S0 := X ∩ L0 belongs to Sd(X;U, W), and S0(R)∩U0 is a connected component of S0(R). Let
B ⊂ Gr(k,N) be the collection of all planes L for which X∩L and π−1

1 (L) are d-dimensional
irreducible smooth subvarieties. For each L ∈ B the restriction π−1

1 (X ∩ L)→ X ∩ L of π1
has degree m. By Bertini’s theorem, B is open dense in the Zariski topology. Thus, we can
choose an L ∈ B such that S := X ∩L is in Sd(X;U, W) and S(R)∩U0 is a connected com-
ponent of S(R). The graph of f |S(R)∩U0 lies on π−1

1 (S) = π−1
1 (X ∩ L), hence the restriction

f |S(R)∩U0 has no rational representation. This is a contradiction since f |S(R) has a rational
representation by assumption.
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In the proofs of Theorems 1.2 and 1.3 we will also make use of the following.

Proposition 2.7. Let X be an irreducible smooth real algebraic variety of dimension at
least 2, f : U → R a function defined on a nonempty open subset U ⊂ X(R), W an open
cover of U , and d an integer satisfying 1 ≤ d ≤ dimX − 1. Assume that the following hold:

(a) U is disconnected and the collection {Ui}i∈I of all its connected components is finite;

(b) the restriction f |Ui
is represented by a rational function Ri on X for every i ∈ I;

(c) for every subvariety S ∈ Sd(X;U, W) the restriction f |S(R) has a rational representa-
tion.

Then f has a rational representation. Moreover, Ri is a rational representation of f , and
the rational functions Ri and Rj coincide for i, j ∈ I.

Proof. By the resolution of singularities theorem [7, 8], we may assume that the variety X
is irreducible smooth and projective. In view of (a) and (b), we can find a Zariski open
dense subset X0 ⊂ X such that

(2.1) X0 ⊂ X \ Pole(Ri) and f |Ui∩X0 = Ri|Ui∩X0 for all i ∈ I.

It suffices to prove that Ri = Rj, as rational functions, for all i, j ∈ I.
Suppose to the contrary that Ri 6= Rj for some fixed i, j. Then we get

Ri|Ui∩X0 6= Rj|Ui∩X0 ,

hence
U∗i = {x ∈ Ui ∩X0 : Ri(x) 6= Rj(x)}

is a nonempty open subset of Ui. Pick sets Wi,Wj ∈ W such that Wi ∩ U∗i 6= ∅ and
Wj ∩ Uj 6= ∅. Set

Ω := ({i} × Bd+1) ∪ ({j} × Bd+1),
and let ϕ : Ω→ X(R) be a C∞ embedding with

ϕ({i} × Bd+1) ⊂ Wi ∩ U∗i and ϕ({j} × Bd+1) ⊂ Wj ∩ Uj ∩X0.

Denote by S the Zariski closure of ϕ(∂Ω) in X. By Lemma 2.4, ϕ can be chosen so that
S ∈ Sd(X;U, W). Since the restriction f |S(R) has a rational representation, there exist a
Zariski open dense subset S0 ⊂ S and a rational function RS on S such that

(2.2) S0 ⊂ S \ Pole(RS) and f |S(R)∩S0 = RS|S(R)∩S0 .

By comparing (2.1) and (2.2), we get

Ri|Ui∩S(R)∩S0∩X0 = RS|Ui∩S(R)∩S0∩X0 ,

which in turn implies

(2.3) Ri|S(R)∩S0∩X0 = RS|S(R)∩S0∩X0 ,

since S is irreducible. On the other hand, (2.1) and (2.2) also yield

Rj|Uj∩S(R)∩S0∩X0 = RS|Uj∩S(R)∩S0∩X0 ,
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hence

(2.4) Rj|S(R)∩S0∩X0 = RS|S(R)∩S0∩X0 .

In view of (2.3) and (2.4), we get

Ri|S(R)∩S0∩X0 = Rj|S(R)∩S0∩X0 .

The last equality leads to a contradiction since U∗j ∩ S(R) ∩ S0 ∩ X0 6= ∅. The proof is
complete.

