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Stackelberg-Nash null controllability for a non linear coupled

degenerate parabolic equations

Landry Djomegne ∗ Cyrille Kenne † René Dorville ‡ Pascal Zongo §

October 10, 2022

Abstract

The main purpose of this paper is to apply the notion of hierarchical control to a coupled degenerate

non linear parabolic equations. We use the Stackelberg-Nash strategy with one leader and two followers.

The followers solve a Nash equilibrium corresponding to a bi-objective optimal control problem and the

leader a null controllability problem. Since the considered problem is non linear, the associated cost

is non-convex. We first prove the existence, uniqueness and the characterization of the Nash quasi-

equilibrium, which is a weak formulation of the Nash equilibrium because the cost associated to the non

linear problem is non-convex. Next, we show that under suitable conditions, the Nash quasi-equilibrium

is equivalent to the Nash equilibrium. Finally using some Carleman inequalities that we established, and

the Kakutani’s fixed point Theorem, we brough the states of our system to the rest at final time T .

Mathematics Subject Classification. 35K05; 35K55; 49J20; 93B05, 93C20.
Key-words : Degenerate parabolic system; Carleman inequalities; Null controllability; Stackelberg-Nash
strategies.

1 Introduction

Let Ω = (0, 1) be an open and bounded domain of R. Let ω, ω1 and ω2 be three non empty open subsets of
Ω such that ωi∩ω = ∅, for i = 1, 2. We fix T > 0 and set Q = (0, T )×Ω, ωT = (0, T )×ω, ω1,T = (0, T )×ω1

and ω2,T = (0, T )× ω2. Then, we consider the following non linear coupled degenerate system





y1,t − (a(x)y1,x)x + F1(y1) = hχω + v1χω1 + v2χω2 in Q,
y2,t − (a(x)y2,x)x + F2(y2) + d y1 = 0 in Q,

y1(t, 0) = y1(t, 1) = y2(t, 0) = y2(t, 1) = 0 on (0, T ),
y1(0, ·) = y01 , y2(0, ·) = y02 in Ω.

(1)

In the system (1), y = y(t, x) = (y1, y2)
t is the state, vi = vi(t, x), i = 1, 2 and h = h(t, x) are different

control functions whose act on the system through the subsets ωi and ω respectively. These functions vi

and h are the followers and leader controls respectively. Here χω and χωi
are respectively the characteristic

function of the control set ω and ωi, y
0 = (y01 , y

0
2)

t ∈ [L2(Ω)]2 is the initial data and the function d ∈ L∞(Q).
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We assume that the real functions a := a(·) and Fi : R → R, i = 1, 2 satisfy the following assumptions:

{
a ∈ C([0, 1]) ∩ C1((0, 1]), a > 0 in (0, 1] and a(0) = 0,
∃τ ∈ [0, 1) : xa′(x) ≤ τa(x), x ∈ [0, 1]

(2)

and 




Fi(0) = 0,
Fi ∈ C2(R),
∃M > 0 : |F ′

i (r)| + |F ′′
i (r)| ≤M, ∀r ∈ R, i = 1, 2.

(3)

Note that the above hypothesis on a(·) are true in the case where a(x) = xα with 0 ≤ α < 1. Then, in
this case, the system (1) will be called a weakly coupled degenerate system. We can also obtain the same
results of this work in the case where 1 ≤ α < 2 and this time we will rather take the Neumann condition
(a(x)yx) (0) = 0 and the system (1) will be called a strongly coupled degenerate system (cf. [2]). We denote
by y1,t and y1,x the partial derivative of y1 with respect t and x respectively.

In the context of population dynamics, the system (1) can models the dispersion of a gene in two given
populations (cancer cells and healthy cells for instance) which are in interaction. In this case, x represents
the gene type, y1(t, x) and y2(t, x) denote the distributions of individuals at time t and of gene type x of
both populations. In this paper, the function a(x) is the diffusion coefficient which depends on the gene type
and degenerate at the left hand side of its domain, i.e. a(0) = 0, (e.g a(x) = xα, α > 0). In this case, we
say that the system (1) is a coupled degenerate parabolic equation. Genetically speaking, such a property of
degeneracy is natural since it means that if each population is not of gene type, it cannot be transmitted to
its offspring.

In this paper we are interested in the hierarchic Stackelberg-Nash strategy for system (1). More precisely,
for i = 1, 2, we introduce the non-empty open sets ωi,d ⊂ Ω, representing the observation domains of the
followers, and the fixed target functions yid = (yi1,d, y

i
2,d)

t ∈ L2((0, T );ω1,d) × L2((0, T );ω2,d). Let us define
the following cost functional

Ji(h; v
1, v2) =

αi

2

∫ T

0

∫

ωi,d

(
|y1 − yi1,d|2 + |y2 − yi2,d|2

)
dxdt+

µi

2

∫ T

0

∫

ωi

ρ2∗|vi|2 dxdt, (4)

where αi and µi are two positive constants and ρ∗ = ρ∗(t) ∈ C∞([0, T ]) is a suitable positive weight function
blowing up at t = 0 and t = T .

Remark 1

The weight function ρ∗(t) defined in (4) will help us to establish a suitable observability Carleman in-
equality in the Section 3.

We want to choose the controls vi and h in order to achieve two different objectives:

• The main goal is to choose h such that the following null controllability objective holds:

y1(T, ·;h; v1, v2) = y2(T, ·;h; v1, v2) = 0 in Ω. (5)

• The second goal is the following: given the functions yid and h, we want to choose the control vi

minimizing Ji given by (4). This means that, throughout the interval (0, T ), the control vi will be
chosen such that:

the solution y(t, x;h; v1, v2) of (1) remains ”not too far” from a desired target yid(t, x)
in the observability domain ωi,d, i = 1, 2.

(6)

2



Our goal is to prove that, for any initial data y0 ∈ [L2(Ω)]2, there exist a control h ∈ L2(ωT ) (called leader)
and an associated Nash equilibrium (v̂1, v̂2)t = (v̂1(h), v̂2(h))t ∈ H = L2((0, T );L2(ω1))× L2((0, T );L2(ω2))
(called followers) such that the associated state y of system (1) satisfies (5). To do this, we shall follow the
Stackelberg-Nash strategy which is described as follows:

1. For each choice of the leader h, we look for a Nash equilibrium pair for the costs Ji, i = 1, 2 given by
(4). That is, find the controls (v̂1, v̂2)t = (v̂1(h), v̂2(h))t ∈ H satisfying

{
J1(h; v̂

1, v̂2) ≤ J1(h; v
1, v̂2), ∀v1 ∈ L2((0, T );L2(ω1)),

J2(h; v̂
1, v̂2) ≤ J2(h; v̂

1, v2), ∀v2 ∈ L2((0, T );L2(ω2)),
(7)

or equivalently 




J1(h; v̂
1, v̂2) = min

v1∈L2((0,T );L2(ω1))
J1(h; v

1, v̂2),

J2(h; v̂
1, v̂2) = min

v2∈L2((0,T );L2(ω2))
J2(h; v̂

1, v2).
(8)

2. Once the Nash equilibrium has been identified and fixed for each h, we look for a control h̄ such that

y1(T, ·; h̄; v̂1(h̄), v̂2(h̄)) = y2(T, ·; h̄; v̂1(h̄), v̂2(h̄)) = 0 in Ω. (9)

Remark 2

(a) In the linear case, the functionals Ji, i = 1, 2 are differentiable and convex and in this case, the pair
(v̂1, v̂2) is a Nash equilibrium for (J1, J2) if and only if





∂J1
∂v1

(h; v̂1, v̂2)(v1, 0) = 0, ∀v1 ∈ L2((0, T );L2(ω1)), v̂i ∈ L2((0, T );L2(ωi)),

∂J2
∂v2

(h; v̂1, v̂2)(0, v2) = 0, ∀v2 ∈ L2((0, T );L2(ω2)), v̂i ∈ L2((0, T );L2(ωi)).
(10)

(b) In the semi-linear framework, the corresponding functionals J1 and J2 are not convex in general. For
this reason, we must consider the weaker definition of Nash equilibrium given below.

Definition 1.1

Let the leader control h be given. The pair (v̂1, v̂2) is called a Nash quasi-equilibrium of functionals (J1, J2)
if the condition (10) is satisfied.

In this paper, we are interested by the concept of Stackelberg competition introduced by [36]. It is
a strategy game between several firms in which one of the firms (called the leader) moves first and the
others firms (named followers) moves according to the leader’s strategy. In case of many followers with each
corresponding to a specific optimality objective, the Nash equilibrium is the most suitable.

