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TECHNIQUES AND RESOURCES

Live 3D imaging and mapping of shear stresses within tissues
using incompressible elastic beads
Alexandre Souchaud1, Arthur Boutillon2, Gaëlle Charron1, Atef Asnacios1, Camille Noûs3,
Nicolas B. David2, François Graner1 and François Gallet1

ABSTRACT

To investigate the role of mechanical constraints in morpho-
genesis and development, we develop a pipeline of techniques
based on incompressible elastic sensors. These techniques
combine the advantages of incompressible liquid droplets,
which have been used as precise in situ shear stress sen-
sors, and of elastic compressible beads, which are easier to
tune and to use. Droplets of a polydimethylsiloxane (PDMS)
mix, made fluorescent through specific covalent binding to a
rhodamin dye, are produced by a microfluidics device. The
elastomer rigidity after polymerization is adjusted to the tissue
rigidity. Its mechanical properties are carefully calibrated in situ,
for a sensor embedded in a cell aggregate submitted to uniaxial
compression. The local shear stress tensor is retrieved from the
sensor shape, accurately reconstructed through an active con-
tour method. In vitro, within cell aggregates, and in vivo, in the
prechordal plate of the Zebrafish embryo during gastrulation,
our pipeline of techniques demonstrates its efficiency to directly
measure the three dimensional shear stress repartition within a
tissue, and its time evolution.

KEYWORDS: Mechanical stress, elastic gel, sensor, PDMS, cell
aggregate, Zebrafish

INTRODUCTION
The cohesion and morphogenesis of living tissues require coor-
dinated processes at the cellular scale, based on changes in cell
number, size, shape, position and packing (Heisenberg and Bel-
laïche, 2013; Guirao et al., 2015). These rearrangements are pos-
sible because cells can generate and exert mechanical stresses on
their surroundings, or conversely feel the stresses and transduce
them into biological signals. The complete process is thus reg-
ulated under the dual control of genetics and mechanics, which
mutually feedback on each other, and drive the growth and shape
of tissues (Desprat et al., 2008). Hence, the impact of mechan-
ics on tissue fate and organization is considerable, either for
healthy organisms during embryo development (Krieg et al., 2008;
Le Goff et al., 2013; Heisenberg and Bellaïche, 2013; Hiramatsu
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et al., 2013; Hamada, 2015; Herrera-Perez and Karen, 2018), or in
pathological conditions (Wells, 2013; Delarue et al., 2014; Angeli
and Stylianopoulos, 2016). Quantitative studies about the role of
mechanical constraints in morphogenesis and development benefit
from a precise and quantitative knowledge of the spatial distribu-
tion of mechanical stresses, from the subcellular scale to the tissue
scale, and of its temporal evolution.

In the past decades numerous methods have been developed in
order to achieve in situ stress measurements, using different and
complementary techniques; for reviews see Sugimura et al. (2016);
Campàs (2016); Roca-Cusachs et al. (2017); Gomez-Gonzalez
et al. (2020). To summarize, these techniques can be classified
into approximately four categories : (i) External contact manip-
ulations, including micropipettes (Mitchison and Swann, 1954;
Hochmuth, 2000; Von Dassow et al., 2010; Guevorkian et al.,
2010), microplates (Desprat et al., 2005; Mitrossilis et al., 2009;
Tinevez et al., 2009; Mgharbel et al., 2009), AFM indentation (Butt
et al., 2005; Elkin et al., 2007; Xiong et al., 2009; Franze, 2011;
Lau et al., 2015), traction force microscopy (TFM) (Nier et al.,
2016) ; (ii) Manipulations using light, comprising laser ablation
(Rauzi et al., 2008; Bonnet et al., 2012; Porazinski et al., 2015) and
optical tweezers (Neuman and Nagy, 2008; Bambardekar et al.,
2015) - and also by extent magnetic tweezers (Hosu et al., 2003;
Tanase et al., 2007; Mazuel et al., 2015) ; (iii) Non-contact opti-
cal imaging, in which one can find birefringence (Nienhaus et al.,
2009; Schluck and Aegerter, 2010) and stress inference (Chiou
et al., 2012; Ishihara et al., 2013; Brodland et al., 2014; Roffay
et al., 2021) ; and finally (iv) Embedded local sensors, from FRET
at the molecular scale (Grashoff et al., 2010; Borghi et al., 2012) to
microsensors at the cell scale (Campàs et al., 2014; Dolega et al.,
2017; Mongera et al., 2018; Mohagheghian et al., 2018; Lee et al.,
2019; Träber et al., 2019).

The latter technique based on microsensors is quantitative,
barely perturbative, and suitable to monitor tissue stresses at the
scale of a cell or a group of cells. Two main avenues have already
been explored.

The pioneer article (Campàs et al., 2014) has used incompress-
ible liquid droplets to measure the shear stress tensor, which is the
most important stress component to understand how anisotropic
forces govern tissue morphogenesis. Liquid microdroplets, made
of fluorocarbon oil, have been injected in aggregates of mesenchy-
mal cells, in living mandible explants. Coating the oil surface
with a biocompatible surfactant enables the droplet insertion in
the tissue. The mechanical stresses exerted by the surrounding
cells modify the droplet shape, and the deviation from the aver-
age stress normal to the droplet surface can be calculated from its
local curvature, according to Laplace’s law. Direct and accurate
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measurements of the three-dimensional (3D) components and ori-
entations of the shear stress tensor require a precise control and
calibration of the liquid/tissue surface tension. The same group
has refined the technique and successfully applied it to Zebrafish
embryos (Mongera et al., 2018).

Other groups have favored elastic beads because they are easier
to produce, tune, calibrate, manipulate, insert in tissues, and ana-
lyze. The stress exerted on a solid sensor by surrounding cells can
be deduced from its deformation, provided that the elastic mod-
uli are determined through an independent calibration. Inspired
by Matrigel pressure sensors (Monnier et al., 2016), sensors have
been prepared using polyacrylic acid (PAA) hydrogels (Dolega
et al., 2017; Lee et al., 2019; Träber et al., 2019), whose Young
modulus can be tuned from 60 to 4000 Pa (Lee et al., 2019), or
alginate gels (Mohagheghian et al., 2018), and injected in cell
aggregates or Zebrafish embryos. Water can flow in and out of an
hydrogel, making it compressible. In principle this method yields
access to the whole stress, that is, simultaneously the compression
stress (including osmotic pressure contributions) and shear stress.
The rest state for each sensor without stress can be determined
at the end of the experiment by lysing the cells ; once the com-
pression stress is determined, the shear stress can be estimated by
substraction (Mohagheghian et al., 2018).

To combine the chemical and mechanical advantages of incom-
pressible liquid droplets, namely fluorescence, functionalization,
and accurate shear stress measurements, with the ease to tune and
use compressible solid beads, we develop a pipeline of techniques
based on incompressible solid beads of diameter comparable to the
cell size. The material must exhibit a well-defined elastic behavior,
with a Young modulus comparable to the one of the surrounding
tissue (order of magnitude 103 Pa), in order to get a measur-
able deformation under physiological stresses, which expected
order of magnitude is e.g. 102 Pa in zebrafish development (Mon-
gera et al., 2018). Coating of the sensors surface is necessary
to make them biocompatible and to make their insertion non-
perturbative. To observe the sensor’s deformation and get a precise
3D reconstruction of its shape, a stable fluorescent labelling is also
needed.

