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RESEARCH ARTICLE

Multi-nomenclature, multi-resolution joint translation: an
application to land-cover mapping

Luc Baudouxa, Jordi Ingladab and Cl�ement Malleta

aLASTIG, Univ Gustave Eiffel, IGN, ENSG, Saint-Mand�e, France; bCESBIO, Universit�e de Toulouse,
CNES/CNRS/IRD/INRAE/UPS, Toulouse, France

ABSTRACT
Land-use/land-cover (LULC) maps describe the Earth’s surface
with discrete classes at a specific spatial resolution. The chosen
classes and resolution highly depend on peculiar uses, making it
mandatory to develop methods to adapt these characteristics for
a large range of applications. Recently, a convolutional neural net-
work (CNN)-based method was introduced to take into account
both spatial and geographical context to translate a LULC map
into another one. However, this model only works for two maps:
one source and one target. Inspired by natural language transla-
tion using multiple-language models, this article explores how to
translate one LULC map into several targets with distinct nomen-
clatures and spatial resolutions. We first propose a new data set
based on six open access LULC maps to train our CNN-based
encoder-decoder framework. We then apply such a framework to
convert each of these six maps into each of the others using our
Multi-Landcover Translation network (MLCT-Net). Extensive experi-
ments are conducted at a country scale (namely France). The
results reveal that our MLCT-Net outperforms its semantic coun-
terparts and gives on par results with mono-LULC models when
evaluated on areas similar to those used for training.
Furthermore, it outperforms the mono-LULC models when applied
to totally new landscapes.
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1. Introduction

Through considerable improvement in remote sensing techniques over the last three
decades, a large number of land-use/land-cover (LULC) maps are now available
(Grekousis et al. 2015, Mallet and Le Bris 2020) at multiple scales. This paves the way
for more automatic, richer and finer representations of the ‘(bio)physical cover on the
Earth’s surface’ (Gregorio 2000). LULC translation (Yang et al. 2017) aims to transform
the inner characteristics of a given map to another one (either or both spatial reso-
lution and classes). Due to the high complexity in generating new maps (computing
and memory usage, reproducibility), translation appears an utmost important task for
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many operational applications, such as LULC fusion, harmonization, comparison and
update (P�erez-Hoyos et al. 2020, Fritz and See 2005, Baudoux et al. 2021, Brown and
Duh 2004). However, the challenge in map-to-map translation lies in the difficult inter-
leaved association of semantic and spatial resolutions of both maps.

Usually, two different LULC establish complex relationships between their classes
(Jansen et al. 2008) and straightforward one-to-one association is most of the time
infeasible. Some classes may encompass highly distinct concepts and characteristics
depending on the map, leading either to strong semantic overlap or inconsistencies.
For example, the two generic land-cover classes forest areas and shrubs have varying
definitions, depending on how tree height, density or minimal surface information
have been taken into account (Comber et al. 2005). In parallel, we often note discrep-
ant spatial resolutions depending on the data and the procedure used for map
creation. While the spatial gap can be easily solved through ad-hoc image up- or
down-sampling, this solution ignores the spatial information embedded into class defi-
nitions (Xu et al. 2014).

Such complexity may explain the limited literature in the field and why both
dimensions are separately handled. The most common method for solving LULC trans-
lation consists today in a nomenclature-level semantic association followed by a separ-
ate spatial resampling strategy (Waser and Schwarz 2006, Schepaschenko et al. 2015,
Lu et al. 2017, Ma et al. 2020).

Semantic association can be assessed in several ways, the most common technique
being the comparison of a list of discrete characteristics of each LULC class (Ahlqvist
2008). The most well-known approach is probably the land cover classification system
(LCCS) framework (Di Gregorio 2005), which computes the ratio of shared attributes
between two classes to assess their semantic similarity. However, such family of
approaches fail to translate complex relationships, often acting as a word-by-word
translation. Spatial context is disregarded and, despite acknowledging multiple pos-
sible associations, each class is exclusively assigned to its strongest correspondent in
the other nomenclature. Moreover, by processing the nomenclature translation separ-
ately from the change of spatial resolution, such approaches neglect semantic consid-
erations on pixels holding multiple classes.

One recently proposed solution (Baudoux et al. 2021) introduced a convolutional
neural network (CNN) based encoding-decoding strategy to foster context information
extraction in an object-level LULC map translation, and achieved promising results. The
core idea lied in the possibility for each map pixel of being translated differently,
depending on its close surrounding pixels and its geographical context. However, this
supervised method was designed as a mono-LULC translation. It required the two maps
to at least partially spatially overlap. When impossible, a pivotal map that spatially over-
laps the two others might be used but this would drastically lessen the translation per-
formance by requiring two translations instead of a single one. Moreover, deriving this
framework for multiple LULC translations requires multiple separate training phases and
could perform poorly on land-cover maps with few training samples.

Recently, deep learning methods have achieved state-of-the-art results in natural
language processing and, more precisely, in language translation (Conneau et al.
2020, Tran et al. 2021). Current state-of-the-art methods have shown the superiority
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of multi-lingual trained models against their mono-lingual counterparts (Conneau
et al. 2020), especially on languages with a small number of translation examples.
Multi-language training seems to benefit from the obtained multi-language common
representation space (Pires et al. 2019). Finding shared representations is also fre-
quently addressed by the remote sensing community for combining multi-modal
data from various sensors, with varying resolutions and information into a compact
and discriminative embedding (Mura et al. 2015, Audebert et al. 2018, Hong et al.
2021a, 2021b). Surprisingly, exception made of the previously mentioned semantic-
based nomenclature harmonization framework (Baudoux et al. 2021), this question
remains unaddressed for the LULC translation task at an object level. In this article,
we tackle these issues by answering the following question: can we find a shared
space for multi-LULC translation that would be beneficial for their individual gener-
ation? We propose a CNN -based solution that learns to simultaneously translate the
spatial resolution and the nomenclature context with a common representation
space (Figure 1). Our approach also exhibits a self-reconstruction ability which is
highly beneficial to ensure that no information is lost during the mapping to the
shared space.

The main contributions of this paper are summarised as follows:

� We propose the first multi-LULC translation model that both handles the spatial
and semantic dimensions of maps.

� A France-wide data-set including 6 open access LULC maps and a 2,300 point refer-
ence set available at https://doi.org/10.5281/zenodo.5843595.

� We conduct a comparative evaluation of the approach with semantic baselines and
the supervised mono-LULC translation of Baudoux et al. (2021), supported by a
carefully designed ground truth.

The proposed model, named Multiple Land-Cover Translation Network (MLCT-Net),
achieves a significant performance enhancement compared to semantic methods and
similar results with the mono-LULC context-based translation demonstrating the inter-
est of training one unique multi-translation model over multiple independent ones.
Moreover, MLCT-Net outperforms its mono-LULC counterparts when generalising to
landscape types unseen during training. The remainder of this articlei s organised as
follows. In Section 2, we briefly review some related works on LULC harmonisation
and common space representation methods. Section 3 presents our data-set. Section
4 presents our architecture and training procedure. Experiments and results are pre-
sented in Section 5. Finally, we conclude this article with some remarks. The full imple-
mentation is made available at https://doi.org/10.5281/zenodo.7019838.

2. Related work

In this section, we first review the proposed approaches for LULC translation, underlin-
ing their main limitations. We then describe recent works on shared representation
spaces showing their potential for LULC translation.
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2.1. LULC translation

Finding a shared representation method applicable to all LULC is an old goal in the
remote sensing community. Yang et al. (2017) separate two approaches: (1) standard-
isation which aims to natively produce maps with identical characteristics through the
use of a universal nomenclature, and (2) harmonisation which aims to define methods
for adapting the nomenclature of already existing maps with different characteristics.

2.1.1. Nomenclature standardisation
Standardisation approaches have been a main subject of concern since the early days
of remote sensing, starting in the 1970s with the Anderson’s classification system
(Anderson et al. 1976), followed by the well-known LCCS (Di Gregorio 2005), and more
recently the EAGLE framework (Arnold et al. 2015). These frameworks propose tool-
boxes to build universal nomenclatures based on a grid of semantic attributes which
are combined to obtain specific classes. These attributes are usually defined to be
scale-independent, making these nomenclatures robust to spatial resolution changes.
However, they do not guarantee obtaining the desired set of classes (Jansen et al.
2008). These methods are by nature designed to be applied before the conception of
the LULC map, but are sometimes also proposed for harmonising existing maps.