In the framework of partial differential equations (PDEs), the hierarchic control was introduced by J-L.
Lions in [27, 28] to study a bi-objective control problem for the wave and heat equations respectively. In the
last years, other authors have used hierarchical control in the sense of Lions, see for instance [31, 32, 14, 24, 25,
18, 30, 15]. There are in the literature some important results about Stackelberg-Nash strategy for PDEs. In
[3], F. D Araruna et al. developed the first hierarchical results within the exact controllability framework for
class of parabolic equations (linear and semi-linear), with pointwise constraints on the followers. In [13], N.
Carreño and M. C. Santos applied the Stackelberg-Nash strategy to the Kuramoto-Sivashinsky equation with
a distributed leader, and two followers. Their results were achieved by proving a partial null controllability
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result for a system of non linear fourth-order equations with boundary coupling terms. In [16], the author
studied the Stackelberg-Nash strategy for a non linear parabolic equation in an unbounded domain. His
results were achieved using a Schauder’s fixed point Theorem under the assumption that the uncontrolled
domain is bounded. In [34], Dany Nina Huaman applied Stackelberg-Nash strategy to control a quasi-linear
parabolic equations in dimensions 1D, 2D or 3D. In [9], the authors applied hierarchical control to the
anisotropic heat equation with dynamic boundary conditions and drift terms. Even though the hierarchical
control of several types of problems has been intensively considered by researchers (see e.g [7, 6] ) there only
a few addressing the important case of coupled systems.

In the context of hierarchical strategy for coupled systems, Kéré et al. [26], considered a bi-objective
control strategy for a coupled parabolic equations with a finite constraints on one of the states. Their results
were achieved by means of an observability inequality of Carleman adapted to the constraints. In [21] and
[23], V. Hernández-Santamaŕıa et al. studied a Stackelberg-Nash strategy for a cascade system of parabolic
equations and for a cascade system of parabolic equations with the leader as a vector function acting in the
two equations. More recently in [33], J. Limaco et al. applied the Stackelberg-Nash strategy to a coupled
quasi-linear parabolic system with controls acting in the interior on the domain.

In all the above cited works, the hierarchic strategy were applied to non degenerate systems. To the best
of our knowledge, there do not exists any work in the literature addressing the Stackelberg-Nash strategy for
a coupled degenerate parabolic system. As far as we know, the only work dealing with hierarchical strategy
applied to a single degenerate equation is the one of F. D. Araruna et al. [5], where the authors studied the
Stackelberg-Nash strategy for a semi-linear degenerate parabolic equations. In the present paper, the main
novelty is that, we extend the results concerning the Stackelberg-Nash control to the coupled degenerate
parabolic equation (1).

1.1 Main results

We will prove that if µi, i = 1, 2 are sufficiently large, then the functionals Ji, i = 1, 2 given by (4) are
indeed convex. More precisely, we have the following results.

Theorem 1.1

Assume that (2), (3), y0 ∈ [L2(Ω)]2 and yid ∈ L∞((0, T );ω1,d) × L∞((0, T );ω2,d) are satisfied. Assume
that h ∈ L2(ωT ) and µi, i = 1, 2 are sufficiently large. Then, if (v̂1, v̂2) is a Nash quasi-equilibrium for
Ji, i = 1, 2, there exists a constant C > 0 independent of µi, i = 1, 2 such

D2
i Ji(h; v̂

1, v̂2) · (wi, wi) ≥ C‖wi‖2L2((0,T );L2(ωi))
, ∀wi ∈ L2((0, T );L2(ωi)), i = 1, 2. (11)

In particular, the functional (J1, J2) are convex in (v̂1, v̂2) and therefore the pair (v̂1, v̂2) is a Nash equilibrium
for Ji, i = 1, 2 of the system (1).

To state the main contribution of this paper, we assume that the control regions satisfy the following
assumptions:





ω1,d = ω2,d : the common observability set will be denoted by ωd,

ωd ∩ ω 6= ∅.
(12)

Our main result of this paper is the following:

4



Theorem 1.2

Suppose that (12) holds, the µi, i = 1, 2 are large enough, a(·) satisfies (2) and the function Fi, i = 1, 2
satisfy (3). Let O2 be a non-empty subset of ω such that the following inequality holds:

d ≥ d0 > 0 in (0, T )×O2. (13)

Then, there exists a positive real weight function κ = κ(t) (the definition of κ will be given later) such that
for any yid = (yi1,d, y

i
2,d)

t ∈ L2((0, T );ω1,d)× L2((0, T );ω2,d) satisfying

∫ T

0

∫

ωd

κ−2|yij,d|2 dxdt < +∞, i, j = 1, 2, (14)

and for any y0 ∈ [L2(Ω)]2, there exist a control h̄ ∈ L2(ωT ) and an associated Nash equilibrium (v̂1, v̂2) ∈
H = L2((0, T );L2(ω1))× L2((0, T );L2(ω2)) such that the corresponding solution to (1) satisfies (9).

Remark 3

In this work, we assume that ωi ∩ω = ∅. This means that the followers control cannot act on the leader’s
domain.

The rest of this paper is organized as follows. In Section 2, we give the proof of existence, uniqueness and
characterization of Nash equilibrium. Section 3 deals with the proof of some suitable Carleman estimates. In
Section 4, we deduce the null controllability result of system (1). Concluding remarks is made in Section 5.

2 Preliminary results

2.1 Well-posedness result of system (1)

In the sequel, the usual norm in L∞(Q) will be denoted by ‖ · ‖∞. In order to study the well-posedness of
system (1), we introduce as in [10, 11, 12] the weight spaces H1

a(Ω) and H
2
a(Ω) as follows (in the sequel, abs.

cont. means absolutely continuous):

{
H1

a(Ω) = {u ∈ L2(Ω) : u is abs. cont. in [0, 1] :
√
aux ∈ L2(Ω), u(0) = u(1) = 0},

H2
a(Ω) = {u ∈ H1

a(Ω) : a(x)ux ∈ H1(Ω)}, (15)

endowed respectively with the norms
{

‖u‖2H1
a(Ω) = ‖u‖2L2(Ω) + ‖√aux‖2L2(Ω), u ∈ H1

a(Ω),

‖u‖2H2
a(Ω) = ‖u‖2H1

a(Ω) + ‖(a(x)ux)x‖2L2(Ω), u ∈ H2
a(Ω).

(16)

Under the assumptions (2), we have the following embedding (see [17, Lemma 2.2])

H1
a(Ω) →֒ L∞(Ω). (17)

Proceeding as in [1, Proposition 2.3] by using the semi-group theory or using the variational approach
[29, Theorem 1.1, page 37], we can prove the following result.

Proposition 2.1

Assume that (2) and (3) are valid. Let y0 ∈ [L2(Ω)]2, h ∈ L2(ωT ) and (v1, v2)t ∈ H = L2((0, T );L2(ω1))×
L2((0, T );L2(ω2)). Then, the system (1) admits a unique weak solution

y ∈ H = L2((0, T ); [H1
a(Ω)]

2) ∩ [C([0, T ];L2(Ω))]2. (18)
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Moreover, there exists a constant C = C(T,K) > 0 such that the following estimation holds:

sup
τ∈[0,T ]

‖y1(τ, ·)‖2L2(Ω) + sup
τ∈[0,T ]

‖y2(τ, ·)‖2L2(Ω) + ‖y1‖2L2((0,T );H1
a(Ω)) + ‖y2‖2L2((0,T );H1

a(Ω))

≤ C
(
‖v1‖2L2(ω1,T ) + ‖v2‖2L2(ω2,T ) + ‖h‖2L2(ωT ) + ‖y01‖2L2(Ω) + ‖y02‖2L2(Ω)

)
,

(19)

where K is the Lipschitz constant.

We state the Hardy-Poincaré inequality that will be useful for the rest of the paper. This inequality is
similar to the one stated on [2, Proposition 2.1] as well as its proof.

Proposition 2.2 (Hardy-Poincaré inequality)
Assume that a : [0; 1] −→ R+ is in C([0; 1]), a(0) = 0 and a > 0 on (0; 1]. Furthermore, assume that a

is such that there exists θ ∈ (0; 1) such that the function x 7−→ a(x)

xθ
is non-increasing in a neighbourhood of

zero. Then, there is a constant C > 0 such that for any z, locally absolutely continuous on (0; 1], continuous

at 0 and satisfying z(0) = 0 and

∫ 1

0

a(x)|z′(x)|2 dx < +∞, the following inequality holds

∫ 1

0

a(x)

x2
|z(x)|2 dx < C

∫ 1

0

a(x)|z′(x)|2 dx. (20)

Moreover, under the same hypothesis on z and the fact that the function x 7−→ a(x)

xθ
is non-increasing on

(0; 1], then the inequality (20) holds with C =
4

(1− θ)2
.

2.2 Characterization of Nash equilibrium

First, we give the following characterization of Nash quasi-equilibrium pair (recall Definition 1.1) (v̂1, v̂2) of
(1) for Ji, i = 1, 2 given by (4).

