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SHORT SUMMARY
This paper introduces a new model for electric vehicle mobility and energy consumption

in urban traffic networks. The model couples the vehicle mobility described by a set of ODEs
over a graph capturing the Origin-destination motion for urban networks,and the energy con-
sumption associate to this mobility patterns. This model is illustrated in a simple pedagogic
example showing its capabilities, such as keeping track of the vehicle state of charge, current
energy and available storage.
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1 Introduction
As concerns for environmental protection become a major concern, Electric Vehicles (EVs) have
started to rise as one of the main components of sustainable traffic systems in cities worldwide.
Indeed, some countries have started to incorporate plans to phase-out conventional fuel vehicles in
the following years, in efforts to reduce carbon emissions. However, this shift towards an electrified
traffic network implies several challenges that need to be solved for EVs to become mainstream.
From the consumer side, one of the most common complaints about EVs is the lack of sufficient
charging stations so that they can conveniently have their day-to-day life. From the side of city
officials and stakeholders, EVs could have a large impact on the power network infrastructure
by overloading congested nodes, but at the same time, EVs can be actively used to benefit the
power network if Vehicle-to-Grid connections become standard. Initiatives in that directions have
been already taken in cities like Utrecht, which has become a proving ground for the bidirectional-
charging techniques that have the rapt interest of automakers, engineers, city managers, and power
utilities the world over (see https://spectrum.ieee.org/vehicle-to-grid)

To be able to address these problems, it is first needed to model the power needs and energy
consumption of EVs in time and space, which are linked to the mobility patterns of people in urban
areas as they go through their regular lives. In this paper, we propose a model that couples urban
human mobility, the separation of people flows into several transportation modes including EVs,
and an energy model, such that a holistic view of EVs can be given. The model is described and
instantiated using a simple network of only two nodes, however, the model is general and applicable
to any dimension. In simulations, we show the evolution of people flows, population, power losses,
current energy and available storage in each location.

2 Methodology
To understand the energy needs and effects of a given penetration rate of EVs, we must first
understand the space-and-time-dependent mobility patterns of people in an urban area. For this
purpose we consider the mobility model first proposed in (Niazi et al., 2021), which considers the
mobility between two location types: origins and destinations. The former corresponds to areas
where people reside, whereas the latter corresponds to locations that people visit during the day for
different activities such as work, education, leisure, commerce, etc. Consider the simple example
in Fig. 1 consisting of only one origin (node 1) and one destination (node 2).
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Figure 1: Simple network example: mobility between one origin and one destination

The mobility model allows to describe the evolution of the population in each node N1(t),
N2(t), and the flows of people between them at each time. The model is based in a set of coupled
conservation Ordinary Differential Equations (ODEs) of the form

Ṅ1(t) = φ2,1(t)− φ1,2(t) , Ṅ2(t) = φ1,2(t)− φ2,1(t) (1)

where the parameters `i and vi (i = 1, 2) describe the distance and average speed of each trajectory
between the nodes, and φ1,2 is the flow (people per hour) going from node 1 to node 2. This flow
is defined as

φ1,2(t) = min{D1,2(t), S2(t)} (2)

where the Demand of the origin 1 to the destination 2 D1,2 is given by

D1,2(t) = δ1,2(t)M1,2 (3)

where δ1,2(t) ∈ [0, 1] is called the demand gating function and describe the time window during
the day where the population start to leave to destination. M1,2 is the number of people that want
to go from 1 to 2 during the day. Similarly, the Supply of node 2 S2(t) is given by

S2(t) =

{
ψ2(t)φmax

2 if N2(t) < Nmax
2

0 else (4)

where ψ2(t) ∈ [0, 1] is the supply gating function indicating the time window where destination
is available during the day. δ1,2(t) and ψ2(t) can be different during the working days and the
weekends. Nmax

2 is the capacity of node 2, and φmax
2 is the maximum inflow to node 2. The flow

from node 2 to 1 φ2,1 is defined analogously. Although here we only describe the equations for
2 nodes, this model is applicable to any number of origin and destination nodes. An extended
version of the model and its application, parameter calibration, and discretization strategy for the
case of the city of Grenoble in France can be found in (Pratap et al., 2022).

To use the information regarding the mobility flows for the case of EVs, it is required to
determine what is the proportion of people making each trip using a private car, public transport,
cycling, walking, etc. This problem is known as the modal choice (or mode choice) analysis, for
which there is a lot of interest and attention in the literature, see of instance (Bouscasse et al.,
2019) and (Mondal & Bhat, 2022). We consider in this work the well-known logit model, which
computes the probability that a person uses their private vehicle as

pcar(x,β1, . . . ,βm) =
1

1 +

m∑
n=1

exp(βn · x)

(5)

where x ∈ Rq are descriptor variables related to the trip properties (traveling time per mode,
distance, trip cost per mode, etc.), βn ∈ Rq (n = 1, 2, . . . ,m) are mode-dependent parameters for
each of the other transport modes (public transport, bicycle, etc.), and m is the number of modes
other than the private car. For real applications, parameter calibration is done using data from
public household surveys.

Once the number of cars doing each trip is known, the corresponding number of EVs can be
computed using the penetration rate ηEV . Thus, we can describe the number of EVs at node 1
(NEV

1 ) as
ṄEV

1 (t) = φEV
2,1 (t)− φEV

1,2 (t) (6)
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where
φEV
1,2 (t) = ηEV pcar(x1,2,β1, . . . ,βm)φ1,2(t). (7)

The flow φEV
2,1 and the number of EVs at node 2 NEV

2 are defined using analogous equations with
the corresponding changes in subindices.