Our choice fell on polydimethylsiloxane (PDMS), which is an
elastic elastomer, with a Young modulus adjustable down to a few
hundred Pa (Hobbie et al., 2008). Production of small droplets of
PDMS polymerisable mixture, having a fixed diameter, can be eas-
ily controlled through a microfluidic device. We introduce a novel
method to bind the elastomer to a fluorescent dye through covalent
bonds, leading to a stable, homogeneous and high intensity fluo-
rescence. Coating the PDMS with cell adhesion proteins is also
possible in principle. The sensors can be embedded in the tissue
in a non-perturbative way, and their deformation followed over
minutes or hours. For 3D image analysis, we implement an active
contour method algorithm to determine the shape of the deformed
sensors. This method leads to direct and accurate measurements of
the 3D components and orientations of the shear stress tensor.

The technique was successfully tested in two different sys-
tems, in vitro and in vivo. First, reconstituted cell aggregates were
chosen as a tumor model, for which it is well known that mechan-
ical constraints have a major influence on the organization and
fate (Delarue et al., 2014; Northcott et al., 2018). Moreover, it
is relatively easy to produce aggregates with embedded sensors,
which makes it a privileged system to validate the method. Sec-
ond, we investigated the distribution of mechanical constraints in

the prechordal plate of the Zebrafish embryo during its develop-
ment. Indeed, based on in vitro observation, it has been postulated
that anisotropies and heterogeneities of mechanical stresses are
present in the prechordal plate, and are of importance to guide
its migration (Weber et al., 2012; Behrndt and Heisenberg, 2012).
However, due to the lack of appropriate tools, the existence of such
anisotropies could not be directly tested so far. The implantation
of our mechanical sensors in this system could definitively help to
decide between different models actually disputed.

In both cases, in vitro and in vivo, we report here results
concerning the spatial repartition and temporal evolution of the
shear stresses, providing clear demonstration of the usability and
potential of these new sensors.

METHODS
The above requirements can be summarized as follows : the sen-
sors must have a size comparable to the cell size, and be easily
fabricated and manipulated in large quantities, with monodisperse
radius ; they must be biocompatible and conveniently embedded
in living tissues ; their rigidity has to be homogeneous and close
to those of the tissues ; they can be fluorescently labelled in a
homogeneous and stable way ; their 3D shape can be precisely
reconstructed with minimal effort ; the effective shear modulus of
the sensors can be reliably calibrated in situ ; the shear stress ten-
sor can be decoupled from compression stress and directly derived
from the 3D sensor’s deformations by using linear elasticity ; shear
stresses of order of 102 Pa can be measured with 10 Pa sensitivity.
To satisfy simultaneously all these constraints, we introduce the
following pipeline of techniques.

Microsensors fabrication

The microsensors were made out of a silicon elastomer similar to
usual PDMS. The polymerizable mix preparation is first dispersed
into liquid droplets of about 30 µm in size, thanks to a microfluidic
circuit, and afterwards polymerized at 80± 1◦C. Briefly, the main
component of the elastomer is vinyl terminated polydimethyl-
siloxane, hereafter coined DMS. It is mixed with a polymeric
hydrosilane (methylhydrosiloxane-dimethylsiloxane copolymer)
that acts as a cross-linker via hydrosilylation of the vinyl ends
of DMS (Fig. S1a). The ratio of cross-linker to DMS must be
carefully controlled (mcross = 1.60× 10−2 mDMS) to achieve
the desired shear modulus after polymerisation. The hydrosily-
lation reaction is initiated using Karstedt’s catalyst (mcatal =
4.286× 10−3 mDMS). A divinylic inhibitor (diallyl maleate) is
also added (minhib = 0.8571× 10−3 mDMS) to slow down the
reaction kinetics. The as-prepared mixture needs to be stored at
4°C and should be used within a few days least the cross-linking
reaction significantly moves forward.

Dispersing the polymerizable mix into spherical droplets of
homogeneous size is obtained through a custom-made microflu-
idic circuit, by a classical flow focusing method (Haejune, 2007).
The dispersed phase (polymer mix) meets the carrier phase (water)
at a 4-channels crossing, and the resulting droplets suspension is
collected at the output. The rectangular channel section is about
50× 20 µm2. The injecting pressures of both phases is finely tuned
and regulated by a Fluigent controller, in order to get a steady-state
dripping instability and a constant droplet diameter. This diameter
may be tuned between 20 and 40 µm. It is stable for a given droplet
batch : the diameter distribution of droplets is quite monodisperse
within a same production (Fig. 1).
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Fig. 1. Distribution of microsphere’s radii for three different batches obtained
with a microfluidic device

The droplets polymerization into spherical elastic beads is
achieved by baking the suspension at 80◦C during 3 h. The final
gel is very soft. It sticks easily and irreversibly to any wall, includ-
ing inert surfaces like teflon or silanized glass. Thus one must
avoid the contact of the droplets with any solid surface during
and after polymerization. To achieve this, the beaker containing
the suspension is placed during baking on a turntable, rotating at
about one turn per second. Since the gel is less dense than water,
buoyancy makes the polymerized beads spontaneously concentrate
at the center of the meniscus of the water free surface. Then, the
concentrated suspension containing about 104 beads per mL can
be collected with a micropipette, aliquoted in Eppendorf tubes and
immediately stored in a freezer at −20◦C. The beads remain sta-
ble for weeks at this temperature, and are thawed before immediate
use.

Fluorescent labelling

In order to observe the sensors embedded in the tissue, a dye must
be added to the elastomer. The objective is to get an homoge-
neous fluorescent signal, with high enough intensity, to be able
to visualize the sensors with usual fluorescent microscopy tech-
niques (confocal, spinning-disk and 2-photon microscopy) and to
precisely reconstruct their 3D shape. Several hydrophobic dyes
did not lead to satisfying labelling : either the dye could not be
homogeneously dispersed in the polymer mix (fluorescein diac-
etate), or it was partially released in the water solution surrounding
the beads, so that the fluorescent signal rapidly decreased with
time (Nile Red and Cryptolyte™). We also attempted to label
the elastomer with quantum dots (QDs) dispersed in the mixture.
However, despite some specific coating to make them hydropho-
bic, QDs remained partially aggregated and the dispersion was not
complete.

For efficient fluorescent labelling of the elastomer, two chal-
lenges needed to be overcome: the dye had to easily disperse
into the polymerisable mix and, once dispersed and after cur-
ing, should not escape the meshwork of the gel and leak into
the surroundings. Our strategy entailed attachment of the organic

dye to the cross-linker via a parallel hydrosilylation reaction (Fig.
S1b). The dye therefore needed to bear a vinyl terminal group.
Isothiocyanate-bearing fluorophores can be conveniently modified
through quantitative C-N bond formation. We selected Rhodamine
B isothiocyanate because of its emission in the red and condensed
it with allylamine to give a vinyl-terminated rhodamine B analogue
(Fig. S1c). The compound was then added to DMS in a molar ratio
of one fluorophore for 1,000 DMS strands (see Supplementary
Files for details).

Fig. 2. Images of three sensors in different situations : (a) suspended
in water ; (b) embedded in a CT26 reconstituted aggregate (green) ; (c)
implanted in a zebrafish embryo (green). (a1) and (c1) are bright field
images. (a2) is obtained with a spinning-disk, (b1) with a 2-photon and
(c2) with a confocal microscope ; (b2) is a 3D reconstruction obtained
with ImageJ software. The insets represent the intensity profile through the
sensor’s diameter

Figure 2 shows some examples of bright field and fluorescent
images of single sensors (a) suspended in water ; (b) embedded
in a CT26 reconstituted aggregate ; (c) implanted in a zebrafish
embryo. Image (b2) is a 3D reconstruction obtained with ImageJ
software, where the deformation from spherical shape is clearly
visible. The fluorescent signal is homogeneous in the bead vol-
ume and the contrast is high enough to detect the sensor border
(see section Active contour method). Moreover, we checked
that the fluorescence in the elastomer remains stable over several

3
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days. Thus this labelling technique fulfills all the requirements for
further quantitative image analysis.

