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Abstract
Frequent changes in customer needs and large product variety are forcing man-
ufacturing companies to move from mass production to mass customization.
Customized production can be achieved by introducing reconfigurable produc-
tion systems (RMS). The customized flexibility and several characteristics of
RMSs provide many opportunities in terms of process and production planning.
However, those characteristics greatly increase the complexity of the design and
planning of production systems. This paper presents a decision support sys-
tem relying on a skill-based approach to design a reconfigurable assembly line
considering the planning of assembly processes and monitoring. The proposed
decision aid system is modular in design and is composed of four modules. The
main input data is a CAD model of a new product variant for the identification
of the assembly and monitoring requirements. Besides, a current assembly sys-
tem layout with its resource descriptions exists. In the first developed module,
assembly-by-disassembly and a skill-based approach are used to generate differ-
ent assembly plans. In the second module, feature recognition and skill-based
approaches generate process monitoring alternatives. The third module uses a
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linear program (LP) that aims to minimize the total cost of workstation acti-
vation and reconfiguration, as well as cycle time, and to maximize the process
quality of the assembly tasks. A user-based generative model design approach is
applied to optimize the values of three objective functions. In the fourth and final
module, a simulation of the optimized assembly plan allows either the valida-
tion of the assembly plan and process monitoring plan or initiates a new iteration
due to their infeasibility. To further demonstrate how the proposed methodology
works, some computational experiments are provided for two use cases.

Keywords: Decision support system, reconfigurable manufacturing system, assembly,
skill-based approach, CAD analysis, feature recognition, optimization

1 Introduction
Manufacturing companies are transforming frommass production to mass customiza-
tion since they are facing increasing product individualization, uncertainty in the
market demand, and product and technology variety. This situation causes those man-
ufacturing companies to become more and more flexible and adaptable to quickly
respond to any changes in the market and launch new products frequently. In this
context, Koren et al. [1] proposed a new manufacturing system concept, called recon-
figurable manufacturing system (RMS). This concept is based on the reconfigurability
of machines, equipment (hardware) and their control systems (software). In suchman-
ufacturing systems, all manufacturing components (hardware/software) are designed
taking into account the characteristics [2]: modularity, integrability, scalability, cus-
tomization, convertibility, and diagnosability. An RMS is defined as a manufacturing
system where physical manufacturing components and process capabilities can be
added, removed, or modified easily and efficiently to change the production capacity.
Thereby, an RMS can create the functionality and capacity that are needed, when they
are needed [3].
RMSs offer higher flexibility in production and can therefore meet the challenges
resulting from today’s trends in production (e.g., individualized products, shorter
product life cycles, higher quality demands) [4]. To be able to handle such flexibility
a great amount of manual effort and expert knowledge is needed to plan the produc-
tion processes. Especially in assembly, which causes most of the resulting costs of a
product, the amount of time and expert knowledge required to consider the huge vari-
ety of possible assembly sequences and assembly plans is immense [5]. Therefore,
automated planning approaches must be applied to handle this kind of flexibility effi-
ciently. Besides planning assembly processes including the assignment of production
devices and stations, the quality of the produced goods must be considered. This can
be done by simultaneously planning process monitoring [6].
This paper addresses today’s challenges in production planning by generating and
analyzing various assembly and monitoring plans offered by an RMS.We identify the
different alternatives for assembling a new product in an existing production system
and simultaneously consider the possibility of introducing process monitoring. The
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developed automated planning methodology includes the optimization of the solution
space (assembly plans) concerning production criteria (e.g., necessary reconfigura-
tions, monitoring efficiency).
The rest of this paper is organized as follows: Section 2 presents an overview of
the state of the art on which the methodology of this paper is based. Furthermore,
existing automated planning processes, necessary semantic taxonomies, and existing
optimization approaches are presented. In section 3, we discuss the challenges that are
addressed in this paper. Additionally, the vision which motivates our research in this
field is introduced. Section 4 first describes an overview of the methodology before
the individual modules of the decision aid system are introduced and explained. Vali-
dation is given in Section 5 by presenting two case studies that show the applicability
and functionality of the proposed methodology. Section 6 gives a conclusion based
on the results and some perspectives for future research.

2 Literature review
Industrial companies are faced with a high level of uncertainty, changes, fluctuations,
and a lot of challenges and constraints corresponding to the market, product vari-
ety, and manufacturing technologies. In this context, manufacturing systems need to
increase their flexibility, adaptability, and reconfigurability. For this reason, within
the evolution of manufacturing systems, they have switched from dedicated man-
ufacturing systems (DMS) to flexible manufacturing systems (FMS), and then to
reconfigurable manufacturing systems (RMS). As mentioned, the concept of RMS is
introduced by [1], which allows the company to manufacture a part family of prod-
ucts and react quickly and efficiently to any changes in the market. An RMS can be
reconfigured by adding, removing, or changing the physical structure of the system or
the manufacturing components. Thereby, an RMS can create the capacity and func-
tionality that is needed when it is needed [3, 7–9]. Overall, an RMS combines the
advantages of DMS and FMS in terms of higher throughput and customized flexibility
[2]. In the following, the literature on RMS in general, as well as automated planning
in combination with skill-based approaches and optimization approaches for process
planning to efficiently use the flexibility of RMS are reviewed. Last, approaches for
feature-based identification of process requirements are presented. The combination
of these approaches for the automated identification of resource capabilities and pro-
cess requirements in an RMS and their matching represent an important cornerstone
of the methodology presented here.

2.1 RMS literature review
The literature on RMS has considered several problems of operations management
at different levels such as planning, design, and operation [10–13],. Since our study
corresponds to the design of an RMS with process monitoring, this literature review
focuses on this concept. With regard to the recent literature study of [11], little atten-
tion has been paid to diagnosability in the literature on the RMS. Diagnosability,
which is an ability to quickly detect issues concerning the quality and reliability in a
system, is one of the six characteristics of an RMS [3].
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The development of sensor technology enables the monitoring of processes by mea-
suring geometric, kinematic, and mechanical values, as well as fluid parameters and
temperature [14]. Process monitoring and especially inline process monitoring have
therefore become more relevant to address global trends such as production in small
batch sizes while maintaining high production quality [15, 16]. Process monitoring is
investigated as a feasible quality control method based on sensing and control tech-
nology [17]. Online signals, such as force and temperature, are collected to determine
the states of manufacturing processes [18]. Planning process monitoring on the other
hand is quite time and cost consuming and requires high expert knowledge so that in
today’s production it is often only used for mass production. To enhance the diagnos-
ability of RMS, automated planning of process monitoring is an essential aspect to
consider.
In 2018, [2] went into details of the characteristics, principles, and architecture of the
RMS. A key aspect is the performance improvement of RMS and the reduction of
design effort by introducing cyber-physicalmanufacturing systems and new intelligent
manufacturing technologies. This concept assists manufacturers and is fully applica-
ble in practice. For this reason, the concept of a digital twin has been researched for
the last several years. The term digital twin describes a digital image of a physical
or immaterial object or process from the real world. Thus, the digital twin forms a
simultaneous representation that exists throughout the entire life cycle of the depicted
system [19–21]. The aim is to enable production to become an autonomous decision-
making and control system by using simulations and sensor data in planning and
operation [22]. To be able to benefit from RMS, the heterogeneous field device land-
scape must be handled efficiently. Therefore, a semantic description of devices and
functionalities, as well as an automated analysis of the solution space, is necessary.

2.2 Automated process planning
Automated process planning represents a decisive research focus to use production
systems efficiently in a flexible and targeted manner [23]. Skill-based approaches have
become increasingly popular for automated process planning due to their flexibility.
These approaches are also described as capability-based approaches [24, 25]. [26]
present a capability-based approach for the evaluation of changes in the RMS. This
approach has also been extended by integrating rules so that skills can be combined
to determine the impact of changes in a production system by identifying different
capability models and thus functionalities in a production system [27]. Due to differ-
ent understanding and definition of capabilities, the focus of skill-based approaches
varies. [28] focuses on planning and scheduling by using a skill-based approach to
automatically generate production schedules. Furthermore, [29] combine taxonomies
of different publications to build up a skill taxonomy that relies on norms and VDI
guidelines (e.g., DIN 8580, VDI 2860). They focus on skills in assembly so that an
existing production system is able to offer these skills for the assembly and thereby
satisfy product requirements. [30] build upon this approach and defined skills that are
relevant for monitoring processes in assembly. The results of these studies [29, 30]
make it possible to generate a skill model of an existing assembly system by focus-
ing on actorial and sensorial functionalities. The combination of skills has also been
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presented in these papers. Through this, functionalities of resources can be connected
with each other in an existing assembly system to identify more skills than can be
seen at first glance. This makes it possible to automatize the identification of skills in
the existing assembly system by concerning actorial (e.g., assembly processes) and
sensorial (e.g., monitoring processes) skills. The generation of assembly plans via
skill-based approaches allows to use the flexibility of RMS. Hereby, multiple plans
can be created automatically. Identifying which process plan to use hereby leads
to an assembly line balancing problem in automated process planning [31]. Using
optimization approaches and algorithms can be a favorable condition to identify the
most suitable assembly plan based on certain criteria (e.g.; number of reconfigura-
tions, reconfiguration cost and time, etc.) [32]. This will be discussed in the following
subsection.

