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Abstract—This paper presents an air gap model for thin air
gaps using the magnetostatic volume integral method. The thin
air gap is considered as a surface region with a numerical
treatment instead of a volume region to avoid having a thin
mesh that could lead to long computations. An application to a
current transformer is reported to show its accuracy.

Index Terms—Volume integral method, air gap, magnetostat-
ics.

I. INTRODUCTION

The volume integral method (VIM) is a powerful approach
to solve magnetic problems. Contrary to the finite element
method (FEM), only the active regions have to be discretised,
thus avoiding to mesh the air. VIM is known since 1970s, but
it wasn’t until the last decade that it became more popular
as a result of matrix compression algorithms such as the fast
multipole method (FMM) [2]. A common feature of magnetic
problems is the presence of air gaps, that can be very thin,
arising for example when two regions are welded. Modelling
air gaps is not obvious, if the mesh elements have an elongated
shape the numerical treatment is difficult therefore we need a
thin mesh that leads to costly calculations. A model of thin
air gaps considered as a surface region instead of a volume
region for VIM is presented in this paper. It allows to avoid a
thin mesh of the air gap volume region that is computationally
expensive, keeping the precision of computations. The model
is applied to a current transformer and it is compared with a
FEM solution to show its accuracy.

II. VOLUME INTEGRAL FORMULATION

We consider Maxwell’s equations under the magnetostatics
assumptions in a domain composed of a ferromagnetic region

and coils. A volume integral method is used to solve the equa-
tions choosing induction B as a state variable and interpolating
it with face elements (Whitney 2-form) as in [1]. The resulting
discretized integral equation for magnetostatics is:

[Z]{Φ} = {∆φ}+ {S} (1)

where Φ is the flux of each face of the mesh, ∆φ is the
difference of magnetic potential of two mesh elements, S is
a term coming from the external sources and [Z] is a matrix
composed of two parts: a first finite element matrix [R] with

Rij =

∫
Ω

wiνwjdΩ (2)

where wi is the face shape function and ν is the inverse of
the permeability of the ferromagnetic region and a second full
integral matrix [L] with

Lij =
1

4π

∫
Γext

1

si

∫
Γtot

1

sj
δνj

1

r
dΓextdΓtot (3)

where si the surface of the mesh element i, δν is the reluctivity
jump between two elements and r is the distance between the
integration point and the observation point. The region Γtot

considers all the faces of the mesh and Γext refers to the
surface elements of the ferromagnetic/air boundary.
To ensure divB = 0 we consider a change of basis on the
system (1) with an incidence matrix. The latter strategy can
also be seen as an equivalent circuit approach that verifies
either the Kirchhoff’s nodal rule or the Kirchhoff’s mesh rule,
then R matrix can be seen as the internal reluctance matrix
for the magnetic material and L matrix as the one taking into
account flux leakage in air region.



III. AIR GAP MODEL

The aim is to create a method to deal with thin regions of
air gap type as a surface region of a given thickness and not as
a volume region. Let us consider the following assumptions:

• Thickness of the air gap is small compared to the dimen-
sion of the other elements (ratio inferior to 5E-4).

• Flux leakage from the external faces of the air gap is null.
• Flux inside the air gap is perpendicular to the air gap. We

can assume this because the permeability of the material
is much higher than the permeability of the vacuum and
the air gap is thin.

The equivalent magnetic circuit can be built adding the
air gap contribution to the matrices [R] and [L]. For the
finite element matrix [R], we consider an additional reluctance
between the faces of the air gap, given by µ0e

s , where e is the
thickness of the air gap, s is the surface of the element and µ0

is the vacuum permeability. For matrix [L], since the air gap is
characterized by having two regions that are near each other,
we will evaluate two parallel faces Γ1 and Γ2 that are in front
of each other and separated by a distance equal to the thickness
of the air gap. Now, using a first order Taylor expansion
1
r1

+ 1
r2

≈ 2
r , the approximation 1

r1
− 1

r2
≈ egrad( 1r ) · n and

writing ν1 = νavg +
δν
2 , ν2 = νavg − δν

2 , where νavg is the
average of ν, [L] matrix reads:

Lij =
1

4π

∫
Γext

1

si

∫
Γtot

1

sj
δνj

1

r
dΓextdΓtot+

1

4π

∫
Γext

1

si

∫
Γtot

(νavg − ν0)
e

sj
grad(

1

r
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We observe that the first term of [L] matrix corresponds to
the term we had when there is no air gap, eq. (3), being the
second term the additional contribution given by the air gap.
When the thickness of the air gap is small or the two materials
divided by the air gap have similar reluctivity, the correction
of finite element matrix [R] is enough to model the air gap
behaviour. Otherwise, the additional correction to [L] matrix
must be considered.

IV. APPLICATION

The proposed air gap model is applied to a current trans-
former composed of a ferromagnetic region with a linear
material µr =1,000 and two coils as Fig. 1 shows. The primary
coil has 1 turn and the secondary coil has 980 turns. The
calculation of the magnetic flux through the secondary coil
following [3] is compared with the reference values obtained
using the FEM performed by the commercial software Altair
FLUX to verify the accuracy of the model. The VIM model
has 52,581 tetrahedral mesh elements in the magnetic region
and 208 on the surface air gap region, FEM model has 412,523
in the air region, 96,588 in the ferromagnetic region and 400
face elements on the surface air gap region. Results for two
different air gap thicknesses of 5e-6 meters and 50e-6 meters
imposing 1 ampere on the primary coil and 0 amperes on
the secondary coil are given in Table I. VIM R refers to VIM
taking into account the air gap addition of matrix [R], whereas

Fig. 1: Geometry of magnetic region (light blue), primary coil
(dark blue) and secondary coil (yellow).

VIM R-L2 considers VIM with the air gap contribution of
matrix [R] and the second term of matrix [L].

FEM VIM R VIM
R-L2

Diff
R

Diff
R-L2

Air gap 5e-6 -5.47e-4 -5.51e-4 -5.48e-4 0.73% 0.18%
Air gap 50e-6 -3.57e-4 -3.65e-4 -3.58e-4 2.24% 0.28%

TABLE I: Magnetic flux through secondary coil.

Last two columns show the relative difference between FEM
and VIM R and between FEM and VIM R-L2 respectively.
Considering the two contributions R-L2 the difference between
FEM and VIM is 0.18% and 0.28% for 5e-6m and 50e-6m
respectively. For the R contribution an air gap of 5e-6m has a
difference of 0.73% that increases to 2.24% when the air gap
is wider. We then validate the VIM air gap model, taking into
account that for thin air gaps the R contribution is enough, but
for thicker air gaps the R-L2 contribution will be needed.

V. CONCLUSION

A model of thin air gaps using the VIM is proposed. It
considers the air gap as a surface region with a given thickness,
avoiding an air gap volume region that leads to a thin mesh.
It is made for a B-facet volume integral formulation for linear
and non linear magnetostatic problems. An application to a
current transformer is shown, comparing the results with FEM
and keeping the accuracy of the model.
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