Furthermore, it is required to model available electric vehicle energy and power consumption
in each location. We denote the average state of charge of vehicles at node 1 as ε1 ∈ [0, 1], and
the average battery net capacity of all EVs in the network as C (kWh). The energy in each node
is then defined as

E1(t) = CN1(t)ε1(t) , E2(t) = CN2(t)ε2(t). (8)

The evolution of the energy in each location can also be described using a conservation ODE,

Ė1(t) = P in
1 (t)− P out

1 (t) , Ė2(t) = P in
2 (t)− P out

1 (t). (9)

where P in
i (kW) is the power flow entering node i, and P out

i (kW) is the power flow exiting node
i, for i = 1, 2. As EVs consume energy by traveling, the power exiting one node is not the same as
the power entering the other. The power losses in each link are defined as

∆P1,2 = P out
1 − P in

2 , ∆P2,1 = P out
2 − P in

1 . (10)

The relation between the power flows, power losses and energy are visualized in Fig. 2.

E1(t) E2(t)

P out
1 (t) P in

2 (t)∆P1,2(t)

P out
2 (t)P in

1 (t) ∆P2,1(t)

b) Energy flows

Figure 2: Energy balance between origin and destination.

The power flow leaving each node can be described in terms of the vehicle flow and state of
charge,

P out
1 (t) = CϕEV

1,2 (t)ε1(t) , P out
2 (t) = CϕEV

1,2 (t)ε2(t). (11)

To describe the power losses in each link, we consider first the energy lost per vehicle by traversing
the link. Let F (v) be the force applied by each vehicle to maintain a constant speed v against
friction, air drag, and other forces. Multiple definitions for this force can be obtained (see (Othman
et al., 2019)), and a common form can be written as

F (v) = (sin θ + µ cos θ)mg + βv +
1

2
ρairAcdv

2 (12)

where the coefficients m and A are the mass and cross-sectional area of the vehicle, g is the accel-
eration due to gravity, θ is the road inclination, µ and cd are the friction and air drag coefficients.
Thus, the energy lost by each vehicle is the work done by this force during the trip length `, which
becomes F (v)`. Additional terms can be added, such as to model the capacity of EVs to recover
energy while going downhill. Thus, the power loss in each link is

∆P1,2(t) = φEV
1,2 (t)F (v1)`1 , ∆P2,1(t) = φEV

2,1 (t)F (v2)`2. (13)

Using the previous equations, the state of charge dynamics for node 1 can be expressed as

ε̇1(t) =
φEV
2,1 (t)

N1(t)

(
ε2(t)− ε1(t)− F (v2)`2

C

)
, (14)

and an analogous expression for the state of charge in node 2 ε2 by switching the corresponding
sub indices.

Note that the mobility and energy models are coupled in a cascading way: the mobility model
can be run independently, and the energy model requires as inputs the population at each node
and the arc flows. Although here we have focused on simplicity in a simple case with two nodes,
this model can be extended for any number network size, where each node has two equations, one
for the population and the other for the state of charge.
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3 Results and discussion
To showcase the model, we consider the simple case with one origin and one destination of Figs. 1
and 2. In this scenario, vehicles go from origin to destination around 8h00, and return to their
homes at 18h00. The simulation is done between 5h00 and 22h00, with a time step of 30 seconds.
The initial conditions are N1(0) = 100, N2(0) = 0, ε1(0) = 1, ε2(0) = 0. The battery capacity is set
to C = 50kWh, and the energy losses at the arcs are set as F (v1)`1/C = 0.2, and F (v2)`2/C = 0.1.
For simplicity, we consider only the movement of EVs.

The vehicle mobility is shown in Fig. 3, where the left plot shows the population N(t) of each
node during each moment of the day, and the right plot shows the flow of vehicles moving in each
direction according to the specified profile.

Figure 3: Mobility of electric vehicles during one day.

Figure 4 shows the energy profiles at each location during the day. The left plot shows the
energy held by the EVs in each location. This is shown by the width of the corresponding colored
region on the y-axis: e.g. at 6h00, all energy is in the origin node, as seen in the dark green color
in Fig. 4 going from 0 to 5000 kWh. As vehicles move, the dark green area decreases while the
light green area increases, as energy moves towards the destination. Some energy is lost as shown
by the yellow area. At 10h00, the light green region goes from 670 to 4500 kWh, so the energy at
the destination is 3830 kWh. Finally, after the vehicles come back to their origin, no more energy
is stored in the light green region, and the energy has either return to the dark green region or has
been lost in transit.

The plot on the right of Fig. 4, shows the available storage of EVs, calculated as CNi(t)(1−εi(t)).
This can be interpreted as how much energy is needed to fill the battery of all EVs in each location
to 100%. Thus, at 6h00 there is no available storage as all vehicles are at 100%. As move to the
destination, there is some storage as energy has been depleted. However, there is available storage
at the origin as the vehicles that remained are still at 100%. Finally, at the end of the day, all
available storage is at the origin.

Figure 4: Energy consumption of EVs during one day.
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4 Conclusions and perspectives
In this work, we have introduced a new model for the mobility and energy consumption of electric
vehicles in the case of urban networks. This model takes into account the mobility patterns of
people going to different destination categories, multiple modes of transport, and the energy losses
in transport by the EVs. The model was exemplified using a simple network of one origin and one
destination. This type of model is required to study the number, location, and power definition of
charging stations, as well as to understand the possible space-and-time-dependent effect of EVs in
the power network.

For future work, we are currently working on the coupling with a charging station model, and
the parameter estimation for more complex networks such as the case of the city of Grenoble,
France. This will be used to study the effect of varying penetration rates of EVs in the city, and
their effect on the power infrastructure.
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