2.3 Optimization approaches for assembly line balancing
Assembly line balancing (task assignment) and design (resource allocation) are cru-
cial steps for the production planning [33]. These topics have been studied by many
researchers [34–37]. The lack of a complete planning approach that covers configu-
ration and reconfiguration of a line taking into account the assembly and monitoring
processes can be seen in the literature [33]. In the literature on assembly lines, several
objective functions are optimized using different optimization methods. Such opti-
mization problems for assembly line balancing and production planning are usually
modeled using mathematical programming [38–41], and solved by different solution
approaches, either exact or approximatemethods like (meta-)heuristic algorithms [42–
44]. For instance, [38] build a linear programming model and constructive heuristics
to solve a workforce minimization problem in a paced assembly line, motivated by an
automotive industry case. The goal was to find a workforce assignment, which mini-
mizes the maximal number of workers used in all production cycles. [45] describe a
bi-level optimization approach to combine the selection and positioning of production
resources into one single optimization problem. Hereby, a nested genetic algorithm
has been developed which is capable of solving an assembly line balancing prob-
lem with resource selection and layouting. Moreover, the optimization approaches
can be integrated to simulation techniques which is called simulation-based opti-
mization approaches. These approaches have been adopted to manufacturing systems’
optimization, efficiently [46]. For example, [47] developed a simulation-based opti-
mization approach using a discrete event simulation model and simulated annealing
(SA) algorithm, to solve a production planning and resource allocation problem in
reconfigurable manufacturing system.

2.4 Feature-based approaches for the identification of
requirements

Products and processes place requirements on devices and skills. These requirements
can be detected by identifying features in CAD models (computer-aided design) that
store information about products, parts, or resources throughout the entire product life
cycle [48]. Functions and requirements can thereby be assigned to specific products
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and parts. These can either be geometric information (e.g., topology) or describe func-
tional information (e.g., Product Manufacturing Information (PMI) [49]). Depending
on the application domain, features are defined differently for computer-aided design,
manufacturing (CAM), and process planning (CAPP) models [48, 50]. Especially in
manufacturing planning, feature-based approaches are used to define product and pro-
cess requirements [51]. [52] describe an approach to identify critical manufacturing
features on metallic aerospace components. Hereby, a rule-based feature recogni-
tion method is used to identify features on different representations of solid models
(i.e., Curve Solid Geometry (CSG), Boundary-Representation (B-rep). In assem-
bly, features have been considered just recently as relevant for process planning
[53]. [54] summarizes several studies about assembly features and creates a struc-
ture of assembly features. The recognition of features varies among graph-based,
hint-based, cell-based, rule-based, neuronal-network-based, and convex hull decom-
position recognition approaches [52, 55]. These approaches are differently efficient
depending on the required outcome and product complexity. For example, rule-based
approaches have been shown to produce the best results for the identification of
assembly features due to their scalability and transparency [52, 54].

2.5 Summary of the literature review
Up to now methodologies and decision support systems for process planning have
not addressed the aspect of diagnosability in RMSs. As can be seen in Section 2.1
monitoring becomes more relevant in production and specifically in RMS. Unfortu-
nately, there are few approaches to how to consider process monitoring in today’s
(semi-)automatic production or assembly planning. Existing methods in assembly
planning have not yet been adapted to process monitoring planning (Section 2.2).
CAD feature recognition is a promising way to identify relevant data in CAD models
(assembly and/or parts) as can be seen in Section 2.4. These methods and tools can
be transferred and modified for monitoring planning (e.g., identification of relevant
parameters/data on individual products and/or parts). Therefore, this paper provides
an approach on how to plan monitoring processes alongside assembly planning. This
approach enables a reduction in manual effort, which is needed to plan monitoring
processes especially for complex products and production systems.

3 Problem description
The problem addressed in this study concerns the design of an RMS, with humans and
robots as resources in the assembly line. Several product variants are assembled on an
existing line. The CAD model of the new product variant and the simulation model
of the assembly line, including their resources and tools serve as inputs. These inputs
are derived from the product design (new CAD model and process description due to
a new product variant) and assembly line (digitized assembly system). In our prob-
lem description only one robot or worker works at each station. Robots and workers
are assigned to workstations. A set of automated and manual equipment pieces (i.e.,
tools) is considered in the resource library of the line (part of the digitized assembly
system) which can be used to execute a task (i.e., process). Note that each piece of
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equipment may also be able to monitor an assembly process, which allows using it as
a sensor for process monitoring at the station (e.g., torque sensor).
The CAD model ideally contains all information about the assembly sequence and,
if possible, process information as well. Nevertheless, additional process data can be
provided as input via supplementary documents. The assembly operations for each
product must be performed according to the priority relationships between the tasks
of the respective product. This information is contained in the CAD model and addi-
tional documents and must be obtained. Furthermore, additional information must be
generated for each task to describe which combinations of resources and tools can
be used for a process. Here, the processing time of each task depending on the com-
bination of tool and resource, the reconfiguration costs of the tools in the line, and
the efficiency of using each tool for process monitoring are needed to make a valid
decision.
On the other hand, the skill model of the assembly line, which contains the current
configuration of the resources and tools in the stations and additional tools from the
resource library that can be used for any reconfigurations, is provided as input. The
skill model contains semantic descriptions of the individual resources, tools, stations
and thereby assembly line. Hereby, algorithms are able to automatically analyse the
assembly line configuration and match individual skills with product and process
requirements (e.g., necessary torque). A structure is required to store these matches,
which can be enriched using matchmaking algorithms to provide more detailed cri-
teria (i.e., Key Performance Indicators (KPI)). These are necessary to make critical
decisions when selecting an assembly and process monitoring plan. Graph-based
models have been proven to be a suitable structure for saving multiple matches or
tasks (e.g. assembly precedence graph, and/or graph [56, 57]). Valuable information
for such decisions in a production graph are the feasibility of the task, necessary
reconfigurations (including the additional time and costs), process parameters (e.g.,
assembly paths, cycle times, efficiency of process monitoring), and task types (e.g.,
screwing - primary; handling - secondary).
As a result, there are several alternatives that require amulti-criteria selection approach
or a user-centered optimization model. Based on any restriction from the user (the
decision-maker) concerning the value of one or more criteria (e.g., cycle time, mon-
itoring efficiency, number of reconfigurations, costs), the rest of the criteria are
optimized. The feasibility of the optimal solution concerning collision freedom and
reachability must be ensured through a simulation model of the individual assembly
processes. This loop (optimization-simulation) continues until it finds a feasible and
optimal process plan for the assembly line. The problem is further clarified with a
small example given in Figure 1.
The description of the assembly line and features of only one type of product are given
in Figure 1. We assume an assembly line arranged and equipped as it is shown in
Figure 1b. The line possesses two stations, one is manual and one is automated, which
are equipped by a worker and a robot, respectively. Some manual and automated tools
exist in the resource library. The current state of the line must be reconfigured for
producing a new product with possible process plans. The new product requires a set
of four tasks (I1, I2, I3, I4) as given by the precedence graph in Figure 1a and Table
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5 in the appendix B (e.g., task processing times, precedence graph, possible matches
of resources and tools to perform the tasks).

Fig. 1 The information related to a simple example, assembling a single new item and the assembly line

According to the data provided by the product and production system (e.g., CAD
models, process parameters, resource capabilities), a set of feasible processes can
be generated. Table 5 in the appendix B describes an approach how to display the
matches and which criteria are relevant. Each valid match between a tool (T) and a
task (I) is described with a process time (Pt in seconds) and a monitoring efficiency
(Mon. Eff. in percent) based on suitability of the resource and tool. The objective of
the optimization model is to determine the optimal solution with regard to individual
criteria (e.g., cycle time and monitoring efficiency) for an assembly plan including
monitoring tasks in order to enable high process quality. Figure 2a shows, as an exam-
ple, the optimal process plan with reconfiguration costs of 290 e (reconfiguration
costs for T1 and T2).

Fig. 2 a) The optimal solution from the optimization model, but an infeasible solution in the simulation
model. b) The optimal solution from the optimization model, and a feasible solution in the simulation model

This solution (shown in Figure 2a) is not feasible according to the simulation model,
since the second task (I2) cannot be performed by the first manual tool (T1) in the first
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station 1 due to a collision. Thereby, by implementing the simulation-optimization
loop, the final feasible and optimal process plan is achieved with the same objective
function value of 290 e for the reconfiguration cost (see Figure 2b).

