
HAL Id: hal-03808800
https://hal.science/hal-03808800

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FROM CONTINUOUS RATIONAL TO REGULOUS
FUNCTIONS

Krzysztof Kurdyka, Wojciech Kucharz

To cite this version:
Krzysztof Kurdyka, Wojciech Kucharz. FROM CONTINUOUS RATIONAL TO REGULOUS FUNC-
TIONS. International Congres of Mathematicians, Aug 2018, Rio de Janeiro, Brazil. pp.719-747,
�10.1142/9789813272880_0075�. �hal-03808800�

https://hal.science/hal-03808800
https://hal.archives-ouvertes.fr


FROM CONTINUOUS RATIONAL TO REGULOUS FUNCTIONS

WOJCIECH KUCHARZ AND KRZYSZTOF KURDYKA

Abstract. Let X be an algebraic set in Rn. Real-valued functions, defined on subsets of X,
that are continuous and admit a rational representation have some remarkable properties and
applications. We discuss recently obtained results on such functions, against the backdrop
of previously developed theories of arc-symmetric sets, arc-analytic functions, approximation
by regular maps, and algebraic vector bundles.

1. Introduction

Our purpose is to report on some new developments in real algebraic geometry, focusing
on functions that have a rational representation. Let us initially consider the simplest case.
A function f : Rn → R of class Ck, where k is a nonnegative integer, is said to have a rational
representation if there exist two polynomial functions p, q on Rn such that q is not identically 0
and f = p/q on {q 6= 0}. A typical example is
(1.1) fk : R2 → R defined by

fk(x, y) = x3+k

x2 + y2 for (x, y) 6= (0, 0) and f(0, 0) = 0.

To the best of our knowledge, [46] was the first paper devoted to the systematic study of
such functions. This line of research was continued by several mathematicians [10, 32, 33, 42,
43, 48 , 50, 51, 53 –60, 71, 86], frequently with k = 0, where the functions admitting a rational
representation are only continuous. Let us note that the complex case is quite different. By
the Riemann extension theorem, any continuous function from Cn into C that has a rational
representation is a polynomial function.

Henceforth we work with real algebraic sets, which is equivalent to the approach adopted
in [13]. By a real algebraic set we mean an algebraic subset of Rn for some n. One can realize
real projective d-space Pd(R) as a real algebraic set using the embedding

(1.2) Pd(R) 3 (x0 : · · · : xd) 7→
(

xixj
x2

0 + · · ·+ x2
d

)
∈ R(d+1)2

.

Thus any algebraic subset of Pd(R) is an algebraic subset of R(d+1)2 . Consequently, many
useful constructions can be performed within the class of real algebraic sets, blowing-up being
an important example. One can also view any real algebraic set as the set of real points V (R)
of a quasiprojective variety V defined over R.

Unless explicitly stated otherwise, we always assume that real algebraic sets and their
subsets are endowed with the Euclidean topology, which is induced by the usual metric on R.
For a real algebraic set X, its singular locus Sing(X) is an algebraic, Zariski nowhere dense
subset of X. We say that X is smooth if Sing(X) is empty. The following examples illustrate
some phenomena that do not occur in the complex setting.
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(1.3) The algebraic curve

C := (x4 − 2x2y − y3 = 0) ⊂ R2

is irreducible and Sing(C) = {(0, 0)}. Actually, C is an analytic submanifold of R2.
(1.4) The algebraic curve

C := (x3 − x2 − y2 = 0) ⊂ R2

is irreducible and Sing(C) = {(0, 0)}. It has two connected components, the singleton
{(0, 0)} and the unbounded branch C \ {(0, 0)}.

(1.5) The algebraic curve

C := (x2(x2 − 1)(x2 − 4) + y2 = 0) ⊂ R2

is irreducible and Sing(C) = {(0, 0)}. It has three connected components, the singleton
{(0, 0)} and two ovals.

(1.6) The Cartan umbrella

S := (x3 − z(x2 + y2) = 0) ⊂ R3

is an irreducible algebraic surface with Sing(S) = (z-axis). The surface S is connected
and S \ Sing(S) is not dense in S. Furthermore, S is not coherent when regarded as
an analytic subset of R3.

It will be convenient to consider regular functions in a more general setting than usual. Let
X ⊂ Rn be an algebraic set and let f : W → R be a function defined on some subset W of X.
We say that f is regular at a point x ∈ W if there exist two polynomial functions p, q on Rn
such that q(x) 6= 0 and f = p/q on W ∩ {q 6= 0}. We say that f is a regular function if it is
regular at each point ofW . For any algebraic set Y ⊂ Rp, a map ϕ = (ϕ1, . . . , ϕp) : W → Y is
regular if all the components ϕi : W → R are regular functions. These notions are independent
of the algebraic embeddings X ⊂ Rn and Y ⊂ Rp.

Any rational function R on X determines a regular function R : X \ Pole(R) → R, where
Pole(R) stands for the polar set of R.

Contents. In Section 2 we recall briefly main facts about arc-symmetric sets and arc-analytic
functions. These notions, introduced 30 years ago by the second-named author, describe some
rigidity phenomena (of an analytic type) of real algebraic sets. They form a background for
the subsequent sections in which we present recent developments in the context of rational
functions.

Section 3 contains presentation of new results on the geometry defined by regulous functions,
that is, continuous functions which admit a strong version of rational representation.

In Section 4 we recall some theorems on approximation of continuous maps with values in
spheres by regular maps and give new results in which approximating maps are allowed to be
regulous.

In Section 5 we discuss topological, algebraic and regulous vector bundles. Regulous vector
bundles have many desirable properties of algebraic vector bundles but are more flexible.

2. Arc-symmetric sets and arc-analytic functions

Arc-symmetric sets and arc-analytic functions were introduced in [62] by the second-named
author. They were further investigated and applied in [1, 7, 9, 31,41,45,63–68,70,75–78].

2.1. Arc-symmetric sets. We say that a subset E ⊂ Rn is arc-symmetric if for every
analytic arc γ : (−1, 1) → Rn with γ((−1, 0)) ⊂ E, we have γ((−1, 1)) ⊂ E. We are mostly
interested in semialgebraic arc-symmetric sets.

Recall that a topological space is called Noetherian if every descending chain of its closed
subsets is stationary. In particular, Rn with the Zariski topology is a Noetherian topological
space. In [62], the following is proved.
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Theorem 2.1. The semialgebraic arc-symmetric subsets of Rn are precisely the closed sets
of a certain Noetherian topology on Rn.

Following [62], we call this topology on Rn the AR topology. Thus a subset of Rn is
AR-closed if and only if it is semialgebraic and arc-symmetric. It follows from the curve
selection lemma that each AR-closed subset of Rn is closed (in the Euclidean topology),
cf. [62]. Clearly, any connected component of an AR-closed subset of Rn is also AR-closed.
Furthermore, any irreducible analytic component of an algebraic subset of Rn is AR-closed.
However, an AR-closed set need not be analytic at every point.