Proposition 2.3

Let h ∈ L2(ωT ) and assume that µi, i = 1, 2 are sufficiently large. Let also (v̂1, v̂2) ∈ H = L2((0, T );L2(ω1))×
L2((0, T );L2(ω2)) be the Nash quasi-equilibrium pair for (J1, J2). Then, there exists pi = (pi1, p

i
2) ∈ H such

that Nash quasi-equilibrium pair (v̂1, v̂2) ∈ H is characterized by

v̂i = − 1

µi
ρ−2
∗ pi1 in (0, T )× ωi, (21)

where y = (y1, y2) and p
i = (pi1, p

i
2) are solutions of the following optimality systems





y1,t − (a(x)y1,x)x + F1(y1) = hχω − 1

µ1
ρ−2
∗ p11χω1 −

1

µ2
ρ−2
∗ p21χω2 in Q,

y2,t − (a(x)y2,x)x + F2(y2) + dy1 = 0 in Q,
y1(t, 0) = y1(t, 1) = y2(t, 0) = y2(t, 1) = 0 on (0, T ),

y1(0, ·) = y01 , y2(0, ·) = y02 in Ω

(22)

and 



−pi1,t −
(
a(x)pi1,x

)
x
+ F ′

1(y1)p
i
1 + dpi2 = αi

(
y1 − yi1,d

)
χωi,d

in Q,

−pi2,t −
(
a(x)pi2,x

)
x
+ F ′

2(y2)p
i
2 = αi

(
y2 − yi2,d

)
χωi,d

in Q,

pi1(t, 0) = pi1(t, 1) = pi2(t, 0) = pi2(t, 1) = 0 on (0, T ),
pi1(T, ·) = pi2(T, ·) = 0 in Ω.

(23)
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Proof.

If (v̂1, v̂2) is a Nash quasi-equilibrium in the sense of the Definition 1.1, then we have

αi

∫ T

0

∫

ωi,d

[
(y1 − yi1,d)z

i
1 + (y2 − yi2,d)z

i
2

]
dx dt

+µi

∫ T

0

∫

ωi

ρ2∗v̂
ivi dx dt = 0, for all vi ∈ L2((0, T );L2(ωi)),

(24)

where zi = (zi1, z
i
2) is the solution of the following system





zi1,t −
(
a(x)zi1,x

)
x
+ F ′

1(y1)z
i
1 = viχωi

in Q,

zi2,t −
(
a(x)zi2,x

)
x
+ F ′

2(y2)z
i
2 + dzi1 = 0 in Q,

zi1(t, 0) = zi1(t, 1) = zi2(t, 0) = zi2(t, 1) = 0 on (0, T ),
zi1(0, ·) = zi2(0, ·) = 0 in Ω.

(25)

If we multiply (23) by zi solution of (25) and integrate by parts on Q, we obtain

αi

∫ T

0

∫

ωi,d

[
(y1 − yi1,d)z

i
1 + (y2 − yi2,d)z

i
2

]
dx dt =

∫ T

0

∫

ωi

vipi1 dx dt = 0.

Combining this latter equality with (24), we obtain

∫ T

0

∫

ωi

vi
(
pi1 + µiρ

2
∗v̂

i
)
dx dt = 0, for all vi ∈ L2((0, T );L2(ωi)),

from where (21)-(23) follows.

Remark 4

1. Notice that the existence and uniqueness of a solution for (22)-(23) implies the existence and uniqueness
of a Nash quasi-equilibrium in the sense of Definition 1.1. Proposition 2.1 guarantees the existence and
uniqueness of solution for system (22)-(23).

2. Using the idea of [16, Proposition 2.1], we can prove the existence of a constant C > 0 such that

‖(v̂1, v̂2)‖H ≤ C
(
1 + ‖h‖L2(ωT )

)
. (26)

Now, we introduce the following results useful for proving the Theorem 1.1. We consider the system





zt − (a(x)zx)x + c(t, x)z = g in Q,
z(·, 0) = z(·, 1) = 0 in (0, T ),

z(0, ·) = z0 in Ω.
(27)

We set
K := H1((0, T );L2(Ω)) ∩ L2((0, T );H2

a(Ω)) ∩ C([0, T ];H1
a(Ω)). (28)

Then we have the following result proved in [2, Theorem 2.1].

Theorem 2.1 Let z0 ∈ H1
a(Ω), c ∈ L∞(Q) and g ∈ L2(Q). Then, the system (27) admits a unique weak

solution z ∈ K. Moreover there exists a positive constant C = C(T ) such that

sup
t∈[0,T ]

‖z(t)‖2H1
a(Ω) +

∫ T

0

(
‖zt‖2L2(Ω) + ‖(a(x)zx)x‖2L2(Ω)

)
dx dt ≤ C(‖z0‖2H1

a(Ω) + ‖g‖2L2(Q)). (29)
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Lemma 2.1 Let z0 ∈ H1
a(Ω), c ∈ L∞(Q) and g ∈ L2(Q). Then the unique weak solution z ∈ K of (27)

belongs to L∞(Q). Moreover there exists a positive constant C = C(T ) such that

‖z‖L∞(Q) ≤ C(‖z0‖H1
a(Ω) + ‖g‖L2(Q)). (30)

Proof. Let t ∈ [0, T ], then by (29), we have

sup
t∈[0,T ]

‖z(t)‖H1
a(Ω) ≤ C

[
‖y0‖H1

a(Ω) + ‖g‖L2(Q)

]
. (31)

Using the embedding (17), we obtain for almost every t ∈ [0, T ],

‖z(t)‖L∞(Ω) ≤ C‖z(t)‖H1
a(Ω).

Therefore
‖z‖L∞(Q) ≤ C sup

t∈[0,T ]

‖z(t)‖H1
a(Ω). (32)

Combining (31) and (32), we deduce (30).
Next, we prove Theorem 1.1 establishing the equivalence between Nash quasi-equilibrium and Nash equi-

librium in the semi-linear case. The technique of the proof is inspired by [3, Proposition 1.4].

Proof of Theorem 1.1.

Let h ∈ L2(ωT ) be given and let (v̂1, v̂2) be the associated Nash quasi-equilibria. For any w1, w2 ∈ L2(ω1,T )
and s ∈ R, let us de note by ys = (ys1, y

s
2) the solution of the following system





ys1,t −
(
a(x)ys1,x

)
x
+ F1(y

s
1) = hχω + (v1 + sw1)χω1 + v2χω2 in Q,

ys2,t −
(
a(x)ys2,x

)
x
+ F2(y

s
2) + dys1 = 0 in Q,

ys1(t, 0) = ys1(t, 1) = ys2(t, 0) = ys2(t, 1) = 0 on (0, T ),
ys1(0, ·) = y01 , ys2(0, ·) = y02 in Ω

(33)

and let us set yi := ysi |s=0.
Now, we have

D1J1(h; v̂
1 + sw1, v̂2) · w2 −D1J1(h; v̂

1, v̂2) · w2 = sµ1

∫ T

0

∫

ω1

ρ2∗w
1w2 dxdt

+α1

∫ T

0

∫

ω1,d

[
(ys1 − y11,d)z

1,s
1 + (ys2 − y12,d)z

1,s
2

]
dxdt

−α1

∫ T

0

∫

ω1,d

[
(y1 − y11,d)z

1
1 + (y2 − y12,d)z

1
2

]
dxdt,

(34)

where z1,s = (z1,s1 , z1,s2 ) is the derivative of the state ysi with respect to v̂1 + sw1 in the direction w2, i.e. z1,s

is the solution to





z1,s1,t −
(
a(x)z1,s1,x

)

x
+ F ′

1(y
s
1)z

1,s
1 = w2χω1 in Q,

z1,s2,t −
(
a(x)z1,s2,x

)

x
+ F ′

2(y
s
2)z

1,s
2 + dz1,s1 = 0 in Q,

z1,s1 (t, 0) = z1,s1 (t, 1) = z1,s2 (t, 0) = z1,s2 (t, 1) = 0 on (0, T ),

z1,s1 (0, ·) = z1,s2 (0, ·) = 0 in Ω,

(35)
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and we have used the notation z1i := z1,si |s=0, i = 1, 2.
Let us introduce the adjoint of (35)





−p1,s1,t −
(
a(x)p1,s1,x

)

x
+ F ′

1(y
s
1)p

1,s
1 + dp1,s2 = α1

(
ys1 − y11,d

)
χω1,d

in Q,

−p1,s2,t −
(
a(x)p1,s2,x

)

x
+ F ′

2(y
s
2)p

1,s
2 = α1

(
ys2 − y12,d

)
χω1,d

in Q,

p1,s1 (t, 0) = p1,s1 (t, 1) = p1,s2 (t, 0) = p1,s2 (t, 1) = 0 on (0, T ),

p1,s1 (T, ·) = p1,s2 (T, ·) = 0 in Ω.