Strain-stress relationship

When a bead is embedded in a tissue, it experiences mechanical
forces exerted by its environment, which induce a deformation
from its initial spherical shape, and makes it a sensor of local
stresses. In the following we assume that the sensor is small
enough, as compared to the length scale characterizing stress
spatial variations, so that the stress tensor can be considered as
homogeneous over the sensor’s volume. Thus, stress variations at
a scale smaller than the sensor cannot be detected. We also assume
that the elastomer shows an ideally elastic behavior, and that its
deformation remains small enough (. 5%), so that linear elastic-
ity applies. The local strain tensor ¯̄ε and stress tensor ¯̄σ are related
through (Landau et al., 1986):

¯̄ε =
1 + ν

E
¯̄σd +

1− 2ν

E
¯̄σc (1)

Here ¯̄σc =
tr(¯̄σ)

3 1 represents the isotropic part of ¯̄σ (traction
stress tensor, equivalent to a pressure) and ¯̄σd = ¯̄σ − ¯̄σc is the devi-
ator, also known as shear stress tensor ; E is the Young modulus,
and ν the Poisson’s ratio.

The sensors are made out of a PDMS elastomer, which can be
considered as incompressible in the range of physiological stresses
(its compression modulus K = E

1−2ν is of the order of 106 Pa).
This justifies the approximation ν ' 1

2 , and thus Eq. 1 simplifies
into : ¯̄ε = 1+ν

E
¯̄σd. Introducing the shear modulus µ = E

2+2ν = E
3 ,

one gets:

¯̄σd = 2µ¯̄ε (2)

which we will use in the following.
Under external stresses, and assuming small deformations, the

sensor’s shape changes from a sphere of radius a to an ellipsoid of
half-axes aX , aY and aZ . In the system of principal coordinates
(X,Y, Z) of this ellipsoid, both the strain and stress tensors are
diagonal, so that one can write :

σdXX = 2µεXX = 2µ
(aX − a)

a
(3)

σdXY = 2µεXY = 0 (4)

and similar relations for other stress components. Hence, provided
that the shear modulus of the PDMS elastomer has been indepen-
dently calibrated, the local shear stress tensor is fully determined
by pointing the ellipsoid orientation and measuring the length of
its half-axes.

Cell culture and preparation of aggregates

CT26 cells, stably transfected with Lifeact-GFP, were cultivated
in T75 flasks at 37◦C in 5% CO2, in DMEM culture medium
completed with 10% (v/v) Foetal Bovine Serum and 1% antibi-
otics (penicillin-streptomycin), and passed every 3 days. For the
preparation of aggregates, confluent cells were detached by using
5 mL of buffer solution containing 0.05% trypsin. Incubation was
limited to about 1 min, in order to form cell leaflets and avoid
complete cell dispersion. In parallel, elastomer microsensors were

functionalized by adding 1 mL of fibronectin solution in PBS
(50 µg/mL) to 1 mL of freshly thawed bead suspension. The final
suspension was left for incubation during 1 h at 37◦C, and then
directly added to ∼ 10 mL of detached cells suspension without
further rinsing. Aggregates containing inserted beads were pre-
pared in Petri dishes on which the cell and bead suspension was
deposited, placed on an orbital agitator (∼ 50 rotations/min), and
left to grow for at least 24 h in an incubator at 37◦C. To get spher-
ical aggregates, it is suitable to let them grow for at least 48 h.
The diameter of the obtained aggregates lies between 100 and
500 µm. Within few exceptions, they contain at most one bead
per aggregate.

Zebrafish preparation

Embryos were obtained by natural spawning of Tg(-1.8
gsc:GFP)ml1 adult fishes (Doitsidou et al., 2002). All animal
studies were approved by the Ethical Committee N°59 and the
Ministère de l’Education Nationale, de l’Enseignement Supérieur
et de la Recherche under the file number APAFIS#15859-
2018051710341011v3.

Embryos were grown at 28.5◦C until reaching shield stage
(6 hours post fertilization). Embryos were then processed as
explained in Boutillon et al. (2018). Using a large glass needle
(35 µm opening) mounted on a pneumatic microinjector (Nar-
ishige IM-11-2) under a fluorescence-stereo microscope, a sensor
was inserted in the shield of an embryo, which expresses GFP in
the Tg(-1.8 gsc:GFP)ml1 line. Transplanted embryos were then
incubated at 28.5◦C until reaching the desired stage between 60%
and 85% of epiboly (6,5 to 8 hours post fertilization). Embryos
were then selected for the presence of the sensor in the prechordal
plate. Selected embryos were mounted in 0,2% agarose in embryo
medium on the glass coverslip of a MatTek petri dish (Boutil-
lon et al., 2018) and placed on an inverted TCS SP8 confocal
microscope (Leica SP8) equipped with an environmental cham-
ber (Life Imaging Services) at 28◦C and a HC PL APO 40x/1.10
W CS2 objective (Leica). Imaging parameters were set to acquire
the whole sensor (z-stack) in less than 15 seconds, to minimize
displacement due to the migrating neighboring cells.

Image recording and analysis

Microscopy
To simultaneously image the tissue and the sensors embedded
inside it, several techniques have been used:

(i) Frequently, sensors in suspension in water were imaged with
a spinning-disk microscope (Andor Revolution CSU X1, mounted
on an Olympus IX 81 inverted microscope equiped with a 40x
water immersion objective), in order to check their sphericity, and
the good quality of their fluorescence (intensity and homogeneity)
(Fig. 2a).

(ii) 2-photon microscopy was used for the visualization of
reconstituted cell aggregates. Experiments were carried out at the
multiphoton facility of the ImagoSeine imaging platform (Insti-
tut Jacques Monod, Université de Paris). The aggregates were
deposited in a Petri dish, in a chamber regulated at 37◦C, and
observed during a few hours under a 20x water immersion objec-
tive at the early stage of their adhesion to the bottom plate. For the
rhodamin dye, the excitation laser was tuned at λ = 840 nm and
the emitted light was collected through a dichroïc mirror at λ ≥
585 nm. Lifeact-GFP of CT26 cells was excited at λ = 900 nm
and the fluorescence was collected at λ ≤ 585 nm. Image stacks
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were recorded along the optical axis every 0.5 µm, with a lateral
resolution down to 0.1 µm/pixel (Fig. 2b).

(iii) A confocal microscope (Leica SP8) was used to image the
prechordal plate of the Zebrafish embryos. The sample was main-
tained at T = 28◦C. Image stacks (x40 water immersion objective)
were recorded at regular time intervals (30 s to 1 min) at differ-
ent stages of the epiboly, comprised between 60 and 85%. Since
the prechordal plate is migrating at a velocity up to 2 µm/min,
the acquisition time for a whole stack must be smaller than 15 s
to avoid drift in the images. Hence images were recorded every
2 µm. The excitation laser was tuned at λ = 498 and 550 nm
and the emitted light was collected between 507− 537 nm and
569− 673 nm (Fig. 2c).

Active contour method

Fig. 3. Determination of the sensor’s contour ; (a) Principle of the active con-
tour method : the initial seed (red) progressively swells (green, purple), until
it reaches the contour of the object (cyan), which minimizes its pseudo-en-
ergy (see text). (b) Example of contour determination for a sensor inserted
in an aggregate (same color code as (a)).