Example 2.2. The set
E = {(x, y, z) ∈ R3 : x3 − z(x2 + y2) = 0, x2 + y2 6= 0} ∪ {(0, 0, 0)}

(the “cloth” of the Cartan umbrella (1.6)) is AR-closed, but it is not analytic at the origin
of R3.

Given a semialgebraic subset E ⊂ Rn, we say that a point x ∈ E is regular in dimension d if
for some open neighborhood Ux ⊂ Rn of x, the intersection E∩Ux is a d-dimensional analytic
submanifold of Ux. We let Regd(E) denote the locus of regular points of E in dimension d.
The dimension of E, written dimE, is the maximum d with Regd(E) nonempty. If V is the
Zariski closure of E in Rn, then dimE = dimV , cf. [13].

By a resolution of singularities of a real algebraic set X we mean a proper regular map
π : X̃ → X where X̃ is a smooth real algebraic set and π is birational.

The following is the key result of [62].

Theorem 2.3. Let X ⊂ Rn be a d-dimensional real algebraic set and let E ⊂ Rn be an
AR-closed irreducible subset with E ⊂ X and dimE = d. If π : X̃ → X is a resolution of
singularities of X, then there exists a unique connected component Ẽ of X̃ such that π(Ẽ) is
the closure (in the Euclidean topology) of Regd(E).

This is illustrated by an example below.

Example 2.4. The real cubic C := (x3−x−y2 = 0) ⊂ R2 is smooth and irreducible. It has two
connected components, C1 which is compact and C2 which is noncompact. Consider the cone
X := (x3−xz2− y2z = 0) ⊂ R3 over C. Note that X is irreducible and Sing(X) = {(0, 0, 0)}.
Clearly,

π : X̃ := C × R→ X, (x, y, z) 7→ (xz, yz, z)
is a resolution of singularities of X. The connected components C1 × R and C2 × R of X̃
correspond via π to the AR-irreducible components of X.

The notion of arc-symmetric set turns out to be related to a notion introduced by Nash in
his celebrated paper [72]. We adapt his definition to the case of AR-closed sets.

Definition 2.5. Let E be an AR-closed subset of Rn. We say that a subset S ⊂ E is a
(Nash) sheet of E if the following conditions are satisfied:

(i) for any two points x0, x1 in S there exists an analytic arc γ : [0, 1]→ Rn with γ(0) = x0,
γ(1) = x1, and γ([0, 1]) ⊂ S;

(ii) S is maximal in the class of subsets satisfying the condition (i);
(iii) the interior of S in X is nonempty.

The following result of [62] gives a positive and precise answer to Nash’s conjecture on
sheets of an algebraic set [72].

Theorem 2.6. Let X be an algebraic subset or more generally an AR-closed subset of Rn.
Then:

(i) There are finitely many sheets in X.
(ii) Each sheet in X is semialgebraic and closed (in the Euclidean topology).
(iii) X is the union of its sheets.
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The proof of this theorem is based on Theorem 2.3 and the notion of immersed component
of an AR-closed set. An immersed component of X is an AR-irreducible subset of X with
nonempty interior in X. In general, X may have more immersed components than AR-
irreducible components. For instance, the Whitney umbrella (xy2 − z2 = 0) ⊂ R3 is AR-
irreducible, but it has two immersed components.

Compact AR-closed sets share with compact real algebraic sets all known local and global
topological properties. In particular, each compact AR-closed set carries the mod 2 funda-
mental class. It is conjectured that any compact AR-closed set is semialgebraically homeo-
morphic to a real algebraic set.

Recall that a Nash manifold X ⊂ Rn is an analytic submanifold which is a semialgebraic
set. Building on Thom’s representability theorem [82] and Theorem 2.3, the following was
established in [45].

Theorem 2.7. Let X ⊂ Rn be a compact Nash manifold, and d an integer satisfying
0 ≤ d ≤ dimX. Then each homology class in Hd(X;Z/2) can be represented by an AR-closed
subset of Rn, contained in X.

Now we recall a result of K. Kurdyka and K. Rusek [68] which was motivated by the
problem of surjectivity of injective selfmaps.

Theorem 2.8. Let X ⊂ Rn be an AR-closed subset of dimension d, with 0 ≤ d ≤ n − 1.
Then the homotopy group πn−d−1(Rn \X) is nontrivial.

As demonstrated in [68], Theorem 2.8 implies the following result of Białynicki-Birula and
Rosenlicht [6].

Theorem 2.9. Any injective polynomial map from Rn into itself is surjective.

One should mention that Theorem 2.9, with n = 2, was established earlier by Newman [73].
In [4], Ax proved that any injective regular map of a complex algebraic variety into itself is
surjective. Ax’s proof is based on the Lefschetz principle and a reduction to the finite field case.
By extending the idea of [6], Borel [28] gave a topological proof of Ax’s theorem that works also
for injective regular maps of a smooth real algebraic set into itself. Finally, combining Borel’s
argument with the geometry of AR-closed sets, the second-named author proved in [65] the
following.

Theorem 2.10. Let X be a real algebraic set (possibly singular) and let f : X → X be an
injective regular map. Then f is surjective.

In fact, there is a more general version of Theorem 2.10 due to Parusiński [77], cf. also [66].

2.2. Arc-analytic maps. Let X ⊂ Rn and Y ⊂ Rp be some subsets. A map f : X → Y
is said to be arc-analytic if for every analytic arc γ : (−1, 1) → Rn with γ((−1, 1)) ⊂ X, the
composite f ◦γ : (−1, 1)→ Rp is an analytic map. We are mostly interested in the case where
X and Y are AR-closed, and f is semialgebraic.

The function fk : R2 → R in (1.1) is arc-analytic and of class Ck, but it is not of class Ck+1.
The following fact is recorded in [62].

Proposition 2.11. Let X ⊂ Rn and Y ⊂ Rp be AR-closed subsets, and let f : X → Y be a
semialgebraic arc-analytic map. Then:

(i) The graph of f is an AR-closed subset of Rn × Rp.
(ii) If Z ⊂ Y is an AR-closed set, then so is f−1(Z).
(iii) f is continuous (in the Euclidean topology).

Arc-analytic functions do not have nice properties without some additional assumptions.
For instance, an arc-analytic function on Rn need not be subanalytic [63] or continuous [9],
and even for n = 2 it may have a nondiscrete singular set [64].
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In complex algebraic geometry, the image of an algebraic set by a proper regular map is
again an algebraic set. This is trivially false in the real case; consider R→ R, x 7→ x2. There
is also a more interesting example. Let

X := (x− y2 − 1 = 0) ⊂ R2 and Y := (x3 − x2 − y2 = 0) ⊂ R2.

Then f : X → Y , (x, y) 7→ (x, xy) is an injective, proper regular map. However, f(X) is not
an algebraic set. Therefore the following embedding theorem of [62] is of interest.