(36)

and let us use the notation p1i := p1,si |s=0.

Multiplying the first and the second equation of (35) by p1,s1 and p1,s2 , respectively and integrating by parts
over Q, we obtain

α1

∫ T

0

∫

ω1,d

[
(ys1 − y11,d)z

1,s
1 + (ys2 − y12,d)z

1,s
2

]
dxdt =

∫

Q

w2p1,s1 χω1 dxdt. (37)

From (34) and (37), we have

D1J1(h; v̂
1 + sw1, v̂2) · w2 −D1J1(h; v̂

1, v̂2) · w2 = sµ1

∫ T

0

∫

ω1

ρ2∗w
1w2 dxdt

+

∫ T

0

∫

ω1

(p1,s1 − p11)w
2 dxdt.

(38)

Note that






(ys1 − y1)t − (a(x)(ys1 − y1)x)x + [F1(y
s
1)− F1(y1)] = sw1χω1 ,

(ys2 − y2)t − (a(x)(ys2 − y2)x)x + [F2(y
s
2)− F2(y2)] + d(ys1 − y1) = 0

and





−(p1,s1 − p11)t −
(
a(x)(p1,s1 − p11)x

)

x
+ [F ′

1(y
s
1)− F ′

1(y1)] p
1,s
1 + F ′

1(y1)p
1,s
1 − p11 + d(p1,s2 − p12),

= α1(y
s
1 − y1)χω1,d

,

−(p1,s2 − p12)t −
(
a(x)(p1,s2 − p12)x

)

x
+ [F ′

2(y
s
2)− F ′

2(y2)] p
1,s
2 + F ′

2(y2)p
1,s
2 − p12 = α1(y

s
2 − y2)χω1,d

.

Consequently, using that F ∈ C2(R), we obtain that the following limits

η1i = lim
s→0

1

s
(p1,si − p1i ) and φi = lim

s→0

1

s
(ysi − yi), for i = 1, 2

exist and satisfy




−η11,t −
(
a(x)η11,x

)
x
+ F ′

1(y1)η
1
1 + F ′′

1 (y1)φ1p
1
1 + dη12 = α1φ1χω1,d

in Q,

−η12,t −
(
a(x)η12,x

)
x
+ F ′

2(y2)η
1
2 + F ′′

1 (y2)φ2p
1
2 = α1φ2χω1,d

in Q,

η11(t, 0) = η11(t, 1) = η12(t, 0) = η12(t, 1) = 0 on (0, T ),
η11(T, ·) = η12(T, ·) = 0 in Ω

(39)

and 



φ1,t − (a(x)φ1,x)x + F ′
1(y1)φ1 = w1χω1 in Q,

φ2,t − (a(x)φ2,x)x + F ′
2(y2)φ2 + dφ1 = 0 in Q,

φ1(t, 0) = φ1(t, 1) = φ2(t, 0) = φ2(t, 1) = 0 on (0, T ),
φ1(0, ·) = φ2(0, ·) = 0 in Ω.

(40)
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Thus, from (38)-(40) for w2 = w1, we have

D2
1J1(h; v̂

1, v̂2) · (w1, w1) =

∫ T

0

∫

ω1

ρ2∗η
1
1w

1 dxdt + µ1

∫ T

0

∫

ω1

|w1|2 dxdt. (41)

Let us show that, for some constant C > 0 independent of h, η1, φ, w1, one has

∣∣∣∣∣

∫ T

0

∫

ω1

ρ2∗η
1
1w

1 dxdt

∣∣∣∣∣ ≤ C‖w1‖2L2(ω1,T ). (42)

The energy estimates associated to systems (40) and (39) are given respectively by

‖φ1‖2L2(Q) + ‖φ2‖2L2(Q) ≤ C‖w1‖2L2(ω1,T ) (43)

and
‖η11‖2L2(Q) + ‖η22‖2L2(Q) ≤ C‖w1‖2L2(ω1,T ). (44)

As (v̂1, v̂2) is a Nash quasi-equilibrium, v̂i ∈ L2((0, T );ωi) and y
i
d ∈ L∞((0, T );ω1,d) × L∞((0, T );ω2,d),

then, p1 = (p11, p
1
2) solution of (36) belongs to [L2((0, T );H1

a(Ω))]
2 and using energy estimates, we obtain

‖p11‖2L2(Q) + ‖p12‖2L2(Q) ≤ C, (45)

where C is a positive constant which is independent of µ1 and µ2. In addition with the change of variables
t 7→ T − t and applying Lemma 2.1 with c = F ′

1(y1) ∈ L∞(Q) and g = α1(y1 − y11,d)χω1,d
− dp12 ∈ L2(Q) and

combining the result with (45), we deduce that

‖p11‖L∞(Q) ≤ C, (46)

with C a positive constant independent of µ1 and µ2. Using systems (39)-(40) and the estimates (43)-(46),
we obtain

∫

ω1,T

ρ2∗η
1
1w

1 dxdt =

∫

Q

ρ2∗
(
α1|φ1|2χωd

− F ′′
1 (y1)|φ1|2p11 − dη12φ1

)
dxdt

≤ α1‖φ1‖2L2(Q) + ‖F ′′
1 ‖∞‖φ1‖2L2(Q)‖p11‖L∞(Q) + ‖d‖∞‖η12‖L2(Q)‖φ1‖L2(Q)

≤ C‖w1‖2L2(ω1,T ),

(47)

where C is independent of µ1 and µ2.
We can use (42) in (41) and we obtain

D2
1J1(h; v̂

1, v̂2) · (w1, w1) ≥ (µ1 − C)

∫

ω1,T

|w1|2 dxdt, ∀w1 ∈ L2(ω1,T ).

In a similar way, we can prove that there exists a positive constant C independent of µ1 and µ2 such that

D2
2J2(h; v̂

1, v̂2) · (w2, w2) ≥ (µ2 − C)

∫

ω2,T

|w2|2 dxdt, ∀w2 ∈ L2(ω2,T ).

Taking µi sufficiently large, then the functional Ji, i = 1, 2 given by (4) is convex and therefore the pair
(v̂1, v̂2) is a Nash equilibrium in the sense of (8). �
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3 Carleman estimates

In this section we establish an observability inequality that allows us to prove the null controllability of
system (22)-(23). We start by proving an observability inequality for the adjoint systems associated to the
linearized version of (22)-(23)





−ρ1,t − (a(x)ρ1,x)x + b1ρ1 + dρ2 = α1ψ
1
1χω1,d

+ α2ψ
2
1χω2,d

in Q,
−ρ2,t − (a(x)ρ2,x)x + b2ρ2 = α1ψ

1
2χω1,d

+ α2ψ
2
2χω2,d

in Q,
ρ1(t, 0) = ρ1(t, 1) = ρ2(t, 0) = ρ2(t, 1) = 0 on (0, T ),

ρ1(T, ·) = ρT1 , ρ2(T, ·) = ρT2 in Ω

(48)

and 




ψi
1,t −

(
a(x)ψi

1,x

)
x
+ c1ψ

i
1 = − 1

µi
ρ−2
∗ ρ1χωi

in Q,

ψi
2,t −

(
a(x)ψi

2,x

)
x
+ c2ψ

i
2 + dψi

1 = 0 in Q,

ψi
1(t, 0) = ψi

1(t, 1) = ψi
2(t, 0) = ψi

2(t, 1) = 0 on (0, T ),
ψi
1(0, ·) = ψi

2(0, ·) = 0 in Ω,

(49)

where b1, b2, c1, c2, d ∈ L∞(Q) and ρT = (ρT1 , ρ
T
2 ) ∈ [L2(Ω)]2.

Since the first assumption of (12) holds and if we set ̺j = α1ψ
1
j + α2ψ

2
j , j = 1, 2, then we obtain






−ρ1,t − (a(x)ρ1,x)x + b1ρ1 + dρ2 = ̺1χωd
in Q,

−ρ2,t − (a(x)ρ2,x)x + b2ρ2 = ̺2χωd
in Q,

ρ1(t, 0) = ρ1(t, 1) = ρ2(t, 0) = ρ2(t, 1) = 0 on (0, T ),

ρ1(T, ·) = ρT1 , ρ2(T, ·) = ρT2 in Ω

(50)

and 




̺1,t − (a(x)̺1,x)x + c1̺1 = −ρ−2
∗

(
α1

µ1
χω1 +

α2

µ2
χω2

)
ρ1 in Q,

̺2,t − (a(x)̺2,x)x + c2̺2 + d̺1 = 0 in Q,
̺1(t, 0) = ̺1(t, 1) = ̺2(t, 0) = ̺2(t, 1) = 0 on (0, T ),

̺1(0, ·) = ̺2(0, ·) = 0 in Ω.