4 System overview
The system proposed in this paper analyzes digital products and production system
data to generate multiple feasible assembly plans including the capability to monitor
processes. Figure 3 describes the 4 modules that result in an optimized assembly and
inspection plan by analyzing a new product variant (i.e., CAD model) and existing
digitized production system (i.e., layout, resource descriptions). Multiple alternative
assembly and process monitoring plans are generated that increase the flexibility
of an RMS. Continuous user interaction enables the demand-driven selection of an
optimized plan depending on the defined criteria (i.e., number of necessary reconfig-
urations, the relevance of process monitoring in each individual process step). Each
of the four modules of the system can be viewed individually and is connected to the
next one via a text-based data format (i.e., XML and JSON). The following subsec-
tions will describe each module as well as its inputs and outputs.
Module (1) focuses on the generation of assembly plans through an assembly-by-
disassembly approach as described in [58]. Assembly plans contain information about
the assembly sequences, process types (e.g., joining), assembly path and process spe-
cific parameters (e.g., torque).
Module (2) displays a new approach for the planning and generation of alternatives
to monitor assembly processes inline. This means that no additional and unnecessary
monitoring processes are generated that increase the cycle time, but rather parallel
monitoring processes are identified. A rule-based CAD feature recognition approach
in combination with a general process requirement database identifies the monitoring
requirements. Existing assembly plans are then used in module (2) to generate a vari-
ety of process monitoring alternatives that result in new assembly plans that include
process monitoring.
Module (3) focuses on the optimization of these alternatives depending on user cri-
teria (e.g., cycle time, production costs, number of reconfigurations). This results in
one optimized assembly plan with a process monitoring plan.
The last module (4) validates the optimized assembly plan via a simulation in which
the optimized assembly plan, including the monitoring processes, is checked for
collision-free and visual reachability. If an assembly plan including its process mon-
itoring alternative is not feasible, the optimization module identifies another optimal
assembly plan taking into account process monitoring for the validation module. To
keep the simulation effort low, the validation by means of simulation of the process
plan has been placed after the optimization module. For complex assembly modules
and a large number of possible process plans, the simulation effort can quickly become
very high. Selecting the assembly plan with optimization before simulation reduces
the number of simulation runs.
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Fig. 3 The overall methodology with all decision aid modules

4.1 Generation of assembly plans
To identify valid and collision-free assembly sequences, an assembly-by-disassembly
approach is used to analyze CAD models of new product variants [56, 58, 59].
Each part of the CAD assembly group is virtually disassembled to generate assem-
bly sequences and define assembly paths for each part of the product as described
in Figure 4. An assembly process graph, independent of the production system and
its resources, is generated. Here, each vertex (node) in the process graph contains
information about the necessary assembly process and its requirements (not yet of the
production system and resources, i.e., devices). The requirements describe the nec-
essary tasks semantically to allow broad applicability for a variety of products (e.g.,
screwing, joining).
The allocation of each requirement to each assembly process and part is executed
automatically. Additional or missing information (e.g., torque, force) can be inserted
afterward by the user as this module serves as an assistant for the identification of valid
assembly sequences and processes. Standard parts and constraints between parts are
identified automatically to define assembly processes such as screwing and joining.
To identify the specific requirements of each assembly process, a semantic skill-based
domain is used that can be applied to the product as well as resources and the assem-
bly system. [29] describe a skill domain for actorial skills (e.g., joining, screwing).
Regardless of the sensorial requirements, an assembly process graph can be created
that includes the skills of each resource and possible combinations (e.g., robot + grip-
per).
The matchmaking between product requirements and assembly system skills gen-
erates different assembly plans through resource allocation. As a prerequisite, the
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existing assembly system, its resources (i.e., tools), and additional resources available
for production (resource storage) must be digitized with their specific information
models, including a semantical description of functionalities (e.g., joining). The dig-
itized production system is described in Figure 4 as the actorial skill model of the
production system. The resource library describes relevant technical and economic
device functionalities (e.g., velocity, investment cost) as well as skills.

Fig. 4 Module (1) - Generation of assembly plans through an assembly-by-disassembly and skill-based
approach

The generation of the process graph containing the assembly processes and possi-
bly allocated resources to stations is divided into two steps. The first step deals with
the identification of tools and stations that are suitable for executing the production
system-independent assembly plans. Each necessary product and process requirement
(e.g., joining, screwing) is semantically matched with the corresponding skill (e.g.,
gripping, moving, screwing). Then, the alignment parameters are verified for their
suitability in the second step (e.g., gripping-width, joining-force, torque). If exist-
ing resources at a station do not fit due to missing skills or unfitting parameters, a
reconfiguration is taken into account. Resources in the library (i.e., storage) are con-
sidered for their suitability (station restrictions need to match, e.g., interfaces - manual
station-worker, automatic station-robot, pneumatic, electrical interfaces). The process
graph at the end contains several assembly processes, which in combination represent
different assembly plans.

4.2 Generation of process monitoring alternatives for existing
assembly plans

To date, there is no framework or system that addresses CAD models and assembly
information and relates to the automatic determination of parameters for process
monitoring. Therefore, the following section presents methods to determine process
monitoring alternatives for existing assembly plans. As illustrated in Figure 5, the
product-specific identification of process monitoring requirements can be divided
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into three steps: templates for monitoring requirements, feature recognition, and
parameter determination. These steps consist of importing data (e.g., CAD-model of
the assembly, assembly plans), selection of monitoring requirement templates (i.e.,
solution neutral monitoring requirements for assembly processes), data extraction
(i.e., rule-based feature recognition), and determination of monitoring requirements
(i.e., filling the templates according to analyses). The output consists of several param-
eters. Each parameter has five characteristics: variables, values, priorities, units, and
error ranges. The variables and units come from the templates stored in a parameter
template subsystem (i.e., a database). The values, priorities, and error ranges of
different parameters must be determined or entered by the user (e.g., engineer).

Fig. 5 Module (2) - Decision support module for the automated generation of process monitoring
alternatives for existing assembly plans

The monitoring requirement templates contain product-neutral information about
monitoring parameters relevant for individual assembly processes and are stored in
a parameter template subsystem. These templates need to be filled through product-
specific information. In the feature recognition step, features are automatically
recognized using a hybrid geometric reasoning and rule-based approach (Figure
5a). The CAD model including its parts is imported automatically. Afterward, the
geometric and topological information can be extracted from the CAD models using
an Open Cascade library (pythonocc). A unique ID is assigned to each feature.
Hence, different features can be associated with each other through their IDs. Dif-
ferent topological entities are found, for example, solids and faces. Skill parameters
[30], standard components (fasteners, such as DIN 912 for screws and DIN 934 for
nuts), and standards related to connection (such as DIN 13-1 for ISO threads) are
stored in the parameter template subsystem, describing requirements of processes
(e.g., templates for assembly processes). According to the classification of joining
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processes from DIN 8593-0, each parameter template stores the specifications for a
specific assembly process. Concrete assembly processes (such as screwing or point
welding) are specified as tables in the databases.
While creating or managing a database, engineers need to extract and construct data
from standards and specifications (i.e., DIN, VDI). These tables can be supplemented
or changed manually by an expert if necessary when processes or relevant process
requirements have changed (e.g., due to new technologies or quality requirements of
processes).
Based on the features and the filled process monitoring templates, a set of parameters
is selected and collected in the parameter determination step (Figure 5a). During this
step, the user can either confirm or deny parameters and values, priorities, units, and
error ranges for monitoring. The sensorial skill model of the production system is set
up automatically according to the assembly system layout (Figure 5b). Therefore, a
skill-based approach is used as described in [30] and [57].
The automated generation of process monitoring alternatives is executed by a
comparison of product-specific monitoring features and assembly system-specific
(i.e., resource-specific) monitoring skills [6, 57]. The semantical analysis focuses
on the presence or absence of monitoring skills, i.e., skills related to measuring and
checking physical process properties. After the semantical analysis, parameters are
checked to ensure that the monitoring feature can be monitored efficiently by the
aligned resource (i.e., Characteristics matching in Figure 5c). Different parameters,
depending on the specific skill and monitoring feature, are analyzed and matches are
determined (e.g., joining force, temperature). Once a matching pair of a monitoring
feature and a monitoring skill of a resource is identified, the comparison of the fea-
ture and resource-specific parameters is initialized. If the criteria are not fulfilled for
any monitoring resource in the production system (i.e., no reconfiguration possible),
the feature is designated as invalid for monitoring and the matchmaking continuous
for the next feature. Matching efficiency (i.e., monitoring efficiency) depends on the
alignment of resources with monitoring requirements (e.g., sensorial skills) according
to [57]. The weighting of the pairing depends on the relevance being defined by the
user for each monitoring requirement in the monitoring requirement step (Figure 5a).
The nominal value range of the monitoring feature of the assembly process defines
the parameter comparison. To ensure suitability, the resource must be able to measure
values across the range. As an example, a pyrometer that cannot detect temperatures
below 300◦C is not suitable for monitoring a hot gluing process performed at tem-
peratures between 120◦C and 180◦C. Likewise, a force-torque sensor must be able
to monitor the exact force range in which the process takes place. The minimum and
maximum values of the requirement (Rmin and Rmax) and the range in which the
skill can be used by the resource (Smin and Smax) define the match and its suitability.
If the range Rmin-Rmax is not contained entirely within the interval Smin-Smax, the
resource is considered unsuitable, even though it has the appropriate skill.
The assessment of the measuring accuracy of the resource is a further criterion for
the parameter comparison. This includes quality-critical or high-precision processes
where a fraction of a deviation can affect the outcome of a process. The logic for the
evaluation is based on a comparison of the required accuracy for the process and the
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accuracy of the resource for the skill (e.g., 0.1 N is represented with the accuracy
value 10). If there is no resource at a station with sufficient accuracy to monitor a
feature, it is assumed that reconfiguration is necessary for that feature.
Measuring speed expressed as the frequency with the unit Hertz is a parameter to
be checked continuously. This ensures that the monitoring process does not add
any additional time to the cycle time. The parameter comparison is used to identify
unsuitable sensors that need to be replaced or adjusted. If a resource fulfills the
qualitative and quantitative matchmaking to monitor a feature, the information is
stored in a node (vertex) of the enhanced process monitoring graph (ePMG) (see
Figure 5d - enhanced process monitoring graph). If monitoring requirements cannot
be matched with sensors (i.e., resources) a reconfiguration of the production system
is necessary. Determining which resources can be used to cover the missing skills is
done through further iterations via matchmaking. Matchmaking between monitoring
characteristics and the resource library is integrated so that whenever a process is
classified as not monitorable, a query for the relevant characteristics is started and
a potential resource is searched in the resource library. The process monitoring
efficiency (Mon. Eff. in percentage) depends on the resource inheriting the sensorial
skill. This value is calculated from the match (best fit) of the sensorial skills with
the individual monitoring requirement (parameter match and number of individual
matches) and the accuracy of the sensor. Any monitoring efficiency between 0 % and
100 % represents a match, whereas 100 % indicates the best possible match.
The result of the module (2) is a process graph and process monitoring graph
containing valid assembly plans and process monitoring alternatives (i.e., allocated
actorial and sensorial resources and stations). These alternatives are further analyzed
in module (3) (optimization). Process times are approximated depending on manual
and automatic assembly processes.