Theorem 2.12. Let X ⊂ Rn be an AR-closed subset and let f : X → Rp be a semialgebraic
arc-analytic map that is injective and proper. Then f(X) ⊂ Rp is an AR-closed subset.

Given an AR-closed subset X ⊂ Rn, we denote by Aa(X) the ring of semialgebraic arc-
analytic functions on X. According to [62], the ring Aa(X) is not Noetherian if dimX ≥ 2.
However, any ascending chain of prime ideals of Aa(X) is stationary. Furthermore, by [62],
there exists a function f ∈ Aa(Rn) such that X ⊂ f−1(0) and dim(f−1(0)\X) < dimX. This
latter result has been recently strengthened by Adamus and Sayedinejad [1], who proved that
actually X = f−1(0) for some f ∈ Aa(Rn). This enabled them to obtain the Nullstellensatz
for the ring Aa(X), generalizing thereby the weak Nullstellensatz of [62].

2.3. Blow-Nash and blow-analytic functions. Let X be a smooth real algebraic set. A
Nash function on X is an analytic function which is semialgebraic. A function on X is said
to be blow-Nash if it becomes a Nash function after composing with a finite sequence of
blowups with smooth nowhere dense centers. It was conjectured by K. Kurdyka (1987) that
a function is blow-Nash if and only if it is arc-analytic and semialgebraic. The first proof of
this conjecture was published by Bierstone and Milman [7]. They developed techniques which
later turned out to be useful in their approach to the resolution of singularities [8]. There is
also a second proof due to Parusiński [75]. It is based on the rectilinearization theorem for
subanalytic functions [75], which is a prototype of the preparation theorem for subanalytic
functions, cf. for example [76].

Less is known on arc-analytic functions which are subanalytic. Any such function is contin-
uous and can be made analytic after composing with finitely many local blowups with smooth
centers, cf. [7, 75]. It is not known whether one can use global blowups, that is, whether arc-
analytic subanalytic functions coincide with blow-analytic functions of Kuo [61], cf. also [34].
In [67] it is proved that the locus of nonanalyticity of an arc-analytic subanalytic function is
arc-symmetric and subanalytic. Another result of [67] asserts that in the blow-Nash case, the
centers of blowups can be chosen in the locus of nonanalyticity.

2.4. Some applications. Recently arc-symmetric sets were used in the construction of new
invariants in the singularity theory. These invariants include the virtual Betti numbers of real
algebraic sets [70] and arc-symmetric sets [31]. Other invariants, analogous to the zeta function
of Denef and Loeser, proved to be useful in the classification of germs of functions with respect
to blow-analytic and blow-Nash equivalence, cf. [41] and [34]. Arc-analytic homeomorphisms
were recently used in [78] to construct nice trivializations in the stratification theory.

3. Regulous functions

3.1. Functions regular on smooth algebraic arcs. All results presented in this subsection
come from our joint paper with J. Kollár [42].

Let X be a real algebraic set. A subset A ⊂ X is called a smooth algebraic arc if its Zariski
closure C is an irreducible algebraic curve, A ⊂ C \ Sing(C), and A is homeomorphic to R.

An open subset U ⊂ X is said to be smooth if it is contained in X \ Sing(X).

Theorem 3.1. Let X be a real algebraic set and let f : U → R be a function defined on a
connected smooth open subset U ⊂ X. Assume that the restriction of f is regular on each
smooth algebraic arc contained in U . Then there exists a rational function R on X such that
P := U ∩ Pole(R) has codimension at least 2 and f |U\P = R|U\P .
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There are two main steps in the proof of Theorem 3.1. Assuming that f is a semialgebraic
function (so U is a semialgebraic set), one first obtains a local variant of the assertion by means
of Bertini’s theorem, and then extends it along smooth algebraic arcs. The general case is
reduced to the semialgebraic one via some subtle Hartogs-like results on analytic functions
due to Błocki [11] and Siciak [80].

A function regular on smooth algebraic arcs need not be continuous.

Example 3.2. The function f : R2 → R defined by

f(x, y) = x8 + y(x2 − y3)2

x10 + (x2 − y3)2 for (x, y) 6= (0, 0) and f(0, 0) = 0

is regular on each smooth algebraic arc in R2, but it is not locally bounded on the curve
x2 − y3 = 0.

Let X = X1 × · · · × Xn be the product of real algebraic sets and let πi : X → Xi be the
projection on the ith factor. A subset K ⊂ X is said to be parallel to the ith factor of X if
πj(K) consists of one point for each j 6= i.

Theorem 3.3. Let X = X1×· · ·×Xn be the product of real algebraic sets and let f : U → R be
a function defined on a connected smooth open subset U ⊂ X. Assume that the restriction of f
is regular on each smooth algebraic arc contained in U and parallel to one of the factors of X.
Then there exists a rational function R on X such that P := U ∩Pole(R) has codimension at
least 2 and f |U\P = R|U\P .

Theorem 3.3, for n = 1, coincides with Theorem 3.1. The general case is proved by induction
on n, but a detailed argument is fairly long.

As a direct consequence, we get the following.

Corollary 3.4. Let f : U → R be a function defined on a connected open subset U ⊂ Rn.
Assume that the restriction of f is regular on each open interval contained in U and parallel
to one of the coordinate axes. Then there exists a rational function R on Rn such that
P := U ∩ Pole(R) has codimension at least 2 and f |U\P = R|U\P .

Results similar to Corollary 3.4 have been known earlier, but they were obtained under the
restrictive assumption that f is an analytic function on U , cf. [27].

3.2. Introducing regulous functions. Let X be a real algebraic set, f : W → R a function
defined on some subset W ⊂ X, and Y the Zariski closure of W in X.

Definition 3.5. A rational function R on Y is said to be a rational representation of f if
there exists a Zariski open dense subset Y 0 ⊂ Y \ Pole(R) such that f |W∩Y 0 = R|W∩Y 0 .

While the definition makes sense for an arbitrary subsetW , it is sensible only ifW contains a
sufficiently large portion of Y . The key examples of interest are open subsets and semialgebraic
subsets, with W = X being the most important case.

One readily checks that the following conditions are equivalent:
(3.6) For every algebraic subset Z ⊂ X the restriction f |W∩Z has a rational representation.
(3.7) There exists a sequence of algebraic subsets

X = X0 ⊃ X1 ⊃ · · · ⊃ Xm+1 = ∅

such that the restriction of f is regular on W ∩ (Xi \Xi+1) for i = 0, . . . ,m.
(3.8) There exists a finite stratification S of X, with Zariski locally closed strata, such that

the restriction of f is regular on W ∩ S for every S ∈ S.

Definition 3.9. We say that f is a regulous function if it is continuous and the equivalent
conditions (3.6), (3.7), (3.8) are satisfied.
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In some papers, regulous functions are called hereditarily rational [42, 43] or stratified-
regular [53, 57, 59, 86]. The short name “regulous”, derived from “regular” and “continuous”,
was introduced in [32]. A continuous function that has a rational representation is often called
simply a continuous rational function [42, 43,46,48,50,51,54,56,58].