2.1.2. Nomenclature harmonisation
Current LULC harmonisation methods are primarily focused on proposing a semantic
mapping scheme between source and target classes. The spatial resolution change is
carried out either before (P�erez-Hoyos et al. 2017) or after nomenclature translation
(Raposo et al. 2017), without considering an interleaved procedure. Harmonisation
methods can be categorised according to the semantic translation strategy. The most

Figure 1. Overall multi-LULC translation architecture. Our network (blue boxes) is trained to per-
form both self-reconstruction and translation. There is no restriction in the number of maps that
can be embedded into our shared representation. For convenience, we only represent two maps
(A and B). Red and orange arrows represent the possible paths for maps A and B. Note that at
inference, only one of the two maps is required.
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common strategy consists in manually matching the two nomenclatures through
human visual inspection (Adamo et al. 2014). This strategy has the advantage of sim-
plicity albeit not allowing a refined understanding of the quality of this match. This
also prevents reproducibility and transfer to other LULC matching challenges.
Therefore, numerous solutions have been proposed to automatically estimate the simi-
larity between classes (Comber et al. 2004, Jepsen and Levin 2013). Similarity can,
among other things, be computed on semi-lattices (Kavouras and Kokla 2002) or hier-
archical tree representations of the nomenclature (Al-Mubaid and Nguyen 2009) or,
more commonly, by comparing the semantic content of each class (Rodr�ıguez et al.
1999, Feng and Flewelling 2004, Ahlqvist 2005, P�erez-Hoyos et al. 2012). For example,
the LCCS harmonisation method represents each class through a list of semantic
attributes and computes the similarity between two classes by studying the proportion
of shared attributes using the Tversky similarity (Tversky 1977).

Regardless of the chosen method, each source class is then translated into its most
similar target class (Herold et al. 2008, Iwao et al. 2011, Tuanmu and Jetz 2014, See
et al. 2015, Tsendbazar et al. 2017). We will refer to this procedure as ‘hard associ-
ation’. This approach has two significant flaws. First, when a class has more than one
non-zero semantic counterpart, translating it to the semantically closest class de facto
ignores all other possible associations. In addition, there may be a significant differ-
ence between the theoretical semantic content of a map and the actual content of
the errors during the map design, limiting the real meaning of these measures of
semantic similarities. For instance, suppose that the class crops of a source map has a
precision of 0.7 (it mixes the two classes natural and cultivated grasslands), then the
semantic definition of the class only accounts for 70% of the actual content of the
class. This is, for example, observed by Neumann et al. (2007) who translated the
GLC2000 map (Bartholom�e and Belward 2005) into CORINE Land Cover (Heymann
1994) only using a semantic hard association approach. They obtained a low 57%
agreement with the observed correspondence between the two maps. In order to alle-
viate these problems, the majority of studies simplifies the target nomenclature via
class merging and deletion, making it possible to reduce the number of source classes
having more than one non-zero semantic measure. However, this procedure generates
a detrimental depletion of the target nomenclature.

2.1.3. Object-level harmonisation
Based on the previous observations, it appears essential (1) to make it possible to
translate each source class into several target classes (referred to in the remainder as
‘soft association’), and (2) to directly determine these associations on the real content
of the target classes (data-driven rather than definition-driven). Current soft association
methods solely focus on LULC fusion i.e., merging several maps to obtain an improved
version. A semantic harmonisation method determines the set of associations between
source and target classes for all maps. Then, a vote is cast at the pixel level to deter-
mine the target label according to the pixel composition in the source classes.
Multiple methods have been proposed for such a decision: sum (Jung et al. 2006) or
weighted sum (Comber et al. 2004, Vancutsem et al. 2012) of the semantic similarities
of source maps. Recently, Li et al. (2021) proposed a hybrid approach, combining the
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semantic similarities with statistical correspondences between source and target
classes. They used Latent Dirichlet Allocation to bridge the previously mentioned gap
between theoretical semantic class definitions and effective content. Since this soft
association model relies on the fusion of multiple maps to perform an object-level
translation, it requires the availability of multiple source maps. An adaptation can be
considered when the target map has a lower spatial resolution than the source one:
one might merge all the possible translations of several source pixels into a single tar-
get pixel achieving per pixel translation. This method will be used under the name of
‘statistical baseline’ and explained in more details later in the article. To perform soft
association without using several source maps, Malkin et al. (2019) replaced the mul-
tiple maps approach with satellite images. In a previous paper (Baudoux et al. 2021),
we proposed to use the spatial context of each pixel to perform soft associations. In
the remainder, we refer to this strategy as the mono-LULC map method. We showed
this approach improved the mono-LULC map translation compared to the standard
semantic or statistic methods in terms of quality and the number of discriminated
classes. These soft-association approaches require, in particular, an overlap between
source and target maps either (1) on all the studied area for the fusion-based one, (2)
on a representative subset of the studied area for the ‘mono-LULC approach’. As men-
tioned earlier, this problem is generally addressed by training multi-language models
in natural language processing. By analogy, we propose to learn a representation
shared by several LULC maps.

2.2. Learning shared representations

We can categorise the literature into three main fields: domain adaptation (Tuia et al.
2016), multi-modal data fusion (Ghamisi et al. 2019), and multi-task learning (Leiva-
Murillo et al. 2013).

Domain adaptation, as a sub-category of transfer learning, aims to define general-
isation methods when the target observation statistically differs from the one used for
training (Kouw and Loog 2021). The literature mainly focuses on extracting and projec-
ting features into a representation space shared between the source and the target
data. In this space, source and target are expected to exhibit the same statistical prop-
erties without any observable shift between them. Traditional methods mainly rely on
statistical matching strategies such as multidimensional histogram matching (Inamdar
et al. 2008), or principal component analysis (PCA) (Nielsen and Canty 2009). More
recent works adopted deep neural networks for their high generalisation ability
(Neyshabur et al. 2017). Two constraints are found in the literature to enforce source
and target to be mapped into a shared space: (1) minimising the distance between
representations through loss regularisation (Othman et al. 2017); (2) adversarial train-
ing (Yan et al. 2020) where a discriminator enforces source and target observations to
be comparable. The first strategy requires source and target to represent the same
object: i.e. in our case, we have at least a partial spatial overlap between source and
target, which is simple to train. The latter does not require any spatial overlap but is
confronted with the well-known difficulties in optimising adversarial networks.
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Multi-modal data fusion focuses on defining methods to combine heterogeneous
sources of information. When this fusion is performed for classification or regression,
methods focus on defining a space in which each data source expresses its specific-
ities to improve the inference task. However, for other applications, such as image-to-
text translation (Verma and Jawahar 2014) or image interpolation (Singh and
Komodakis 2018), a shared representation remains crucial. Methods used in such cases
rely on the same loss-based/adversarial strategies as domain adaptation. For example
Kim et al. (2020) learn to translate multiple languages and images into a shared space
using adversarial training to ensure that features of different languages exhibit equal
distributions. A cosine distance loss function is used to align sentences
across languages.

Multi-task learning aims to improve inference accuracy on several tasks by training
simultaneously on all of them (Farahani et al. 2021). In this setup, a shared representa-
tion space is often targeted as a way to make the representation more robust on tasks
with few (Cao et al. 2020) or noisy (Paul et al. 2019) examples. This strategy is mainly
used in multiple language translation (Devlin et al. 2019, Lample and Conneau 2019),
through the use of a masking. Moreover, networks are often trained with a dual trans-
lation and auto-reconstruction objective (Yang et al. 2019) to enforce mapping to a
shared representation while preserving the unique features of each task.

Our LULC translation paradigm is at the cross-roads of these three tasks. First, LULC
translation has to deal with LULC covering different spatial extents. The designed
translation method will potentially be used on areas unseen during training and,
therefore, will deal with unseen landscapes requiring domain adaptation without tar-
get labels. Second, each LULC map has a wide diversity of spatial resolutions, nomen-
clatures and accuracies, making each of them an utterly distinct data source relating
the problem to multi-modal data analysis. Finally, LULC translation is confronted with
varying data set sizes and noise distribution, for which, as previously mentioned,
multi-task learning has shown interesting results.

