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Abstract

Cell migration plays essential roles in development, wound healing, diseases, and in the maintenance of a

complex body. Experiments in collective cell migration generally measure quantities such as cell displacement

and velocity. The observed short-time diffusion regime for mean square displacement in single-cell migration

experiments on flat surfaces calls into question the definition of cell velocity and the measurement protocol.

Theoretical results in stochastic modeling for single-cell migration have shown that this fast diffusive regime

is explained by a white noise acting on displacement on the direction perpendicular to the migrating cell

polarization axis (not on velocity). The prediction is that only the component of velocity parallel to the

polarization axis is a well-defined quantity, with a robust measurement protocol. Here, we ask whether we can

find a definition of a migrating-cell polarization that is able to predict the cell’s subsequent displacement,

based on measurements of its shape. Supported by experimental evidence that cell nucleus lags behind

the cell center of mass in a migrating cell, we propose a robust parametrization for cell migration where

the distance between cell nucleus and the cell’s center of mass defines cell shape polarization. We tested

the proposed methods by applying to a simulation model for three-dimensional cells performed in the

CompuCell3D environment, previously shown to reproduce biological cells kinematics migrating on a flat

surface.
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1. Introduction

Polarization plays a key role in cell migration, both regarding single-cell movement on a flat substrate,

or cells collectively moving in a tissue. In fact, polarization is important in every active matter model

[1, 2], since the particle’s activity necessarily breaks spatial symmetry. Although there are many different

polarization definitions, as the one relative to the basal-to-apical axis in epithelia, in this paper we focus

on cell polarization related to the rear-to-front axis associated to eukaryotic cell migration. Here we pay

special attention to its correlation to cell velocity. In what follows, we carefully define what we mean by
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cell polarization and its measurement procedure, as well as how we define and measure cell velocity from a

succession of snapshots of cell position obtained from numerical simulations. Our proposition for polarization

measurement procedure should serve to infer cell velocity modulus and direction in both simulations and

experiments.

Migrating cell polarization has its roots in the biological organization inside the cell and hence can be

taken as a possible indicator of the cell movement. In fact, Maiuri and collaborators showed that there is

a Universal Coupling between Speed and Polarization (UCSP) [3], such that both polarization and speed

are correlated. UCSP is based on the fact that cell speed and persistence depends on a general advection of

polarity ingredients, such as myosins or other molecules, with retrograde flow of actin in respect to the cell’s

center of mass (for a review, see references [4, 5]). In this case, there must be a link between cell polarization

and kinematic measurements such as MSD curves or velocity auto correlation functions (VACF). To find

this link, it is necessary to propose a robust cell speed measurement and provide a precise definition for cell

polarization, that could be used in both single-cell and collective migration as a quantitative predictor for

cell movement. Here we aim at defining a migration-related polarization that could serve as a predictor for

cell migration.

Velocity definition requires care. Reports on quantitative experiments on single-cell migration on a flat

substrate date back to 1920 when Fürth [6] showed that the mean square displacement (MSD), represented

by 〈|∆~r|2〉, is obtained from the stationary solution of an isotropic Ornstein-Uhlenbeck problem for cell

velocity [7] now known as Fürth equation:

〈|∆~r|2〉 = 4D [∆t− P (1− exp (−∆t/P ))] , (1)

where ∆t stands for the time interval used to obtain the squared cell displacement |∆~r|2. The symbols 〈 〉
represent averages over different times and trajectories, after the stationary state is reached. D stands for the

diffusion coefficient of the cell, reflecting the fact that for long ∆t we have 〈|∆~r|2〉 ∼ 4D∆t. This equation

represents the sum over the displacements measured in two equivalent, perpendicular directions. On the

short-time interval limit, Eq. 1 yields a ballistic regime for which 〈|∆~r|2〉 ∼ 2D
P ∆t2. Here, P stands for the

time scale associated to the transition from ballistic to diffusive regime, and is known as the persistence time

of the model. This equation is obtained from the stationary, exact solution for a stochastic, 2D, isotropic

Langevin problem for cell velocity (when the memory on the initial state has been lost), that may be written

as
d~v

dt
= − γ

m
~v + ~η(t), (2)

where γ represents the friction of a particle moving in a fluid, m the particle mass and ~η(t) is a white, 2D-

vector noise, whose components have a standard deviation given by parameter g, defined by 〈ηi(t)ηj(t′)〉 =

gδijδ(t− t′). Here, P = m
γ and D = g

2mγ . Observe that this equation is isotropic in space. Hence, it should

not come as a surprise that a direct consequence of the anisotropy of migrating cells comes in the form of a

deviation in the MSD equation observed in both experiments [8] and simulations [9], which follows instead

the modified Fürth equation:

〈|∆~r|2〉 = 2D [∆t− P (1− exp (−∆t/P ))] +
2DS

1− S
∆t , (3)

where 0 ≤ S < 1 is a non-dimensional parameter. The modified Fürth equation presents a further diffusive

regime for short time intervals, since for short timescales 〈|∆~r|2〉 ∼ 2DS
1−S∆t, indicating an additional, fast

diffusive regime. SP gives the time scale for which the systems present a transition from this fast, short

time interval diffusive regime to a ballistic-like regime, with P signaling a second regime transition, from

the ballistic-like to a slow, long time interval diffusion. By defining natural units for time (P ) and length