A careful 3D reconstruction of the sensor’s shape was required
to retrieve the orientation and half-axes of the deformed beads with
a good accuracy. Indeed, the usual built-in applications for 3D
reconstructions, such as ImageJ plugins, do not lead to a reliable
and accurate enough profile: the result depends on specific choices
of parameters for the filters and for the intensity thresholds, which
involve the subjective appreciation of the operator. Hence, we
implemented an active contour method, as follows (Kass et al.,
1988; Caselles et al., 1993; Marquez-Neila et al., 2014; Bendaoud,
2017) : the common principle of the different existing algorithms
consists in considering a swelling (or shrinking) surface ν(s, n)
at the nth iterative stage, parametrized by its local coordinates
s = (s1, s2). A function E(ν) is associated to this surface and, like
an energy, is built to reach a minimum when the surface ν(s, n)
coïncides with the contour of the object. This pseudo-energy is the
sum of three contributions:

E(ν) = Eg(ν) + Es(ν) + Ec(ν) (5)

The first term Eg(ν) is a gradient detection term :

Eg(ν) = −
∫∫
‖~∇(gσ ∗ I)‖2ds (6)

It represents the norm of the intensity gradient, convoluted by
a gaussian filter gσ , and integrated over the surface ν. The minus

sign ensures thatEg(ν) has a minimum when the intensity gradient
on the surface ν is maximal.

The second term (surface energy) Es(ν), is analogous to a
Helfrich energy (Helfrich, 1973) :

Es(ν) =

∫∫
αds+

∫∫
βκds (7)

where α is a surface tension, κ the local curvature of the surface
ν, and β a curvature stiffness. This term limits the roughness of the
final contour.

The last term (balloon energy) Eb(ν) is proportional to the vol-
ume V limited by ν, and forces the surface to swell or to shrink
when iterating the process, according to the sign of the parameter
δ :

Eb(ν) = δ

∫∫∫
dV (8)

The details of the used python code can be found in (Souchaud,
2020) and on the Github platform (see Data availability). Start-
ing from a seed located inside the contour to be detected, and
taking δ < 0, the volume delimited by ν enlarges at each step n
of the algorithm, until E(ν) reaches a minimum, which defines
the contour of the object. The principle of the method is illus-
trated in Figure 3a, and a example of contour determination for
a micro-sensor is shown in Figure 3b. A movie (M1) showing
the 3D reconstruction of a bead inserted in the prechordal plate
of a Zebrafish embryo is available in supplementary files. Conse-
quently, the final contour position only depends on the choice of
δ and of two parameters α1 and β1 derived from α and β. In the
algorithm, δ is an integer and must be equal to −1 to ensure con-
vergence. We have checked that tuning α1 and β1 in a large range
(variations up to 100%) changes the contour position by less than
0.2 µm. Thus the final accuracy ∆ on the contour determination is
not limited by the algorithm, but by the quality of the image. It is
about 0.5 µm, over a sensor radius of about 15 µm.

Once the 3D contour of the sensor has been determined from
the images, a renormalization factor r = 0.935 must be applied
to the sensor’s shape along the optical axis (z) direction. This
factor takes into account a geometrical correction due to light
refraction through the tissue/PDMS interface, which acts like a
spherical diopter between two media of different optical indices
(1.35 < n1 < 1.40 for the living tissue ; n2 ' 1.44 for PDMS).
The factor r was calibrated in situ, by comparing the shape of
hard non-deformable spherical sensors (µ ∼ 2× 104 Pa) to their
reconstructed image. Calibrations were performed both in cell
aggregates and in zebrafish embryos, leading to the same value
r = 0.935± 0.02, which was retained in the following.

With this active contour method, we estimate that we can detect
a sensor deformation if the difference between two half axes is
at least equal to threshold ∆ = 0.5 µm, which represents the
accuracy of our measurements.

RESULTS
Sensors mechanical calibration

As shown in section Strain-stress relationship, determining in
situ the local stress tensor requires to calibrate the sensors shear
modulus µ. Its value was determined by two methods, first at the
macroscopic scale with a commercial rheometer, and secondly
in situ at the sensor’s scale with a custom-made setup allowing
uniaxial compression of aggregates.
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Macroscopic rheometry
A rheometer (ARES G2) was used to follow the evolution of the
elastic moduli of the PDMS preparation during its gelification.
The polymerizable mixture was introduced in either plate-plate
or cone-plate geometry, and maintained at a constant temperature
T = 60◦C or T = 80◦C, whilst the storage and loss moduliG′ and
G′′ were measured every 15 min, in the range 0.1 Hz < f < 10 Hz.
After a transient increase during about one hour, G′ and G′′ grad-
ually tend towards a plateau, which final value is reached after
∼ 12 h at T = 60◦C, or ∼ 3 h at T = 80◦C.

At any given stage of gelification, G′ was found independent
of the excitation frequency f , and G′′ increased approximately
linearly with f , which corresponds to a Kelvin-Voigt behavior.
Moreover, at the end of the gelification plateau, the ratio G′/G′′

was found of the order of 10 at f = 10 Hz for a standard gel com-
position. Thus, when the PDMS gel is submitted to a static (or
very slowly varying) stress, it may be considered as a purely elas-
tic solid, and it is legitimate to confound its static shear modulus µ
with its storage modulus G′ extrapolated at f = 0 Hz.

The G′ value, measured at the end of the polymerization
plateau, was retained in the following as the value of the shear
modulus for bulk PDMS µb. This value strongly depends on
the mixture composition. It is close to 500 Pa for mcross =
0.0160mDMS , but reaches 1000 Pa formcross = 0.0170mDMS .
We noticed that the final value of µb depends also, but in a lesser
extent, on the crosslinker and inhibitor concentrations, and on the
gelification temperature.

The shear modulus µd, measured after the polymerization of a
mix dispersed in water, appeared to be different from the bulk shear
modulus µb. A small amount of polymerizing mixture was added
to water and vigorously shaken for a few seconds to make a coarse
emulsion. The suspension was left to buoy up at room temperature,
during a timelapse τ , after which the suspension was centrifugated
until complete droplets coalescence, and the supernatent was sam-
pled and placed in the rheometer. The actual µd was always found
smaller that the bulk µb measured for the same mix before emul-
sification. The ratio µd/µb reached a stable plateau value ' 0.43
when τ & 24 h. We interpreted this observation by assuming that
a small amount of a mix component, likely the crosslinker, may
diffuse out of the DMS emulsion droplets and dissolve in the sur-
rounding water. As seen above, a small variation of the crosslinker
concentration is enough to induce a significant change in the final
mechanical properties of the gel. Since the microsensors are made
from small droplets suspended in water before polymerization,
this effect has to be considered for a proper calibration of their
mechanical properties. In practice, we decided to measure µb with
the rheometer for every batch of bulk mix polymer used to make
microsensors, and then to apply a constant corrective factor in
order to get an estimate of the final shear modulus µd of the
spherical elastic sensors : µd = 0.43 µb.

In situ calibration in aggregates
At the microsensor’s length scale, one expects that capillary
effects, due to the non-zero surface tension γc ∼ 10 mN/m
between the tissue and the PDMS sensor of radius a ∼ 15 µm,
might affect its global mechanical response (Style et al., 2017;
Bico et al., 2018). Indeed, the contribution of the Laplace term
γc
a ∼ 650 Pa is comparable to the macroscopic shear modulus
µd of the PDMS dispersion. This means that the relationship
between the applied external stress and the deformation of the
sensor involves both the shear stress modulus µd and the surface

Fig. 4. In situ calibration of a sensor shear modulus. Principle (a1, b1) : a
CT26 aggregate, initially spherical and containing a sensor at its center, is
squeezed between two glass plates. The images (a2, b2) are analyzed to
extract the sensor main strains εzz and εrr . (c) Variations of the average
stress σa(t) vs εzz(t) (red crosses) and εrr(t) (blue crosses) during the
relaxation of a squeezed aggregate. Yellow points are recorded during the
first ≈ 30 s of the relaxation. The shear modulus µe of the sensor can be
extracted from the slopes of the straight lines (Eq.12 and ??).

tension γc. For small deformations, it has been shown that one can
take into account this elasto-capillary contribution by introducing
an effective elastic constant µe (Carbonaro et al., 2020):

¯̄σd = 2µe ¯̄ε (9)

with
µe = µd +K

γc
a

(10)

K is a dimensionless constant of order unity. We thus per-
formed an in situ calibration on a sensor embedded in a tissue,
in order to directly measure µe.