3. Data sets

From the analysis of the state of the art, we propose to train a neural network to
translate simultaneously multiple LULC maps in a multi-task manner. To do so, we first
introduce the multi-LULC data set used for training. Experiments are carried out on
the full Metropolitan French territory (mainland plus Corsica island), encompassing
numerous landscapes: waterfronts, mountains, wetlands, forests, urban and agricultural
zones. To extensively study LULC translation, we selected six open access LULC maps,
exhibiting various production methods (either photo-interpreted or automatically gen-
erated), spatial resolutions (from 10 to 100 m), nomenclatures (from 11 to 44 classes,
cover and use) and spatial extent (from 10,000 to 500,000 km2). In this section, we first
focus on their main characteristics. Second, we detail the pre-processing steps and the
corresponding manually built ground truth designed for quality assessment. This multi
land-use/land-cover data-set (MLULC) (Baudoux 2022) is made available at https://doi.
org/10.5281/zenodo.5843595.
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3.1. Presentation of the input LULC

Among all the LULC covering France, we selected six maps that cover a broad range
of specifications while ensuring at least a 70% overall accuracy: CGLS-LC100 (Buchhorn
et al. 2020), CORINE Land Cover (Moiret-Guigand et al. 2021), OSO (Inglada et al.
2017), OCS-GE cover, OCS-GE use, and MOS. Table 1 summarises the main characteris-
tics of each of these maps. They are described below.

The impact of changes occurring between two maps in the translation procedure is
reduced by carefully selecting the year of the maps and make them the closest pos-
sible to each other (selected years are indicated in Table 1). Few maps are produced
in a yearly basis which inevitably generates discrepancies between the six maps.

The Copernicus Global Land Service Land Cover (CGLS-LC100) map has global
coverage and is released annually in raster format. Based on PROBA-V image time ser-
ies classification with a supervised Random Forest framework (Buchhorn et al. 2020),
each map covers a civil year reference period with five released versions so far
(2015–2019). Main map characteristics include a spatial resolution of 100m, up to 22
classes (with a fine-grained separation into 12 forest labels), and hierarchically organ-
ised into a 3 level nomenclature. Level 1 merges all forest classes into one (leading to
11 classes), and level 2 distinguishes open from closed forests. We choose to rely on
the level 2 nomenclature (see Appendix A Table A6), instead of the level 3 due to its
higher accuracy (estimated overall accuracy over Europe of 80% at level 1, 73% at
level 2 and not communicated at level 3 (Tsendbazar et al. 2020)). Indeed, our pro-
posed solution relies on a supervised learning process: inserting a too significant noise
level would be detrimental (Natarajan et al. 2013). Moreover, working with level 3
labels would have also required to deal with complex classes such as Unknown open
forest types that cannot be correctly handled by any translation system.

The CORINE LULC (CLC) database and its 92þ% thematic accuracy (Moiret-Guigand
et al. 2021) has been the reference for land-use and land-cover documentation at the
European scale for the last three decades. Five versions of the product have been
released (1990, 2000, 2006, 2012 and 2018), covering up to 39 countries in 2018. CLC
is mainly generated through visual inspection of both mono and multi-temporal (very)

Table 1. Main characteristics of the six selected LULC maps.
CGLS-LC100
(Buchhorn
et al. 2020)

CLC (Moiret-
Guigand

et al. 2021)

OSO
(Inglada

et al. 2017)
OCS-GE cover
(OCS 2016)

OCS-GE use
(OCS 2016) MOS

Extent World Europe France West and
South France

West and
South France

Paris area

Generation Machine learning Photo-interpreted Machine learning Photo-interpreted Photo-interpreted Photo-interpreted
Source data PROBA-V Landsat, Sentinel-2 Sentinel-2 Aerial imagery Aerial imagery Aerial imagery
Used format raster vector raster vector vector vector
Selected year 2018 2018 2018 2014–2015 2014–2015 2017
Number of classes 12 44 23 14 17 11
Raster spatial

resolution (m)
100 100 10 10 10 20

Minimum
mapping unit

10,000 m2 250,000 m2, 100
m width

100 m2 200–2500 m2 200–2500 m2 width 400 m2

Official geometric
accuracy

100 m 100m 10 m 5m 5 m 5m

Official semantic
accuracy

73% (Europe) 92% (Europe) 87% (France)

Accuracy on our
ground truth

80% (France) 88% (France) 86% (France)
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high-resolution optical satellite images (Landsat, Sentinel-2, SPOT), complemented
with local databases. CLC is released dually in vector format with a 250,000 m2 min-
imum mapping unit (MMU) for classes represented by polygonal objects and an add-
itional 100 m width constraint for linear features, and in raster format with a
100� 100 m pixel spatial resolution. The nomenclature includes up to 44 classes
(Appendix A Table A1), hierarchically organised into a 3-level nomenclature. Since
translation accuracy highly depends on the semantic and spatial correspondences
between the source and the desired nomenclatures, a frequent method is to decrease
the number of classes, focusing only on five to ten classes in the target map (Bechtel
et al. 2020)). In the following, we target full CLC level 3 translation (44 classes) in order
to better understand and assess which classes can be distinguished using contextual
methods. Indeed, context-based translation solutions exhibit a significant potential for
some challenging CLC level 3 classes (e.g. Mixed Forest, or Green urban areas) that calls
for fine assessment.

The Occupation des Sols Op�erationnelle (OSO) covers Metropolitan France and is
released annually in raster format. Based on Sentinel-2 image time series classification
with a supervised Random Forest framework (Inglada et al. 2017), each map covers a
civil year reference period with five released versions so far (2016–2020). Main map
characteristics include a spatial resolution of 10 m, 23 classes with a fine-grained 11
agricultural discrimination (see Appendix A Table A2), and an overall accuracy higher
than 85%. This product is valuable to this study for its high resolution coupled with a
detailed crop nomenclature. The OSO product is freely distributed around April each
year (https://www.theia-land.fr/en/product/LULC-map/.

The Occupation des Sols �a Grande Echelle (OCS-GE) map covers West and South-
West France (125,000 km2), and is expected to be updated at least on a 5-year basis.
Based on photo-interpretation of aerial visible and near infrared imagery, each admin-
istrative state is mapped independently with a first campaign between 2014 and 2015
and one between 2020 and 2021. Our work only includes 2014–2015 maps, the more
recent one still being under review. Main map characteristics include a spatial class-
dependent resolution between 5 and 10m, a MMU between 200 and 2500 m2

depending on the class and the location and two land-cover/land-user nomenclatures:
14 labels for land-cover (see Appendix A Table A4) and 17 for land-use. This joint LC/
LU product is particularly interesting to study automatic land-use prediction from
land-cover (so far, both are generated on the same spatial support but with two dis-
tinct steps). In the remainder, we will refer to those two nomenclatures as OCS-GEc
for land-cover and OCS-GEu for land-use. The choice has been made to remove the
following three classes from OCS-GEu: Other primary productions, Other transport net-
works and Unknown use, due to their mixed and ambiguously defined content.

The Mode d’Occupation des Sols (MOS) map covers the Paris region (12,000 km2)
and is released approximately every 4 years in vector format. Based on the visual
interpretation of 0.15 m aerial optical imagery, each map covers a civil year
reference period with nine released versions so far (1982, 1987, 1990, 1994, 1999,
2003, 2008, 2012 and 2017). Main map characteristics include a spatial resolution
around 20 m, up to 81 classes (with a fine-grained 68 built-up classes), hierarchically
organised into a 4-level nomenclature. The choice to rely only on the 11 class level 1
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nomenclature (see Appendix A Table A3) has been made since the other levels are
not freely available.

3.2. Building a translation data set

The translation data set is generated according to the procedure described below:

1. Maps are downloaded from their respective official websites. Vector format is
always chosen when available to reduce re-projection deformations.

2. Each map is cropped and aligned according to France borders.
3. The maps are then re-projected to the French official projection system

ESPG:2154. This step involves nearest neighbour resampling for maps only avail-
able in raster format enforcing to preserve the original resolution. This step produ-
ces a spatial shift for those raster maps with a degradation of the geometric
resolution that can reach the size of one pixel.

4. Vector maps are rasterised following their respective resolutions.
5. The maps are cropped into tiles of 6� 6 km2 to be ingested in our framework.
6. The tiles are dispatched in three sets: train (60%), validation (5%) and test (35%).

Since several maps do not cover the full French territory, the number of available
maps varies, depending on the considered location, as shown in Figure 2. This is par-
ticularly interesting to study the generalisation to unseen areas and the previously
mentioned impact of the unbalance in data set sizes in multi-task learning.

Figure 2. Spatial extent of the six land-cover maps used in this work. The color codes describing
the classes of each map are provided in Appendix A.
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3.3. Quality assessment

Three different evaluation approaches are introduced in this work: the comparison
between our translation and (1) the original LULC; (2) 2300 random samples of manu-
ally annotated ground truth; (3) the latter ground truth enriched with 400 additional
manually annotated samples focusing on rare labels. Table 2 summarises the main
characteristics of the three evaluation data sets used.