(
√

2DP/(1− S)), Eq. 3 may be recast in terms of non-dimensional quantities 〈|∆~ρ|2〉 = 〈|∆~r|2〉(1−S)/2DP
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and ∆τ = ∆t/P as follows

〈|∆~ρ|2〉 = ∆τ− (1− S) [1− exp(−∆τ)] . (4)

The short-time interval diffusion implies that instantaneous velocity is not a well-defined quantity [8], and

the Langevin problem, written in the form of a time derivative for particle velocity, cannot yield the modified

Fürth equation, Eq. 4. De Almeida et al. [10] proposed a set of equations where in a given instantaneous

direction (that we shall call polarization direction) the dynamics is equivalent to a one dimensional Langevin

problem, while in the perpendicular direction(s) the dynamics is driven by a Gaussian noise in the equation

for displacement (not velocity), that is, a translational noise. A dynamic equation for the angle describing

the direction of the Langevin dynamics completes the model. In Ref. [10] the authors analytically obtain

the asymptotic solution and show that the modified Fürth equation is the exact form for the MSD. In this

model, the short-time diffusive motion comes from the translational noise in the direction perpendicular to

polarization, that is, the deviation from the pure Fürth MSD behavior observed in both simulations and

experiments is a direct consequence of the spatial-symmetry break in the kinematics of migrating cells.

The consequence of a diffusive motion at short timescale is that as lim∆t→0
∆~r
∆t does not converge [10]:

an experimentalist may get different values for ∆~r
∆t , depending on the value of ∆t chosen to measure ∆~r,

regardless how small ∆t is.

In a recent paper, Fortuna and collaborators [9] proposed a simulation model for a three dimensional

cell migrating on a flat substrate, using the cellular Potts model (CPM) [11, 12, 13] in which, like in an

experimental image, each cell is represented by a connected set of pixels. This model has successfully

reproduced the migration kinematics observed in experiments [8]. The computational CC3D simulation

project, along with the instructions to run it, can be downloaded from [14]. Here we propose using this

model to analyze different geometrical definitions of cell polarization as related to migration. We validate

the proposed definitions by their correlation to the cell mobility. Next section defines quantities and their

measurement procedures, section III presents the results, and in section IV we discuss and present our

conclusions.

2. Definitions and methods

2.1. Simulation model

We use the cellular Potts model implemented in the open source CompuCell3D (CC3D) simulation en-

vironment [15]. We build a cell as composed of three compartments, each being a connected cluster of sites

with an identifying label σ, that is related to the cell (the medium and substrate are treated by the algorithm

as special types of cells [9]). This feature makes the CPM unique when trying to simulate detailed cell shape

contours and fluctuations. A second label, C, is used to identify the cell compartment: nucleus (C = 1),

cytoplasm (C = 2), or lamellipodium (C = 3). In this an energy-like function is written as

E = Einterface + Evolume (5)

where

Einterface =
∑
~r

∑
~s(~r)

J (~r,~s) , (6)

where J (~r,~s) depends on the site labels σ and C, and is the interface energy per lattice-site surface between

neighboring lattice sites at sites at ~r and ~s. The sum over ~s(~r), runs over the 4th-neighbor range around ~r

(32 neighbors) to reduce lattice anisotropy [16]. J = 0 is assumed for neighboring lattice sites that belong

to the same cell and compartment. In all other cases, we set interface energies as positive (i.e. the Js are

ferromagnetic). We choose J values to ensure that the cytoplasm always surrounds the nucleus and the

lamellipodium remains attached to the cytoplasm, substrate and medium. The volume term on the right
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hand side (r.h.s.) of Eq. 5 constrains the volumes of the cell compartments to be close to their reference

volumes:

Etarget volume =

3∑
C=1

λC
(
VC − V targetC

)2
, (7)

where VC is the current volume of the C-th cell compartment, V targetC is its target volume, and λC is the

inverse compressibility of the compartment.

Configuration changes are performed as usual in Monte Carlo simulations: after randomly picking a pair

of nearest neighbors cell-lattice sites, we tentatively copy labels σ and C from the first to the second lattice

site and calculate the change in energy ∆E. If ∆E ≤ 0, we accept the change, and if ∆E > 0, we accept the

change with probability exp(−∆E/Tm), where Tm is a parameter describing the amplitude of cell-membrane

fluctuations. A Monte Carlo Step (MCS) consists of a number of copy attempts equal to the number of sites

in the lattice.