Evidently, any regulous function is continuous and has a rational representation. The
converse holds in an important special case.

Proposition 3.10. Let X be a real algebraic set and let W ⊂ X be a smooth open subset.
For a function f : W → R, the following conditions are equivalent:

(a) f is regulous.
(b) f is continuous and has a rational representation.

The nontrivial implication (b)⇒(a) is proved in [43]. Suppose that (b) holds, and let R be a
rational representation of f . Since f is continuous andW is smooth, one gets f |W\P = R|W\P ,
where P = W ∩Pole(R). Furthermore, it is not hard to see that P has codimension at least 2.
Finally, condition (3.6) can be verified by induction on codimZ.

As demonstrated in [43] and recalled below, the smoothness assumption in Proposition 3.10
cannot be dropped.

Example 3.11. Consider the algebraic surface
S := (x3 − (1 + z2)y3 = 0) ⊂ R3

and the function f : S → R defined by f(x, y, z) = (1+z2)1/3. Note that Sing(S) = z-axis and
f(x, y, z) = x/y on S\(z-axis). In particular, f is continuous and has a rational representation.
However, f is not regulous since f |z-axis does not have a rational representation. It is also
interesting that S is an analytic submanifold of R3.

The main result of Kollár and Nowak [43] can be stated as follows.

Theorem 3.12. Let X be a smooth real algebraic set and let f : W → R be a function defined
on an algebraic subset W ⊂ X. Then the following conditions are equivalent:

(a) f is regulous.
(b) f = f̃ |W , where f̃ : X → R is a continuous function that has a rational representation.

The proof of (a)⇒(b) by induction on dimW is tricky. Roughly speaking, one first finds a
function on X that extends f and has a rational representation. However, such an extension
may not be continuous and has to be corrected. This is achieved by analyzing liftings of
functions to the blowup of X at a suitably chosen ideal. The argument relies on a version of
the Łojasiewicz inequality given in [13, Theorem 2.6.6].

The implication (b)⇒(a) follows from Proposition 3.10.
As it was noted on various occasions (see for example [46, p. 528] or [32, Théorème 3.11]),

Hironaka’s theorem on resolution of indeterminacy points [38] implies immediately the fol-
lowing.

Proposition 3.13. Let X be a smooth real algebraic set. For a function f : X → R, the
following conditions are equivalent:

(a) f is continuous and has a rational representation.
(b) There exists a regular map π : X ′ → X, which is the composite of a finite sequence

of blowups with smooth Zariski nowhere dense centers, such that f ◦ π : X ′ → R is a
regular function.

Fefferman and Kollár [30] study the following problem. Consider a linear equation
f1y1 + · · ·+ fryr = g,

where g and the fi are regular (or polynomial) functions on Rn. Assume that it admits a
solution where the yi are continuous functions on Rn. Then, according to [30, Section 2], it
has also a continuous semialgebraic solution. One could hope to prove that it has a regulous
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solution. This is indeed the case for n = 2 [58, Corollary 1.7], but fails for any n ≥ 3 [43,
Example 6]. It would be interesting to decide which linear equations have regulous solutions.
Of course, the problem can be considered in a more general setting, replacing Rn by a real
algebraic set.

3.3. Curve-regulous and arc-regulous functions. All results discussed in this subsection
come from our joint paper with J. Kollár [42], where it is proved that regulous functions can
be characterized by restrictions to algebraic curves or algebraic arcs.
Definition 3.14. Let X be a real algebraic set and let f : W → R be a function defined on
some subset W ⊂ X.

We say that f is regulous on algebraic curves or curve-regulous for short if for every ir-
reducible algebraic curve C ⊂ X the restriction f |W∩C is regulous (equivalently, f |W∩C is
continuous and has a rational representation).

Furthermore, we say that f is regulous on algebraic arcs or arc-regulous for short if for
every irreducible algebraic curve C ⊂ X and every point x ∈ W ∩ C there exists an open
neighborhood Ux ⊂W of x such that the restriction f |Ux∩C is regulous (equivalently, f |Ux∩C
is continuous and has a rational representation).

Obviously, any curve-regulous function is arc-regulous. The converse does not hold for a
rather obvious reason. For instance, consider the hyperbola H ⊂ R2 defined by xy − 1 = 0.
Any function on H that is constant on each connected component of H is arc-regulous, but
it must be constant to be regulous.

In [42], curve-regulous (resp. arc-regulous) functions are called curve-rational (resp. arc-
rational).

Our main result on curve-regulous functions is the following.
Theorem 3.15. Let X be a real algebraic set and let W ⊂ X be a subset that is either open
or semialgebraic. For a function f : W → R, the following conditions are equivalent:

(a) f is regulous.
(b) f is curve-regulous.
The corresponding result for arc-regulous functions takes the following form.

Theorem 3.16. Let X be a real algebraic set and let W ⊂ X be a connected smooth open
subset. For a function f : W → R, the following conditions are equivalent:

(a) f is regulous.
(b) f is arc-regulous.
The crucial ingredient in the proofs of Theorems 3.15 and 3.16 is Theorem 3.1. In both

cases, only the implication (b)⇒(a) is not obvious. It is essential that testing curves and arcs
are allowed to have singularities.

The main properties of arc-regulous functions on semialgebraic sets can be summarized as
follows.
Theorem 3.17. Let X be a real algebraic set and let f : W → R be an arc-regulous function
defined on a semialgebraic subset W ⊂ X. Then f is continuous and there exists a sequence
of semialgebraic sets

W = W0 ⊃W1 ⊃ · · · ⊃Wm+1 = ∅,
which are closed in W , such that the restriction of f is a regular function on each connected
component of Wi \Wi+1 for i = 0, . . . ,m. In particular, f is a semialgebraic function.

We also establish a connection between arc-regulous functions and, discussed in Section 2,
arc-analytic functions.
Theorem 3.18. Let X be a real algebraic set and let f : W → R be an arc-regulous function
defined on an open subset W ⊂ X. Then f is continuous and arc-analytic.

In [42] there are several other related results.



FROM CONTINUOUS RATIONAL TO REGULOUS FUNCTIONS 9

3.4. Constructible topology and k-regulous functions. We consider regulous functions
of class Ck.

Definition 3.19. Let X be a smooth real algebraic set and let f : U → R be a function
defined on an open subset U ⊂ X.

We say that f is a k-regulous function, where k is a nonnegative integer, if it is of class Ck
and regulous; or equivalently, by Proposition 3.10, if it is of class Ck and has a rational
representation.

The set Rk(U) of all k-regulous functions on U forms a ring. An example of a k-regulous
function on R2 is provided by (1.1).

A function on U which is of class C∞ and regulous is actually regular, cf. [46]. Therefore
one gains no new insight by considering such functions.