Comparison between translated and target maps is the simplest way to assess the qual-
ity of the translation. However, since LULC maps contain errors, this measure is maximised
when the translation exhibits the same errors as the target data. Therefore, we refer to this
comparison as an agreement measure rather than an accuracy measure. Since comparison
can be performed pixel-wise all over our test set, this comparison offers a vast number of
samples per class, leading to an imperfect proxy to evaluate absolute and per-class metrics.
It is worth noting that the agreement measure can only be computed on each LULC map
extent. For instance, when studying the translation from MOS to OSO, the agreement
between the translation output and OSO can only be computed on the spatial support of
MOS (Paris area). In contrast, the CLC-to-OSO translation can be computed over full France.
To sum up, the comparison between translation and target is useful to estimate per-class
metrics but does not allow to detect if the method learns to replicate target errors.
However, it does not allow studying generalisation to wider spatial extents.

Conversely, the comparison with an independent ground truth gives a better esti-
mate of the accuracy. However, creating such a ground truth on each specific map
spatial extent for all of the six maps with enough points to compute significant per-
class accuracies (Foody 2002) is unrealistic for both time and lack of expertise reasons.
This ground truth should be country-wide (to study generalisation to wider spatial
extents) and with classes compliant with the specifications of each map.

To define a suitable sample size n for the ground truth we rely on Equation (1)
(Cochran 1977, Olofsson et al. 2014):

n ¼ z2að1�aÞ
m2

, (1)

where z is a percentile from the standard normal distribution, a is the overall accuracy
and m is the margin of error. For z¼ 1.96 (for a 95% confidence interval), a ¼ 50%
(worst case scenario) and m ¼ 2%, we obtained a target sample size of n¼ 2300.

These 2300 points are randomly sampled from the test set: they cannot be used to
compute per-class accuracy due to the low (or null) number of samples for rare

Table 2. Summary of the characteristics of the three data-sets used for translation evaluation.
Evaluation data Target map Random ground truth Enriched ground truth

Sample size >100,000 for all LULC 2300 2300þ 400
Minimum sample

per class
>1000 0 10

Pros - Huge sample - France wide coverage for
all maps

- France wide coverage for
all maps

Cons - Same errors as target data
- Only covers the target extent

- Small minimum sample
per class

- Partially biased to increase
sample size of rare classes

Usage - Overall accuracy
- Per class accuracy

- Overall accuracy
- Generalisation

- Per class accuracy
- Generalisation
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classes. We also provide 400 additional points (non-randomly sampled), focusing on
rare classes to ensure a minimum of 15 points per class. Since most of these
additional points were added to complete some of the 44 CLC classes, they abide by
the 25 ha MMU of CLC. This significantly affects statistics for other maps (i.e. most CLC
Sport and leisure facilities included points were golfs since they cover large surfaces
and subsequently artificially enriches the MOS Artificial green urban areas with numer-
ous golfs). The points in the ground truth are sampled with a minimum distance of
2.5 km to reduce spatial correlation. However, the MMU of CLC on linear elements
does not guarantee independence below this distance.

Ground truth labelling relies on photo-interpretation of Sentinel-2 imagery and two
independent sources of information: (i) the French authoritative cartographic database
(BD Topo), yearly updated at 2 m with more than a hundred classes and (ii) the
national Land Parcel Information System (Registre Parcellaire Graphique [RPG]), a 10 m
farmers declarative database for European Common Agricultural Policy (CAP)
(Cantelaube and Carles 2014). We consider the target data valid unless it disagrees
with those sets, in which case photo-interpretation is performed.

The ground truth is partially biased for two reasons. First, the two databases only
cover about 75% of France since some structures are excluded (e.g. sidewalks), and
information is lacking (missing farmer declarations, especially for crops not included in
CAP subsidies). The ground truth for some classes cannot be obtained. Secondly, the
generated ground truth is a partially corrected version of the original data instead of a
completely independent ground truth (i.e. favourably biased towards the original
data). We refer to this measure to ‘accuracy’ hereafter.

4. Methods

This section presents our method to translate each map of a given set of LULC maps
into another one of this set (applied to the case of six examples). The full implementa-
tion is made available at https://doi.org/10.5281/zenodo.7019838. We propose a super-
vised approach that learns to simultaneously transform the spatial resolution and the
nomenclature of our six maps. Our method relies on CNN, with a standard encoder-
decoder strategy, for their outstanding performance in jointly fostering information
extraction from the semantic and spatial domains (Xing et al. 2020).

4.1. An encoder-decoder architecture

We aim to find a generic, simultaneous transformation of the nomenclature and spa-
tial resolution of our six maps. Inspired by the existing literature, we enforce the trans-
lation to use a intermediate common representation space for all maps. This
representation will be referred as an ‘embedding’ which we define as a heuristic model
of land cover independent of a legend or resolution (within a limit of the six training
maps). This leads to reach two consecutive objectives: (1) project each map into a
shared embedding space; (2) decode this embedding into each one of our maps.

Based on recent works on multi-modal data representation (Chakravarty et al. 2019,
Huang et al. 2020, Jo et al. 2020, Yu et al. 2020, Xing et al. 2021), we propose to train
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separate encoders and decoders for each map, and subsequently use cross-reconstruc-
tion to enforce common representations of similar land use/land cover (see Figure 3).
We train our network to both reconstruct a given LULC with one decoder and to
translate into the desired target LULC with another decoder. This dual objective enfor-
ces the embedding to be rich enough to preserve all source map information (recon-
struction) while encoding it suitably for translation. Even though cross-reconstruction
encourages the learnt embedding to be comparable for all LULC, it does not guaran-
tee it. Therefore, multiple works also included a constraint on embedding pairs of cor-
responding data (e.g. using adversarial training or a loss term for embedding
comparison). We adopt the latter strategy by computing the Mean Square Error
between embeddings covering the same spatial extent.

Instead of computing the loss for all maps covering one spatial extent, the network
is trained by computing the loss for only one pair of maps at each optimisation step.
This pair-wise optimisation is used as a workaround for GPU memory limitations. LULC
translation requires large image patches to account for the MMU of some maps. In
parallel, simultaneously training multiple networks is memory consuming. This scheme
enables larger batches and achieves a better result than optimising all different maps
simultaneously on smaller batches. This iterative pair-wise approach is also the one
generally used in multi-lingual model training (Conneau et al. 2020). In practice, at
each optimiser step, we compute the loss for one pair of maps using Equation (2).

L ¼ Lrec þ Ltra þ Lemb: (2)

Lrec is the reconstruction loss used to enforce the embedding to maintain all infor-
mation specific to each LULC, computed as the sum of two cross-entropies between
the two self-reconstructed and their respective sources. Ltra evaluates the quality of
the translation and is computed as the sum of the two cross-entropies of the two
translated maps and their respective targets. Lemb is the MSE loss between the

Figure 3. The proposed cross-encoder architecture. In purple and green, two LULC maps with
respectively c1 and c2 classes and r1 � r1 and r2 � r2 pixels. We represent in orange the common
embedding space.
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embedding of the two source maps which enforces the representation to be shared
between LULC. The global loss is theoretically minimal when the three following
assumptions are met simultaneously: (1) the self-reconstruction of each map is perfect;
(2) the translation is also perfect; (3) embeddings on the same areas are identical.

Our previous work showed that geographical coordinates can be effectively
inserted to improve translation using a positional encoding strategy (Baudoux et al.
2021). Following this observation, we adopt this principle by adding a geographical
coordinate sub-module to our encoder.

4.2. Network architecture

The design of our MLCT-Net is made according to the following observations:

1. The encoder must have a sufficient receptive field to encode each object using its
surroundings. Thus, the architecture is constrained by the MMU of each map.
Since CLC has a 250,000 m2 MMU, the receptive field should at least have a
250,000 m2 width. An embedding with ground resolution of 10 m per pixel leads
to at least a 250 pixel-wide receptive field.

2. The decoder should remain as simple as possible to ensure that the learnt embed-
ding remains as identical as possible for all LULC. Decoders with high capacity
may lead to a latent space with small information content.