Non-conservatives forces require some modification to the usual CPM dynamics. We add a further term

when calculating ∆E, to extend the usual CPM effective energy to describe the protrusive forces that F-

actin polymerization exerts on the leading edge of the cell. After choosing a site ~r and its neighboring copy

target site ~s, we add the following term to ∆E:

∆EF−actin = λF−actin [F (~s)− F (~r)] , (8)

where the sum is taken only on the boundary between lattice sites lying in the lamellipodium compartment

and the surrounding medium. By changing ∆E and consequently changing the probability that a lamel-

lipodium site is copied over a medium site, Eq. 8 simulates a force to the membrane in the direction of

the copy attempt (for more details, see Ref.[9]). F (~r) is a field specifying the concentration of F-actin, and

λF−actin > 0 is the force per area per unit F-actin field. The actin concentration field obeys the simplified

reaction-diffusion equation, as described in Ref.[9], that is,

∂F (~r, t)

∂t
= DF∇2F (~r, t) + ksδ(C(~r, t)− 3)− kdF (~r, t), (9)

where DF is an effective diffusion constant, ks(d) represents the polymerization (depolymerization) rate of

F-actin fibers, and the δ-function says that only lamellipodium creates them. This equation is solved during

the simulations by a tool included in the CC3D environment. Details on CC3D PDE solvers can be read in

[17]. The final form assumed by the F-actin field is illustrated in Fig.1: the parameters choice ensures that

F-actin field is nearly constant on lamellipodium sites and zero otherwise.

The term for ∆EF−actin together with Eq. 5 i) increase the rate at which lamellipodium is copied over

cytoplasm; ii) with the lamellipodium volume increase, the copy of cytoplasm sites over lamellipodium is

favored (due to lamellipodium target volume term), and iii) the same happening to the rate with medium

lattice sites overwrite cytoplasm lattice sites, creating a polarization axis that drives cell migration in the

direction of the lamellipodium compartment . This polarization and its consequences simulate the effect

of substrate forces and the interaction with extra-cellular matrix through adherent complexes in real cells,

in a qualitative and simplified way. For a more detailed model that considers elastic substrates and the

explicit role of actomyosin fibers and adhesion complexes, we refer the reader to the works by Zhong and

collaborators [18, 19] and He and collaborators [20] .

Figure 1 illustrates the crawling dynamics in an in silico cell, and Figure 2 shows two snapshots of them,

as created by the CC3D, migrating cells (from Ref.[21] ), depicting different morphologies that they may

assume. Observe that lamellipodium may be engulfing the cytoplasm or concentrated at one side of the cell.

In the first case, lamellipodium tends to grow over medium in all directions, producing a short timescale

diffusive regime. In the second situation, lamellipodium has a preferred direction to grow over medium sites
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and creates the polarization axis illustrated in 1 that induces a preferred motion direction, contributing to

a non-diffusive motion.

Larger values of λF−actin favors localizing lamellipodium at one side of the cytoplasm, due to a local-exci-

tation, global-inhibition loop: the more lamellipodium at one side of the cytoplasm, the more lamellipodium

grows there (local excitation) and when more lamellipodium is created, the target volume term inhibits the

creation of new lamellipodium sites everywhere (global inhibition). Consequently, larger values of λF−actin
favors polarization, decreasing the time interval where it is possible to detect the short time diffusive regime,

scaled by SP .

Figure 1: Crawling dynamics in an in silico cell. The cell compartments are: lamellipodium in green, cytoplasm in

blue, and nucleus in yellow. Three steps create a polarization axis that favors migration leftwards: 1 - The Factin field, which

effectively non-zero at lamellipodium lattice sites (red curve), favors lamellipodium lattice sites to be copied over medium lattice

sites. This increases lamellipodium compartment volume and extends it to the left. 2 - Since there is a volume constraint in the

lamellipodium compartment, there is now a preferential copy of cytoplasm lattice sites over lamellipodium ones, which decreases

lamellipodium compartment volume and increases cytoplasm compartment volume. 3 - Again there is a volume constraint on

the cytoplasm compartment, which favors medium lattice sites to be copied over cytoplasm compartment ones.

2.2. Polarization Definitions and Measurements

As we show in this paper, the intuitive idea that front-rear cell polarization should be able to predict cell

movement critically depends on how we define this movement. Displacement and instantaneous velocity are

two possibilities that are interchangeable when velocity is a well defined vector quantity, which frequently is

not the case for migrating cells. Instantaneous velocity is obtained by taking the limit of the displacement

per unit time interval ∆t as ∆t→ 0. This limit does not exist when the short time interval diffusive term is

present (see Eq. 3). In discussing the polarization correlation with cell movement we must then use a mean

velocity, where the time interval is kept at a finite value. Because of that, in what follows, we use the terms

displacement, velocity and mean velocity meaning different quantities, that cannot be used to characterize

the same measurement. Also, we analyze both direction and modulus of mean velocity correlations with

polarization. We use the term mean speed for mean velocity modulus, keeping the term velocity for the

corresponding vector quantity.

To define a migration-related polarization that could serve as a predictor for cell migration, the choice

of the candidate quantities to be further analyzed is based on two biological observations: i) there is a

universal coupling between speed and polarization as described by Maiuri and collaborators [3], that was

later applied to explain the retrograde actin flow in migrating cells [22]; and ii) the nucleus is positioned

at the rear of a migrating cell [23]. Both observations are explained by the cytoskeleton arrangement in

migration, where acto-myosin fibers and microtubules help in both dragging the cell nucleus and in the

trafficking of the necessary proteins, creating the required protein gradients that support the trailing edge

and rear contraction, responsible for cell migration.