For this calibration, we used a custom-made uniaxial rheometer,
allowing to apply either a controlled force, or a controlled defor-
mation to a cell aggregate (Desprat et al., 2005; 2006; Mitrossilis
et al., 2010). To summarize, the cell aggregate may be squeezed
between two glass plates, a rigid one and a flexible one acting like
a cantilever. The plates are actuated by two piezoelectric stages. A
feedback loop maintains the extremity of the flexible plate, on the
aggregate side, at a fixed position, while its other extremity is free
to relax with time. This allows to record the evolution of the force
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F (t) exerted on the aggregate, at constant aggregate’s deformation.
F (t) is calculated from the flexible plate’s deflection, knowing its
rigidity k = 81.2 nN/µm.

Practically, we selected a CT26 aggregate of diameter com-
prised between 100 and 200 µm, containing a sensor localized
close to the aggregate center, and we seized it between the two
plates of the rheometer (Figure 4a). We then applied a step motion
to the rigid plate to squeeze the aggregate, while the flexible plate
extremity close to the aggregate is regulated at constant position.
From this initial instant we recorded the relaxation of the flexible
plate’s deflection during 15 to 30 min, and thus the time evolution
F (t), while the aggregate deformation remained constant. Simul-
taneously, we imaged the shape of the sensor in its median plane
(Figure 4b). Two or three successive squeezings and relaxations
were operated on the same aggregate. From these relaxations we
inferred at any time t the force F (t) exerted on the aggregate, and
the deformations εzz(t) and εrr(t) of the sensor, respectively in
the compression direction and perpendicular to it.

As detailed in the appendix, we developed a model to estab-
lish the relationship between the sensor’s deformation ¯̄ε, and the
average stress in the equatorial plane of the aggregate, defined as :

σa(t) =
F (t)

πR2
1

(11)

This model predicts :

σa = − 3µe

1 + R1
2R2

εzz + γag

(
1

R2
− 1

R1

)

=
3µe

1 + R1
2R2

2εrr + γag

(
1

R2
− 1

R1

) (12)

HereR1 represents the equatorial radius of the aggregate,R2 its
curvature radius in the observation plane (Fig. 4b1), and γag is the
surface tension between the aggregate and the culture medium (not
to be confused with the sensor/aggregate surface tension γc). Eq.
(12) is valid under the following approximations : (i) the aggre-
gate is supposed spherical at rest and the z axis is a cylindrical
symmetry axis at any time ; (ii) the sensor does not perturbate
the stress distribution in the aggregate ; (iii) the sensor is approx-
imately at the center of the aggregate ; (iv) the component σzz(t)
is assumed to be homogeneous in any plane perpendicular to the
main compression axis.

Figure 4c shows an example of such a stress-strain relation-
ship, measured during the relaxation of a squeezed aggregate. We
experimentally check that σa(t) linearly varies with εzz(t) and
with εrr(t) during the relaxation, except for the yellow points
which are recorded during the first ≈ 30 sec of the relaxation.
Indeed, immediately after the step compression, the stress com-
ponents quickly vary, due to different relaxation mechanisms in
the aggregate. In this initial non-linear regime, it is likely that
hypothesis (iii), namely in-plane spatial homogeneity of σzz(t),
is not valid. On the other hand, at longer time, the relaxation
slows down and one expects that the homogeneity assumption
becomes verified. In this regime, the experimental data meet the
model prediction given by Eq. (12). Hence, from the linear fits
shown in figure 4c, one can extract the values of the effective shear
modulus µe = 790± 160 Pa and of the aggregate surface tension
γag = 9± 2 mN/m for this particular experiment. Note that we

experimentally measure εzz ' −2εrr at any time, which is con-
sistent with the sensor’s incompressibility and with the cylindrical
symmetry assumptions.

Table 1. Comparison of the average value
µe, measured in situ, and µd, measured for

a coarse emulsion of the same gel.
Experiments have been performed on two
gels having slightly different compositions.

µe (Pa) µd (Pa)
Gel 1 730 ± 250 (N = 9) 710 ± 150
Gel 2 320 ± 100 (N = 3) 410 ± 70

Two gels of slightly different compositions have been tested.
Within our experimental accuracy, no significant difference can be
detected between the value of µe, averaged over N assays in dif-
ferent aggregates, and the value of µd measured at the macroscopic
scale for a coarse emulsion made out of the same gel (see Table 1).
These results do not allow us to isolate the contribution of capil-
lary effects in the effective shear modulus µe, according to Eq. 10.
Either this contribution is smaller than expected, or the determina-
tion of µd and µe is not accurate enough to measure the difference
between them. In the following, we will take µd as the reference
value for the effective elastic shear modulus of the sensors.

From the uniaxial compression of aggregates we can also infer
the surface tension γag between the aggregate and the culture
medium. The values range from 3 to 12 mN/m for different aggre-
gates. Although the dispersion is important, the order of magnitude
corresponds to the expected one.

Stress distribution in cell aggregates

13 aggregates, containing deformable sensors located at different
positions, were imaged with a 2-photon microscope. We analysed
the shape of 17 sensors. To compare the results, we define a dimen-
sionless position r = rc/Ra as the ratio of the distance rc from the
aggregate center to the sensor center, over the distanceRa from the
aggregate center to the aggregate edge in the direction of the sen-
sor. This definition takes into account the fact that the aggregate
might be not spherical but slightly ellipsoïdal.

The results are gathered in Fig. 5a. Each sensor is set at its
reduced position r, and is represented by an ellipse showing its
deformation projected in the (x, y) plane of the image. Since
the actual deformations are small (< 10%), they were artificially
multiplied by a factor 4 on the scheme to be visible. The main
components of the associated shear stress are represented as red
bars of length proportional to the stress amplitude. In most cases,
one of the main axes remains close to the Oz optical axis, which
justifies the projection in the (x, y) plane.

By looking at the stress orientation and amplitude, one retrieves
several pieces of information :

First, the in-plane main axes of the sensors are mostly aligned
along the radial and orthoradial directions of the aggregate refer-
ential. Fig. 5b represents the distribution of angles between the
radial direction and the sensor’s longer axis direction (blue: sen-
sors showing a difference in half axes larger than the estimated
accuracy threshold 0.5 µm; red: other sensors). This distribu-
tion is non-uniform and indicates that the sensors are principally
compressed in the orthoradial direction.
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Fig. 5. (a) Stress distribution map in CT26 aggregates, from 17 sensors
inserted in 13 different aggregates. Each sensor is set at its normalized posi-
tion r = rc/Ra. Its shape projected in the (x, y) plane is represented by an
ellipse (the ellipticity is artificially multiplied by a factor 4 to make it more eas-
ily visible). The main shear stress components in the (x, y) plane are shown
as red bars, while the projection of the stress in the z direction is represented
by a color code. (b) Distribution of angles between the radial direction and the
sensor longer axis direction (blue: sensors showing a difference in half axes
larger than the estimated accuracy 0.5 µm ; red: other sensors). The sen-
sors are principally compressed in the orthoradial direction. (c) Histogram of
the shear stress amplitude ‖σ‖ versus normalized distance to the center r.