All results discussed in the remainder of this subsection come from the paper of Fichou,
Huisman, Mangolte and Monnier [32], where they are stated for functions defined on Rn. The
ring Rk(Rn) is not Noetherian if n ≥ 2. Nevertheless it has some remarkable properties.

Given a collection F of real-valued functions on Rn, we set
Z(F ) := {x ∈ Rn : f(x) = 0 for all f ∈ F}

and write Z(f) for Z(F ) if F = {f}.
The following is a variant of the classical Nullstellensatz for the ring Rk(Rn).

Theorem 3.20. Let I be an ideal of the ring Rk(Rn). If a function f in Rk(Rn) vanishes
on Z(I), then fm belongs to I for some positive integer m.

Recall that the Nullstellensatz for the ring of polynomial or regular functions on Rn requires
an entirely different formulation, cf. [13].

The subsets of Rn of the form Z(I) for some ideal I of Rk(Rn) can be characterized in
terms of constructible sets. A subset of Rn is said to be constructible if it belongs to the
Boolean algebra generated by the algebraic subsets of Rn; or equivalently if it is a finite union
of Zariski locally closed subsets of Rn.

Theorem 3.21. For a subset E ⊂ Rn, the following conditions are equivalent:
(a) E = Z(I) for some ideal I of Rk(Rn).
(b) E = Z(f) for some function f in Rk(Rn).
(c) E is closed and constructible.

Theorem 3.21 can be illustrated as follows.

Example 3.22. Consider the Cartan umbrella S ⊂ R3 defined in (1.6), and let E be the
closure of S \ (z-axis). It is clear that E is a closed constructible set. Moreover, E = Z(f),
where f : R3 → R is the regulous function defined by

f(x, y, z) = z − x3

x2 + y2 on R3 \ (z-axis) and f(x, y, z) = z on the z-axis.

The collection of all closed constructible subsets of Rn forms the family of closed subsets
for a Noetherian topology on Rn, called the constructible topology. Any constructible-closed
subset of Rn is AR-closed. The converse does not hold if n ≥ 2.

In what follows we consider Rn endowed with the constructible topology. The assignment
Rk : U 7→ Rk(U), where U runs through the open subsets of Rn, is a sheaf of rings on Rn,
and (Rn,Rk) is a locally ringed space. Sheaves of Rk-modules on Rn are called k-regulous
sheaves.

It follows from Theorem 3.20 that the ringed space (Rn,Rk) carries essentially the same
information as the affine scheme Spec(Rk(Rn)). In particular, Cartan’s theorems A and B
are available for k-regulous sheaves.
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Theorem 3.23. For any quasi-coherent k-regulous sheaf F on Rn, the following hold:
(A) F is generated by global sections.
(B) H i(Rn,F) = 0 for i ≥ 1.

As is well-known, Cartan’s theorems A and B fail for coherent algebraic sheaves on Rn.
Let V ⊂ Rn be a constructible-closed subset. The sheaf JV ⊂ Rk of ideals of k-regulous

functions vanishing on V is a quasi-coherent k-regulous sheaf on Rn, and the quotient sheaf
Rk/JV has support V . Endow V with the induced (constructible) topology, and let RkV
be the restriction of the sheaf RkV /JV to V . The locally ringed space (V,RkV ) is called a
closed k-regulous subvariety of (Rn,Rk). One can consider k-regulous sheaves on V , which
are just sheaves of RkV -modules. By a standard argument, Theorem 3.23 implies that Cartan’s
theorems A and B hold also for quasi-coherent k-regulous sheaves on V .

An affine k-regulous variety is a locally ringed space isomorphic to a closed k-regulous
subvariety of Rn for some n. An abstract k-regulous variety can be defined in the standard
way. The geometry of k-regulous varieties is to be developed.

4. Homotopy and approximation

In this section we discuss some homotopy and approximation results in the framework of
real algebraic geometry, focusing on maps with values in the unit p-sphere

Sp = (u2
0 + · · ·+ upp − 1 = 0) ⊂ Rp+1.

Approximation of continuous maps means approximation in the compact-open topology.

4.1. Approximation by regular maps. The theory of regular maps between real algebraic
sets was developed by J. Bochnak and the first-named author [14–17,20,23,24,25] who joined
forces with R. Silhol working on [26]. Regular maps are studied also in [36,37,40,47,49,52,69,
74,79,84,85]. We make no attempt to survey this theory, but give instead a sample of results
that motivated later work described in the next subsection.

Problem 4.1. Let X be a compact real algebraic set. For a continuous map f : X → Sp,
consider the following questions:

(i) Is f homotopic to a regular map?
(ii) Can f be approximated by regular maps?
It is expected that questions (i) and (ii) are equivalent, however, the proof is available only

for special values of p, cf. [14].

Theorem 4.2. Let X be a compact real algebraic set. For a continuous map f : X → Sp,
where p ∈ {1, 2, 4}, the following conditions are equivalent:

(a) f is homotopic to a regular map.
(b) f can be approximated by regular maps.

Basic topological properties of regular maps between unit spheres still remain mysterious.

Conjecture 4.3. For any pair (n, p) of positive integers, the following assertions hold:
(i) Each continuous map from Sn into Sp is homotopic to a regular map.
(ii) Each continuous map from Sn into Sp can be approximated by regular maps.

Conjecture 4.3 (i) is known to be true in several cases [13, 14, 15, 79, 84, 85]; for example if
n = p or (n, p) = (2q + 14, 2q + 1) with q ≥ 7.

Conjecture 4.3 (ii) holds if either n < p (trivial) or p ∈ {1, 2, 4} [14]. Nothing is known for
other pairs (n, p).

However, a complete solution to Problem 4.1 is known in several cases. The simplest one,
noted in [14], is the following.

Proposition 4.4. Let X be a compact smooth real algebraic curve. Then each continuous
map from X into S1 can be approximated by regular maps.
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Going beyond curves is a lot harder. Nevertheless, it can happen also in higher dimension
that the behavior of regular maps is determined entirely by the topology of the real algebraic
sets involved.

Consider a compact C∞ manifold M . A smooth real algebraic set diffeomorphic to M
is called an algebraic model of M . By the Nash–Tognoli theorem [72, 83], M has algebraic
models. Actually, according to [21], there exists an uncountable family of pairwise birationally
nonequivalent algebraic models of M , provided that dimM ≥ 1. If dimM ≤ 2, the existence
of algebraic models of M follows easily from the well-known classification of such manifolds.
As X runs through the class of all algebraic models ofM , the topological properties of regular
maps from X into Sp may vary; this phenomenon is extensively investigated in [15,16,17,19,
23,47].

A detailed study of regular maps into S1 is contained in [17] where in particular the following
result is proved.

Theorem 4.5. Let M be a compact C∞ manifold. Then there exists an algebraic model X
of M such that each continuous map from X into S1 can be approximated by regular maps.

For simplicity, we state the next result of [17] only for surfaces.