Proof of Theorem 1.2. By the resolution of singularities theorem [7, 8], we may assume that
the variety X is irreducible smooth and projective. Since the set U is semialgebraic, it has
finitely many connected components. In view of Proposition 2.7, it suffices to prove that
the restriction of f to any connected component of U has a rational representation.

Let U ′ be a connected component of U . Pick a set W0 ∈ W with U ′ ∩W0 6= ∅. By
Lemma 2.6, there exist a connected open subset U0 ⊂ U ′ ∩W0 and a rational function R
on X such that

(2.5) U0 ⊂ X \ Pole(R) and f |U0 = R|U0 .

Since f is a semialgebraic function, there exists a Zariski nowhere dense real subvariety
Z ⊂ X such that the restriction f |U\Z is a continuous function. Set P := U ∩ (Z ∪ Pole(R)).
It remains to prove that

(2.6) f |U ′\P = R|U ′\P .

For the proof fix a point p0 ∈ U0 and let p ∈ U ′ \ P be an arbitrary point. Let
γ : [0, 1] → U ′ be a continuous path with γ(0) = p0 and γ(1) = p. We can cover the
compact subset γ([0, 1]) ⊂ U ′ by a finite collection of connected open subsets U0, U1, . . . , Ur
such that each Uk is contained in some Wk ∈ W, and the intersection Ul ∩Ul+1 is nonempty
for every l = 0, . . . , r − 1. We use induction on i to show that

(2.7) f |Ui\P = R|Ui\P for i = 0, . . . , r.

This is clear for i = 0 by (2.5). Suppose that (2.7) holds for i = j, where 0 ≤ j < r, and
f(x0) 6= R(x0) for some point x0 ∈ Uj+1 \ P . Then

U∗j+1 := {x ∈ Uj+1 \ P : f(x) 6= R(x)}

is an open neighborhood of x0 in Uj+1. By Lemma 2.5, there exists a subvariety
S ∈ Sd(X;U, W) such that x0 ∈ S(R), S(R)∩ (Uj \P ) 6= ∅, and S(R)∩Uj+1 is a connected
component of S(R). Since the restriction f |S(R) has a rational representation, there exist a
Zariski open dense subset S0 ⊂ S and a rational function RS on S such that

(2.8) S0 ⊂ S \ Pole(RS) and f |S(R)∩S0 = RS|S(R)∩S0 .

By shrinking S0 if necessary, we obtain

(2.9) S(R) ∩ S0 ⊂ U \ P.

In view of (2.8), (2.9) and the induction hypothesis, we get

f = R on Uj ∩ S(R) ∩ S0,
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hence

(2.10) f |S(R)∩S0 = R|S(R)∩S0

since both restrictions in (2.10) are regular functions. This leads to a contradiction, the
intersection U∗j+1 ∩ S(R) ∩ S0 being nonempty. Thus (2.7) holds, which in turn implies
f(p) = R(p). Consequently, (2.6) follows and the proof is complete.

The proof of Theorem 1.3 is more involved and requires additional preparation. Let X
be a real algebraic variety, and U ⊂ X(R) a semialgebraic open subset which is contained
in the nonsingular locus of X. Recall that a function f : U → R is called a Nash function
(or in older texts an algebraic function) if it is analytic and semialgebraic [2].

As a consequence of some subtle Hartogs-like results on real analytic functions due to
Błocki [1] and Siciak [20], in conjunction with a classical theorem presented in Bochner–
Martin [3], the following fact was noted in [9, Corollary 2.10].

Proposition 2.8. Let f : U → R be a function defined on a nonempty open subset U ⊂ Rn.
Assume that the restriction of f is a Nash function on any open interval contained in U
and parallel to one of the coordinate axes. Then there exists a nonempty semialgebraic open
subset U0 ⊂ U such that the restriction f |U0 is a Nash function.

Proposition 2.8 allows us to prove the following variant of Lemma 2.6.

Lemma 2.9. Let X be an irreducible smooth projective real algebraic variety of dimension
at least 2, f : U → R a function defined on a nonempty open subset U ⊂ X(R), W an open
cover of U , and d an integer satisfying 1 ≤ d ≤ dimX−1. Assume that for every subvariety
S ∈ Sd(X;U, W) the restriction f |S(R) is continuous and has a rational representation.
Then, for each nonempty open subset U ′ ⊂ U , there exists a connected open subset U0 ⊂ U ′

such that the restriction f |U0 is a Nash function.