Second, the component σzz , represented by a color code in
Fig.5a, is always positive and ranges between 0 and 250 Pa (see
Discussion).

Third, the stress amplitude ‖σ‖ varies from the center to the
edge of the aggregate. ‖σ‖ is defined as the norm of the stress
deviator:

‖σ‖ =

((
σdXX

)2
+
(
σdY Y

)2
+
(
σdZZ

)2
)1/2

(13)

The histogram of ‖σ‖ is represented in Fig. 5c versus the
normalized distance r. Despite the uncertainty, we observe a sig-
nificant trend for ‖σ‖ to increase with r, and possibly to reach
a maximum and decrease when approaching the edge of the
aggregate.

In principle the evolution of this stress map can be followed
in time. We were able to image the spreading of some aggregates
deposited on the bottom plate of the Petri dish, during a few hours,
by taking stacks every 15 min. In most cases, the axes orientations
and half-lengths of the sensors remained stable with time, within
experimental accuracy. Longer recordings would be necessary to
see an evolution, and to follow the aggregate spreading process
until its term.

Stress distribution in the prechordal plate of zebrafish
embryos

In vivo, the spatial distribution of mechanical stresses, their inho-
mogeneities and their local anisotropy play a determinant role in
the morphogenesis process, since they directly influence cell polar-
ization and migration. For instance, it was established in vitro that
Xenopus prechordal plate cells can be polarized by application of a
mechanical stress of a few Pa (Weber et al., 2012). The prechordal
plate (PPl) is a group of cells, that are the first ones to internal-
ize on the dorsal side of the embryo, at the onset of gastrulation.
During gastrulation, they migrate in direction of the animal pole,
followed by notochord precursors (Kimmel et al., 1995; Solnica-
Krezel et al., 1995). Based on this observation, it was proposed
that migration of the PPl is guided in vivo by the existence of
stress anisotropies within the tissue, used by cells as directional
cues (Weber et al., 2012; Behrndt and Heisenberg, 2012). Our sen-
sors, directly measuring the 3D stress anisotropy, and allowing to
map the stress in the tissue, seemed particularly well suited for
such an application. Also, the prechordal plate appeared as a good
model to demonstrate their in vivo capabilities.

Spatial distribution
The prechordal plate and the notochord cells are labelled in the
Tg(gsc:GFP) line, which was used in these experiments. Sensors
were implanted in the PPl of seven different embryos. Some of
them could be followed over time, by taking images every 30s or
60s. An overview of the full dataset is shown in supplementary
files, table S1. We report here a selection of 12 measurements,
at different stages of gastrulation, from 60 to 85% of epiboly.
The common effective shear modulus of all the sensors was
µd = 430 Pa. To analyze the stress spatial distribution, the PPl
was divided into 9 zones (front/middle/rear and left/center/right),
as shown in figure 6e. For legibility, the projection of the shear
stresses in the PPl (x, y) plane is drawn as an ellipse for each
sensor, while the projection along the perpendicular axis z (con-
founded with the observation axis) is represented by a color code.
In the PPl plane, x is the direction of the PPl progression and y
the perpendicular one. All the stress components lie in a range
comprised between +60 and −60 Pa, with approximately equal
distribution between positive and negative values.

From figure 6e, no evident correlation emerges between the
sensor location in one of the 9 zones of the PPl and the stress
orientation and amplitude in the same zone. However, in Fig. 6f,
the value of the shear stress amplitude ‖σ‖, averaged over the
left/center/right zones and over the different epiboly stages, is
compared at the front (N = 3) and at the middle (N = 7) of the
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Fig. 6. Measurements of the shear stresses in the zebrafish prechordal plate
(PPl) during epiboly. (a-d) : Ectoderm, prechordal plate (PPl) and notochord
precursors (Noto) movements during gastrulation. (a,c) Bright fields and
fluorescence images of a zebrafish Tg(gsc:GFP) embryo at 60% epiboly.
Prechordal plate and notochord cells, expressing GFP in this transgenic line,
are highlighted by the white dashed line. Red dashed line marks the margin
of the embryo. (b,d) Schematics of corresponding pictures showing mor-
phogenetic movements of the different tissues during gastrulation. Crossed
arrows indicate animal-vegetal (A-V), left-right (L-R) and dorsal-ventral (D-V)
embryonic axes of respective view. Panels a, b, c and d have been inspired
by Smutny et al. (2017). (e) Mapping of shear stresses in the PPl at different
epiboly stages (12 measurements on 7 different embryos). The projection on
the (x, y) plane of the main shear stresses is drawn as an ellipse, while the
projection along the normal axis z is represented by a color code. (f) Com-
parison of the shear stress amplitude ‖σ‖, averaged at the front (N = 3) and
in the middle (N = 7) of the PPl.

plate. The difference is significant and is a first indication that
stress gradients exist in the PPl.

Time evolution
We were able to follow the evolution of the stress components for
7 sensors, during 15 to 30 min, at different stages of epiboly.They
did not show any significant changes, except for one event which
we describe now.

A sensor inserted in the PPl, and migrating with it, was imaged
during 15 min, at the stage 70− 75% of epiboly. In Figure 7, the
three main components σXX , σY Y , and σZZ are plotted versus
time. Each principal axis (X,Y, Z) is color-labelled according to
its nearest axis of the PPl referential: x (red), y (yellow) and z
(blue).

In Fig. 7 one can follow the evolution of each shear stress com-
ponent with time. The stress amplitude along the principal axis
closest to the z axis (blue) changes from positive (extension) to
negative (compression). In the same time, the stress along the axis

Fig. 7. Time evolution of the main components of the shear stress tensor, for
a sensor located in the central zone of the PPl of a zebrafish embryo. Each
principal axis (X,Y, Z) is color-labelled according to its nearest axis of the
PPl referential. Within 15 minutes, the stress amplitude along the principal
axis closest to the z axis (blue) changes from positive (extension) to negative
(compression). In the same time, the stress along the axis closest to the y
axis follows the opposite evolution (yellow), and so does, to a lesser extent,
the component close to x axis (red). Dashed lines are guides for the eye.

closest to the y axis follows the opposite evolution (yellow), and so
does, to a lesser extent, the component close to x axis (red). Their
directions remain stable except for some small fluctuations. This
event is a clear signature of a main change in the stress partition,
which takes place within a few minutes at this stage of epiboly. The
short duration of this event might explain why it has been observed
only once, out of 7 assays. Of course, no general conclusion can
be extracted from one single event, but its occurrence demonstrates
that the technique enables to follow the time evolution of the shear
stress tensor during the prechordal plate migration.

DISCUSSION
In both experiments, in vitro and in vivo, we have demonstrated
that our pipeline of techniques, based on the use of PDMS elas-
tic microsensors embedded in living tissues, can be used to locally
determine the amplitudes and orientations of the shear stress com-
ponents, to map them across the tissue, and to retrieve their
temporal evolution.

In vitro, for freely spreading cell aggregates, the order of mag-
nitude of the shear stress amplitude typically lies between 10 and
100 Pa, consistently with other measurements in similar systems
(Lucio et al., 2017; Lee et al., 2019; Mohagheghian et al., 2018).
Moreover, Fig. 5c shows that the deviator stress amplitude ‖σ‖
increases from the aggregate center to its edge, and that the stress
component along the orthoradial direction is larger than along the
radial one. On the other hand, according to our observations, the
optical axisOz systematically coincides with one of the main shear
stress axis, with a positive value of the shear (extension). A pos-
sible explanation would be that, besides the applied geometrical
correction due to light refraction, light diffusion in the tissue may
also affect the quality of the image, especially at large depth inside
the tissue (& 100 µm). If this is the case, the systematic elonga-
tion of the sensor in the z direction could be an artefact related
to the imaging method. Fortunately, this does not affect our con-
clusions concerning the radial/orthoradial privileged orientations
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in the (x, y) plane, nor the variations of the stress amplitude with
reduced distance r.