Theorem 4.6. Let M be a connected, compact C∞ surface. Then the following conditions
are equivalent:

(a) For any algebraic model X of M , each continuous map from X into S1 can be approx-
imated by regular maps.

(b) M is homeomorphic to the unit 2-sphere or the real projective plane or the Klein bottle.

In [15], one finds the following.

Theorem 4.7. Let M be a compact C∞ manifold of dimension p. Then there exists an
algebraic model X of M such that each continuous map from X into Sp is homotopic to a
regular map.

Theorem 4.7, for p = 1, is of course weaker than Proposition 4.4. The cases p = 2 and
p = 4 are of particular interest in view of Theorem 4.2.

Numerous results on algebraic models and regular maps into even-dimensional spheres are
included in [16,19,23,47]. The following comes from [16].

Theorem 4.8. Let M be a connected, compact C∞ surface. Then the following conditions
are equivalent:

(a) For any algebraic model X of M , each continuous map from X into S2 can be approx-
imated by regular maps.

(b) M is nonorientable of odd genus.

The true complexity of Problem 4.1 becomes apparent for surfaces of other types.
Consider smooth cubic curves in P2(R). Each such cubic is either connected or has two

connected components, and its Zariski closure in P2(C) is also smooth. If C1 and C2 are
smooth cubic curves in P2(R), then C1 × C2 can be oriented in such a way that for each
regular map ϕ : C1 × C2 → S2, the topological degree deg(ϕ|A) of the restriction of ϕ to a
connected component A of C1 × C2 does not depend on the choice of A. Moreover, the set

DegR(C1, C2) := {m ∈ Z : m = deg(ψ|A) for some regular map ψ : C1 × C2 → S2}
is a subgroup of Z. These assertions are proved in [23, Theorem 3.1]. Define b(C1, C2) to be
the unique nonnegative integer satisfying

DegR(C1, C2) = b(C1, C2)Z.
According to Hopf’s theorem and Theorem 4.2, a continuous map f : C1 × C2 → S2 is homo-
topic to a regular map (or equivalently can be approximated by regular maps) if and only if
for every connected component A of C1×C2, one has deg(f |A) = b(C1, C2)r for some integer r
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independent of A. Thus, in this context, Problem 4.1 is reduced to the computation of the
numerical invariant b(C1, C2).

For any real number α in R∗ := R \ {0}, set

τα = 1
2(1 + α

√
−1) if α > 0 and τα = α

√
−1 if α < 0.

The lattice Λα := Z + Zτα in C is stable under complex conjugation. Hence the numbers

g2(τα) = 60
∑
ω

ω−4, g3(τα) = 140
∑
ω

ω−6

(summation over ω ∈ Λα \ {0}) are real and

Dα := {(x : y : z) ∈ P2(R) : y2z = 4x3 − g2(τα)xz2 − g3(τα)z}

is a smooth cubic curve in P2(R). Each smooth cubic curve in P2(R) is biregularly isomorphic
to exactly one cubic Dα. Thus R∗ can be regarded as a moduli space of smooth cubic curves
in P2(R). For α > 0 (resp. α < 0) the cubic Dα is connected (resp. has two connected
components).

The invariant b(Dα1 , Dα2) is explicitly computed in [23] for all pairs (α1, α2). In particular,
it can take any nonnegative integer value. We recall only two cases.

First we deal with generic pairs (α1, α2).

Theorem 4.9. For (α1, α2) in R∗ × R∗, the following conditions are equivalent:
(a) Each regular map from Dα1 ×Dα2 into S2 is null homotopic.
(b) b(Dα1 , Dα2) = 0.
(c) The product α1α2 is an irrational number.

From the viewpoint of approximation, the following case is of greatest interest.

Theorem 4.10. For (α1, α2) in R∗ × R∗, the following conditions are equivalent:
(a) Each continuous map from Dα1 ×Dα2 into S2 can be approximated by regular maps.
(b) α1 > 0, α2 > 0, and b(Dα1 , Dα2) = 1.
(c) αi = (pi/qi)

√
d for i = 1, 2, where pi, qi, d are positive integers, pi and qi are relatively

prime, d is square free, d ≡ 3 (mod 4), p1p2q1q2 ≡ 1 (mod 2), and p1p2d is divisible
by q1q2.

Theorems 4.9 and 4.10 show that a small perturbation of (α1, α2) can drastically change
topological properties of regular maps from Dα1 ×Dα2 into S2. Thus, in general, one cannot
hope to find a comprehensive solution to Problem 4.1, even for X smooth with dimX = p.
It is therefore desirable to introduce maps which have good features of regular maps but are
more flexible.

4.2. Approximation by regulous maps. Let X and Y ⊂ Rq be smooth real algebraic sets,
and let k be a nonnegative integer. A map f = (f1, . . . , fq) : X → Y is said to be k-regulous
if its components fi : X → R are k-regulous functions; 0-regulous maps are called regulous.

If f is a regulous map, we denote by P (f) the smallest algebraic subset of X such that
f |X\P (f) : X \ P (f) → Y is a regular map. Obviously, P (f) is Zariski nowhere dense in X.
We say that f is nice if f(P (f)) 6= Y .

We state the next result for C∞ maps. This is convenient since such maps have regular
values by Sard’s theorem.

Theorem 4.11. Let X be a compact smooth real algebraic set, f : X → Sp a C∞ map with
p ≥ 1, and y ∈ Sp a regular value of f . Assume that the C∞ submanifold f−1(y) of X is
isotopic to a smooth Zariski locally closed subset of X. Then:

(i) f is homotopic to a nice k-regulous map, where k is an arbitrary nonnegative integer.
(ii) f can be approximated by nice regulous maps.
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Theorem 4.11 is due to the first-named author. Part (i) is a simplified version of [46, Theo-
rem 2.4]. The proof is based on the Pontryagin construction (framed cobordism), Łojasiewicz
inequality, and Hironaka’s resolution of singularities. In turn (ii) follows from [51, Theo-
rem 1.2] since, by [44, Theorem 2.1], f−1(y) can be approximated by smooth Zariski locally
closed subsets of X.

Theorem 4.11 provides information also on continuous maps since they can be approximated
by C∞ maps.

According to [2, Theorem A], any compact C∞ submanifold of Rn (resp. Sn) is isotopic to
a smooth Zariski locally closed subset of Rn (resp. Sn). In particular, Theorem 4.11 yields
the following.
Corollary 4.12. Let (n, p) be a pair of positive integers. Then:

(i) Each continuous map from Sn into Sp is homotopic to a nice k-regulous map, where
k is an arbitrary nonnegative integer.

(ii) Each continuous map from Sn into Sp can be approximated by nice regulous maps.
With notation as in Theorem 4.11 we have dim f−1(y) = dimX − p. Hence we get imme-

diately the following.
Corollary 4.13. Let X be a compact smooth real algebraic set of dimension p. Then:

(i) Each continuous map from X into Sp is homotopic to a nice k-regulous map, where
k is an arbitrary nonnegative integer.