We develop the architecture illustrated in Figure 3. It is mainly composed, for each
map, of a (1) a nearest neighbour resampling to the highest spatial resolution (10 m),
(2) a U-Net (Ronneberger et al. 2015) encoder, (3) and a spatial pyramidal pooling
(Chen et al. 2018) followed by a 1-pixel wide kernel convolution layer as a decoder.
This architecture meets each of the above criteria. The 10m resampling strategy ena-
bles the use of the same architecture for each map. This strategy only works if the
gap between the lowest and the highest LULC resolutions remains limited: a low reso-
lution enforces the LULC patches to cover a wide area to get a grasp of the spatial
context. This results in very large patches for the maps with higher resolutions. The U-
Net deals with the receptive field size by down-sampling the input multiple times,
which is more memory efficient than increasing the network depth. There are only
two differences with respect to the original U-Net architecture. The first one is the use
of Group Normalisation (Wu and He 2018) instead of Batch Normalisation leading to
stable normalisation, even on small batch sizes. The second one is the use of five
down-sampling blocks, instead of four, to widen the receptive field.

Data augmentation in the training procedure by randomly rotating and flipping the
maps limits overfitting. This strategy is particularly beneficial on the MOS map, which
only includes around 250 patches for training.

4.3. Geographical context encoding

Based on the observation that LULC translation might depend on the geographical
location (a tree might be translated differently if located near water areas or on a
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mountain), we used the same geographical encoding strategy as in Baudoux et al.
(2021). For each patch, we transform the geographical coordinates into pixel coordi-
nates following (Parmar et al. 2018), which mainly consists in a 2D adaptation of the
positional encoding of Vaswani et al. (2017). Positional encoding, in natural language
processing, encodes the position of each word to tackle issues fostered by differences
between the number of words in the sentences of the training and testing set (i.e.
you trained only on sentences with less than 20 words and then there is on sentence
with 21 one words in inference). The same problem arises in our geographical context
encoding setup, as the coordinates of the training and testing sets are different. The
positional encoding mechanism notably improves the spatial generalization ability
when your training and testing spatial coordinates are not the same (Mai et al., 2022).
For a given longitude x and latitude y, the positional encoded matrix px, y of dimension
d (in our setup d¼ 128) is given by Equation (3):

px ¼

sin ðxx1Þ
cos ðxx1Þ

..

.

sin ðxxd=4Þ
cos ðxxd=4Þ

2
666664

3
777775
d=2

py ¼

sin ðyx1Þ
cos ðyx1Þ

..

.

sin ðyxd=4Þ
cos ðyxd=4Þ

2
666664

3
777775
d=2

px,y ¼

sinðxx1Þ
cos ðxx1Þ

..

.

sinðyxd=4Þ
cos ðyxd=4Þ

2
666664

3
777775
d

withxi ¼ 1

100002i=d

(3)

After encoding through a single hidden layer multi-layer perceptron (MLP) and a
softmax layer, we multiply the geographical context representation by the embedding
of each map (Figure 3). The choice of a softmax followed by a multiplication over a
simple addition mainly relies on the willingness to maintain generalisation ability on
spatial extents unseen during training.

Each translation does not necessarily need the same geographical context informa-
tion. One could then learn one context per pair-wise translation. However, it would be
impossible to generalise the translation to an area of the target map extent used dur-
ing training. For example, learning a specific geographical context for the OSO-to-MOS
translation is only possible on the spatial extent shared by the two maps and not out-
side. To preserve the common representation space of the embedding, we train a
unique MLP on the set of coordinates of our patches. This specific geographical con-
text representation slightly worsens the translation quality, compared to learning a
per-translation representation. However, it remains the only valid strategy.

4.4. Comparison baselines

To the best of our knowledge, no other multi-LULC translation method has been pub-
lished. We, therefore, compare our approach to three mono-LULC translation methods.

4.4.1. Semantic baseline
A rule-based semantic translation where the bijective association between each source
and each target class is manually defined. Associations are detailed for each LULC in
Appendix A. The semantic association is followed by a spatial resampling. When the
target spatial resolution is finer than the source one, a nearest neighbour up-sampling
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is performed. Conversely, a majority voting rule is applied for down-sampling. This
method enables to compare rule-based semantic translations with data-driven ones.

4.4.2. Statistical baseline
A statistical matching between source and target classes. We first compute the prob-
ability of a source class to be translated into each target map using the available train-
ing set. When the spatial resolution of the target is similar or finer than the source, we
attribute to each source class the most probable target class. When the spatial reso-
lution of the target is coarser than the source, we compute inside each target pixel
the mean of the probability for each source pixel to be translated in each target class.
This results in an adaptation of the majority voting resampling used in the semantic
baseline. This method is used to compare data-driven methods unaware of the spatial
context with context-wise ones.

4.4.3. Mono-LULC contextual translation
An asymmetrical U-Net augmented with a geographical context module for taking
spatial context into account during a pairwise translation (Baudoux et al. 2021). This
method is used to study the benefit of learning a multi-LULC translation over a mono-
LULC, simpler case.

Results provided by MLCT-Net are expected to be better than with the two first
methods. They should be at least on par with the mono-LULC translation method, and
better on LULC with few training patches, as observed in natural language processing.

5. Results

In this section, we investigate the translating power of our method and evaluate the
effect of learning a multi-LULC translation instead of a standard mono-LULC proced-
ure. The experimental set-up and the various experiments are subsequently detailed.

5.1. Evaluation metrics

Quantitative evaluation is performed through Overall Accuracy computation to
account for global quality. LULC data sets are highly class-imbalanced: high accuracy
can be achieved by simply correctly predicting the most frequent classes (often not
the most difficult to discriminate). We compute the macro f1-score to more accurately
assess the quality of the translated classes. Standard per-class metrics (precision, recall
and f1-score) are also computed. Formulas for per-class metrics and overall metrics are
given in Equations (4) and (5), respectively.

pi ¼
Xc

j¼1

mii

mji
, ri ¼

Xc

j¼1

mii

mij
, F1i ¼

Xc

j¼1

2
piri

pi þ ri
, (4)

OA ¼
Pc

i¼1miiPc
i, j¼1mij

, mF1 ¼ 1
n

Xc

j¼1

F1i: (5)

pi, ri and F1i are the precision, recall, and f-score for a given class i, respectively. OA is
the overall accuracy, mF1 is the macro f1-score, c is the number of classes, and mij is
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the element in the jth row of the ith column of the confusion matrix, i.e. the number
of pixels of class j classified as i. These statistics are computed separately by compar-
ing the translation with (a) the target LULC, and (b) the ground truth.

5.2. Qualitative assessment

Beyond quantitative metrics, visual inspection of land-cover maps is useful to under-
stand the behaviour of the algorithms. The colour codes of each LULC map are pro-
vided in Appendix A.

Figure 4 presents the results of the 12 translation results obtained on a patch of
the Paris area. Each row corresponds to the translation of one source map into the
four other ones available for this area. Unsurprisingly, one can first note that coarse-
to-high resolution translation with our approach results in almost similar performance
than a semantic rule-based approach associating one unique target class to each
source class. This is due to the limited spatial and semantic information in such LULC

Figure 4. MLCT-Net translation results for all source/target LULC maps pairs available on a
6� 6 km2 patch of the Paris area.
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maps (e.g. CORINE Land Cover). External data (satellite imagery) could participate in
increasing the translation performances. The second observation is that our network
may face some difficulties in learning the MMU of CLC (here 25 pixels) as shown by
the small three pixel wide urban areas in Figure 4 (in red, first column). Commonly,
network training leads to replicate in the predictions the bias observed in the original
data. The most striking example is OSO road class, which has a 45% recall in the ori-
ginal data. It is often confused with Industrial and commercial units (ICU). When learn-
ing to translate a road from a given LULC source map to the OSO map, the
corresponding class has a high probability of being an OSO ICU (e.g. MOS-OSO transla-
tion case in Figure 4, 3rd row, 2nd column). This also increases the difficulty in quanti-
tatively assessing the quality of the results using the target data as reference.

Figure 5 presents a set of patches selected for their representativeness of the
behaviour of MLCT-Net. The first observation is that the spatial context influences the
translation mainly on object edges, especially when the source exhibits a low reso-
lution. In the first row, the border of a CLC Discontinuous urban area is translated into
an OSO pasture area. Second, when the gap between spatial resolutions remains lim-
ited, the translation achieves a successful context-dependent translation (i.e. the same
class is translated differently according to its neighbourhood), as shown for example
in Figure 5 (second row): OSO sparse urban and ICU are satisfactorily translated into
either MOS Individual housing, Collective housing or Activity areas, based on each
source class density or, on the third row, where MOS Forest is translated into CGLS-
LC100 Open forest or Closed forest, thanks to the elongated shape of the object. The
third observation is that, despite context, some translation cases remain difficult.
Additional external data could for example be used in the fifth row where an OCS-GEc
Water area must be translated into it is land-use counterpart. Most of the time, such
areas are classified as No-use in OSC-GEu. However, in this case, this water lake is used
for farming which the network fails to predict. This difficult case illustrates the limita-
tion of MLCT-Net: despite higher scores related to spatial context insertion, it is still
insufficient to achieve to perfect translation.