It is interesting to compare these results with those reported in
(Lee et al., 2019) with hydrogel sensors embedded in spherical
aggregates made of HS-5 fibroblasts. In this paper two components
of the full stress tensor ¯̄σ were measured vs the distance to the
aggregate center, respectively in the radial and orthoradial direc-
tions in the observation plane. Both their amplitudes are comprised
between −400 and −1500 Pa. Their average value represents the
isotropic part of the stress : it is negative and thus corresponds to a
compression. The difference between the two components, which
is the local shear stress, is of the order of ±100 Pa, comparable
to their measurements accuracy. This order of magnitude is sim-
ilar to ours. Moreover, they observe that both stress components
increase from the aggregate edge, to reach a maximum value, and
then decrease again towards the aggregate center. Although the two
experiments give access to different quantities (total shear in their
case, shear stress in ours), the behaviors observed in both situations
are consistent.

In vivo, in the prechordal plate of the Zebrafish embryo, we
were able to measure both the amplitude and orientation of
the main stress components at different stages of epiboly. The
retrieved values are of the expected order of magnitude, 102 Pa,
and the sensitivity is of order of 101 Pa. From our data we can
highlight two emerging trends, which of course will have to be
confirmed by further measurements. First, following the evolu-
tion of the main stress components with time have shown that
some specific events may occur, which take place within a short
time interval as compared to the gastrulation, and which denote
important changes in the stress partition. Such events have to be
systematically identified, to determine whether they occur at some
particular stages of epiboly, and to learn about their specific role
in the full migration process. Secondly, the total stress amplitude
appears larger at the center of the PPl than at its front, which sup-
ports the hypothesis that stress gradients exist in the PPl and might
play an active role in the PPl migration. A systematic survey of the
stresses amplitude and orientation in the different PPl regions is
needed to comfort this assumption. Another important issue, which
was not investigated here, concerns the stress distribution in the
direction orthogonal to the PPl plane. Indeed, one suspects that the
friction of the PPl over the neurectoderm might play an impor-
tant role in the migration process (Smutny et al., 2017). Thus,
further investigations will also have to include the vertical posi-
tion of the sensor inside the PPl as one of the relevant parameter
of the problem.

To conclude, we have assembled a pipeline of techniques which
meets all the requirements to quantitatively map in 3D + time the
local shear stresses in living tissues, with a sensitivity of order of
10 Pa. In addition to other complementary techniques, it appears
as a valuable tool to investigate the role of mechanical constraints
in morphogenesis and development.

Acknowledgements
We acknowledge Alain Richert, Gaëtan Mary, Magid Badaoui, Alain Ponton and

Sandra Lerouge for their assistance and advices in experimental handling, Hélène

Delanoé-Ayari for critical reading of the manuscript, and Mathieu Roché and

Julien Dervaux for fruitful discussions. We acknowledge the ImagoSeine facility,

at Institut Jacques Monod, especially Xavier Baudin and Orestis Faklaris, and

the Polytechnique Bioimaging Facility, for assistance with live imaging on their

equipments.

Competing interests
The authors declare no competing interests

Contribution
A.S, F. Gr. and F. Ga. designed the experiments, with the help of G.C., A.A., A.B,

N.D. ; A.S. carried out the experiments and data analysis, together with A.B. for

the Zebrafish part under the supervision of N. D. ; G.C. supervised the chemistry

of fluorescent labelling ; A.A. conducted the uniaxial rheometry ; F. Ga. did the

appendix calculations ; C.N. inspired the scientific process and methodology ; F.

Gr. and F. Ga. supervised the work ; A.S, F. Gr. and F. Ga. wrote the manuscript.

All authors have read, corrected and approved the manuscript.

Funding
This work was made possible through a fellowship of the Ecole Doctorale EDPIF

(AS), and a grant from the Domaine d’Intérêt Majeur program (complex systems)

of the Ile-de-France region. Part of it was also supported by the labex «Who Am

I?», labex ANR-11-LABX- 0071, and the Université de Paris, Idex ANR-18-IDEX-

0001 funded by the French Government through its «Investments for the Future»

program. The ImagoSeine facility is a member of the France BioImaging infrastruc-

ture and is supported by Agence Nationale de la Recherche (ANR-10-INSB-04).

The Polytechnique Bioimaging Facility is partly supported by Région Ile-de-

France (interDIM) and Agence Nationale de la Recherche (ANR-11-EQPX-0029

Morphoscope2, ANR-10-INBS-04 France BioImaging)

Data availability
The python code used for active contour detection is available here :

https://github.com/scikit-image/scikit-image/blob/main/skimage/segmentation/

morphsnakes.py.

An example of contour determination can be found here :
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APPENDIX : EXPRESSION OF THE LOCAL STRESSES IN AN
AGGREGATE SUBMITTED TO AN UNIAXIAL COMPRESSION
In this section we describe a model to calculate all the components
of the stress tensor at any point of an aggregate submitted to an
uniaxial compression, from which we derive the expression of the
deformation of an elastic incompressible sensor embedded in the
aggregate.

Notations

We assume that the aggregate, initially spherical, is squeezed
between two plates applying on it a force ~F = −F ~ez , and that the
problem respects the cylindrical symmetry around axis Oz. The
notations are explicited in Fig. 8. We use cylindrical coordinates
M(r, φ, z), O is the aggregate center. R(z) is the radius of the
curve generating the aggregate cylindrical surface. The principal
radii of curvature are:

R⊥ =
R

cos θ

R‖ = − 1

sin θ

dR

dθ
(14)
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Fig. 8. Scheme of a squeezed aggregate, assumed to respect cylindrical
symmetry around Oz. The current point M is identified by its coordinates
(r, φ, z) where φ is the azimutal angle; R(z) is the radius of the curve
generating the aggregate cylindrical surface; R⊥ and R‖ are the principal
curvature radii; R1 is the equatorial value of R(z); ~F is the force exerted by
the plates on the aggregate.

with tan θ = −dR
dz

.
In the particular case of a circular profile, which is a non-

necessary but sufficient approximation for most situations, one
has:

R‖ = cst = R2

R(z) = R1 −R2 +R2 cos θ (15)

1

R⊥
=

cos θ

R(z)
=

1

R2
− 1

R(z)

(
R1

R2
− 1

)
where R1 is the equatorial radius.

The local stress tensor is written as :

¯̄σ =

σrr σrφ σrz
σrφ σφφ σφz
σrz σφz σzz

 (16)

Mechanical equilibrium

In the absence of external volumic force, the mechanical equilib-
rium condition is written : ~div(¯̄σ) = ~0, i.e. in cylindrical coordi-
nates:

∂σrr
∂r

+
1

r

∂σrφ
∂φ

+
1

r
(σrr − σφφ) +

∂σrz
∂z

= 0

∂σrφ
∂r

+
2

r
σrφ +

1

r

∂σφφ
∂φ

+
∂σφz
∂z

= 0 (17)

∂σrz
∂r

+
1

r
σrz +

1

r

∂σφz
∂φ

+
∂σzz
∂z

= 0

Due to the cylindrical symmetry, all the stress components are
independent on the azimutal angle φ. Furthermore σrφ = σzφ = 0.
Thus the above equations simplify into:

∂σrr
∂r

+
1

r
(σrr − σφφ) +

∂σrz
∂z

= 0

∂σrz
∂r

+
1

r
σrz +

∂σzz
∂z

= 0 (18)

We can also write the mechanical equilibrium condition at the
aggregate surface, i.e. for r = R(z). By equilibrating the local
stresses at the boundary with the external pressure pa outside the
aggregate and the Laplace pressure, one finds in projection along
the r and z axes at any point M(R, z) of the surface:

σrr + σzr tan θ = σzz +
σzr

tan θ

= −pa − γag
(

1

R⊥
+

1

R‖

) (19)

We recall that γag represents the surface tension between the
aggregate and the external medium.