(ii) Each continuous map from X into Sp can be approximated by nice regulous maps.
Comparing Theorems 4.8, 4.9 and 4.10 with Corollary 4.13 we see that k-regulous maps are

indeed more flexible than regular ones. However, for each integer p ≥ 1 there exist a compact
smooth real algebraic set Y and a continuous map g : Y → Sp such that dimY = p + 1 and
g is not homotopic to any regulous map, cf. [57, Theorem 7.9]. In particular, Theorem 4.11
does not hold without some assumption on the C∞ submanifold f−1(y) ⊂ X. It would be
very useful to formulate an appropriate assumption in terms of bordism. This is related to
a certain conjecture, which has nothing to do with regulous maps and originates from the
celebrated paper of Nash [72] and the subsequent developments due to Tognoli [83], Akbulut
and King [2], and other mathematicians.

For a real algebraic set X, a bordism class in the unoriented bordism group N∗(X) is said
to be algebraic if it can be represented by a regular map from a compact smooth real algebraic
set into X.
Conjecture 4.14. For any smooth real algebraic set X, the following holds: IfM is a compact
C∞ submanifold of X and the unoriented bordism class of the inclusion map M ↪→ X is
algebraic, then M is ε-isotopic to a smooth Zariski locally closed subset of X.

Here “ε-isotopic” means isotopic via a C∞ isotopy that can be chosen arbitrarily close, in the
C∞ topology, to the inclusion map. A slightly weaker assertion than the one in Conjecture 4.14
is known to be true: If the unoriented bordism class of the inclusion mapM ↪→ X is algebraic,
then the C∞ submanifold M × {0} of X × R is ε-isotopic to a smooth Zariski locally closed
subset of X × R, cf. [2, Theorem F].
Remark 4.15. Let X be a compact smooth real algebraic set and let f : X → Sp be a con-
tinuous map. According to [56, Proposition 1.4], if Conjecture 4.14 holds, then the following
conditions are equivalent:

(a) f is homotopic to a nice regulous map.
(b) f can be approximated by nice regulous maps.
Using a method independent of Conjecture 4.14, the first-named author proved in [54] the

following weaker result.
Theorem 4.16. Let X be a compact smooth real algebraic set and let p be an integer satisfying
dimX + 3 ≤ 2p. For a continuous map f : X → Sp, the following conditions are equivalent:
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(a) f is homotopic to a nice regulous map.
(b) f can be approximated by nice regulous maps.

Other results on topological properties of regulous maps can be found in [48,50,54,57,86].

5. Vector bundles

Let F stand for R, C or H (the quaternions). We consider only left F-vector spaces. When
convenient, F will be identified with Rd(F), where d(F) = dimR F.

5.1. Algebraic versus topological vector bundles. Let X be a real algebraic set. For
any nonnegative integer n, let

εnX(F) = (X × Fn, p,X)
denote the product F-vector bundle of rank n on X, where X × Fn is regarded as a real
algebraic set and p : X × Fn → X is the canonical projection.

An algebraic F-vector subbundle on X is an algebraic F-vector subbundle of εnX(F) for
some n (cf. [13] for various characterizations of algebraic F-vector bundles). The category of
algebraic F-vector bundles on X is equivalent to the category of finitely generated projective
left R(X,F)-modules, where R(X,F) is the ring of F-valued regular functions on X.

Any algebraic F-vector bundle on X can be regarded also as a topological F-vector bundle.
A topological F-vector bundle is said to admit an algebraic structure if it is topologically
isomorphic to an algebraic F-vector bundle.

Problem 5.1. Which topological F-vector bundles on X admit an algebraic structure?

It is convenient to bring into play the reduced Grothendieck group K̃F(X) of topological
F-vector bundles on X. Since X has the homotopy type of a compact polyhedron [13], the
Abelian group K̃F(X) is finitely generated [3, 29]. We let K̃F-alg(X) denote the subgroup
of K̃F(X) generated by the classes of all topological F-vector bundles on X that admit an
algebraic structure.

If X is compact, then Problem 5.1 is equivalent to providing a description of K̃F-alg(X).
More precisely, the following holds.

Theorem 5.2. Let X be a compact real algebraic set. Then:
(i) Two algebraic F-vector bundles on X are algebraically isomorphic if and only if they

are topologically isomorphic.
(ii) A topological F-vector bundle on X admits an algebraic structure if and only if its

class in K̃F(X) belongs to K̃F-alg(X).

Theorem 5.2 follows from [81, Theorem 2.2], and a geometric proof is given in [13]. Note
that K̃F-alg(X) = 0 if and only if each algebraic F-vector bundle on X is algebraically stably
trivial. In turn, K̃F-alg(X) = K̃F(X) if and only if each topological F-vector bundle on X
admits an algebraic structure.

According to Fossum [35] and Swan [81], we have the following.

Theorem 5.3. For the unit n-sphere Sn, the equality K̃F-alg(Sn) = K̃F(Sn) holds.

Benedetti and Tognoli [5] proved that algebraization of topological vector bundles on a
compact C∞ manifold is always possible.

Theorem 5.4. Let M be a compact C∞ manifold. Then there exists an algebraic model X
of M such that K̃F-alg(X) = K̃F(X) for F = R, F = C and F = H.

The groups K̃F-alg(−) have been extensively investigated by J. Bochnak and the first-named
author [18,19,22], who worked jointly with M. Buchner on [12]. In many cases, K̃F-alg(−) are
“small” subgroups of K̃F(−). The following is a simplified version of [12, Theorem 7.1].
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Theorem 5.5. Let M be a compact C∞ submanifold of Rn+1, with dimM = n ≥ 1. Then
M is ε-isotopic to a smooth algebraic subset X of Rn+1 such that the group K̃F-alg(X) is finite
for F = R, F = C and F = H.

The conclusion of Theorem 5.5 can be strengthened in some cases.
Example 5.6. Recall that K̃F(S4d) = Z for every positive integer d, cf. [39]. Hence, by
Theorem 5.5, S4d is ε-isotopic in R4d+1 to a smooth algebraic subset Σ4d such that

K̃F-alg(Σ4d) = 0 and K̃F(Σ4d) = Z
for F = R, F = C and F = H.

One readily sees that each topological R-vector bundle on a smooth real algebraic curve
admits an algebraic structure. Next we discuss some results on vector bundles on a product
of real algebraic curves.
Example 5.7. Let X = C1×· · ·×Cn, where C1, . . . , Cn are connected, compact smooth real
algebraic curves. Then K̃R-alg(X) = K̃R(X) if n = 2 or n = 3. This assertion is a special case
of [18, Theorem 1.6].

In Example 5.7, one cannot take n ≥ 4.
Example 5.8. Let Tn := S1 × · · · × S1 be the n-fold product of S1. According to [15],
K̃C-alg(Tn) = 0. Furthermore, by [57, Example 1.11], we have K̃R-alg(Tn) 6= K̃R(Tn) and
K̃H-alg(Tn) 6= K̃H(Tn) for n ≥ 4.