To assess if our LULC maps are all correctly embedded in a shared representation
space, we provide Figure 6 which presents the embedding of one patch for five differ-
ent maps. The 3-channel representation of the embeddings stems from a PCA on the
original 30-dimension embeddings using a random subset of 1% of the embedding of
the train set. All are rather similar, which was expected through the double constraint
of cross-reconstruction and the MSE computation between embeddings. Second,
edges have a particular behaviour in the embeddings. This is particularly visible on
coarse resolution maps (such as CLC) with a gradient on each object near the edges.
It can easily be explained by a higher uncertainty of the translation near object boun-
daries. The third observation is that the learnt embedding for coarse resolution maps
has a blurrier aspect than high-resolution ones (e.g. in the CGLS-LC100 embedding,
especially on Built up areas). We relate this behaviour to the relative uncertainty of the
semantic content of an area on a low-resolution map compared to a higher-resolution
one (i.e. a Built up area might simultaneously include trees, dense or sparse urban,
and roads). Close values in the embedding space for two classes often reflect close
semantic values: all artificial surfaces, like roads or buildings appear in light blue, all
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Figure 5. Benefits and limitations of multi-LULC map translation. Each square highlights an area
with meaningful spatial context (see text for more details).
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forest types (coniferous, broad-leaved) in light to strong red, all sorts of crops and
pastures in dark blue. This closeness might be beneficial for tasks such as zero-shot
learning since semantically close elements are represented closely in our embedding
space. Eventually, when one class of a LULC map establishes a complex semantic rela-
tionship with another map, it is often visible in the embedding. For example, the OSC-
GE cover class Herbaceous vegetation mixes cultivated areas and natural grasslands
while all other maps make a clear distinction between those two vegetation types.
This leads to distinct embeddings (green $ dark blue).

5.3. Quantitative assessment and comparison with other methods

All conceivable translation scenarios using our method were tested, fed with the six
maps. We also evaluated the three baselines mentioned in Section 4.4. Table 3 reports
the agreement between all translations and each LULC map. Note that the agreement
can only be computed on the target spatial extent (i.e. the agreement is computed on
the Paris area (2% of France surface) when MOS is the target, country-wide when CLC
is the target).

First, context-aware translation methods have higher agreements than their seman-
tic and statistical counterparts. The improvement between contextual and non-
contextual methods ranges from 1% to 17%. The smallest differences are usually
observed when the source map has a coarser spatial resolution than the target. It is
impossible to obtain high scores on a spatial super-resolution task without adding fine
geometric and spatial information (e.g. very high-resolution images). In practice, a
good rule of thumb is to estimate that the MMU of the target maps is always of the
same magnitude than the source one (i.e. translation a 25 ha MMU LULC results in a
more or less 25 ha MMU). Conversely, significantly better results are observed when a
high-resolution map is translated into a coarser one.

Figure 7 presents the qualitative comparison of Statistic, Semantic, Mono-LC and
MLCT-Net on the same spatial extents. A first observation is that mono-LULC and
MLCT-Net methods outperform the semantic and statistic baselines when source
classes have multiple probable translations. For instance, for OSCGEuse (G2)-to-CGLS
translation, ‘Agriculture areas’ are translated solely into ‘croplands’ by the semantic
method while being translated quite accurately both into cropland and pastures by
the context-aware methods. The same observation holds for urban areas in the
OSCEuse-to-OCS-GEc translation (and OCS-GEc-to-OCS-GEu). A second observation is

Table 3. Agreement between our translation and the original target maps. P: CGLS-LC100, C: CLC,
O: OSO, G1: OCS-GEc, G2: OCS-GEu, M: MOS.
Source P C O G1 G2 M

Target C O G1 G2 M P O G1 G2 M P C G1 G2 M P C O G2 P C O G1 P C O

OA semantic 52 42 56 70 75 65 49 67 77 79 62 59 69 76 81 56 41 34 87 57 40 31 75 80 76 59
statistic 54 44 65 70 75 68 55 71 78 79 65 61 73 80 82 57 44 49 89 57 40 41 78 83 81 62
mono-LC 64 57 69 78 76 74 59 72 80 80 77 69 80 86 85 71 58 58 93 69 54 53 79 85 83 63
multi-LC 64 56 69 78 77 74 59 72 81 80 76 66 78 86 85 70 58 58 92 69 54 53 80 86 84 64

mF1 semantic 13 17 22 15 24 46 26 36 28 42 38 19 36 20 38 27 10 17 27 20 9 8 29 38 19 19
statistic 13 18 19 16 24 47 32 33 30 42 36 18 34 20 39 27 10 20 27 20 9 10 27 32 17 18
mono-LC 30 33 29 20 31 57 37 36 31 41 61 39 45 26 53 52 34 31 43 52 29 25 40 45 30 23
multi-LC 30 29 30 19 34 59 35 37 26 41 56 36 43 23 52 50 34 32 37 49 30 26 43 48 36 23

Best values are displayed in bold.
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that pure semantic-based translation outperforms other methods on erroneous classes
in the original target data. For MOS-to-OSO translation, roads (black on the MOS map)
are always translated into ICU except by the semantic baseline. This behaviour is learnt
from the original OSO map, which often presents this confusion. Conversely, the
learnt methods outperform the semantic baseline when the source map is erroneous.
In the reverse translation case (from OSO to MOS), the erroneous ICU (truth: roads) are
correctly translated into roads in the MOS maps by all methods except the seman-
tic one.

The analysis of the differences in terms of macro f1-score is also highly informative:
mono and multi-LULC translations successfully use spatial context to significantly out-
perform the simpler counterparts, in terms of number of predicted classes (exception
made of the CLC-to-OCS-GEu configuration, mostly due to the difficulty to translate
the OCS-GEu No-use class). To get a better understanding of which classes are predict-
able, we provide the observed per-class f1-score in Figure 8. Since displaying all the
26 possible configurations would be counterproductive, we added the confusion
matrices of all maps for each target LULC, resulting in one confusion matrix per target
map. We computed the per-class f1-score, i.e. CLC per-class f1-score is computed on
the merged confusion matrix of OSO-to-CLC, MOS-to-CLC, PROBA-to-CLC, OCS-GEc-to-
CLC and OCS-GEu-to-CLC. Therefore, in Figure 8, a high f1-score is reached when the
translation from all sources to the considered target is successful. We can state that
the well-predicted classes are identical for all methods. The translation into CLC is the
one for which context-wise methods are the most beneficial, as it significantly
increases the number of partially predictable classes, compared to the semantic and
statistical baselines. In other cases, the insertion of context mainly helps to improve
translation on specific classes, especially those defined by a spatial pattern such as
CLC Heterogeneous crops (mix between arable and permanent crops), and on spatially
correlated classes. Forests in mountainous areas mainly include coniferous stands.
Thus, a forest in this area is more likely to be translated as Coniferous than
Broad-leaved).

Figure 6. Shared embeddings (below) for five LULC maps of interest (top). Colors result from a
dimension reduction from the original 30-dimension embedding to 3 dimensions (RGB) using
Principal Component Analysis.
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Our multi-LULC approach has a similar agreement to the mono-LULC scenario,
exhibiting close scores in most cases. However, one must note that it tends to slightly
under-perform on the OSO-any other configuration. MLCT-Net tends to have more dif-
ficulties in learning the MMU than the mono-LULC counterpart. Indeed, as mentioned
previously, this behaviour is particularly striking in the case of the OSO-to-CLC transla-
tion, as shown in Figure 7. This observation is comforted by noticing that the mean
area of errors in the multi-LULC model is significantly smaller than the mono-LULC
model. This can be partly explained by the difficulty in learning the concept of MMU
in a shared representation space, due to the risk of also applying the same MMU
when translating finer resolution LULC maps. One could argue that learning the MMU

Figure 7. Visual comparison between the output of MLCT-Net and existing baselines.
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only requires estimating the area occupied by classes and filtering non-adequate small
areas. However, this would overlook that estimating areas is not a trivial task for a net-
work fed with image patches, due to the lack of information on edges (ideally, this
would require processing the whole data at once, which is unfeasible). Furthermore,
undetected areas in the target data act like a deletion operator used in a generalisation

Figure 8. Per-class F1 agreement computed on the sum of the translation confusion matrices of
all the sources to one target.
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procedure. While this last statements affect both multi-LULC and mono-LULC models, the
difficulty in learning the MMU naturally increases as the number of generalisation rules
(and errors) increases, explaining the poorer MMU learning of the multi-LULC model
compared to its mono-LULC counterpart. Since OSO is the highest resolution map used
in this study, translation from OSO are the most prone to MMU errors explaining the
observed slight under-performance compared to the mono-LULC model.