Proof. It suffices to consider a connected open subset U ′ ⊂ U which is contained in some set
that belongs to W. Set n = dimX. According to Lemma 2.5, we may assume that X ⊂ PN
and there exists an (N − n + d)-dimensional plane L0 ⊂ PN such that L0 intersects X
transversally, the subvariety S0 := X ∩L0 is in Sd(X;U, W), and S0(R)∩U ′ is a connected
component of S0(R).

Let E ⊂ PN be an (N − n− 1)-dimensional plane that is disjoint from X and contained
in L0. We choose homogeneous coordinates (x0 : · · · : xN) in PN so that E is defined
by x0 = 0, . . . , xn = 0, and L0 is defined by xd+1 = 0, . . . , xn = 0. Then the projection
πE : PN \ E → Pn with center E is given by πE(x0 : · · ·xN) = (x0 : · · · : xn), and Λ0 ⊂ Pn
defined by xd+1 = 0, . . . , xn = 0 is a unique d-dimensional plane such that L0 is the Zariski
closure of π−1

E (Λ0) in PN . Furthermore, the restriction π := (πE)|X : X → Pn is a finite
morphism with S0 = π−1(Λ0).

By Bertini’s theorem, the subset B ⊂ Gr(d, n) comprised of all planes Λ for which
π−1(Λ) is a d-dimensional irreducible smooth subvariety of X is Zariski open dense. Let B0
be the set of all planes Λ ∈ B such that the subvariety S := π−1(Λ) belongs to Sd(X;U, W),
and S(R) ∩ U ′ is a connected component of S(R). By construction, Λ0 ∈ B0.

Pick a point p ∈ U ′∩L0 = U ′∩S0(R) and affine coordinates (z1, . . . , zn) in An ⊂ Pn with
origin at π(p). Set c = n−d. Given a c-tuple of integers (i1, . . . , ic) with 1 ≤ i1 < · · · < ic ≤ n,
let A(i1, . . . , ic) ⊂ An be the d-dimensional coordinate plane defined by zi1 = 0, . . . , zic = 0,
and let Λ(i1, . . . , ic) ⊂ Pn be its Zariski closure. Let P(i1, . . . ic) denote the set of all
planes Λ ∈ Gr(d, n) with An ∩ Λ parallel to A(i1, . . . , ic). By shrinking U ′, we may assume
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that the coordinates (z1, . . . , zn) are chosen so that Λ0 = Λ(d + 1, . . . , n), and every plane
Λ ∈ P(i1, . . . , ic) with π(U ′) ∩ Λ 6= ∅ belongs to B0 (we have to ensure that each plane
Λ ∈P(i1, . . . , ic) with π(U ′) ∩ Λ 6= ∅ is sufficiently close to Λ0). After further shrink-
ing U ′, we may also assume that the restriction σ : U ′ → σ(U ′) = π(U ′) of π is a Nash
diffeomorphism and

σ(U ′) ⊂ Rn = An(R) ⊂ Pn(R).
Let I ⊂ σ(U ′) be an open segment that is parallel to one of the coordinate axes. Set

A := σ−1(I), and let C be the Zariski closure of A in X. Obviously, C is an irreducible
real algebraic curve whose nonsingular locus contains A. We have I ⊂ σ(U ′) ∩ Λ, where
Λ ∈ P(i1, . . . , ic) for some c-tuple (i1, . . . , ic). For S := π−1(Λ), we get C ⊂ S. Since
S ∈ Sd(X;U, W), the restriction f |S(R) is continuous and has a rational representation.
Hence, according to [10, Proposition 8], f |C(R) has a rational representation. Since A is
contained in the nonsingular locus of C, we conclude that f |A is a regular function. Con-
sequently, (f ◦ σ−1)|I is a Nash function. In view of Proposition 2.8, the restriction of
f ◦ σ−1 : σ(U ′) → R to some connected open subset of σ(U ′) is a Nash function. This
completes the proof.

Proof of Theorem 1.3. By the resolution of singularities theorem [7, 8], we may assume that
the variety X is irreducible smooth and projective.