Let K be a subfield of F, where K (as F) stands for R, C or H. Any F-vector bundle ξ can
be regarded as a K-vector bundle, which is indicated by ξK.
Example 5.9. Let λ be a nontrivial topological C-line bundle on T2. By Example 5.7, the
R-vector bundle λR on T2 admits an algebraic structure. However, in view of Example 5.8,
λ does not admit an algebraic structure. The rth tensor power λ⊗r is a nontrivial C-line
bundle, hence it does not admit an algebraic structure.

The next two theorems come from [22]. We use smooth real cubic curves Dα ⊂ P2(R), with
α ∈ R∗, introduced in Subsection 4.1.
Theorem 5.10. Let X = Dα × · · · ×Dα be the n-fold product of Dα, where α is in R∗ and
n ≥ 2. Then the following conditions are equivalent:

(a) K̃C-alg(X) = 0.
(b) The number α2 is irrational.

In this context, the equality K̃C-alg(−) = K̃C(−) is characterized as follows.
Theorem 5.11. Let X = Dα1 × · · · ×Dαn, where α1, . . . , αn are in R∗ and n ≥ 2. Then the
following conditions are equivalent:

(a) K̃C-alg(X) = K̃C(X).
(b) αi > 0 for all i, and b(Dαi , Dαj ) = 1 for i 6= j.

The pairs (αi, αj) with b(Dαi , Dαj ) = 1 are explicitly described in Theorem 4.10.
In the next subsection we deal with vector bundles of a new type, which occupy an inter-

mediate position between algebraic and topological vector bundles.

5.2. Regulous versus topological vector bundles. Let X be a real algebraic set. As
in (3.8), by a stratification of X we mean a finite collection S of pairwise disjoint Zariski
locally closed subsets whose union is X. An S-algebraic F-vector bundle on X is a topological
F-vector subbundle of εnX(F), for some n, such that the restriction ξ|S of ξ to each stratum
S ∈ S is an algebraic F-vector subbundle of εnS(F). If ξ and η are S-algebraic F-vector bundles
on X, then an S-algebraic morphism ϕ : ξ → η is a morphism of topological F-vector bundles
which induces a morphism of algebraic F-vector bundles ϕS : ξ|S → η|S for each stratum
S ∈ S.
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Definition 5.12. A regulous F-vector bundle on X is an S-algebraic F-vector bundle for some
stratification S of X. If ξ and η are regulous F-vector bundles on X, then a regulous morphism
ϕ : ξ → η is an S-algebraic morphism for some stratification S of X such that both ξ and η
are S-algebraic F-vector bundles.

In our joint paper [57], we introduced and investigated regulous (= stratified-algebraic) vec-
tor bundles. The main focus of [57] and the subsequent papers [53,55,59,60] is on comparison
of algebraic, regulous, and topological vector spaces.

Regulous F-vector bundles on X (together with regulous morphisms) form a category,
which is equivalent to the category of finitely generated projective left R0(X,F)-modules,
where R0(X,F ) is the ring of F-valued regulous functions on X, cf. [57, Theorem 3.9].

A topological F-vector bundle on X is said to admit a regulous structure if it is topologically
isomorphic to a regulous F-vector bundle. We let K̃F-reg(X) denote the subgroup of K̃F(X)
generated by the classes of all topological F-vector bundles on X that admit a regulous
structure.

We have the following counterpart of Theorem 5.2, cf. [57].
Theorem 5.13. Let X be a compact real algebraic set. Then:

(i) Two regulous F-vector bundles on X are regulously isomorphic if and only if they are
topologically isomorphic.

(ii) A topological F-vector bundle on X admits a regulous structure if and only if its class
in K̃F(X) belongs to K̃F-reg(X).

Hence K̃F-reg(X) = K̃F(X) if and only if each topological F-vector bundle on X admits a
regulous structure.

The following result of [57] should be compared with Theorem 5.3 and Example 5.6.
Theorem 5.14. Let X be a compact real algebraic set that is homotopically equivalent to the
unit n-sphere Sn. Then K̃F-reg(X) = K̃F(X).

In contrast to Example 5.8 and Theorems 5.10 and 5.11, we proved in [57] the following.
Theorem 5.15. Let X = X1 × · · · × Xn, where Xi is a compact real algebraic set that is
homotopically equivalent to the unit di-sphere Sdi for 1 ≤ i ≤ n. Then

2K̃R(X) ⊂ K̃R-reg(X), K̃C-reg(X) = K̃C(X) and K̃H-reg(X) = K̃H(X).

It is possible that K̃R-reg(X) = K̃R(X) in Theorem 5.15, but no proof is available even for
X = Tn with n ≥ 4.

Our next result comes from [59].
Theorem 5.16. Let X be a compact real algebraic set that is homotopically equivalent to
Sd1 × · · · × Sdn. Then the quotient group K̃F(X)/K̃F-reg(X) is finite.

If n ≥ 5, then there exists an algebraic model X of Tn with K̃F(X)/K̃F-reg(X) 6= 0 for
F = R, F = C and F = H, cf. [57, Example 7.10].

For any real algebraic set X, we let K̃(crk)
F (X) denote the subgroup of K̃F(X) generated

by the classes of all topological F-vector bundles of constant rank. Define ΓF(X) to be the
quotient group

ΓF(X) := K̃
(crk)
F (X)/(K̃F-reg(X) ∩ K̃(crk)

F (X))
(cf. [59] for an equivalent description). Evidently, ΓF(X) = K̃F(X)/K̃F-reg(X) if X is con-
nected. Note, however, that for the real algebraic curve C of (1.5), one has ΓR(C) = 0, while
the group K̃R(C)/K̃R-reg(C) is infinite.
Conjecture 5.17. For any compact real algebraic set X, the group ΓF(X) is finite.

In [59], we proved that Conjecture 5.17 holds in low dimensions.
Theorem 5.18. If X is a compact real algebraic set of dimension at most 8, then the group
ΓF(X) is finite.



FROM CONTINUOUS RATIONAL TO REGULOUS FUNCTIONS 17

For C-line bundles, the following is expected.

Conjecture 5.19. For any compact real algebraic set X and any topological C-line bundle λ
on X, the C-line bundle λ⊗2 admits a regulous structure.

According to [53], Conjecture 4.14 implies Conjecture 5.19. If dimX ≤ 8, then for some
positive integer r, the C-line bundle λ⊗r admits a regulous structure, cf. [59]. This should be
compared with Example 5.9.

The key role in the proofs of the results presented in this subsection plays the following
theorem of [57].

Theorem 5.20. Let X be a compact real algebraic set. A topological F-vector bundle ξ on X
admits a regulous structure if and only if the R-vector bundle ξR admits a regulous structure.

By Example 5.9, one cannot substitute “algebraic” for “regulous” in Theorem 5.20.
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