Here we consider the following possible measures for the cell polarization ~Π, that explicitly consider the

nucleus, to grasp the experimental observation by Gundersen and Woman [23] that in migrating cells the
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Figure 2: Shape polarization definitions. Snapshots of simulated cells. A (view from above) and A’ (vertical cross

section) represent a cell whose spatial symmetry has not been broken. The centers of mass of nucleus (yellow), cytoplasm

(blue), and lamellipodium (green) almost coincide (red cross). In A’, orange, light gray, and green crosses locate the centers

of mass of, respectively, nucleus, cytoplasm, and lamellipodium. B (view from above) and B’ (vertical cross section) represent

a cell with the broken spatial symmetry. In B, the projection on the substrate plane of the centers of mass do not coincide,

and Nucleus lags behind. The centers of mass of these three compartments can be combined to produce different definitions of

polarization vectors. In the insets, for comparison, experimental images from [21].

nucleus lags behind:

~ΠL−N (t) =
(
~rL(t)− ~rN (t)

)
xy
,

~ΠL−CN (t) =
(
~rL(t)− ~rCN (t)

)
xy
,

~ΠC−N (t) =
(
~rC(t)− ~rN (t)

)
xy
, (10)

~ΠCN−N (t) =
(
~rCN (t)− ~rN (t)

)
xy
,

~ΠC−CN (t) =
(
~rC(t)− ~rCN (t)

)
xy
,

where the indices C, L, and N refer to the different cell compartments (Cytoplasm, Lamellipodium, and

Nucleus) and CN refers to the combined compartment comprising Cytoplasm and Nucleus (Fig. 2), and

~rβ(t) for β = L,C,N,CN refers to the center of mass of these compartments. Polarization vectors ~Πβ , for

β = L−N , L−CN , C −N , CN −N , and C −CN are defined as the difference vector between the centers

of mass of two compartments, projected on the substrate, as indicated by the subindices in the right hand

side of Eqs. 10. At each MCS these quantities are recorded. We recall that by knowing C and N , one

can directly reconstruct the combined compartment CN comprising both Cytoplasm and Nucleus, and for
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instance:

~ΠC−N (t) =

(
VC + VN
VC

)
~ΠCN−N (t) and

~ΠC−CN (t) =

(
VN
VC

)
~ΠCN−N (t), (11)

where VC and VN are the compartment volumes. From the above equations, we have that
~ΠC−CN (t) = ~ΠC−N (t)− ~ΠCN−N (t). Consequently, ~ΠC−N , ~ΠCN−N and ~ΠC−CN contain the same infor-

mation. However, in experiments we may easily assess position of the center of mass of the combination of

cytoplasm and nucleus by the cell’s geometrical center. In what follows we present results considering four

definitions for cell polarization, disregarding ~ΠC−CN .

To estimate the performance of the polarization measures as a proxy to cell displacement, we must

estimate the correlation between these vectors and the subsequent cell displacement. However, we must

first choose a suitable time interval. For too small time intervals (smaller than SP ), displacements may be

dominated by random fluctuations in the direction perpendicular to cell polarization [8, 9, 10]. For too large

time intervals, larger that the persistence time P , displacement may also decorrelate with cell polarization.

Hence, to evaluate the performance of cell polarization definitions as predictors of cell displacement, we

must first choose an adequate time interval. We shall define as ∆τopt the time interval for obtaining cell

displacement that has the highest correlation with cell polarization.

A theoretical estimate of ∆τtheoropt is obtained by finding the time interval that maximizes the slope of

the log-log curve 〈|∆~ρ|2〉, given in Eq. 4. The slope α is given by

α =
d log(〈|∆~ρ|2〉)
d log(∆τ)

=
∆τ(1− (1− S)e−∆τ)

∆τ− (1− S)(1− e−∆τ)
. (12)

The inclination α assumes values in the interval [1,2], passing through a maximum for S ≤ ∆τ ≤ 1, that is

obtained by numerically solving a transcendental equation. We assume that the value of ∆τ that maximizes

α defines a suitable time interval to perform correlation measurements. To test this hypothesis, we must

compare with adequate correlation measurements as follows.

To determine the time intervals for which the short-time random fluctuations dominate the dynamics,

we monitor mean speed u(τ, δ), defined as the modulus of the mean velocity ~u(τ, δ) for a finite time interval

δ as

~u(τ, δ) =
~ρ(τ+ δ)− ~ρ(τ)

δ
, (13)

where ~ρ is the cell position in natural units, and the average of both mean velocity 〈~u〉δ and mean speed

〈u〉δ are taken over all time points τ and different runs, after the stationary state has been reached. Since

for small δ we expect the random, short-time noise to dominate the dynamics, we also expect 〈u〉δ to diverge

as δ → 0. On the other hand, when δ = ∆τtheoropt we expect that the mean speed and polarization correlate.

At each MCS, we recorded the center of mass of each compartment and of the combined cytoplasm and

nucleus compartment together with the different polarization definitions, as given by Eqs. 10. From there it

is possible to obtain the angle between polarization at a given time and the mean velocity in the subsequent

time interval δ. We monitor the best correlation between the directions of cell polarization and cell mean

velocity by monitoring the velocity direction - polarization correlation index ξβ for each polarization β

defined in Eqs. 10, defined as

ξβ =
〈cos θβ〉
〈sin θβ〉

, (14)

where 〈·〉 represents average over the whole trajectory (after the stationary state has been reached) and over

different simulation runs. Index β stands for the labels CN −N , L−CN , and L−N so that θβ represents
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the angle between cell displacement and the β-th polarization direction (C −N is colinear to CN −N and

is not explicitly taken into account here). Here ξβ depends on the time interval δ used to obtain cell mean

velocity and its values range from 0, when polarization and the mean velocity ~u(τ, δ) are always orthogonal,

to ∞, when polarization and the mean velocity ~u(τ, δ) are always parallel.