Let U ′ be a connected component of U . Pick a set W0 ∈ W with U ′ ∩W0 6= ∅. By
Lemmas 2.6 and 2.9, there exist a connected open subset U0 ⊂ U ′ ∩ W0 and a rational
function R on X such that

(2.11) U0 ⊂ X \ Pole(R) and f |U0 = R|U0 .

Set P := U ∩ Pole(R). We assert that

(2.12) f |U ′\P = R|U ′\P .

For the proof of (2.12) fix a point p0 ∈ U0 and let p ∈ U ′ \ P be an arbitrary point. Let
γ : [0, 1]→ U ′ be a continuous path with γ(0) = p0 and γ(1) = p. We can cover the compact
subset γ([0, 1]) ⊂ U ′ by a finite collection of connected open subsets U0, . . . , Ur such that
each Uk is contained in some Wk ∈ W, and the intersection Ul ∩Ul+1 is nonempty for every
l = 0, . . . , r − 1. We use induction on i to show that

(2.13) f |Ui\P = R|Ui\P for i = 0, . . . , r.

This is clear for i = 0 by (2.11). Suppose that (2.13) holds for i = j, where 0 ≤ j < r, and
consider a point x0 ∈ Uj+1 \ P . By Lemma 2.5, there exists a subvariety S ∈ Sd(X;U, W)
such that x0 ∈ S(R), S(R) ∩ (Uj \ P ) 6= ∅, and S(R) ∩ Uj+1 is a connected component
of S(R). Since the restriction f |S(R) has a rational representation, there exist a Zariski open
dense subset S0 ⊂ S and a rational function RS on S such that

(2.14) S0 ⊂ S \ Pole(RS) and f |S(R)∩S0 = RS|S(R)∩S0 .

By shrinking S0 if necessary, we obtain

(2.15) S(R) ∩ S0 ⊂ U \ P.

In view of (2.14), (2.15) and the induction hypothesis, we get

f = R on Uj ∩ S(R) ∩ S0,
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hence

(2.16) f |S(R)∩S0 = R|S(R)∩S0

since both restrictions in (2.16) are regular functions. Moreover, the functions f |S(R) and
R|U\P are continuous, x0 ∈ S(R) ∩ U ′, and S(R) ∩ S0 is dense in S(R). Therefore (2.16)
yields f(x0) = R(x0), which completes the proof of (2.13). Consequently, f(p) = R(p), and
hence (2.12) holds.

In view of (2.12) and Proposition 2.7, R is a rational representation of f and

(2.17) f |U\P = R|U\P .

It remains to prove

(2.18) codimU P ≥ 2.

Suppose to the contrary that codimU P = 1. Then one can find a codimension 1 irre-
ducible component Y of Pole(R) such that the intersection P0 of U with the nonsingular
locus of Y is nonempty. Obviously, P0 ⊂ U is a C∞ submanifold of codimension 1. Mak-
ing use of Lemma 2.4 and arguing as in the proof of Lemma 2.5, we obtain a subvariety
T ∈ Sd(X;U, W) with T (R) transverse to P0 and T (R) ∩ P0 6= ∅. Applying Lemma 2.4
once again, we get an irreducible smooth real algebraic curve C ⊂ T with C(R) transverse
to P0 and C(R) ∩ P0 6= ∅. By assumption, the restriction f |T (R) is continuous and has a
rational representation. Hence, in view of [10, Proposition 8], the restriction f |C(R) has a
rational representation. Actually, the function f |C(R) is regular since it is continuous and
the curve C is smooth. According to (2.17), we have

(f |C(R))|C(R)\P = f |C(R)\P = R|C(R)\P ,

which means that R cannot have a pole along C(R), a contradiction. Thus (2.18) holds, as
required.

3 Appendix
The embedding result proved in this section is not used elsewhere in our paper. However,
it is related to Proposition 2.3 and may be of independent interest.

Proposition 3.1. Let X be a smooth projective real algebraic variety of pure dimension at
least 1. Let Y ⊂ X be a real subvariety of pure codimension 1, whose nonsingular locus con-
tains Y (R). Then there exist an algebraic embedding e : X → PN and a hyperplane H ⊂ PN
such that e(X(R)) intersects H(R) transversally in PN(R) and e(Y (R)) = e(X(R)) ∩H(R).