5.4. LULC map extension

The generalisation ability of a deep neural network is a key feature when studying the
representativeness of the shared space and subsequently the ‘universality’ of such
learnt representation. A universal representation should be able to generalise learnt
LULC maps to areas they do not originally cover. Such an extension ability is highly
valuable. This would allow to generate only high-quality LULC maps on a restricted
area without spending too much time to ensure country-wide generation.

Table 5. Translation results for the 3 full France maps computed on the consolidated 2700 point
ground truth. ‘no-c’ corresponds to ablation cases where the geographical coordinate sub-module
is removed.
Source P C O

Target C O G1 G2 M P O G1 G2 M P C G1 G2 M

OA Semantic 43 45 60 72 74 71 52 74 82 83 68 60 83 80 86
Statistic 48 43 64 75 74 67 56 75 84 82 63 60 82 85 86
Mono-LULC no c 66 77 67 74 82 70 83 86 78
Mono-LULC 55 53 66 56 71 68
Multi-LULC no c 53 49 69 78 76 68 57 76 83 82 74 65 84 86 88
Multi-LULC 56 50 70 79 77 68 57 77 83 82 74 65 85 87 87

mF1 Semantic 12 18 29 22 26 62 42 56 55 60 47 22 51 30 43
Statistic 13 18 22 25 26 59 37 50 48 57 37 20 48 31 42
Mono-LULC no c 31 26 22 45 42 38 53 34 39
Mono-LULC 27 28 53 36 56 45
Multi-LULC no c 21 18 33 27 29 57 34 51 41 55 58 34 57 32 48
Multi-LULC 27 22 37 27 30 56 33 52 43 46 59 37 57 33 50

Best values are displayed in bold.

Table 4. Translation results for the 3 full France maps computed on our 2300 point ground truth.
‘no-c’ corresponds to ablation cases where the geographical coordinate sub-module is removed.
Source P C O

Target C O G1 G2 M P O G1 G2 M P C G1 G2 M

OA Semantic 47 46 62 79 81 72 51 76 84 85 71 65 86 86 92
Statistic 52 45 68 80 81 68 57 77 85 85 67 66 86 89 92
Mono-LULC no c 70 82 76 78 86 78 86 91 87
Mono-LULC 60 55 70 59 75 71
Multi-LULC no c 57 52 71 83 82 71 59 78 86 86 78 70 87 91 93
Multi-LULC 60 53 74 83 83 71 59 79 86 86 78 70 87 92 93

mF1 Semantic 15 19 26 24 26 50 34 44 46 41 44 24 47 29 44
Statistic 15 19 23 28 26 57 35 38 47 39 39 22 43 31 43
Mono-LULC no c 31 29 21 39 39 23 47 34 41
Mono-LULC 28 27 57 37 58 43
Multi-LULC no c 19 19 30 41 27 54 35 42 39 41 62 38 50 34 43
Multi-LULC 28 22 34 41 29 58 33 43 44 38 63 37 50 35 44

Best values are displayed in bold.
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To this extent, we propose to evaluate our ability to retrieve the target MOS, OCS-GEc
and OCS-GEu over France from the sources OSO, CLC and PROBA-V LULC maps, while the
three target LULC maps have only been produced over less than 20% of the country (down
to 3% for MOS). To do so, each source map (OSO, CLC and CGLS-LC100) is translated into
one of the targets at a France-wide scale. The translation may face unseen classes during
training in both source and target maps (e.g. there is no glacier on the original MOS spatial
extent) resulting in wrong translations. Therefore, for each pair of source/target maps, the
semantic baseline is used to translate source classes unseen during training. Unseen target
classes during training are ignored. OCS-GEc Snowfields and glaciers and Other non-woody for-
mations are considered unseen due to high error of the OCS-GE data for those two classes.
In this setup, mono-LULC models cannot be trained with the geographical coordinates sub-
module since they are trained solely on the original target spatial extent. To assess if differ-
ences between the mono and multi-LULC models are due to the use of the geographical
coordinates sub-module, we provide the multi-LULC results with and without it.

Table 4 presents the results computed on the 2300-point ground truth. We focus on the
Overall Accuracy, such a limited number of measurements makes the f1-score unreliable.
Conversely, Table 5 is used to evaluate the f1-score performances using the manually con-
solidated 2700 sample ground truth. Differences between our model and the baselines are
significantly smaller than observed earlier for the agreement measure. This can be explained
by two factors: (1) the ground truth is not fully representative of the French territory; (2) the
network learnt to replicate some errors of the original maps, which increases the agree-
ment. Our first observation is that MLCT-Net still outperforms the baselines even though
the gap between these methods drastically decreases, both visually and compared to the
gap observed on the agreement measurement. A detailed study on the failure cases reveals
that this difference is mainly due to unseen objects during training. For example, sea areas
are often confused with Forest instead of Water in the translated MOS maps, probably
because there is no sea in the original MOS spatial extent. This observation holds for many
classes that are not evenly spatially distributed, since they correspond to peculiar areas and
topography (Salines and Glaciers). This underlines that semantic translation methods are
more robust to generalisation than learnt ones, when confronted to totally new landscapes.

The multi-LULC model outperforms the mono-LULC model, especially in terms of
f1-score. When translating to the MOS map, this stems from the coordinate sub-mod-
ule (0.39 for mono-LULC with no coordinates, 0.48 for multi-LULC with no coordinates,
0.5 for multi-LULC with coordinates). This can easily be explained by the fact that the
geographical context is most useful when translating unseen objects during training
(such as sea). The smallest spatial extent maps (with lower diversity of classes and
objects) benefit the most from the geographical context. On the contrary, the coordin-
ate sub-module seems less useful on the two OCS-GE maps, which perform almost the
same with and without it (larger and more diverse areas).

5.5. Ablation study

5.5.1. Geographical context encoding
Visualising the learnt geographical embedding is crucial to better understand its effect on
the translation accuracy. Figure 9 compares such embeddings for the six map multi-LULC
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case and the mono-LULC case trained on the OSO-to-CLC translation. We applied a separ-
ate PCA on the output of the MLP module. We observe this encoding does not correlate
with the number of maps or the nature of maps covering each area. Second, it seems that
the encoding correlates well with major French geographical landscapes such as Alpes and
Pyrenees mountains (pink), the Paris basin (blue), and the Mediterranean seashore
(maroon). These results underline the representativeness of a learnt geographical encoding
through a multi-LULC mapping and its suitability to improve results on classes correlated
to unevenly spatially distributed landscapes. It is also interesting to compare those results
with the geographical encoding obtained by a mono-LULC model. The mono-LULC model
learns a specific geographical representation to compensate for local errors. In contrast, the
multi-LULC models are more correlated to geographical information.

5.5.2. Impact of the number of input LULC maps
We propose to analyse the influence of the number of maps fed into MLCT-Net and
the quality of the translation. Figure 10 displays the accuracy depending on the num-
ber of maps used for learning. Each histogram represents the stacking of translation
results from all maps towards a single one. The first histogram presents the average
translation results of CLC, OSO, MOS, OCS-GEc and OCS-GEu in CGLS-LC100 for differ-
ent models trained to perform mono-LC or multi-LC translation in using (2–6 maps).
Error bars are computed as the mean of uncertainties estimated using Equation (6).

uðtÞ ¼ 1
m

Xm
s¼1

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OAsð1�OAsÞ

n

r
, (6)

where u(t) is the uncertainty for a target map t, s is the considered source map, OAs is
the estimated accuracy of the translation from source s to map t, z¼ 1.96 for 95% con-
fidence, n is the ground truth sample size (2,300), and m is the total of number of
available source.

Figure 9. PCA representation of the learnt geographical context embedding for our multi-LULC
model (left) and the mono-LULC OSO to CLC model (right). One may easily delineate the main
French landscapes, namely (1) Paris basin, (2) Atlantic seacoast, (3) Medium mountains, (4) High
mountains and (5) Mediterranean seashore.
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Although the model trained on six maps tends to perform better in the majority of
cases, the performance variations observed on CGLS-LC100, CLC and OSO remain
insignificant given the size of our ground truth. This statement prevents us from con-
cluding on a real advantage of using a multi-LULC model for these three maps. This
observation is further supported by the fact that there is no stable trend of a perform-
ance increase when going from 2 to 6 maps. On the other hand, a more straightfor-
ward and significant trend is observed on the MOS, OCS-GEc and OCS-GEu maps,
which all initially covered only a fraction of the territory. The progressive increase
comforts our previous analysis of greater robustness to generalisation to new land-
scapes of multi-LC models compared to the mono-LULC model.