Besides correlation between the adequate measure for polarization and mean velocity modulus and

direction, we also assessed the dispersion around the predicted value for both velocity modulus and direction.

In this way, besides predicting the expected value for 〈u〉δ, we also give the uncertainty we should expect

from that prediction. For the modulus, we propose a relative error, ε, given as

ε =
σspeed
〈u〉∆τtheoropt

, (15)

where σspeed is the standard deviation of |~u(τ,∆τtheoopt )| over the trajectory.

We monitor the dispersion in direction using the standard deviation of θβ , denoted σθβ , since the average

〈θβ〉 is close to 0 and hence cannot provide a scale for dispersion. Anyway, angles have a finite natural scale

of 2π. Table S1 in Supplementary Materials Online lists the main variables and parameters used in this

work.

3. Results

We first verify whether the polarization definitions presented in Eqs. 10 may be used as predictors for

cell velocity by analysing our simulation results. In this paper, we keep fixed the parameters associated

with energy and temperature as in Ref.[9] and varied parameters related to actin-force intensity (λF−actin =

150, 175, and 200) and the lamellipodium volume fraction (φ = 0.05, 0.10, 0.20, and 0.30). For each set of

parameters, we run 10 simulations with 105 MCS. We also considered three different cell sizes, Rcell = 10, 15,

and 20 measured in (lattice sites)1/3, to test for finite size effects. The behavior is qualitatively the same

and in the main text we considered Rcell = 15 while all results concerning Rcell = 10, and 20, are shown

in Supplementary Materials Online. Table S2 in Supplementary Material Online shows the parameter sets

and fitting constants. For more details in the simulations, we refer the readers to Ref. [9].

The simulations start with a spherical cell with no lamellipodium engulfing a cubic nucleus resting

over the substrate. The dynamics of the model is such that the cytoplasm sites touching the substrate may

transform into lamellipodium sites until the lamellipodium target volume is attained. Due to the energy pa-

rameters J between sites belonging to different compartments or medium and substrate, the lamellipodium

spreads over the substrate, forming a thin layer that surrounds cytoplasm, as shown in Fig. 2 A (see also

Fig.4 from Ref. [9]). For the parameters chosen for this manuscript, the lamellipodium eventually assumes a

configuration where it localizes at one side of the cell, spontaneously breaking symmetry and initiating mi-

gration. The asymmetric lamellipodium configuration drives migration and its continuous direction changes

is reponsible for the observed long time interval diffusion. Usually this behavior has been characterized by

calculating the MSD. The transient from the initial configuration is detectable by the relaxation of the MSD

curve to a stationary form, when the memory from the initial configuration is lost. Here, we have waited

1000 MCS before recording the data that we use in the analyses. After this simulation time MSD curves do

not change any more. For more details in the simulations, we refer the readers to Ref. [9].

Figure 3 shows the results for a selected set of parameters, as indicated. In panel A, the mean square

displacement 〈|∆~ρ|2〉 is plotted versus time interval (∆τ), both given in natural units, together with the fits

using the modified Fürth equation (Eq. 4). The deviation from the original Fürth equation (dashed, light

gray line) for small time intervals is clearly visible. In panel B, we present the average mean speed 〈u〉δ as

a function of δ. Observe that when δ is too small, mean speed diverges as expected, signaling a diffusive

dynamics. In both panels A and B, the dashed vertical lines indicate the value of ∆τtheoropt for which the
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corresponding 〈|∆~ρ|2〉 (in panel A) presents the maximum exponent αopt, as predicted by maximizing Eq.

12. Values for ∆τtheoropt for all simulations are presented in Table S1 in Supplementary Materials Online,

where we also present figures for all parameter sets similar to panels A and B (Figs. S1-S3).

Figure 3: MSD and average mean speed curves reveal departure from classic Fürth equation. (A) 〈|∆~ρ|2〉 versus
time interval (∆τ) in comparison with Fürth’s equation (grey dashed line). (B) 〈u〉δ versus δ. The dots indicate the predicted

value for the optimal time interval and maximum exponent for the MSD curves, corresponding to the values of S obtained

for the simulations. The curves in (A) and (B) stand for different parameter sets; each curve is averaged over 10 simulation

samples for Rcell = 15, φ = 0.10, for λF−actin = 150 (black squares), 175 (red circles), 200 (green triangles). The dashed

vertical lines indicate corresponding values for ∆τtheoropt in both panels. Standard errors in (A) and (B) are of the order of 10−2

or less of the respective values of 〈|∆~ρ|2〉 and 〈u〉δ and are smaller than the symbols size.

Figure 4 presents ξβ , defined in Eq. 14, as a function of δ, the time interval used to calculate cell

displacement for three definitions of polarization and for two sets of simulations parameters. ~ΠC−N is not

shown because its direction is identical to ~ΠCN−N direction. What this figure shows us two important

points, as follows.