4.3 Optimization model
The next module aims to find the optimal process plan for the models taking into
account all theoretically feasible process plans generated in the production graph.
A generative design model for a user-optimization system is built. The goal is to
propose an optimization model which incorporates users’ (decision-makers) opinions
relating to the three criteria: minimization of the reconfiguration cost and the cycle
time, and maximization of the minimum monitoring efficiency of all tasks. To be
precise, a user-optimization framework is designed where the user can enter the
value that he/she wants for each objective function, and get the optimal values for the
rest. The rest of this section covers importing data from the production graph to the
optimization model, the mathematical model, and the user-optimization loop.
The production graph contains the inputs of the optimization model, namely, the set
of precedence A including pairs of tasks (i, i′) where task i must be performed before
task i′, the compatibility among tools, tasks, and resources through a binary matrix
Kr
it that shows the capabilities of tools to perform a set of tasks on the resources, the

processing time Ptirt of task i if executed on resource r with tool t, and cycle time C.
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Note that the compatibility matrix Kr
it provides two sets Ntr and Nir , which respec-

tively contain the tasks that can be performed by tool t on resource r and the tools
that can execute task i on resource r . Moreover, several tools are used for process
monitoring, so-called sensors, which can monitor the quality of tasks executions.
αirt refers to the efficiency of using tool t (as a sensor) to monitor task i on resource
r , and takes the value in range [0, 1]. ctr denotes the set-up cost (per time unit) of
tool t on resource r . Besides, ar refers to the set-up cost of resource r for use.
Based on this data, the following Mixed Integer Linear Programming (MILP) is
solved to find the assembly plan with minimum reconfiguration cost, minimum cycle
time, and maximum level of monitoring efficiency. The model has three binary deci-
sion variables, namely, xirt is equal to 1 if task i is performed by tool t on resource r
(0 otherwise), zr , is equal to 1 if resource r is opened (0 otherwise), and yrt equals
to 1 if tool t is assigned to resource r in the configuration associated to process
task i (0 otherwise). Besides, two continuous variables qi and Q are defined which
respectively represent the monitoring efficiency of executing task i and the minimum
monitoring efficiency of all tasks. For these decision variables, a quantification of
the monitoring efficiency is required. This efficiency can be calculated from the
ratio of the match between process monitoring requirements and the capabilities of
the matched resource 4.2. The nomenclature with further details on the quantities,
parameters and variables considered is given in the appendix A. The proposed MILP
is given in equations (1)-(16), where I, T , and R denote the sets of tasks, tools, and
resources, respectively.

min
∑
r ∈R

∑
t∈T

ctr yrt +
∑
r ∈R

ar zr (1)

min C (2)
max Q (3)
s.t.

Q ≤ qi i ∈ I (4)

qi =
∑
r ∈R

∑
t∈T

αirt xirt i ∈ I (5)∑
r ∈R

∑
t∈Nir

xirt = 1 i ∈ I (6)∑
i∈I

xirt ≤ |I|yrt t ∈ T , r ∈ R (7)∑
r ∈R

yrt ≤ 1 t ∈ T (8)∑
t∈T

yrt ≤ |T |zr r ∈ R (9)∑
t∈T

∑
i∈Ntr

Ptirt xirt ≤ C r ∈ R (10)
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t∈T

∑
r ∈R

r xirt ≤
∑
t′∈T

∑
r′∈R

r ′xi′r′t′ (i, i′) ∈ A (11)

xirt ∈ {0, 1} i ∈ I, t ∈ T , r ∈ R (12)
yrt ∈ {0, 1} t ∈ T , r ∈ R (13)
zr ∈ {0, 1} r ∈ R (14)
qi ∈ [0, 1] i ∈ I (15)
Q ∈ [0, 1] (16)

The objective function (1) is to minimize the total cost, including the used resources
activation cost and reconfiguration cost of the tools that have been used in the line,
where sensors are counted as tools. The objective function (2) aims to minimize cycle
time. The objective function (3) maximizes the minimum monitoring efficiency of all
task execution monitored by sensors. Constraints (4) ensure that objective function
(3) maximizes the minimum monitoring efficiency of all tasks, which is computed
by constraints (4) and (5). Constraints (6) state that each task must be processed by
exactly one resource. Constraints (7) ensure that a tool is available on the resource
to process each assigned task. Constraints (8) prevent assigning a tool to more than
one resource. Constraints (9) open a resource if at least one tool is located on that
resource. Constraints (10) state that the total processing time on each resource cannot
exceed the cycle time. Constraints (11) ensure the precedence relationships between
the tasks. Constraints (12) - (16) give the domains of the variables.
In real case studies as well as in future researches, different variants of this model can
be considered. For example, constraints (7) and (9) could be written for each task and
tool. As another example, the uncertain processing time for tasks can be considered
in constraints (10). In addition, several constraints can be considered, such as area
constraints that prevent or penalize the assignment of a set of tasks to the same station.
For the user-optimization loop, the user can give his/her opinion for the value of
any objective functions (1)-(3). Next, this value is taken into account by adding any
constraint (17)-(19) to the model and removing the corresponding objective function
from the model. In this context, the upper limit for the reconfiguration cost of each
model and cycle time, and the lower limit for the monitoring efficiency of each model,
proposed by the user, are shown as Costuser , Cycletimeuser , and Qualityuser ,
respectively. For example, if the user aims at cycle time Cycletimeuser (second) and
Qualityuser (%) quality for the process in the whole line, two constraints (18) and
(19) are added to the mathematical model, and it is tackled with only one objective
function (1) to minimize the reconfiguration cost.

∑
r ∈R

∑
t∈T

ctr yrt +
∑
r ∈R

αr zr ≤ Costuser (17)

C ≤ Cycletimeuser (18)
Q ≥ Qualityuser (19)
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To guide the user in the selection of relevant values for the target, the tool provides
upper and lower bounds for each objective. Let o, o1, and o2 be three objective
functions like the ones existing in the proposedMILP. Solving the model for objective
o with no restriction on the other objectives yields a lower bound for o. To compute an
upper bound for objective o, we solve themulti-objectivemodel with the lexicographic
approach. We consider any orders where o is the least important objective, and the
maximum value for o is an upper bound. If the user sets infeasible targets, the tool
may suggest a correction for the two objectives o1 and o2 where a target is set. To
suggest a new value for o1 (resp. o2), the model is optimized for o1 (resp. o2) with the
target on o2 (resp. o1).