6. Conclusion

In this article, we have comprehensively investigated the potential of country-wide
multi-LULC map translation with our novel MLCT-Net model. In order to obtain a
higher quality translation than models trained on specific pair-wise cases or
non-spatial-context-aware existing methods, we inspired ourselves by recent work on
multi-task and multi-modal deep learning models. Namely, we designed a multi-
encoder decoder network incorporating a three-term loss: (1) a translation loss to
evaluate the quality of the LULC translation, (2) a self-reconstruction loss to ensure
that the embedding preserves each map information, (3) a maximum distance loss on
the embedding to ensure that similar features of different maps are encoded the
same way to ensure high-quality results even on unseen spatial extents. Each encoder
is trained to project a specific map into a representation space shared between all
LULC. Conversely, each decoder aims to translate this shared representation space into
one target LULC. Our key contribution is such a universal country-wide representation
space, which achieves an increase in translation generalization.

We comprehensively evaluated our method by comparing the obtained translations
to the original LULC and a manually annotated ground truth. Our method outperforms
the standard semantic and statistical methods that only focus on exploring per-class
associations instead of defining context-aware solutions. The average improvement is
about 9.5% in overall agreement between source and translation compared to the
semantic baseline (6.2% for the statistical baseline). In contrast with the mono-LULC
method, the multi-LULC method is only 0.4% worse in terms of overall agreement.
Further statistics computed on our full France ground truth reveals that the

Figure 10. Mean accuracy per target land-cover for different models trained with one (mono-
LULC) up to six maps. The red-dotted line separates LULC available France wide (left) from those
with smaller spatial extent (right).
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multi-LULC model outperforms the mono-LULC when computing the translation of
maps on a spatial extent that they do not initially cover. These results demonstrate
that learning a universal representation for multiple LULC improves the robustness of
the translation. We believe that the high potential of this spatial context-aware land-
cover translation method might support new applications in inter-operating land-cover
data sets. The method offers the advantage of generating maps with multiple varia-
tions of nomenclature and resolution without requiring remote sensing images.
Therefore, it appears possible to use this land-cover translation for multiple down-
stream tasks such as change detection, updating, comparison or increasing the spatial
extent of land-cover maps.
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Appendix A.
Land cover nomenclatures

Table A1. CLC nomenclature.
Main semantic link

color id name P O G1 G2 M
7532111119cirbafnabrusuounitnoC111
6532111129cirbafnabrusuounitnocsiD211
8532111139stinulaicremmocrolairtsudnI121

122 Road and rail networks and associated land 9 4 1112 411 10
8414211139saeratroP321
01314211139stropriA421
11311211027setisnoitcartxelareniM131
11342211029setispmuD231
11161211029setisnoitcurtsnoC331

5532122314saeranabruneerG141
5532111139seitilicaferusieldnatropS241
31112268dnalelbaradetagirri-noN112
311122318dnaldetagirriyltnenamreP212
311122118sdlefieciR312
311312513sdrayeniV122
3111112412snoitatnalpyrrebdnaseerttiurF222
3111112412sevorgevilO322
311122314serutsaP132

241 Annual crops associated with permanent crops 8 13 221 11 3
311122418snrettapnoitavitlucxelpmoC242

243 Mainly agriculture but significant areas of natural vegetation 8 14 2111 12 3
1211112611saerayrtserof-orgA442
1211112611tserofdevael-daorB113
1212112711tserofsuorefinoC213
1213112711tserofdexiM313
236122814dnalssarglarutaN123
236212913dnalhtaehdnasrooM223
136212913noitategevsuollyhporelcS323
121212913burhs/dnaldoowlanoitisnarT423
236121127sdnas,senud,sehcaeB133
236121027kcoreraB233
236122817saeradetategevylesrapS333
236212913saeratnruB433
2363212201wonslauteprepdnasreicalG533
211212915sehsramdnalnI114
211212915sgobtaeP214
2361211127sehsramtlaS124
113112111211senilaS224

23612111211staflladitretnI324
4362213211sesruocretaW115
4362213211seidobretaW215
4362213211snoogallatsaoC125
4362213221seirautsE225
4362213221naecodnaaeS325

THE main semantic link column gives for each CLC class the semantically closest class in the other LULC.
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Table A2. OSO nomenclature.
Main semantic link

color id name C P G1 G2 M
1 Continuous urban fabric 111 9 1111 235 7
2 Discontinuous urban fabric 112 9 1111 235 6
3 Industrial or commercial units 121 9 1111 235 8
4 Road surfaces 122 9 1112 411 10

3111228112sdeesepar5
3111228112slaerec6

7 protein crops 211 8 221 11 3
3111228112yos8
3111228112rewoflnus9
3111228112eziam01
3111228112ecir11
3111228112srebut21

13 Intensive grassland 231 4 221 11 3
31111123222sdrahcrO41
3113122122sdrayeniV51

16 Broad-leaved forest 311 1 2111 12 1
17 Coniferous forest 312 1 2112 12 1
18 Natural grasslands 321 4 221 63 2
19 Woody moorlands 324 3 212 63 2

2361217233kcoreraB02
21 Beaches, dunes and sand plains 331 7 1121 63 2
22 Glaciers and perpetual snow 335 10 123 63 2
23 Water bodies 523 12 122 14 4

The main semantic link column gives for each OSO class the semantically closest class in the other LULC.

Table A3. MOS nomenclature.
Main semantic link

color id name C P O G1 G2
211112611113tseroF1

2 Semi-natural areas 321 3 18 221 11
1112268112sporC3
4142213211115retaW4

5 Artificialized green urban areas 142 4 2 221 235
6 Individual housing 112 9 2 1111 235
7 Colective housing 111 9 1 1111 235

532111139121seitivitcA8
532111129111seitilicaF9
114211149221stropsnarT01

11 Mine/dump/construction 131 9 3 1121 13

The main semantic link column gives for each MOS class the semantically closest class in the other LULC.
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Table A4. OCS-GEc nomenclature.
Main semantic link

color id name C P O G2 M
653219111saerapu-tliuB1111

1112 Undeveloped areas 122 9 4 411 10
1121 Mineral material areas 131 9 21 412 11
1122 Areas with other composite materials 132 9 3 43 11

236027233slioseraB121
44143211215secafrusretaW221

123 Snowfields and glaciers 335 10 22 63 2
2111 Deciduous stands 311 1 16 12 1

121711213sdnatsrefinoC2112
121611313sdnatsdexiM3112

212 Shrub and sub-shrub formations 324 3 19 63 1
213 Other woody formations 221 3 15 11 3
221 Herbaceous formations 211 8 6 11 3
222 Other non-woody formations 334 4 18 63 2

The main semantic link column gives for each OCS-GEc class the semantically closest class in the other LULC.

Table A5. OCS-GEu nomenclature.
Main semantic link

color id name C P O G1 M
312268112erutlucirgA11
11112611113yrtseroF21
111211027131seitivitcanoitcartxE31

42213211125erutlucauqadnaseirehsiF41
235 Secondary or tertiary production and residential usage 112 9 2 1111 6

01211149221skrowtendaoR114
01121149221skrowtensliaR214
012111329421skrowtendaehrevO314

414 River and maritime transport networks 123 12 3 122 10
8111139121secivresegarotsdnascitsigoL24
8111139121skrowtenytilitucilbuP34
11121139331saerAlannoitisnarT16
1121232223saeradenodnabA26

2212812123esutuohtiW36

The main semantic link column gives for each OCS-GEu class the semantically closest class in the other LULC.

Table A6. CGLS-LC100 nomenclature.
Main semantic link

color id name C O G1 G2 M
11 Closed forest 311 16 2111 12 1
12 Open forest 231 16 212 12 1
20 Shrubland 221 15 213 11 3
30 Herbaceous vegetation 321 13 221 11 3
90 Herbaceous wetland 411 23 122 63 4
100 Moss and lichen 333 20 222 63 2
60 Bare / sparse vegetation 332 20 121 63 2
40 Cropland 211 6 221 11 3
50 Built-up 112 2 1111 235 6
70 Snow and ice 335 22 123 63 2
80 Permanent water bodies 512 23 122 14 4
200 Ocean 523 23 122 414 4

The main semantic link column gives for each CGLS-LC100 class the semantically closest class in the other LULC.
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