(51)

Classically, to establish Carleman inequality, we define some weight functions according to the nature of
model. In our case, these functions are stated as follows:
Since ωd ∩ ω 6= ∅ (recall (12)), then, there exists a non-empty open set O1 ⋐ ωd ∩ ω and σ ∈ C2([0, 1]) be a
function such that {

σ(x) > 0 in (0, 1), σ(0) = σ(1) = 0,
σx(x) 6= 0 in [0, 1] \ O0,

(52)

where O0 ⋐ O1 is an open subset. We refer to [19] for the existence of such a function σ.
Let τ ∈ [0, 1) be as in the assumption (2) and r, d̄ ∈ R be such that

r ≥ 4ln(2)

‖σ‖∞
and d̄ ≥ 5

a(1)(2 − τ)
. (53)

If r and d verify (53), then the interval I =

[
a(1)(2 − τ)(e2r‖σ‖∞ − 1)

d̄ a(1)(2− τ) − 1
,
4(e2r‖σ‖∞ − er‖σ‖∞)

3d̄

]
is non-empty
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(see [8]). Then we can choose λ in this interval and for r, d̄ satisfying (53), we define the following functions:






Θ(t) =
1

(t(T − t))4
, ∀t ∈ (0, T ), δ(x) := λ

(∫ x

0

y

a(y)
dy − d̄

)
,

ϕ(t, x) := Θ(t)δ(x), η(t, x) := Θ(t)erσ(x),

Ψ(x) =
(
erσ(x) − e2r‖σ‖∞

)
, Φ(t, x) := Θ(t)Ψ(x).

(54)

Using the second assumption in (53) on d̄, we observe that δ(x) < 0 for all x ∈ [0, 1]. Moreover, we have
that Θ(t) → +∞ as t tends to 0+ and T−. Under assumptions (53) and the choice of the parameter λ, the
weight functions ϕ and Φ defined by (54) satisfy the following inequalities which are needed in the sequel:

{
4

3
Φ ≤ ϕ ≤ Φ on Q,

2Φ ≤ ϕ on Q.
(55)

Remark 5

The weight function ρ∗ ∈ C∞([0, T ]) in (4) is such that

ρ∗(t) ≥ e−sϕ∗/2, (56)

where ϕ∗ = min
x∈Ω

ϕ(t, x) and ϕ is defined in (54). This weight function will help us to prove a Carleman

inequality for the solution of system (48)-(49). We can refer to [25, 3, 22] for a similar use of weight
function as (56).

Before going further, we consider the following result inspired by [1, Lemma 4.1] useful for the rest of the
paper.

Lemma 3.1 (Caccioppoli’s inequality)
Let O′ be a subset of O1 such that O′

⋐ O1. Let ρ = (ρ1, ρ2) and ̺ = (̺1, ̺2) be the solution of (50) and
(51) respectively. Then, there exists a positive constant C such that

∫ T

0

∫

O′

2∑

i=1

(ρ2i,x + ̺2i,x) e
2sϕ dx dt ≤ C

∫ T

0

∫

O1

s2Θ2
2∑

i=1

(ρ2i + ̺2i ) e
2sϕ dx dt, (57)

where the weight functions ϕ and Θ are defined by (54).

We state the following Carleman type inequality in the degenerate case proved in [8, Proposition 3.3].

Proposition 3.1

Consider the following system with f ∈ L2(Q), a0 ∈ L∞(Q) and zT ∈ L2(Ω),






−zt − (a(x)zx)x + a0z = f in Q,
z(t, 0) = z(t, 1) = 0 on (0, T ),

z(T, ·) = zT in Ω.
(58)

Then, there exist two positive constants C and s0, such that every solution of (58) satisfies, for all s ≥ s0,
the following inequality:
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I(z) ≤ C

(∫

Q

|f |2e2sϕ dx dt+ sa(1)

∫ T

0

Θz2x(t, 1)e
2sϕ(t,1) dt

)
, (59)

where

I(z) =
∫

QT

1

sΘ

(
|zt|2 + |(a(x)zx)x|2

)
e2sϕ dxdt +

∫

Q

(
s3Θ3 x2

a(x)
z2 + sΘa(x)z2x

)
e2sϕ dx dt, (60)

the functions Θ and ϕ are given by (54).

The next result is concerned with a classical Carleman estimate in suitable interval (b1, b2) ⊂ [0, 1] proved
in [19].

Proposition 3.2

We consider the following system with f ∈ L2(Qb), a0 ∈ L∞(Qb) and a ∈ C1([b1; b2]) is a strictly positive
function, {

−zt − (a(x)zx)x + a0z = f in Qb,
z(t, b1) = z(t, b2) = 0 on (0, T ),

(61)

where Qb := (0, T )× (b1, b2). Then, there exist two positive constants C and s2, such that every solution of
(61) satisfies, for all s ≥ s1, the following inequality holds

K(z) ≤ C

(∫

Qb

|f |2e2sΦ dx dt+
∫ T

0

∫

O1

s3η3z2e2sΦ dx dt

)
, (62)

where

K(z) =

∫

QT

1

sη

(
|zt|2 + |(a(x)zx)x|2

)
e2sΦ dxdt +

∫

Q

(s3η3z2 + sηz2x)e
2sΦ dx dt (63)

and the functions η and Φ are defined by (54).

3.1 An intermediate Carleman estimate

Now, we state and prove one of the important result of this paper which is the intermediate Carleman estimate
satisfied by solution of systems (50)-(51). This inequality is obtained by using the Carleman estimates (59)
and (62), the Hardy-Poincaré inequality (20) and the Caccioppoli’s inequality (57).

Theorem 3.1

Assume that the hypotheses (2) on a(·) are satisfied. Then, there exists a constant C1 > 0 such that every
solution ρ and ̺ of (50) and (51) respectively, satisfy, for any s large enough, the following inequality

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C1

∫ T

0

∫

O1

s3Θ3(ρ21 + ρ22 + ̺21 + ̺22)e
2sΦ dx dt, (64)

where the notation I(·) is defined by (60).
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Proof. Let us choose an arbitrary open subset O′ := (α, β) such that O′ ⋐ O1. Let us introduce the
smooth cut-off function ξ : R → R defined as follows






0 ≤ ξ ≤ 1, x ∈ R,
ξ(x) = 1, x ∈ [0, α],
ξ(x) = 0, x ∈ [β, 1].

(65)

Let ρ = (ρ1, ρ2)
t and ̺ = (̺1, ̺2)

t be respectively solutions of (50) and (51). We set ρ̃i = ξρi, i = 1, 2 and
˜̺i = ξ̺i, i = 1, 2. Then, ρ̃ and ˜̺ are respectively solutions to





−ρ̃1,t − (a(x)ρ̃1,x)x + b1ρ̃1 + dρ̃2 = ˜̺1χωd
− (a(x)ξx ρ1)x − ξx a(x)ρ1,x in Q,

−ρ̃2,t − (a(x)ρ̃2,x)x + b2ρ̃2 = ˜̺2χωd
− (a(x)ξx ρ2)x − ξx a(x)ρ2,x in Q,

ρ̃1(t, 0) = ρ̃1(t, 1) = ρ̃2(t, 0) = ρ̃2(t, 1) = 0 on (0, T ),

ρ̃1(T, ·) = ρ̃T1 , ρ̃2(T, ·) = ρ̃T2 in Ω

(66)

and 



˜̺1,t − (a(x)˜̺1,x)x + c1 ˜̺1 = G̃ in Q,
˜̺2,t − (a(x)˜̺2,x)x + c2 ˜̺2 + d˜̺1 = − (a(x)ξx ̺2)x − ξx a(x)̺2,x in Q,

˜̺1(t, 0) = ˜̺1(t, 1) = ˜̺2(t, 0) = ˜̺2(t, 1) = 0 on (0, T ),
˜̺1(0, ·) = ˜̺2(0, ·) = 0 in Ω,

(67)

where G̃ = −ρ−2
∗

(
α1

µ1
χω1 +

α2

µ2
χω2

)
ρ̃1 − (a(x)ξx ̺1)x − ξx a(x)̺1,x.

Let us also set ρi = ϑρi, i = 1, 2 and ̺i = ϑ̺i, i = 1, 2 with ϑ = 1− ξ. Then, the support of ρi and ̺i is
contained in [0, T ]× [α, 1] and are respectively solutions to




−ρ1,t −
(
a(x)ρ1,x

)
x
+ b1ρ1 + dρ2 = ̺1χOd

− (a(x)ϑx ρ1)x − ϑx a(x)ρ1,x in Qα,

−ρ2,t −
(
a(x)ρ2,x

)
x
+ b2ρ2 = ̺2χOd

− (a(x)ϑx ρ2)x − ϑx a(x)ρ2,x in Qα,

ρ1(t, 0) = ρ1(t, 1) = ρ2(t, 0) = ρ2(t, 1) = 0 on (0, T ),

ρ1(T, ·) = ρT1 , ρ2(T, ·) = ρT2 in Ω

(68)

and 



̺1,t −
(
a(x)̺1,x

)
x
+ c1̺1 = G in Qα,

˜̺2,t − (a(x)˜̺2,x)x + c2 ˜̺2 + d˜̺1 = − (a(x)ϑx ̺2)x − ϑx a(x)̺2,x in Qα,
̺1(t, 0) = ̺1(t, 1) = ̺2(t, 0) = ̺2(t, 1) = 0 on (0, T ),

̺1(0, ·) = ̺2(0, ·) = 0 in Ω,

(69)

where, G = −ρ−2
∗

(
α1

µ1
χω1 +

α2

µ2
χω2

)
ρ1 − (a(x)ϑx ̺1)x − ϑx a(x)̺1,x and Qα = (0, T )× (α, 1).