4.4 Feasibility testing through the simulation model
Module (3) generates an optimized assembly plan including resources that are avail-
able for monitoring. The last module of themethodology serves as a validation (Figure
6). A global 3D simulation of the entire assembly line is executed to analyze the col-
lision freedom and feasibility of the assembly plan. Hereby, each device involved in
the individual assembly, feeding, and monitoring processes are checked for collision
freedom and accessibility in a multi-body simulation. The multi-body simulation con-
sists of rigid components such as assembly parts, stations, and resources, which are
loaded as step files with the additional information (assembly and monitoring plan)
via a standalone solution through an application programming interface (API). Kine-
matics (e.g., robots) are set in advance whereas the movements of assembly parts and
resources (e.g., gripper and screwdriver) can either be calculated using the informa-
tion of module (1) simulation and assembly-by-disassembly or set manually.

Fig. 6 Module (3) and (4) - Optimization and simulation module for the identification of an optimal and
feasible assembly and monitoring plan.

Process Simulate (PS) has been chosen as a simulation software in this paper. During
assembly and feeding execution, the device and assembly path are checked for any
collisions. In the meantime, devices responsible for monitoring are checked for colli-
sion freedom and visual accessibility. Information about the individual resources and
processes is provided by the assembly andmonitoring plan identified by the optimizer.
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The simulation model to which the assembly and monitoring plan data is applied is an
existing digitized production system. During the simulation of the assembly and mon-
itoring processes, continuous collision and visibility checking evaluates if the entire
plan is feasible or infeasible and needs to be tagged as ’infeasible’. This information
is played back to the optimization module as a set of constraints. A new iteration is
executed to identify the optimal assembly and monitoring plan.

5 Computational experiments and results
This section serves to validate the methodology proposed in this study. First, two case
studies, at two different levels o complexity, are presented with all associated data.
The first case study shows a relatively simple product to be assembled, illustrating
the flexibility available in creating an optimized assembly plan including a process
monitoring alternative. The second case study considers a somewhat more complex
product to be assembled with different types of assembly processes (i.e., ’joining’,
’screwing’). For the case study (2), the same assembly system is used as in the case
study (1), which is an RMS. The computational results are presented for each case
study in the following. The methodology is implemented on different computer
systems and the individual modules are implemented in different programming and
software environments (see Table 1).
The individual module numbers and descriptions correspond to the nomenclature
from the methodology in this article. Table 1 also shows the programming and
software environments used to implement the developed methods and the computer
system on which they were carried out for both case studies. Software programs often
interact with self-developed solutions, e.g., for CAD feature recognition (FreeCAD,
PythonOCC, and C# implementation) or multi-body simulation (Process Simulate
and C# implementation).

Table 1 Software and hardware used in the case studies - implementation of the methodology
Nr. Module description Analysis Software / Programming Environment Hardware

1 Assembly Planning

Assembly-by-Disassembly Siemens NX (1904), NXOpen, C# Imple-
mentation (.NET Framework 4.7.2) Intel(R) Core(TM) i7-7700HQ CPU @

2.80GHz 2.81 GHz and 16,0 GB of RAM
under MS Windows 10 Edu (64 bit)Process generation C# Implementation (.NETFramework 4.7.2)

Resource allocation -
regarding assembly system
layout

C# Implementation (.NETFramework 4.7.2)

2 Process Monitoring Planning

CAD feature recognition FreeCAD, PythonOCC, C# Implementation
(.NET Framework 4.7.2)

Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz 2.81 GHz and 16,0 GB of RAM
under MS Windows 10 Edu (64 bit)

Process generation for mon-
itoring

C# Implementation (.NET Framework
4.7.2), MySQL

Skill modeling of assembly
system

C# Implementation (.NET Framework
4.7.2), ProtegÃľ, Semantic Web Rule Lan-
guage (SWRL)

Generation of monitoring
processes regarding exist-
ing assembly processes &
assembly system layout

C# Implementation (.NET Framework
4.7.2), Libraries for Levenshtein Distancing

3 Optimization Optimization IBM ILOG CPLEX Optimization Studio
V12.10

Intel(R) Core(TM) i7-8650U CPU @
1.90GHz 2.11 GHz and 32 GB of RAM
under MS Windows 10 Pro (64 bit)

4 Validation Multi-body simulation
(assembly processes and
monitoring processes)

Process Simulate (Tecnomatix 15.1), C#
Implementation (.NET Framework 4.7.2)

Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz 2.81 GHz and 16,0 GB of RAM
under MS Windows 10 Edu (64 bit)
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5.1 Computational results of case study 1 - LEGO® product
The first case study displays a simple product that needs to be assembled on an
existing assembly line (Figure 7). The assembly and monitoring plan are generated
automatically by using the methodology described in Section 4. The product, con-
sisting of 4 parts (1 LEGO® plate (base part) and 3 LEGO® bricks), already displays
the complexity which assembly and inspection planners are facing. The inherent
flexibility resulting from the number of possible assembly sequences, stations, and
resource allocation cannot be efficiently accounted for in manual processing. Various
criteria have to be taken into account during the generation of assembly plans (e.g.,
fulfillment of process requirements, number of reconfigurations). Additionally, mon-
itoring aspects have to be taken into account (e.g., monitoring alternatives and their
monitoring accuracy).

Fig. 7 Assembly process graph of the first case study (LEGO® product) automatically generated using
assembly-by-disassembly

Therefore, the methodology presented in this paper serves as an assistant by auto-
matically providing decision support during the planning phase. In the first module
of the methodology, the LEGO® product is analyzed for its valid and collision-free
assembly sequences (Figure 7). Three sequences generated by the assembly-by-
disassembly approach are displayed in Figure 7.
Figure 8 shows a hybrid assembly line of 5 stations. The first and the last three stations
(1, 3, 4, 5) are manual stations equipped with supply tools, screwdrivers, screwdriver
controllers, and a worker. The second station is an automatic station where a robot
automatically executes processes with end effectors, in this case, grippers. Each
resource (e.g., a robot, a worker) accompanied by a tool (e.g., screwdriver or gripper)
has skills such as ’screwing’ or ’joining’. Therefore, each combination of tools is
designated for specific processes. The combination of the assembly line layout with
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each resource and the resource library with the skill taxonomy allows the automated
generation of a skill model. Each station inherits its specific skills depending on the
resources.