First it shows that for φ = 0.10 and λF−actin = 200 the polarization definition whose velocity-polarization

correlation index ξβ has its maximum more coincident with the theoretical prediction ∆τtheoropt (indicated by

the pink arrows) corresponds to either ~ΠC−N (t) or ~ΠCN−N (t).
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Second, the case φ = 0.30 and λF−actin = 150 requires special care. For this case S = 9.46 × 10−2,

implying i) a small value for the maximum exponent α of their MSD curves (see Fig. 3 A), ii) a short,

almost nonexistent plateau for 〈u〉δ (see Fig. 3 B) , and iii) a short ballistic-like regime in the MSD curves,

also shown in Fig. 3 A. These three observations suggest that the cell never reaches a proper ballistic phase.

In fact, the weak intensity of λF−actin and the large lamellipodium fraction reduces the probability of a

symmetry break and the cell preferentially stays in a configuration as shown in Fig. 2 A. The persistence

time is hence not large and the time intervals for the fast and slow diffusive regimes are similar. It is then

not surprising that all three definitions of polarization fail to yield a velocity-polarization correlation index

whose maximum is near the predicted value of ∆τtheoropt . Figs. S1-S6 in Supplementary Materials Online

present the same information in Figs. 3 and 4 for all parameter sets.

Figure 4: ~ΠCN−N is strongest correlator with mean velocity when calculated using δ = ∆τtheoropt . ξβ as a function

of the time interval δ used to obtain the displacement direction, considering the three polarization definitions: CN − N

(green diamonds), L − CN (blue circles), and L − N (red triangles), for two sets of parameters with Rcell = 15: φ = 0.10,

λF−actin = 200 (filled symbols, ∆τtheoropt = 0.048) and φ = 0.30, λF−actin = 150 (open symbols, ∆τtheoropt = 0.672). The

pink arrows indicate the ∆τtheoropt for both parameter sets. Standard errors are smaller than the symbols size. Similar panels

considering different values of φ for Rcell = 10, 15, and 20 are presented in Supplementary Materials Online.

Figure 5 shows αopt (purple) and ∆τtheoropt (magenta) as functions of S. We have used all fitted S-

values from Ref.[9] to numerically obtain ∆τtheoropt that maximizes α in Eq. 12. We fitted these points as a

power law. Figure 5 shows the fit as a magenta solid line, with dots representing the numerical solutions

for those values of S corresponding to each simulation of the whole set, including Rcell = 10 and 20. In

purple we show the equivalent for the values of αopt. The numerically obtained ∆τtheoropt are well fitted by

the power law ∆τtheoropt = 1.932(±8.6× 10−3) S 0.455(±2.0×10−3) with R2 > 0.999, while the points associated

to αopt are fitted by αopt = 2.022(±2.39× 10−3)− 1.115(±4.56× 10−3)S 0.397(±3.90×10−3), with R2 > 0.999.

Observe that, as S approaches zero, ∆τtheoropt approaches zero and αopt approaches 2: when the short-time

diffusive regime disappears, the optimal time interval goes to zero, as it should, such that the MSD curve

presents a maximum exponent equal to 2. Also, as ∆τtheoropt increases, αopt decreases: when the fast diffusive

regime is long (S is large), the MSD curve has a short ballistic-like regime, such that the maximum value
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of αopt does not reach values near 2. In fact, for S > 0.3 we have αopt < 1.3.

Figure 5: Dots represent ∆τtheoropt and αopt as functions of S, as numerically obtained from the modified Fürth equation,

by maximizing Eq. 12 and using the values of S obtained from the simulated MSD curves. Solid lines represent the fitting

functions in the legend.

The consequence of the behavior shown in Figs. 3 to 5 is that by fitting the MSD curve from simulations

or experiments using the Modified Fürth equation, it is possible to obtain S and from there to obtain the

time interval ∆τtheoropt for which the correlation between polarization direction and displacement direction is

optimized. Based on the results shown in Fig. 4, we select ~ΠCN−N to proceed with our analyses.

Figure 6 A shows the expectation value for mean speed 〈u(∆τtheoropt )〉 and Fig.6 B shows its relative error ε

versus the average polarization modulus 〈|~ΠCN−N |〉 for 1980 points of 10 typical trajectories (19800 points),

after the stationary state is reached. Each set of points is obtained using the same λF−actin are linked with

lines. In these lines, each point corresponds to a different lamellipodium fraction φ (0.05, 0.1, 0.2, and

0.3) increasing from right to left. This figure shows that 〈u(∆τtheoropt )〉 increases with average polarization

modulus, while the relative error in speed decreases: when 〈|~ΠCN−N |〉 is large, the cell migrates with higher

speed and with less dispersion.

Figure 6 C shows the effect that increasing φ decreases the overall average of speed: as the cells have

more lamellipodium, the symmetry break that allows the lamellipodium to efficiently drive cell migration is

less frequent.