Proof. It will be convenient to identify isomorphic sheaves. Furthermore, we will make no
distinction between invertible sheaves and line bundles on real algebraic varieties.

For any positive integer n, let On(1) denote the twisting line bundle on Pn. Recall that
On(q) = On(1)⊗q for every positive integer q.

Given a homogeneous polynomial F ∈ R[t0, . . . , tn], we set

V (F ) := (F (t0, . . . , tn) = 0) ⊂ Pn and PnF := Pn \ V (F ).

We also set
Pn0 := Pn \ V (t20 + · · ·+ t2n).

11



Claim 1. The restriction of the line bundle On(2) to Pn0 is trivial.
This is the case since the section of On(2) corresponding to the homogeneous polynomial

t20 + · · ·+ t2n does not vanish anywhere on Pn0 .
Claim 2. For any line bundle L on X, there exists an algebraic embedding ε : X → Pn

such that L|X0 = (ε∗On(1))|X0 for some Zariski open neighborhood X0 ⊂ X of X(R).
We may assume that X ⊂ Pk for some k. Then X0 := X ∩ Pk0 is a Zariski open

neighborhood of X(R) in X.
Set OX(q) := Ok(q)|X . By Serre’s theorem [6, p. 121, Theorem 5.17], there exists a

positive integer q0 such that the line bundle L ⊗ OX(q) is generated by global sections for
every q ≥ q0. Furthermore, in view of [6, p. 169, Exercise 7.5 (d)], the line bundle

L ⊗ OX(q + 1) = (L ⊗ OX(q))⊗ OX(1)

is very ample for q ≥ q0. Fix q ≥ q0 +1 and consider the very ample line bundle L⊗OX(2q).
There exists an algebraic embedding ε : X → Pn such that

L ⊗ OX(2q) = ε∗On(1).

According to Claim 1, the restriction OX(2)|X0 is a trivial line bundle. Since OX(2q) =
OX(2)⊗q, we have

(ε∗On(1))|X0 = (L|X0)⊗ (OX(2)|X0)⊗q = L|X0 ,

which completes the proof of Claim 2.
Since Y is of pure codimension 1, there exists a line bundle E on X and a global section s

of E with
Y = Z(s),

where Z(s) stands for the scheme of zeros of s. By Claim 2, we may assume that

X ⊂ Pn and E|X1 = On(1)|X1 ,

where X1 ⊂ X is a Zariski open neighborhood of X(R).
Claim 3. There exists a homogeneous polynomial F ∈ R[t0, . . . , tn] such that

X(R) ⊂ X ∩ PnF ⊂ X1.

Indeed, we have
X1 = X ∩ (Pn \ (V (F1) ∩ . . . ∩ V (Fr)))

for some homogeneous polynomials F1, . . . , Fr in R[t0, . . . , tn]. Set mi = degFi and
m = max{m1, . . . ,mr}. Then the homogeneous polynomial

F :=
r∑
i=1

(t20 + · · ·+ t2n)m−miF 2
i

has the properties required in Claim 3.
Thus we have

X ⊂ Pn and E|XF
= On(1)|XF

,

where F is as in Claim 3 and XF := X ∩ PnF .
Claim 4. The section s|XF

of On(1)|XF
can be extended to a section u of the sheaf

F := On(1)|Pn
F
on PnF .
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Let J be the ideal sheaf of XF in PnF . Since PnF is an affine variety, the obvious exact
sequence of sheaves

0 −→JF −→ F −→ F/JF −→ 0

gives rise to an exact sequence of the corresponding modules of global sections [6, p. 215,
Theorem 3.5]. Claim 4 follows because s|XF

induces a global section of the quotient sheaf
F/JF.

One can complete the proof of Proposition 3.1 as follows. Let Z ⊂ Pn be the Zariski
closure of Z(u). Then Z is of pure codimension 1, Z(R) is contained in the nonsingular
locus of Z, Z(R) intersects X(R) transversally in Pn(R), and Y (R) = X(R) ∩ Z(R). Let d
be the degree of Z and N :=

(
n+d
d

)
− 1. Let vd : Pn → PN be the Veronese embedding of

degree d and let H ⊂ PN be the hyperplane corresponding to Z. Define e : X → PN to be
the restriction of vd. Then e and H satisfy all the requirements.
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