Fig. 8 Existing assembly line consisting of five stations

The skill model of the production system can be displayed as a graph or matrix. In
Figure 8 the default configuration as well as resource storage of the assembly system
are shown. Once the product requirements and assembly line skills are defined, the
assignment of production resources to processes automatically creates assembly
plans. This procedure has been described in Section 4.1 and partly in [58]. The com-
parison generates the assembly plans using semantical matchmaking and parameter
matchmaking (quantitatively).
Due to the fact that this methodology considers the planning of process monitoring
alongside the assembly planning, the optimization and simulation-based validation
are done after the allocation of resources/tools for monitoring. When assembly plans
have been generated considering the necessary assembly processes, the module (2)
identifies product requirements that are relevant for monitoring the assembly pro-
cesses. The input is provided by the assembly plans, the CAD model of the product,
the process monitoring database with tables and logical rules for the identification
of geometries. The CAD model is analyzed automatically by using predefined geo-
metrical rules in Python in combination with an Open Cascade library in Python
(pythonocc). The recognition stage allows the identification of geometrical shapes
and constraints. Therefore, contacts, chamfers and their positions that are relevant for
the success of the assembly process can be identified and fill the requirement table
(template) for process monitoring. The table is derived through the fuzzy search
algorithm (e.g., joining) from the database of the monitoring requirement stage
(see Section 4.2). In this use case, the table already contains the relevant parameter
templates (e.g., joining force in [Nm]) necessary to assemble the LEGO® bricks,
and therefore the user does not have to create the template manually.
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After the feature recognition and parameter determination define the monitoring
requirements, the comparison of monitoring skills and monitoring requirements
starts. Semantical matching allows the identification of a variety of different resources
for monitoring. The comparison of sensorial skills and monitoring requirements,
taking into account the ability to assemble the product at each station (from assembly
plans), identifies different alternatives for process monitoring. These alternatives
have not yet been validated due to their parameters. The second step allows a
parameter comparison where efficiency, speed, and accuracy are taken into account.
Multiple assembly plans and alternatives for process monitoring are automatically
generated by combining individual assembly/monitoring matches or processes. The
individual assembly and monitoring processes are displayed in the appendix C in
Table 6. Possible combinations of resources are shown for each station (e.g., second
station (automatic robot station 2) R2 (robot) + T4 (gripper) + T6 (supply device)).
Hereby, resources (R) define the station type (e.g., manual or automatic station) and
inherit the essential skill ’move’. Tools (T) must always be connected to a resource.
Depending on the process, process times (Pt in seconds) vary due to the assembly
path of each LEGO® brick.
As described in Section 4.2, the process monitoring efficiency (Mon. Eff. in per-
centage) depends on the resource inheriting the sensorial skill. This quantified value
of monitoring efficiency can take values between 0 % and 100 % and represents
a match, while 100 % indicates the best possible match. Therefore, at station 2 the
combination (Station 2: R2; T4, T5, T6) with a force-torque sensor (T5) has a higher
monitoring efficiency than the combination without a force-torque sensor (Station
2: R2; T4, T6). Both combinations require a reconfiguration (Rec.) for the second
process due to the required gripping width (here T19).
Each assembly plan contains different alternatives for process monitoring as a result
of module 2 and the allocation of resources with sensorial skills. Due to the similar
component geometry and process parameters of the individual LEGO® bricks, the
requirements for process monitoring do not differ between the tasks (see task 1, 2, 3
in Table 6 in the appendix C). This leads to similar match results between monitoring
requirements and resource skills.
Therefore, the individual process monitoring alternatives do not differ between
tasks at the same station with the same resources and combination of tools (e.g.,
monitoring efficiency of 20% for task 1, 2 and 3 on station 1; Table 6). In a further
step, assembly plans are optimized with various alternatives for process monitoring.
Criteria for the optimization were explained in Section 4.3.
The obtained production information is used to solve the mathematical model for the
first case study. As a result of the optimization, regarding the defined ranges for each
pair of two criteria (see Section 4.3) by the user, we obtain several assembly plans
with an alternative for process monitoring. Since the user defines several ranges for
only two criteria, the mathematical model aims to optimize the third one at each run.
The user must select only one of the obtained assembly plans (the best solution). Note
that the assembly plan must be validated by a 3D multi-body simulation (Section
4.4). If collisions occur due to an infeasible assembly sequence or resource option
and collisions or lack of visibility are detected, the assembly plan is considered
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infeasible. This leads to an iteration where the optimization model must take into
account a set of new constraints on assignments of tasks and tools to resources
(stations). The optimization model will determine another optimal assembly plan
with process monitoring and provide another assembly plan. This plan also must be
verified by the simulation model. The process ends if the solution of the optimization
model is valid through the simulation model.
Table 7 in the appendix C shows all optimal solutions concerning the optimization
of each selected criterion from the user side. Precisely, at each level, the user defines
a range for two criteria and optimizes the third one. The optimal objective function
value is obtained and it is shown with the corresponding tool and tasks assignments
to the stations. These solutions are given to the user, then he/she selects the proper
one among others. The user is satisfied by forcing the total costs to less than 350 e,
the cycle time to less than 20 (s), and obtaining 94 % as the minimum monitoring
efficiency level of the tasks.
Table 2 shows that the feasibility of the final selected assembly plan cannot pass
through the simulation model since T19 cannot be used to perform task 2 on the
robot existing at the second station. Due to the gripper geometry of T19, the LEGO®
brick ’E’ cannot be assembled after LEGO® brick ’D’ (see Figure 7 and Table 2).
A collision occurs in the multi-body simulation between the gripper and the already
assembled LEGO® brick ’D’. The constraints concerning the infeasibility of these
assignments are added to the mathematical model which prevents the model from tak-
ing into account such assignments. The optimization model is solved considering new
constraints generated by the simulation model and provides the new optimal solution.
As it can be seen in Table 2, the new assembly plan is valid in the simulation model.
Therefore, the final plan corresponds to performing tasks 1 and 3 using T4 and T6
on the robot at the second station (R2), and task 2 using T15 by the worker at the last
station (R5). This solution respects the cost of 390 e and the cycle time of 17.5 (s)
and provides 25 % monitoring efficiency, which all satisfy the user.

Table 2 Final optimization results after validation via simulation (case study 1)
Generative intervals Objective value Task/tool assignment

Cost (e) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

< 350 < 20 - 0.94 (quality) - Task 1,2,3 - - -
T4,T6,T19

Validation via simulation (constraint: tool "T19" cannot be used to perform task 2 on robot "R2")

< 390 < 17.5 - 0.25 (quality) - Task 1,3 - - Task 2
T4,T6 T15

5.2 Computational results of case study 2 - toy car product
The second case study deals with a more complex product where two assembly types
are considered joining and screwing. This product (toy car) contains 11 parts (1
base-part, 2 screws and 8 parts for joining). One can easily see that the complex-
ity of assembly plan generation increases due to multiple valid assembly sequences
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(generated via an assembly-by-disassembly analysis: Figure 9 in the appendix D). In
combination with the existing production system in Figure 8 the matchmaking mod-
ule (Figure 4) generates multiple assembly plans. Also, the identification of process
monitoring features increases in this case study exponentially due to the number and
geometries of assembly parts (e.g., geometrical: joining surface, alignment; process:
force) and feature types (e.g., torque-screwing, force-joining). Thematchmakingmod-
ule in Section 4.2 identifies multiple process monitoring alternatives to each assembly
plan as can be seen in Table 8 in the appendix D. For the screwing processes, different
screwdrivers and controllers necessary for the screwdrivers can be identified for the
execution of the processes and also their monitoring. This enables the generation of
multiple assembly plans including process monitoring alternatives.
Consideration of process monitoring allows the optimization module to use various
criteria for selecting the best assembly plan, taking into account quality aspects when
planning production. Higher monitoring efficiency values indicate that the resources’
sensorial skills are more applicable for the monitoring features of the toycar in the
case study (2) than the LEGO® product of use case (1) (Table 8 in the appendix D).
Similar assembly parts and processes (e.g., Axle Front (AF) and Axle Back (AB))
lead to similar monitoring efficiencies. This is caused by the same input criteria for
the CAD feature recognition and process type parameters for monitoring. The geome-
tries of the wheels are the same, as well as the features (i.e. surface, chamfer) and
the assembly process joining, which must be done with a certain force and coaxial
to the axles (the same applies to the rear wheel (WB) and the chassis). Equivalent
requirements for process monitoring lead to similar resource allocations (see moni-
toring efficiencies in Table 8 in the appendix D). The consideration of different tools
from other stations (e.g., T2) or the equipment and tool store (T18, T17) expands the
solution space by making greater use of the flexibility of the assembly line.
Multiple alternatives for process monitoring can be generated by identifying diverse
combinations (e.g., tasks 8 and 9). These alternatives have been saved and trans-
ferred to the optimization module (Section 4.3) to identify the optimal assembly plan,
including the process monitoring alternative. As with the first case study, the produc-
tion graph is considered in the optimization model for the second case study (the toy
car). Table 9 in the appendix D shows the best assembly plans obtained by the opti-
mization module.
Among all these plans, the user selects the best one which corresponds to a cycle time
of 141 (s) and monitoring efficiency of 70 %, and the optimal cost of 640 e, where
we perform tasks 1, 3 and 4 at the second station (R2) using tools T4 and T6, and the
rest of tasks at the fourth station (R4) using corresponding proper tools T12, T10 and
T11. Table 3 shows the results of the simulation model for the performance of the
selected assembly plan.
Because of a collision, simulation prevents us from performing tasks 9 and 10 using
tools T10 and T11. Similar to the first case study, new constraints for preventing
such assignments are generated and imported to the optimization model. Therefore,
a reconfiguration is needed to remove the tool T10 and use tools T11 and T12 (which
are already located at the station). However, this plan results in a bit higher cost (690
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e compare to 640 e). This plan with a certain configuration of the route can be real-
ized with the simulation model.

Table 3 Final optimization results after validation via simulation (case study 2)
Generative intervals Objective value Task/tool assignment

Cost (e) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

- < 141 > 0.7 640 (cost) - Task 1,3,4 - Task 2,5,6,7,8 / Task 9-10 -
T4, T6 T12 / T 10, T11

Validation via simulation (constraint: tool "T 10" cannot be used to perform tasks 9-10 by worker "R4")

- < 141 > 0.7 690 (cost) - Task 1,3,4 - Task 2,5,6,7,8 / Task 9-10 -
T4, T6 T12 / T12, T11

5.3 Discussion
The results of the two case studies show how assembly plans, including alternatives
for process monitoring, can be generated automatically. Even with a minimal increase
in complexity, one can see how the number of possible assembly plans increases. In
addition, planning process monitoring for an assembly plan further enhances com-
plexity. Multiple alternatives for process monitoring can be identified for every single
assembly plan. This methodology enables efficient and demand-driven planning of
process monitoring alongside assembly planning. Due to multiple criteria (number
of reconfigurations for assembly processes, number of reconfigurations for monitor-
ing processes, monitoring accuracy and speed as monitoring efficiency, assembly and
monitoring process costs, etc.) users can prioritize individual assembly and process
monitoring plans. As shown in the results this can be achieved by connecting the
information to an optimization module.
Two observations can be derived from the case studies: First, the importance of the
individual parameters defining the assembly system (e.g., resource and reconfigura-
tion costs), and second, the consideration of investing in new resources and/or tools.
The first observation concerns both case studies and the high activation costs of each
station. This leads to more appropriate assembly on fewer stations to reduce assembly
costs. When the activation costs decrease, other criteria such as monitoring efficiency
come into play more in the optimization module. This allows the use of more stations
in the line.
A second remark is that both case studies consider occupied or not reconfigurable
resources and/or tools, but investing in new resources/tools is not taken into account.
The simulation makes it possible to give feedback if a resource/tool is available for
reconfiguration (i.e., not occupied on other station). As an example of the case study
(2), if T2 is used in station 1, it cannot be used for reconfiguration in station 3 for the
same assembly plan.
Furthermore, scalability has not yet been tested. Increasing the complexity of the
product to be assembled as well as the assembly system with its resources and tools
has shown a direct relation to the data being generated (assembly plans and monitor-
ing alternatives). It can be argued that individual modules can work more efficiently
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on a higher scale than others. For example, the generation of assembly plans due to
assembly-by-disassembly is quite time-consuming for complex products due to the
simulation effort. This can be seen in Table 4. The calculation times are approximate
values determined from screen recordings. The time required for user interactions
was not taken into account. The individual times assigned to the modules are there-
fore pure computing times (in seconds).