Finally, following Norotte et al. (2008), the global balance of
forces exerted on the aggregate, in a plane perpendicular to Oz, at
coordinate z, can be expressed as:

∫
σzz2πrdr + 2πγagR(z) cos θ = −F − πR2pa (20)

Expression of ¯̄σ(r, z)

We assume in the following that the expressions of the components
σzz(r, z), σrr(r, z) and σφφ(r, z) can be approximated by a Taylor
expansion to order r2, according to :

σzz(r, z) = −σ0(z) + b0(z)r2

σrr(r, z) = −σ1(z) + b1(z)r2 (21)

σφφ(r, z) = −σ2(z) + b2(z)r2

The functions σi(z) and bi(z) (i = 0, 1, 2) account for the z-
dependence of the stress components. As shown below, they can
be explicitly calculated from Eqs. (18) to (20). Note that σi(z) is
positive in case of a compression.

From equation (18) one derives the expression of σrz :

σrz(r, z) =
r

2
σ′0(z)− r3

4
b′0(z) (22)

where the prime stands for the z-derivative.

Introducing the expression of σrz (Eq.(22)) in Eq. (18) yields:

2b1(z)r +
σ2(z)− σ1(z)

r
+ (b1(z)− b2(z))r

+
r

2
σ′′0 (z)− r3

4
b′′0 (z) = 0

(23)

Since the components of ¯̄σ must not diverge in r = 0, necessar-
ily σ2(z) = σ1(z). There remains :
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3b1(z)− b2(z) +
σ′′0 (z)

2
=
r2

4
b′′0 (z)

Because we limit the Taylor development to order r2 for σrr
and σφφ, b1 and b2 do not depend on r. Consequently b′′0 (z) =
0 and thus b0(z) = Az +B, where A and B are two constants.
Moreover, by z to −z symmetry, σzz must be an even function of
z, which implies A = 0. Therefore:

b0(z) = B (24)

Here B is a constant independent of z, but it may depend on
time t if the stresses in the aggregate evolve with time.

At this stage an additional relation between b1(z) and b2(z) is
required to close the equation system (18) to (20) and complete the
calculation. In the following, we will assume for simplicity that
the stress projection in any plane orthogonal to Oz is isotropic,
which means σrr(r, z) = σφφ(r, z) and thus b1(z) = b2(z). This
most simple hypothesis can be partially justified by geometrical
arguments, related to the incompressibility of the material, which
we will not develop here. Other assumptions remain possible, but
we have checked, after performing the whole calculation in dif-
ferent cases, that the result is not modified except for some minor
numerical factors. Under this assumption, Eq. (23) simplifies into
:

b1(z) = b2(z) = −σ
′′
0 (z)

4
(25)

The integral of Eq. (20) may be calculated using Eq. (21), which
leads to :

σ0(z) = pa +
F

πR2(z)
+

2γag cos θ(z)

R(z)
+

1

2
BR2(z) (26)

Eqs. (24), (25) and (26) are sufficient to calculate all the com-
ponents of the stress tensor, at any point of a cylindrical aggregate
of generator R(z). For instance, one finds for σzz(r, z) :

σzz(r, z) =− pa −
F

πR2(z)
− 2γag cos θ(z)

R(z)

− 1

2
BR2(z) +Br2

(27)

The only remaining free parameter in Eq. (27) is the constant B,
the value of which will be discussed at the end of this section.

The other components σzr(r, z) and σrr(r, z) = σφφ(r, z) can
also be written after some long but straightforward calculations,
using Eqs. (21), (22) and the boundary condition Eq. (19) to
calculate σ1(z).

In the following, we only focus on the case of an aggregate with
a circular profile, i.e.R‖ = R2 = cst, and we write down the stress
components in its equatorial plane z = 0. In this plane, R⊥ = R1

and θ = 0, which leads to :

σzz(r, 0) =− pa −
F

πR2
1

− 2γag
R1

+
1

2
BR2

1 −BR2
1

(
1− r2

R2
1

) (28)

σrr(r, 0) = σφφ(r, 0) = −pa − γag
(

1

R1
+

1

R2

)
...

+
R1

R2

[
F

2πR2
1

− γag
2

(
1

R2
− 1

R1

)
− BR2

1

4

](
1− r2

R2
1

) (29)

σrz(r, 0) = 0 (30)

Deformation of a sensor embedded in the aggregate

We consider an elastic incompressible sensor, spherical at rest,
embedded in the aggregate, of effective shear modulus µe. We
assume that the mechanical properties of the sensor and of the
aggregate are similar, and that the sensor diameter is small com-
pared to the aggregate’s one, so that the sensor inclusion does not
perturbate the stress distribution in the aggregate. Due to incom-
pressibility, only shear deformations of the sensor are admitted,
and the the strain-stress tensors relationship reduces to (see Eq.
(2)):

2µe ¯̄ε = ¯̄σd = ¯̄σ − 1

3
tr(¯̄σ)I (31)

In the following, we assume that the sensor size is negligible
with respect to the aggregate size. We also assume for simplicity
that it is located in the equatorial plane z = 0, although the cal-
culations could in principle be performed for any position in the

aggregate. We introduce σa =
F

πR2
1

as the average stress exerted

by the force F on the equatorial plane. Using Eqs. (28) and (29),
one finds:

σa =− 3µeεzz(r)

1 +
R1

2R2

(
1− r2

R2
1

) + γag

(
1

R2
− 1

R1

)

+
BR2

1

2

2R2 + (R1 − 4R2)

(
1− r2

R2
1

)
2R2 +R1

(
1− r2

R2
1

)


(32)

Equivalently, in Eq. (32) one can replace −εzz by +2εrr , since
incompressibility implies εrr = εφφ = −εzz

2
.

At the aggregate center (r = 0, z = 0), Eq. (32) simplifies into:

σa =− 3µeεzz(r = 0)

1 +
R1

2R2

+ γag

(
1

R2
− 1

R1

)

+
BR2

1

2

(
R1 − 2R2

R1 + 2R2

) (33)

At the aggregate edge (r = R1, z = 0), one has :

σa = −3µeεzz(r = R1) + γag

(
1

R2
− 1

R1

)
+
BR2

1

2
(34)
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Choice of the value of B

In this model, B has a homogeneous value over the volume of the
sensor, but it may vary over time. Indeed, in the experiment one
applies at t = 0 a step of displacement to the rigid plate, which
imprints a constant deformation to the aggregate. Immediately
after the step, the stress in the aggregate is inhomogeneous, but
it rapidly evolves, within a few minutes, through different relax-
ation mechanisms, to become homogeneous again at the end of
relaxation. B(t) is therefore a function of time which must relax
towards zero at infinite time. To interpret our data concerning
σa(ε), we discard the first moments of the relaxation, and we only
consider the long time limit, for which we expect the stresses to
be homogeneous again, allowing us to make the approximation
B = 0. Within this assumption, Eq. (33) exactly reduces to Eq.
(12) used in the main text. To comfort this assumption, we also
performed the data analysis by taking a non-zero value forB, lead-
ing to parabolic variations for σzz as a function of r. Assuming for
instance that σzz vanishes at the aggregate edge (r = R1, z = 0),
from Fig. (4c) one retrieves µe = 670 Pa, instead of µe = 790 Pa
in the caseB = 0. Considering all other sources of uncertainty, the
results do not appear significantly different.
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