Figure 6 D shows all measured points for two different parameter sets: (φ = 0.3, λF−actin = 150) that

shows a very small polarization and (φ = 0.05, λF−actin = 200), where the cells are highly polarized most of

the time. The cloud of points for each case illustrates that increasing 〈|~ΠCN−N |〉 correlates with increasing

u(∆τtheoropt ) and decreasing dispersion for more polarized cells. Figure 6 D also presents a picture of a

cell in a typical configuration from the simulations for the two sets of parameters, evincing the different

lamellipodium configurations for each case. The clouds presented in Fig. 6 D bring further information. For

the parameter sets presenting a well defined ballistic-like regime, most of the time the cells present a well

developed polarization and, hence, most of the points will present larger values of polarization. Cells will

sporadically present small polarization when they are changing the direction of their lamellipodia. On the
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Figure 6: Performance of ~ΠCN−N as a predictor for cell speed. (A) 〈u∆τtheoropt
〉 versus 〈ΠCN−N 〉 in units of cell radius

for the CN-N polarization definition Eq.(10). (B) Relative error for the speed ε, as defined in Eq.(15), versus 〈ΠCN−N 〉. The

pink arrows in (A) and (B) indicate the direction of increasing φ. (C) The average speed 〈u∆τtheoropt
〉 versus φ. Each curve

in (A,B,C) has 4 points, one for each value of φ. All curves are for all parameter sets with Rcell = 15. The legend in (A)

applies to (B) and (C) as well. (D) Individual cell speed u∆τtheoropt
versus its polarization modulus ΠCN−N measured for all

points of the stationary trajectory and 10 different simulations, considering two parameter sets (representative simulated cells

are shown). For Rcell = 10 and Rcell = 20 see Fig. S7 in Supplementary Materials Online.

other hand, in case the cells mostly present small values of polarization, most of the time they are not in a

ballistic-like regime. For φ = 0.30 and λF−actin = 150, most points present small values of polarization. Ob-

serve that this happens in spite of a large value for φ, when too much lamellipodium engulfing the cytoplasm

makes it more difficult to build a high polarization. Accordingly, this parameter set also shows a small value

for the maximum exponent of the MSD curve, a short plateau at the 〈u〉δ versus δ plot, and a very small

velocity-polarization correlation index. In Supplementary Materials Online Fig. S7 presents the equivalent

of Fig. 6 for for Rcell = 10 and 20 and Figs. S8, S9, and S10 present the clouds of points, similar to Fig. 6

B, for all sets of parameters. Also, Figs. S11, S12, and S13 show the histograms for 〈u(∆τtheoropt )〉Πβ for all

4 polarization definitions and all different simulation sets, further detailing the information summarized in

Fig. 6.

Now we turn to the direction of cell velocity as compared to the polarization ~ΠCN−N .

Figure 7 A plots the standard deviation σθCN−N for the angle θCN−N between the mean velocity cal-

culated using ∆τtheoropt and the cell polarization at the begining of ∆τtheoropt as a function of the average

polarization modulus 〈ΠCN−N 〉 for each parameter set with Rcell = 15. As expected, σθCN−N decreases as

〈ΠCN−N 〉 increases: more polarized cells show less deviation of their mean velocity from the polarization
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Figure 7: Performance of ~ΠCN−N as a predictor for cell displacement direction. (A) The angular standard

deviation σθCN-N
versus average polarization modulus 〈ΠCN-N(τ)〉 in units of cell radius for all parameter sets with Rcell=15.

The displacements for the calculating θCN-N considered δ = ∆τtheoropt . The inset presents individual measurements considering

all points of the stationary trajectory, for 10 simulation runs. (B) Average polarization modulus 〈ΠCN−N 〉 as a function of

φ. (C) σθCN-N
versus φ. (D) Plot of the average mean speed 〈u‖,CN − N 〉δ measured parallel to ~ΠCN−N as a function of δ.

Equivalent panels for Rcell = 10 and 20 are shown in Figs. S14 and S15 in Supplementary Material Online.

axis. The inset in this figure present the clouds for two sets of simulations: for both sets the mean value

for θCN−N is zero (since the deviations from the polarization axis are symmetrical), but the spread of the

deviation angles are reduced for highly polarized cells.

Figure 7 B shows that the average polarization modulus decreases with φ, reinforcing the conclusions

drawn from Fig. 6: a large fraction of lamellipodium may not support a polarized front that would maintain

a large polarization. To illustrate this point, we have produced two animations, SM1-15 0.05 200.mp4

and SM2-15 0.30 150.mp4, for the the two parameter sets considered in the inset of panel A, available in

Supplementary Materials Online. Accordingly, the dispersion in direction increases with φ, as shown in

Fig. 7 C. Finally, Fig. 7 D shows that the average mean speed 〈u‖,CN − N〉δ measured parallel to ~ΠCN−N
converges as δ → 0 and, hence, this component is well defined. In Supplementary Materials Online Figs. S14

and S15 present the equivalent of Fig. 7 for for Rcell = 10 and 20 and Figs. S16, S17, and S18 present the

clouds of points of the inset in Fig. 7 A for all sets of parameters.

Together, Figs. 3 to 7 show that it is possible to define a polarization vector for the cells, and that it may

serve as a proxy for cell displacement, provided the cells are at least minimally polarized. They also show

that the most adequate polarization definitions are those that do not consider the lamellipodium center of

mass. Regarding β = CN −N or C −N , for all parameter sets there is a clear correlation between the size
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of amplitude of polarization and both mean speed (calculated using δ = ∆τtheoropt ) and polarization direction.