Table 4 Performance of individual modules

Nr. Module description
Case study (1) Case study (2)

Computing time Computing time

1 Assembly
Planning

approx. 370 sec approx. 840 sec

2 Process
Monitoring
Planning

approx. 0.74 sec approx. 0.83 sec

3 Optimization approx. 0.01 sec approx. 0.08 sec

4 Validation approx. 1160 sec approx. 2350 sec

The simulation at the end of the methodology (validation – module (4)) does not have
tomanipulate that amount of data due to the optimizationmodule which automatically
decreases the number of assembly and monitoring plans to be tested. Nevertheless,
the processing time of the simulation increases due to the number of tasks to be exe-
cuted for an individual product. Therefore, case study (2) takes up more time than the
case study (1). The generation of process monitoring alternatives and the optimization
module are able to handle complex scenarios because they are mainly data-driven.
Here, one can see that the computing times remain low in both case studies.

6 Conclusion
The proposed methodology represents an approach to integrating process monitoring
planning into assembly planning in combination with optimization. Considering
monitoring processes as a relevant aspect in process planning can result in higher
quality in process execution and final products. An early consideration of monitoring
processes enables a more targeted generation of suitable assembly plans based on
individual decision criteria (e.g., number of reconfigurations vs. higher accuracy in
process monitoring and thus process control).
To handle the complexity of various product variants, assembly sequences, assembly
and monitoring resources, and assembly and monitoring plans, the proposed method-
ology has been implemented with proper feasibility and efficiency. We showed that
the developed support system is very useful in practice to link the product designer
and the process planner. Automated analysis of product CAD files to identify assem-
bly and monitoring processes, and resource matching through a skill-based approach
in an existing production system enables more efficient process planning and use of
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RMS. In particular the aspect of diagnosability through planning variable process
monitoring alternatives has been addressed in this paper. The optimization module
shows that additional criteria, by integrating process monitoring alternatives via a
quality factor, can extend and improve the generation of assembly plans for RMS.
This is the first conceptual attempt to show the performance of the proposed support
system which has the potential to be extended considering following future research
directions.
In further research, the scalability of this methodology has to be tested by taking
into account more complex products and production systems. Considering a large
number of tasks leads to a combinatorial explosion in the number of possible
assembly plans. Therefore, developing an appropriate optimization approach (e.g., a
(meta-)heuristic) can be a useful future research contribution on the application of the
proposed support system in large cases. Several extensions can be considered in the
optimization model, as mentioned in this paper, such as adding area constraints for
task assignment. Moreover, considering mobile robots and moving workers, as well
as studying human-robot collaborative systems opens interesting research avenues.
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A Appendix: The nomenclature and definitions of sets,
parameters, and variables

All the sets, indices, parameters and decision variables are defined in detail as follows:

Sets and indices

R The set of resources (worker/robot) r, r ′ ∈ R.
T The set of combinations of tools t, t ′ ∈ T .
I The set of tasks i, i′ ∈ I.

Parameters

ctr The set-up cost of tool t on resource r .
ar The activation cost of resource r .
αirt The efficiency (in percentage %) of using monitoring tool (e.g. a sensor)

t on resource r to monitor the quality of task i.
ptirt The process time of task i performing by tool t on resource r .
C The cycle time.
A The set of pairs of tasks i and i′ where task i i precedes task i′.
Kr
it The compatibility matrix which shows the possible combinations of

resource r and tool t that are capable to perform task i.
Ntr The set of tasks that can be performed by tool t on resource r .
N ′ir The set of tools that can be used to perform task i on resource r .

Decision variables

xirt Binary variables that is equal 1 if task i is assigned to resource r to be performed
using tool t on this resource.

yrt Binary variables that is equal 1 if tool t is assigned/installed on resource r .
zr Binary variables that is equal 1 if resource r needs to be activated/used.
qi Continuous variables that show the monitoring efficiency of task i.
Q Continuous variables that show the minimum monitoring efficiency among all tasks.
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B Appendix: Problem Description
The Table 5 shows the possible task resource assignments. Tasks I1, I2, I3, I4 are
assigned to tools T1, T2, T3 and T4, which are located in Station 1 and Station 2 and
their respective resources (i.e., worker and robot). For each allocation a process time
(in seconds) and monitoring efficiency (percentage of match of alignment) value has
been generated depending on the alignment of the task requirements and tool/re-
source skills. These values have been generated with the matchmaking of module
(1) and module (2) of the decision aid system (Figure 3). The layout information
provided by the production system makes it possible to generate various process
plans from these matches.

Table 5 Compatibility among tasks (I), tools (T), and resources (robot/worker), the processing time of
tasks (Pt), and efficiency values (Mon. Eff.) for each set of task-tool-resource

Resource Tasks
T1 T2 T3 T4

Pt (s) Mon. Eff. (%) Pt (s) Mon. Eff. (%) Pt (s) Mon. Eff. (%) Pt (s) Mon. Eff. (%)

Station 1 (worker) I1 30 95 - - - - - -
Station 1 (worker) I2 15 90 20 80 - - - -
Station 1 (worker) I3 - - - - - - - -
Station 1 (worker) I4 - - - - - - - -

Station 2 (robot) I1 - - - - - - - -
Station 2 (robot) I2 - - - - 20 85 - -
Station 2 (robot) I3 - - - - 25 92 10 95
Station 2 (robot) I4 - - - - 20 90 15 80
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C Appendix: Case Study 1
Table 6 shows the alternative processes generated after matchmaking module (1) and
module (2) for the LEGO® case study. As an example, task 2 at station 2 can be
executed with robot R2 when tool T4 (i.e., gripper) is reconfigured with T19 (i.e.,
gripper with different gripping width). For this alignment, the process time is calcu-
lated as 7.2 seconds and the monitoring efficiency due to the sensory accuracy of
the gripper is 40 (%). If the adjustment with the T5 (force-torque sensor) is selected,
the monitoring efficiency increases to 94 (%) because the sensor is capable of better
monitoring (higher accuracy).

Table 6 Multiple assembly processes with monitoring alternatives (Pt: process time, Mon. Eff.:
monitoring efficiency, and Rec.: necessary Reconfiguration of the individual assembly process) (case
study 1 - LEGO®)

Station Resource Tool
Part D E C

Task 1 2 3

1 R1 -Worker T3
Pt(s) 23,94 17,65 23,94

Mon. Eff. (%) 20 20 20
Rec. - - -

2 R2 -Robot

T4+T6
Pt(s) 6,3 7,2 5,9

Mon. Eff. (%) 40 40 40
Rec. - T4->T19 -

T4+T5+T6
Pt(s) 6,3 7,2 5,9

Mon. Eff. (%) 94 94 94
Rec. - T4->T19 -

3 R3 -Worker T9
Pt(s) 19,4 26,45 19,4

Mon. Eff. (%) 23 23 23
Rec. - - -

4 R4 -Worker T12
Pt(s) 17,44 23,87 17,44

Mon. Eff. (%) 34 34 34
Rec. - - -

5 R5 -Worker T15
Pt(s) 33,23 16,29 33,23

Mon. Eff. (%) 25 25 25
Rec. - - -
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In Table 7, module (3) can be used to generate different optimal process plans
depending on the selected criteria. Depending on the selection of user criteria (e.g.,
1) cycle time and monitoring efficiency, 2) cost and monitoring efficiency, 3) cost and
cycle time), the optimal process plan varies. If the user defines low cycle time and
high monitoring efficiency as his priority criteria and is satisfied with the cost of about
350 e, the result is shown in row 3 (all tasks are performed at station 2 with R2).