We make the rest of the proof in three steps:
Step 1. We prove that there exists a constant C > 0 such that

I(ρ̃1) + I(ρ̃2) + I(˜̺1) + I(˜̺2) ≤ C

∫ T

0

∫

O′

s2Θ2(ρ21 + ρ22 + ̺21 + ̺22)e
2sϕ dx dt. (70)

Applying the Carleman estimate (59) to the first equation of (66) with the second term f = −dρ̃2 +
˜̺1χOd

− (a(x)ξx ρ1)x − ξx a(x)ρ1,x, and using the fact that ρ̃1,x(t, 1) = 0, we obtain

I(ρ̃1) ≤ C

∫

Q

|−dρ̃2 + ˜̺1χOd
− (a(x)ξx ρ1)x − ξx a(x)ρ1,x|2 e2sϕ dx dt (71)

≤ C

∫

Q

[
|dρ̃2|2 + |˜̺1χOd

|2 + |(a(x)ξxρ1)x + a(x)ξxρ1,x|2
]
e2sϕ dx dt.
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From the definition of ξ, we have
∫

Q

|(a(x)ξxρ1)x + a(x)ξxρ1,x|2e2sϕ dx dt =

∫

Q

((a(x)ξx)xρ1 + 2a(x)ξxρ1,x)
2e2sϕ dx dt

≤
∫

Q

[
2((a(x)ξx)x)

2ρ1
2 + 8(a(x)ξx)

2ρ21,x
]
e2sϕ dx dt

≤ C

∫ T

0

∫

O′

(ρ21 + ρ21,x) e
2sϕ dx dt. (72)

In the other hand, using the fact that
x2

a(x)
is non-decreasing on (0, 1], thanks to Hardy-Poincaré inequality

(20) to the function esϕ ˜̺1 and using the definition of ϕ, we get
∫

Q

|˜̺1|2e2sϕ dx dt ≤ 1

a(1)

∫

Q

a(x)

x2
˜̺21e2sϕ dx dt

≤ C

a(1)

∫

Q

a(x)|(˜̺1 esϕ)x|2 dx dt

≤ C

(∫

Q

a(x)˜̺21,xe2sϕ dx dt+
∫

Q

s2Θ2 x2

a(x)
˜̺21e2sϕ dx dt

)
.

Using the fact that there exist a positive constant M1 such that

1 ≤M1Θ and Θ2 ≤M1Θ
3, (73)

we obtain
∫

Q

|˜̺1|2e2sϕ dx dt ≤ C

(∫

Q

Θa(x)˜̺21,xe2sϕ dx dt+
∫

Q

s2Θ3 x2

a(x)
˜̺21e2sϕ dx dt

)
. (74)

Proceeding as before, we obtain
∫

Q

|dρ̃2|2e2sϕ dx dt ≤ C

(∫

Q

Θa(x)ρ̃22,xe
2sϕ dx dt+

∫

Q

s2Θ3 x2

a(x)
ρ̃22e

2sϕ dx dt

)
. (75)

Combining (71)-(75), we obtain

I(ρ̃1) ≤ C

∫ T

0

∫

O′

(ρ21 + ρ21,x)e
2sϕ dx dt+ C

∫

Q

(
Θa(x)˜̺21,x + s2Θ3 x2

a(x)
˜̺21
)
e2sϕ dx dt

+C

∫

Q

(
Θa(x)ρ̃22,x + s2Θ3 x2

a(x)
ρ̃22

)
e2sϕ dx dt. (76)

Arguing in the same way as in (76) with ρ̃2, ˜̺1 and ˜̺2, we respectively obtain

I(ρ̃2) ≤ C

∫ T

0

∫

O′

(ρ22 + ρ22,x)e
2sϕ dx dt+ C

∫

Q

(
Θa(x)˜̺22,x + s2Θ3 x2

a(x)
˜̺22
)
e2sϕ dx dt, (77)

I(˜̺1) ≤ C

∫ T

0

∫

O′

(̺21 + ̺21,x)e
2sϕ dx dt+ C

∫

Q

(
Θa(x)ρ̃21,x + s2Θ3 x2

a(x)
ρ̃21

)
e2sϕ dx dt (78)
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and

I(˜̺2) ≤ C

∫ T

0

∫

O′

(̺22 + ̺22,x)e
2sϕ dx dt+ C

∫

Q

(
Θa(x)˜̺21,x + s2Θ3 x2

a(x)
˜̺21
)
e2sϕ dx dt. (79)

Combining (76)-(79) and taking s large enough, we obtain

I(ρ̃1) + I(ρ̃2) + I(˜̺1) + I(˜̺2) ≤ C

2∑

i=1

∫ T

0

∫

O′

(ρ2i + ̺2i + ρ2i,x + ̺2i,x)e
2sϕ dx dt.

Using Caccioppoli’s inequality (57) in the left hand side of this latter estimate, we obtain (70).
Step 2. We prove that there exists a constant C > 0 such that

K(ρ1) +K(ρ2) +K(̺1) +K(̺2) ≤ C

∫ T

0

∫

O1

s3Θ3(ρ21 + ρ22 + ̺21 + ̺22)e
2sΦ dx dt, (80)

where the notation K(·) is defined by (63).
Since on Qα all the above systems are non degenerate, applying the classical Carleman inequality (62) to

the first solution ρ1 of (68) with b1 = α, b2 = 1 and f = −dρ2 + ̺1χOd
− (a(x)ϑx ρ1)x − ϑx a(x)ρ1,x, we get

K(ρ1) ≤ C

∫

Q

[
|dρ2|2 + |̺1χωd

|2 + |(a(x)ϑxρ1)x + a(x)ϑxρ1,x|2
]
e2sΦ dx dt+

∫ T

0

∫

O1

s3η3ρ21e
2sΦ dx dt

≤ C

∫

Q

[
|dρ2|2 + |̺1χωd

|2 + |(a(x)ϑxρ1)x + a(x)ϑxρ1,x|2
]
e2sΦ dx dt (81)

+

∫ T

0

∫

O1

s3Θ3ρ21e
2sΦ dx dt

because η(t, x) := Θ(t)erσ(x) ≤ Θ(t)er‖σ(x)‖∞ . Using the definition of the function ϑ, we have
∫

Q

|(a(x)ϑxρ1)x + a(x)ϑxρ1,x|2e2sΦ dx dt =

∫

Q

((a(x)ϑx)xρ1 + 2a(x)ϑxρ1,x)
2e2sΦ dx dt

≤
∫

Q

[
2((a(x)ϑx)x)

2ρ1
2 + 8(a(x)ϑx)

2ρ21,x
]
e2sΦ dx dt

≤ C

∫ T

0

∫

O′

(ρ21 + ρ21,x) e
2sΦ dx dt. (82)

On the other hand, since
x2

a(x)
is non-decreasing on (0, 1] and thanks to Hardy-Poincaré inequality (20) to

the function esΦ̺1, we get

∫

Q

|̺1|2e2sΦ dx dt ≤ 1

a(1)

∫

Q

a(x)

x2
̺21e

2sΦ dx dt

≤ C

a(1)

∫

Q

a(x)|(̺1 esΦ)x|2 dx dt

≤ C

∫

Q

(
a(x)̺21,x + a(x)s2η2̺21

)
e2sΦ dx dt.
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Using (73), the fact that a ∈ C1([α; 1]) and η−1 ∈ L∞(Q), we get
∫

Q

̺21e
2sΦ dx dt ≤ C

∫

Q

(
η̺21,x + s2η3̺21

)
e2sΦ dx dt. (83)

Arguing as before, we obtain
∫

Q

|dρ2|2e2sΦ dx dt ≤ C

∫

Q

(
ηρ22,x + s2η3ρ22

)
e2sΦ dx dt. (84)

Combining (81)-(84), we obtain

K(ρ1) ≤ C

∫ T

0

∫

O′

(ρ21 + ρ21,x)e
2sΦ dx dt+ C

∫ T

0

∫

O1

s3Θ3ρ21e
2sΦ dx dt

+C

∫

Q

(
η̺21,x + s2η3̺21

)
e2sΦ dx dt+ C

∫

Q

(
ηρ22,x + s2η3ρ22

)
e2sΦ dx dt. (85)

