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Abstract—This paper proposes two novel methods for upscal-
ing the macroscopic magnetic field from the local solutions in
magnetodynamic multiscale problems. Unlike the volume average
method classically used, these methods yield accurate values of
the macroscale magnetic field for problems with strong locally-
confined eddy currents which enables B-conforming multiscale
formulations of eddy current problems at higher frequencies.

Index Terms—Eddy currents, Heterogeneous Multiscale
Method, Homogenization, Nonhomogeneous media

I. INTRODUCTION

Multiscale methods have been extensively studied in the
electromagnetic community thanks to their easy paralleliza-
tion and ability to speed up numerical simulations of prob-
lems involving heterogeneous materials such as laminated
cores, stranded inductors and soft magnetic composites [1] -
[4]. These methods make possible the simulation of 3D

nonlinear eddy current problems with composite materials,
unlike classical methods such as the finite element method
(FEM) which are still too expensive for these problems.

Multiscale methods generally necessitate the upscaling of
some quantity like the homogenized magnetic permeability
or the homogenized dual field such as the magnetic field h
for B-conforming formulations or the magnetic flux density b
for H-conforming formulations. In this paper, we consider a
multiscale formulation that uses the upscale of the magnetic
field. The upscaling of the magnetic and the electric fields
can unfortunately be non trivial for problems with local eddy
currents. Indeed, a simple average of the local magnetic field
can fail to filter out the contribution of the locally confined
eddy currents into the macroscale magnetic field [3]. This
paper proposes two novel methods for upscaling the magnetic
field h that are valid for problems with a lot of locally confined
eddy currents. These methods only depend on the solutions
of the mesoscale problem and the topology of its conducting
region. They have been tested and validated on a 2D eddy
current problem solved with a B-conforming formulation.

II. MULTISCALE MODELING

We are interested in solving the following Maxwell’s equa-
tions on a domain Ω ∈ Rd in the magnetodynamic regime:

curlh = j, divb = 0, curl e =−∂tb, j = σe, h = νb. (1)

In (1), h, b, j and e are the magnetic field, magnetic flux
density, electric current density and electric field, respectively,
and σ and ν are the electrical conductivity and magnetic
reluctivity. The dimension d is 2 or 3.

A. The two scale model

In our multiscale approach, the reference problem (1) is
replaced by the macroscale problem and many mesoscale
problems both governed by equations similar to (1) and solved
in an iterative scheme. Mesoscale fields are defined on a
periodic unit cell denoted by Y and admit the following
splitting [3]:

h = H + J ∧ y

d− 1
+ hc, b = B + bc

e = E − ∂tB ∧ y

d− 1
+ ec, j = J + jc

(2)

where capital letters denote the macroscale fields assumed
constant on the periodic cell Y , the index c is used to
denote correction fields assumed periodic on the cell Y and
y represents local coordinates in the cell. As b and j are
divergence free, bc and jc are constrained to have a zero
volume average on the cell Y (see [3]), thus leading to the
following upscaling equations:

B =< b >Y , J =< j >Y (3)

where < · >Y denotes the volume average on the cell Y .
The magnetic field h can also be upscaled using <h>Y for

magnetostatic problems. Although some previous work could
obtain good results using the volume average of h for dy-
namical problems (see e.g., [1], [2] and [4]), the upscaling of
h cannot generally be done like this. Especially for problems



with strong locally-confined eddy currents as <h>Y fails to
filter out from h their contribution to the macroscale Maxwell-
Ampere law. In the next sections, two methods are proposed
for recovering H from h and j.

B. Splitting global and local currents in the cell

A three-term Helmholtz–Hodge decomposition (HHD) [5]
of the electric current density j leads to a splitting into the
local distribution of macro currents jM and the confined eddy
currents je = curl t0:

j =����XXXXgradϕ0 + curl t0 + jM in Yc. (4)

The potential t0 is such that t0∧n = 0 on ∂Yc, is Yc–periodic
and with div t0 = 0. The field jM is the harmonic component
of the HHD with curl jM = 0 and div jM = 0. Thus, the
gradient term disappears as div j = 0. The integral

∫
Y
je =∫

Yc
curl t0 =

∫
∂Yc

t0 ∧ n = 0. Therefore < jM >Y = J , so
jM contains all the macro current, and flow lines of jM don’t
curl on themselves in Y as curl jM = 0.

The potential t0 can be extracted from j by solving the FEM
projection curl (j − curl t0) = 0 in Yc. The local currents je
have no effect on the macro current J . Therefore, the potential
t0 from which it is derived should have no influence on the
macroscopic magnetic field H in order to respect the macro
Maxwell-Ampere’s law, that is:

H =< h− t0 >Y . (5)

Finally (5) allows to upscale H from h and j.

C. Alternative on an insulated cell

When Yc is insulated, i.e. ∂Y ∩ Yc = ∅, it is possible to
compute H without t0. Introducing the tangential average of
a field u over a closed surface S:

< u >S∥=

(∫
S

1t

)−1

·
∫
S

ut (6)

where 1 = (1, 1, 1), ut = (n ∧ u) ∧ n with n the normal
to S. The inverse and dot product are to be taken component
wise, i.e. v−1 · w = (wx/vx, wy/vy, wz/vz).

If Y is a rectangular parallelepiped, one can prove that
<u>∂Y ∥=<u>Y whenever u is Y –periodic and curlu = 0
on Y . As J = 0 with an insulated cell, curl (h− t0) = 0 and
the previous formula yields

H =< h− t0 >∂Y ∥=< h >∂Y ∥ . (7)

The last equality is due to t0|∂Y = 0.

Fig. 1. Geometry of the core to homogenize (left), reference mesh in its
corner (middle), corresponding macro and meso meshes (right).
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Fig. 2. Magnetic field upscaling strategies in a cell excited with sinusoidal
B at 100 MHz (top). Joule losses power in the full test case at 100 MHz
(bottom). At 100 kHz, t0 is negligible in (5) and <h>Y works.

III. VALIDATION

A full 2D multiscale problem is solved with a FEM B-
conforming formulation of the macro and meso problems.
The periodic geometry studied is a square core of 10 by 10
insulated conducting disks of radius 100 µm (see Fig. 1). There
is µ = µ0 everywhere, σ = 1.01× 107 S/m in the disks and
σ = 0 outside. A source field is generated by an external coil
surrounding the core and fed by a sinusoidal current.

HMM is used, i.e. a cell problem is associated to each Gauss
point of the macro mesh, in which one element covers four
disks of the real geometry (Fig. 1). The macro and meso
problems are solved alternatively [4]. The reference mesh
takes into account the real geometry and is solved with FEM.
Upscaling using <h>Y and (7) are compared. Our method
yields correct evaluation of the Joule losses with 1.34% of
error over the first period at 100 MHz (Fig. 2), versus 90.2%
with <h>Y . These methods have roughly the same cost, but
(5) is more expensive because it requires computing t0.

We emphasize that the macro H-B law is not linear here
even if the meso h-b law used is linear. Indeed it depends on
the magnetic dipole created by je and thus on ∂tB and ∂tb.
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