Table 7 The results of the optimization for each pair of criteria (e.g., cycle time and monitoring
efficiency) before validation via simulation (case study 1)

Generative intervals Objective value Task/tool assignment

Cost (e) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

- < 80 > 0.20 170 (cost) Task 1,2,3 - - - -
T3

- < 40 > 0.20 340 (cost) Task 2 - Task 1,3 - -
T3 T9

- < 20 > 0.94 350 (cost) - Task 1,2,3 - - -
T4,T6,T19

- < 19 > 0.20 390 (cost) Task 2 Task 1,3 - - -
T3 T6

- < 17.5 > 0.34 520 (cost) - Task 1,2 - Task 3 -
> 17.43 T4,T6,T19 T12

< 600 - > 0.34 17.43 (time) - Task 2,3 - Task 1 -
T4,T6,T19 T12

< 520 - > 0.20 17.65 (time) Task 2 Task 1,3 - - -
T3 T4,T6

< 390 - > 0.94 19.4 (time) - Task 1,2,3 - - -
T4,T6,T19

< 350 - > 0.20 34.88 (time) Task 2 - - Task 1,3 -
T3 T12

< 340 - > 0.34 58.75 (time) - - - Task 1,2,3 -
> 170 T12

< 360 < 20 - 0.94 (quality) - Task 1,2,3 - - -
T4,T5,T6,T19

< 350 < 20 - 0.94 (quality) - Task 1,2,3 - - -
T4,T6,T19

< 390 < 17.5 - 0.25 (quality) - Task 1,3 - - Task 2
T4,T6 T15
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D Appendix: Case Study 2
All possible assembly sequences according to the constraints imposed by the assem-
bled product (i.e. the CAD file) can be seen in Figure 9. These sequences were
determined using the assembly-by-disassembly approach, where the entire assembled
product is virtually disassembled and checked for collision-freeness. Each node in
this graph represents two start assemblies and one end assembly that is created after
the assembly process (e.g., joining or screwing).

Fig. 9 Assembly precedence graph of the second case study (toy car) generated by the Assembly-by-
Disassembly approach
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Table 8 shows all process results after module (1) and (2) are executed. Each
process resource allocation is assigned a process time and monitoring efficiency that
shows the match between the monitoring requirements from the process and the
resource and tool capabilities for monitoring that specific process.

Table 8 Multiple matches (assembly and monitoring processes) according to assembly and process
monitoring planning, which in sequential combination result in assembly and monitoring plans (case
study 2 - toycar)

Station Resource Tool
Part AF AB W1 W2 W3 W4 C WB S1 S2

Task 1 2 3 4 5 6 7 8 9 10

1 R1 -Worker

T1+T2
Pt(s) - - - - - - - - 23.67 23.67

Mon. Eff. (%) - - - - - - - - 80 80
Rec. - - - - - - - - - -

T3
Pt(s) 26.73 26.73 11.4 11.4 11.4 11.4 28.35 13.63 - -

Mon. Eff. (%) 76 76 54 54 54 54 53 54 - -
Rec. - - - - - - - - - -

2 R2 -Robot

T4+T6
Pt(s) 7.56 7.56 3.54 3.54 3.54 3.54 8.94 5.25 - -

Mon. Eff. (%) 64 64 61 61 61 61 59 61 - -
Rec. - - - - - - T4->T19 - - -

T4+T5+T6
Pt(s) 7.56 7.56 3.54 3.54 3.54 3.54 8.94 5.25 - -

Mon. Eff. (%) 96 96 94 94 94 94 89 94 - -
Rec. - - - - - - T4->T19 - - -

3 R3 -Worker

T7+T8
Pt(s) - - - - - - - - 25.38 25.38

Mon. Eff. (%) - - - - - - - - 85 85
Rec. - - - - - - - - - -

T7+T8
Pt(s) - - - - - - - - 18.45 18.45

Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - T8->T2 T8->T2

T9
Pt(s) 19.8 19.8 15.76 15.76 15.76 15.76 23.65 18.54 - -

Mon. Eff. (%) 73 73 56 56 56 56 58 56 - -
Rec. - - - - - - - - - -

4 R4 -Worker

T10+T11
Pt(s) - - - - - - - - 24.51 24.51

Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - - -

T10+T12
Pt(s) - - - - - - - - 21.8 21.8

Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - T10->T18 T10->T18

T12
Pt(s) 18.83 18.83 16.8 16.8 16.8 16.8 24.54 17.92 - -

Mon. Eff. (%) 63 63 74 74 74 74 77 74 - -
Rec. - - - - - - - - - -

5 R5 -Worker

T13+T14
Pt(s) - - - - - - - - 19.74 19.74

Mon. Eff. (%) - - - - - - - - 88 88
Rec. - - - - - - - - - -

T13+T14
Pt(s) - - - - - - - - 19.74 61

Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - T14->T17 T14->T17

T15
Pt(s) 28.34 28.34 22.76 22.76 22.76 22.76 22.4 18.1 - -

Mon. Eff. (%) 81 81 63 63 63 63 76 63 - -
Rec. - - - - - - - - - -
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Table 9 shows the results after the optimization module (module (3)). The user
defines criteria (i.e., a multi-criteria problem) so that different process plans are
identified as optimal depending on these criteria. A pair of two criteria is defined
by the user (e.g. 1) cost and cycle time, 2) cycle time and monitoring efficiency, 3)
cost and monitoring efficiency), while on the right side of the table the individual
tasks/tool assignments to the predefined criteria are shown.

Table 9 The results of the optimization for each pair of criteria (e.g., cycle time and monitoring
efficiency) before validation via simulation (case study 2)

Generative intervals Objective value Task/tool assignment

Cost (e) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

- < 200 > 0.50 370 (cost) - - Task 1 - 8 / Task 9 - 10 - -
T9 / T7, T8

- < 200 > 0.70 420 (cost) - - - Task 1 - 8 / Task 9 - 10 -
T12 / T 10, T11

- < 181 > 0.50 420 (cost) Task 1 - 8 - Task 9 - 10 - -
T3 T7, T8

- < 181 > 0.70 445 (cost) - - - Task 1 - 8 Task 9 - 10
T12 T13, T14

- < 141 > 0.50 540 (cost) Task 1 - 6 - Task 7 - 8 / Task 9 - 10 - -
T3 T9 / T7, T8

- < 141 > 0.70 640 (cost) - Task 1,3,4 - Task 2,5,6,7,8 / Task 9 - 10 -
T4, T6 T12 / T 10, T11

- < 70 > 0.50 730 (cost) Task 1,2,5 - Task 7 / Task 9 - 10 Task 3,4,6,8 -
T3 T9 / T7, T8 T12

- < 70 > 0.70 790 (cost) - Task 1,2,3,7 Task 9 - 10 Task 4,5,6,8 -
T4, T6 T7, T8 T12

- 40 > 0.50 815 (cost) Task 2,5 Task 1,3,4,7 Task 6,8 - Task 9 - 10
T3 T4, T6 T9 T13, T14

- 40 > 0.60 960 (cost) - Task 1,3,4,7 / Task 2 Task 9 - 10 Task 5 - 6 Task 8
T4, T6 / T19, T5, T6 T7, T8 T12 T15

< 370 - > 0.5 181.7 (time) - - Task 1 - 8 / Task 9 - 10 - -
T9 / T7, T8

< 420 - > 0.5 141 (time) Task 1 - 8 - Task 9 - 10 - -
T3 T7, T8

< 450 - > 0.7 147.3 (time) - - - Task 1 - 8 Task 9 - 10
T12 T13, T14

< 600 - > 0.5 76.2 (time) Task 1,2,3,6 - Task 4,5,7,8 - Task 9 - 10
T3 T9 T13, T14

< 800 - > 0.5 50 (time) - Task 1,2,3,4,7 Task 5,6,8 - Task 9 - 10
T4, T6 T9 T13, T14

< 800 - > 0.7 51.5 (time) - Task 1,2,3,4,7 Task 5,6,8 Task 9 - 10 -
T4, T6 T12 T7, T8

< 900 - > 0.5 38.1 (time) Task 2,6 Task 1,3,4,7 Task 9 - 10 Task 5,8 -
T3 T4, T5, T6 T7, T8 T12

< 900 - > 0.7 51.5 (time) - Task 1,2,3,4,7 - Task 5,6,8 Task 9 - 10
T4, T6 T12 T13, T14

< 900 < 40 - 0.54 (quality) Task 2,5 Task 1,3,4,7 Task 9 - 10 Task 6,8 -
T3 T4, T6 T7, T8 T12

< 900 < 181 - 0.74 (quality) - Task 1,2,3,4,7 - Task 5,6,8 Task 9 - 10
T4, T6 T12 T13, T14

< 450 < 181 - 0.74 (quality) - - - Task 1 - 8 Task 9 - 10
T12 T13, T14

< 440 < 181 - 0.56 (quality) - - Task 1 - 8 - Task 9 - 10
T9 T13, T14

< 800 < 70 - 0.74 (quality) - Task 1,4,7 / Task 2 Task 9 - 10 Task 3,5,6,8 -
T4, T6 / T19, T6 T7, T8 T12

< 750 < 70 - 0.56 (quality) - - Task 1,2,7 Task 4,5,6,8 Task 3 / Task 9 - 10
T9 T12 T15 / T13, T14
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