Applying the same way as in (85) to ρ2, ̺1 and ̺2, we respectively obtain

K(ρ2) ≤ C

∫ T

0

∫

O′

(ρ22 + ρ22,x)e
2sΦ dx dt+ C

∫ T

0

∫

O1

s3Θ3ρ22e
2sΦ dx dt

+C

∫

Q

(
η̺22,x + s2η3̺22

)
e2sΦ dx dt, (86)

K(̺1) ≤ C

∫ T

0

∫

O′

(̺21 + ̺21,x)e
2sΦ dx dt+ C

∫ T

0

∫

O1

s3Θ3̺21e
2sΦ dx dt

+C

∫

Q

(
ηρ21,x + s2η3ρ21

)
e2sΦ dx dt (87)

and

K(̺2) ≤ C

∫ T

0

∫

O′

(̺22 + ̺22,x)e
2sΦ dx dt+ C

∫ T

0

∫

O1

s3Θ3̺22e
2sΦ dx dt

+C

∫

Q

(
η̺21,x + s2η3̺21

)
e2sΦ dx dt. (88)

Combining (85)-(88) and taking s large enough, we obtain

K(ρ1) +K(ρ2) +K(̺1) +K(̺2) ≤ C

2∑

i=1

∫ T

0

∫

O′

(ρ2i + ̺2i + ρ2i,x + ̺2i,x)e
2sΦ dx dt

+C

∫ T

0

∫

O1

s3Θ3(ρ21 + ρ22 + ̺21 + ̺22)e
2sΦ dx dt.

Combining this latter estimate with Caccioppoli’s inequality (57), we obtain we obtain (80).
Step 3. Now, we prove the inequality (64).
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Thanks to inequalities (55), the fact that a ∈ C1([α, 1]) and the function
x2

a(x)
is non-decreasing on (0, 1],

one can prove the existence of a constant C > 0 such that for all (t, x) ∈ (0, T )× [α, 1], we have

e2sϕ ≤ e2sΦ,
x2

a(x)
e2sϕ ≤ Ce2sΦ, a(x)e2sϕ ≤ Ce2sΦ. (89)

Using (89), the inequality (80) becomes

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C

∫ T

0

∫

O1

s3Θ3(ρ21 + ρ22 + ̺21 + ̺22)e
2sΦ dx dt. (90)

Combining (70) and (90) and using the first inequality of (89), we obtain

I(ρ1 + ρ̃1) + I(ρ2 + ρ̃2) + I(̺1 + ˜̺1) + I(̺2 + ˜̺2) ≤ C

∫ T

0

∫

O1

s3Θ3(ρ21 + ρ22 + ̺21 + ̺22)e
2sΦ dx dt. (91)

Using the fact that ̺i = ˜̺i + ̺i, i = 1, 2 and ρi = ρ̃i + ρi, i = 1, 2, then we have

|̺i|2 ≤ 2
(
|˜̺i|2 + |̺i|2

)
, |ρi|2 ≤ 2

(
|ρ̃i|2 + |ρi|2

)
,

|̺i,x|2 ≤ 2
(
|˜̺i,x|2 + |̺i,x|2

)
, |ρi,x|2 ≤ 2

(
|ρ̃i,x|2 + |ρi,x|2

)
.

(92)

Combining (91) and (92), we obtain the existence of a constant C1 > 0 such that

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C1

∫ T

0

∫

O1

s3Θ3(ρ21 + ρ22 + ̺21 + ̺22)e
2sΦ dx dt.

This completes the proof.

3.2 An observability inequality result

This part is devoted to the observability inequality of systems (50)-(51). This inequality is obtained by using
the intermediate Carleman estimate (64).

Proposition 3.3

Under the assumptions of Theorem 3.1, there exists a constant C4 > 0, such that every solution ρ and ̺
of (50) and (51), respectively, satisfy, for s large enough, the following inequality:

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C4s
15

∫ T

0

∫

ω

|ρ1|2 dx dt, (93)

where the notation I(·) is defined by (60).

Proof.

The proof of this proposition is inspired by techniques from [35, Lemma 1]. We will achieve it in two
steps.
Step 1. First, we want to eliminate the local term corresponding to ̺1 and ̺2 on the right hand side of
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(64). So, let O2 be a non empty open set such that O1 ⋐ O2 ⋐ ωd ∩ ω. We introduce as in [35] the cut off
function ξ1 ∈ C∞

0 (Ω) such that

0 ≤ ξ1 ≤ 1 in Ω, ξ1 = 1 in O1, ξ1 = 0 in Ω \ O2, (94a)

ξ1,xx

ξ
1/2
1

∈ L∞(O2),
ξ1,x

ξ
1/2
1

∈ L∞(O2). (94b)

Set u1 = s3Θ3e2sΦ. Then u1(T ) = u1(0) = 0 and we have the following estimations:

|u1ξ1| ≤ s3Θ3e2sΦξ1, |(u1ξ1)t| ≤ Cs4Θ8e2sΦξ1,

|(u1ξ1)x| ≤ Cs4Θ4e2sΦξ1, |(a(x)(u1ξ1)x)x| ≤ Cs5Θ5e2sΦξ1,
(95)

where C is a positive constant.
If we multiply the first and the second equation of (50) by u1ξ1̺1 and u1ξ1̺2, respectively, and integrate

by parts over Q, we obtain

J1 + J2 + J3 + J4 + J5 + J6 + J7 =

∫

Q

u1ξ1(|̺1|2 + |̺2|2)χωd
dx dt, (96)

where

J1 = −α1

µ1

∫

Q

u1ξ1|ρ1|2χω1 dx dt−
α2

µ2

∫

Q

u1ξ1|ρ1|2χω2 dx dt, J2 =

∫

Q

ρ1̺1
∂(u1ξ1)

∂t
dx dt,

J3 =

∫

Q

ρ2̺2
∂(u1ξ1)

∂t
dx dt, J4 = −

∫

Q

(a(x)(u1ξ1)x)x ρ1̺1 dx dt, J5 = −
∫

Q

(a(x)(u1ξ1)x)x ρ2̺2 dx dt,

J6 = −2

∫

Q

a(x)(u1ξ1)xρ1̺1,x dx dt, J7 = −2

∫

Q

a(x)(u1ξ1)xρ2̺2,x dx dt.

Let us estimate Ji, i = 1, · · · , 7. Using Young’s inequality, we have

J1 ≤
(
α1

µ1
+
α2

µ2

)
C

∫

Q

s3Θ3e2sΦξ1|ρ1|2 dx dt

≤
(
α2
1

µ2
1

+
α2
2

µ2
2

)∫

Q

s3Θ3 x2

a(x)
e2sϕ|ρ1|2dx dt+ C

∫ T

0

∫

O2

s3Θ3 a(x)

x2
e2s(2Φ−ϕ)|ρ1|2dx dt,

J2 ≤ C

∫

Q

s4Θ8e2sΦξ1|ρ1̺1| dx dt

≤ δ2
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|̺1|2dx dt+ Cδ2

∫ T

0

∫

O2

s5Θ13 a(x)

x2
e2s(2Φ−ϕ)|ρ1|2dx dt,

J3 ≤ C

∫

Q

s4Θ8e2sΦξ1|ρ2̺2| dx dt

≤ δ3
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|̺2|2dx dt+ Cδ3

∫ T

0

∫

O2

s5Θ13 a(x)

x2
e2s(2Φ−ϕ)|ρ2|2dx dt,
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J4 ≤ C

∫

Q

s5Θ5e2sΦξ1|ρ1̺1| dx dt

≤ δ4
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|̺1|2dx dt+ Cδ4

∫ T

0

∫

O2

s7Θ7 a(x)

x2
e2s(2Φ−ϕ)|ρ1|2dx dt,

J5 ≤ C

∫

Q

s5Θ5e2sΦξ1|ρ2̺2| dx dt

≤ δ5
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|̺2|2dx dt+ Cδ5

∫ T

0

∫

O2

s7Θ7 a(x)

x2
e2s(2Φ−ϕ)|ρ2|2dx dt,

J6 ≤ C

∫

Q

s4Θ4a(x)e2sΦξ1|ρ1̺1,x| dx dt

≤ δ6
2

∫

Q

sΘa(x)e2sϕ|̺1,x|2dx dt+ Cδ6

∫ T

0

∫

O2

s7Θ7a(x)e2s(2Φ−ϕ)|ρ1|2dx dt,

J7 ≤ C

∫

Q

s4Θ4a(x)e2sΦξ1|ρ2̺2,x| dx dt

≤ δ7
2

∫

Q

sΘa(x)e2sϕ|̺2,x|2dx dt+ Cδ7

∫ T

0

∫

O2

s7Θ7a(x)e2s(2Φ−ϕ)|ρ2|2dx dt.

