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Abstract—In this paper, a coupling of the Finite Element
Method (FEM) and the Boundary Element Method (BEM) is used
to model the behaviour of magnetoelectric effects in composite
structures. This coupling of numerical methods makes it possible
not to have to consider a free domain, and thus to use a single
mesh for the magnetic, mechanical and electrical problems. This
results in a consequent reduction of the number of unknowns
which is accompanied by shorter computation times compared
to a classical FEM approach. A mixed magnetic vector potential-
reduced magnetic scalar potential formulation is used for the
magnetic problem, and classical FEM formulations are used
for electrical and mechanical problems. The resulting global
algebraic system is solved by a block Gauss-Seidel solver.

Index Terms—FEM-BEM coupling, magnetoelectric, piezoelec-
tricity, piezomagnetism, multiphysics, Gauss-Seidel method

I. INTRODUCTION

Without relying on induction, electromagnetic coupling can
be obtained through the mechanical association of piezoelec-
tric and magnetostrictive materials. The resulting composite
structure displays the magnetoelectric effect [1] and can allow
for magnetic to electric energy conversion or vice-versa.
For the modelling of magnetoelectric composites, the FEM
allows to solve for the behaviour of materials with non trivial
structures. Nevertheless, a classical FEM approach has several
disadvantages. An air-box has to be considered to properly
model the decay of magnetic fields at infinity. A FEM-BEM
coupling has previously been successfully used to overcome
this problem and thus to only mesh the active material [2].
The same approach can be applied to the modelling of the
multiphysics phenomena arising in magnetoelectric composite
structures. The magnetoelectric problem will be decomposed
into three distinct sub-problems: a magnetic problem solved
by the FEM-BEM approach, and electrical and mechanical
problems solved by classical FEM formulations.

II. BEHAVIOURAL LAWS

The behavior of smart materials (piezoelectric and
magnetostrictive materials) is characterized by strong

electro(magneto)-mechanical coupling. Piezoelectric materials
can be described by a set of linear relationships between
the electrical and mechanical quantities [3]. This is not
the case for magnetostrictive materials which generally
exhibit non-linear behavior [4]. However, it is possible to
induce a polarization state by applying a magnetic field
and/or a mechanical prestress and thus define a set of linear
relationships [4]. In this framework, the electrical, magnetic
and mechanical behavior relations are written :

T = cE,B : S − te · E − th ·B, (1)

D = e : S + ε
S · E, (2)

H = −h : S + ν
S ·B, (3)

where T , S, D, E, B and H are, respectively, the stress
tensor, the strain tensor, the electric flux density, the electric
field, the magnetic flux density and the magnetic field. c is
the stiffness tensor at constant electric field and magnetic flux
density, ε is the electrical permittivity tensor at constant strain,
ν is the magnetic reluctivity tensor at constant strain, e is the
piezoelectric tensor and h the piezomagnetic tensor.

III. MAGNETIC PROBLEM

The magnetoelectric problem consists in solving Maxwell’s
equations in the framework of electrostatics and magnetostat-
ics as well as the mechanical equilibrium equation with small
strains assumptions and by taking into account the relations
(1), (2) and (3). In order to use a single mesh containing no
air, a mixed formulation [5] is used for the magnetic problem,
with a magnetic vector potential a inside the active materials
domain Ωm and a reduced magnetic scalar potential φred in
the air domain. From magnetostatic equations and (3), the
weak formulation (4) inside Ωm is developed considering the
reduced magnetic scalar potential φred for the boundary term
and the field created by external currents H0, calculated by



the Biot & Savart law. The discretization is based on edge
elements in the Hcurl function space for the magnetic vector
potential and 0-order surface elements for the reduced scalar
potential φred. Then the weak form reads: find (a, φred) such
that∫

Ωm

∇× δa · νS · ∇ × a dΩm −
∫

Ωm

∇× δa · h : S dΩm

+

∫
Γm

(∇× δa) · n φred dΓm =

∫
Γm

(δa× n) ·H0 dΓm, ∀δa,
(4)

where Γm is the exterior surface of Ωm. The behavior of the
magnetic field in the air, especially at infinity, is taken into
account by adding an equation to the system. Since ∆φred =
0, Green’s third identity applied to the external surface of Ωm

leads to the relation (5),
1

2
φred +

∫
Γm

G
Bn

µ0
dΓm −

∫
Γm

φred
∂G

∂n
dΓm =

∫
Γm

G H0ndΓm,

(5)
where G is the Green function of the 3D Laplacian operator.
This equation is discretized using a Galerkin approach with
0-order surface elements. As

∫∫
Bn dS =

∮
asurf dl, after

discretization of (5), the magnetic vector potential in edge
elements is introduced in the discretized equation from the
flux of the magnetic induction through each facet element. The
resulting matrix system relates the magnetic vector potential
discretized using edge elements to the reduced scalar magnetic
potential discretized using 0-order surface elements, both in
the boundary of the active material.

IV. ELECTRIC AND MECHANICAL PROBLEMS

The electric and mechanical problems are limited to the
active material domain Ωm. Indeed even if in all generality an
electric FEM-BEM coupling can be formulated, the presence
of electrodes and the strong permittivity of some piezoelectric
materials makes the leaks of the displacement field negligible.
The FEM is then used to solve the electric and mechanical
problems, considering, respectively, (2) and (1) and electric
scalar potential and displacement vector formulations [6] with-
out magnetic forces.

V. MATRIX SYSTEM AND RESOLUTION METHOD

The resulting global matrix system is composed of sparse
FEM matrices and full BEM matrices, and has a big scaling
difference between coefficients: coefficients of cE,B are of the

GPa magnitude, νS around 105 m/H, and ε
S between 10−7

and 10−11 F/m. This system can be solved iteratively using a
block Gauss-Seidel scheme (6). Contrary to a direct resolution,
the Gauss-Seidel method allows for solving well conditioned
sub-systems as extra-diagonal sub-matrices are scaled by the
current solutions and introduced as second hand terms (6).

[Aii]{xn+1
i } = {bi} −

i−1∑
j

[Aij ]{xn+1
j } −

n∑
i+1

[Aij ]{xnj } (6)

The Gauss-Seidel method also allows to use an optimized
solver for each sub-system: preconditioned GMRES iterative

solver for the magnetic sub-system and MUMPS direct solver
for the electrical and mechanical sub-system.

VI. RESULTS

Fig. 1. Diagram of the composite structure, the colored arrows represent the
poling direction of the material

Fig. 2. Amplified displacement field (x6.5 103) and nodal voltage (V)

The proposed model was tested on a composite structure
whose geometry is presented in Figure 1. It is composed of a
piezoelectric layer in between two magnetostrictive layers and
measures 3x6x14 mm. It functions as follows: the source field
drives the deformation of the magnetostrictive layer. As both
phases are mechanically bonded together, the piezoelectric
layer will deform and an electric voltage will appear between
the electrodes as shown in Figure 2. For all linear coupling
tensors, the magneto-mechanical formulation was successfully
validated against a pure FEM approach. A good convergence
of the resolution algorithm is observed, aroung 15 iterations for
a convergence of 10−7, and also, we observe convergence of
the output voltage as we refine the mesh. In these conditions,
as expected, the magnetoelectric coefficient, i.e. the output
voltage divided by the source field of the magnetoelectric, is
constant vs the source field.
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