We remark, however, that when the cells are in a poorly migrating phenotyped, as parameterized by φ,

persistent motion is rare and the polarization is small. In these cases, the definition of a polarization as a

proxy for cell displacement is meaningless.

The correlation of polarization with cell displacement depends on cell displacement being measured

for a time interval equal to δ = ∆τtheoropt . In turn, the definition of ∆τtheoropt depends on assuming that

cells kinematics may be characterized by a MSD curve given by the modified Fürth equation, Eq. 3 [9].

While Fürth equation represents the stationary solution of an isotropic Ornstein-Uhlenbeck problem for the

cell velocity, the modified Fürth equation is the stationary solution for an anisotropic Ornstein-Uhlenbeck

problem [10]. In this model, the cell’s instantaneous vector velocity is an ill-defined quantity but the speed

in the direction of the polarization is well-defined and follows a one dimensional Langevin problem. As

shown by the divergence of speed as δ → 0 in Fig. 3 B, the present simulations are able to reach the

ill-defined velocity regime. Since here we have defined a polarization vector, we may now verify whether

the cell’s velocity in the direction of polarization converges or not as the time interval used to calculate the

displacement decreases. The speed in the direction of the polarization is defined as

u‖,β(τ, δ) = ~Πβ(τ) · ~ρ(τ+ δ)− ~ρ(τ)

δ
, β = CN −N,L− CN,L−N,C −N , (16)

and its average, 〈u‖,β〉δ for a given value of δ, is shown in Fig. 7 D for β = CN − N . We may conclude

that the speed in the direction of the polarization is a well defined quantity. Figs. S19, S20, and S21 in

Supplementary Materials Online show equivalent plots for all sets of parameters.

4. Discussion and Conclusions

From the results we presented above, we reach the following conclusions.

First, it is possible to define a polarization vector on the basis of its correlation with cell displacement.

Although we have considered simulations, we propose cell polarization definitions that are readily transposed

to experiments, as the distance between the centers of nucleus and cytoplasm. For our simulations, polar-

ization definitions that do not consider the position or shape of lamellipodia showed a better performance

as cell displacement predictors. In migrating cells, lamellipodium position determines the localization of

the nucleus behind the cell’s geometric center [23]. Consequently both nucleus and lamellipodium positions

carry information on the direction of the movement. Nuclear positions, however, are more persistent and

show smaller fluctuations.

Second, the assessment of the performance for polarization definition as a proxy for cell displacement

direction depends on the time interval used to measure displacement. The determination of the ideal time

interval depends on the fitting of MSD curve using the modified Fürth equation [9, 8]. The optimal time

interval for obtaining cell displacement are shown in Fig. 5 for all values of S, provided the simulated or

experimental MSD curve is well fitted by the modified Fürth equation. A detailed procedure for fitting

experimental MSD curve is provided in [8] and its associated supplementary materials, where the fitting was

performed for 12 different experimental setups from 5 different laboratories. A second, faster but less precise

method is 1) Plot the mean square displacement curve (in a log-log plot) and then 2) find the time interval

that yields the maximum exponent in that curve. That would give an estimate for the optimal time interval

in laboratory units to correlate polarization and mean speed. Either way, to obtain the polarization, it is

necessary to follow the cell geometrical center of mass (without lamellipodium) and the cell nucleus.

Third, the performance of the polarization vector is quantified by Figs. 6 and 7. The polarization vector

is a good predictor for cell displacement provided it is not small. For cells that spend most of the time

polarized, and hence have a migrating phenotype, our definitions apply well to the simulations. That must

be verified in experiments.
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Fourth, the simulations verified that velocity is well defined when measured parallel to the polarization

direction, that is, the average mean speed in the polarization direction, 〈u‖,CN−N 〉δ, converges to a defined

value as δ → 0, in contrast to the average mean speed, 〈u〉δ, that diverges in the same limit, as shown in Fig.

3B. This behavior is in agreement with the theoretical predictions of the Anisotropic Ornstein-Uhlenbeck

model [10]. In the direction perpendicular to the polarization axis, the velocity is ill-defined, diverging when

the time interval used for estimating displacement approaches zero. This must be verified in experiments.

The polarization definition and measurement that we propose can be applied to migration experiments

of single cells on flat substrates. Migration is an important feature in characterizing cell phenotypes as, for

example, in cancer where tumor malignancy correlates with cell migration capabilities, or where the tumor

cell diversity may indicate different disease outcomes. In these and many other instances, a robust and

reproducible protocol for characterizing migrating cells is a first, necessary step. A second step is to obtain

robust distributions of quantities (properly measured), such that phenotypic classes may be proposed, there

is the need of obtaining not only the value of quantities as S, D, P , or the mean speed ∆τtheoropt , but also

their distributions in a given population. This is a work in progress.

The extension of these definitions and measurement procedures to collectively migrating cells may also

contribute to the field. This is another work in progress and will be presented elsewhere.
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We thank Dr. Hélène Delanoë-Ayari, of Université Claude Bernard - Lyon 1, and Dr Andrew Callan-
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