Finally, choosing the constants δi such that δ2 = δ3 = δ4 = δ5 =
1

4C1
and δ6 = δ7 =

1

2C1
, where C1 is

the constant obtained to Theorem 3.1, it follows from (96) and the previous inequalities that

∫ T

0

∫

O1

s3Θ3e2sΦ(|̺1|2 + |̺2|2) dx dt ≤ 1

2C1
I(̺1) +

1

2C1
I(̺2)

+

(
α2
1

µ2
1

+
α2
2

µ2
2

)∫ T

0

∫

Q

s3Θ3 x2

a(x)
e2sϕ|ρ1|2 dx dt

+ C

∫ T

0

∫

O2

s7Θ13a(x)

x2
e2s(2Φ−ϕ)(|ρ1|2 + |ρ2|2) dx dt

+C

∫ T

0

∫

O2

s7Θ7a(x)e2s(2Φ−ϕ)(|ρ1|2 + |ρ2|2) dx dt.

(97)

Combining (64) with (97) and taking µi, i = 1, 2 large enough, we obtain

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C

∫ T

0

∫

O2

s7Θ13 a(x)

x2
e2s(2Φ−ϕ)(|ρ1|2 + |ρ2|2) dx dt

+C

∫ T

0

∫

O2

s7Θ7a(x)e2s(2Φ−ϕ)(|ρ1|2 + |ρ2|2) dx dt. (98)
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Since
a(x)

x2
and a(x) are bounded on O2, then using (98), we obtain the existence of a positive constant C2

such that

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C2

∫ T

0

∫

O2

s7Θ13e2s(2Φ−ϕ)(|ρ1|2 + |ρ2|2) dx dt. (99)

Step 2. Now, we want to eliminate the local term ρ2 on the right hand side of (99). We take a non empty
open set O3 such that O2 ⋐ O3 ⋐ ωd ∩ ω. Let ξ2 ∈ C∞

0 (Ω) a cut off function such that

0 ≤ ξ2 ≤ 1 in Ω, ξ2 = 1 in O2, ξ2 = 0 in Ω \ O3, (100a)

ξ2,xx

ξ
1/2
2

∈ L∞(O3),
ξ2,x

ξ
1/2
2

∈ L∞(O3). (100b)

We set u2 = s7Θ13e2s(2Φ−ϕ). Then, there exists a positive constant C such that the following inequalities
holds:

|u2ξ2| ≤ s7Θ13e2s(2Φ−ϕ)ξ2, |(u2ξ2)t| ≤ Cs8Θ18e2s(2Φ−ϕ)ξ2,

|(u2ξ2)x| ≤ Cs8Θ14e2s(2Φ−ϕ)ξ2, |(a(x)(u2ξ2)x)x| ≤ Cs9Θ15e2s(2Φ−ϕ)ξ2.

(101)

Multiplying the first equation of (50) by u2ξ2ρ2 and integrating by parts over Q, we obtain
∫

Q

du2ξ2|ρ2|2 dx dt = K1 +K2 +K3 +K4 +K5 +K6 +K7, (102)

where

K1 = −
∫

Q

ρ1ρ2(u2ξ2)t dx dt, K2 = −
∫

Q

u2ξ2ρ1ρ2,t dx dt, K3 =

∫

Q

(a(x)(u2ξ2)x)x ρ1ρ2 dx dt,

K4 = 2

∫

Q

a(x)(u2ξ2)xρ1ρ2,x dx dt, K5 =

∫

Q

u2ξ2ρ1(a(x)ρ2,x)x dx dt,

K6 = −
∫

Q

bw1
1 u2ξ2ρ1ρ2 dx dt, K7 =

∫

Q

u2ξ2̺1ρ2χωd
dx dt.

Let us estimate Ki, i = 1, · · · , 7. Using inequalities (101), we have

K1 ≤ γ1
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|ρ2|2dx dt+ Cγ1

∫ T

0

∫

O3

s13Θ33a(x)

x2
e2s(4Φ−3ϕ)|ρ1|2dx dt,

K2 ≤ γ2
2

∫

Q

1

sΘ
e2sϕ|ρ2,t|2dx dt+ Cγ2

∫ T

0

∫

O3

s15Θ27e2s(4Φ−3ϕ)|ρ1|2dx dt,

K3 ≤ γ3
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|ρ2|2dx dt+ Cγ3

∫ T

0

∫

O3

s15Θ27a(x)

x2
e2s(4Φ−3ϕ)|ρ1|2dx dt,

K4 ≤
γ4
2

∫

Q

sΘa(x)e2sϕ|ρ2,x|2dx dt+ Cγ4

∫ T

0

∫

O3

s15Θ27a(x)e2s(4Φ−3ϕ)|ρ1|2dx dt,
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K5 ≤
γ5
2

∫

Q

1

sΘ
e2sϕ|(a(x)ρ2,x)x|2dx dt+ Cγ5

∫ T

0

∫

O3

s7Θ7e2s(4Φ−3ϕ)|ρ1|2dx dt,

K6 ≤ γ6
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|ρ2|2dx dt+ Cγ6

∫ T

0

∫

O3

s11Θ23a(x)

x2
e2s(4Φ−3ϕ)|ρ1|2dx dt.

For K7, we have

K7 ≤ γ7
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|ρ2|2dx dt+ Cγ7

∫ T

0

∫

O3

s11Θ23a(x)

x2
e2s(4Φ−3ϕ)|̺1|2dx dt.

Thanks to (55), we have 4Φ− 3ϕ ≤ 0, then Θ23e2s(4Φ−3ϕ) ∈ L∞(Q). Furthermore,
a(x)

x2
is bounded on O3.

Then, K7 becomes

K7 ≤ γ7
2

∫

Q

s3Θ3 x2

a(x)
e2sϕ|ρ2|2dx dt+ Cγ7,s

∫ T

0

∫

O3

|̺1|2dx dt.

We choose the constants γi such that γ1 = γ3 = γ6 = γ7 =
d0
4C2

and γ2 = γ5 = γ4 =
d0
C2

, where C2 is

the constant obtained in (99) and d0 is defined in (13). Using the condition (13) and the fact that
a(x)

x2
and

a(x) are bounded on O3, we obtain from (102)

d0

∫ T

0

∫

O2

s7Θ13e2s(4Φ−3ϕ)|̺2|2 dx dt ≤
d0
2C2

I(̺2) + C3

∫ T

0

∫

O3

s15Θ33e2s(4Φ−3ϕ)|ρ1|2 dx dt

+C(s)

∫ T

0

∫

O3

|̺1|2dx dt.
(103)

Putting the estimate (103) in (99), we get

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C4

∫ T

0

∫

O3

s15Θ33e2s(4Φ−3ϕ)|ρ1|2 dx dt+ C(s)

∫ T

0

∫

O3

|̺1|2dx dt. (104)

In order to eliminate the last term in the previous inequality, we establish the energy estimates for the system
(51) and we obtain:

∫ T

0

∫

O3

(|̺1|2 + |̺2|2) dxdt ≤ C(‖c1‖∞, ‖c2‖∞, ‖d‖∞, T )
(
α2
1

µ2
1

+
α2
2

µ2
2

)∫ T

0

∫

O3

|ρ−2
∗ ρ1|2 dxdt. (105)

Using the definition of ρ∗(t) given in Remark 5, we get ρ−2
∗ ≤ esϕ∗ ≤ esϕ. Furthermore, Θ ∈ L∞((0, T )) and

x2

a(x)
is non-decreasing on (0, 1]. Then, the inequality (105) becomes

∫ T

0

∫

O3

(|̺1|2 + |̺2|2) dxdt ≤ C(‖c1‖∞, ‖c2‖∞, ‖d‖∞, T )
(
α2
1

µ2
1

+
α2
2

µ2
2

)∫ T

0

∫

O3

Θ3 x2

a(x)
e2sϕ|ρ1|2 dxdt.

(106)
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Combining (106) with (104) and taking µi, i = 1, 2 large enough, we obtain

I(ρ1) + I(ρ2) + I(̺1) + I(̺2) ≤ C4

∫ T

0

∫

O3

s15Θ33e2s(4Φ−3ϕ)|ρ1|2 dx dt. (107)

Thanks to (55), we have 4Φ − 3ϕ ≤ 0, then Θ33e2s(4Φ−3ϕ) ∈ L∞(Q). Furthermore, using the fact that,
O3 ⊂ ω, we deduce the inequality (93) and we complete the proof of Proposition 3.3.

To prove the needed observability inequality, we are going to improve the Carleman inequality (93). To
this end, we modify the weight functions ϕ and Θ defined in (54) as follows:

ϕ̃(t, x) =





ϕ

(
T

2
, x

)
if t ∈

[
0,
T

2

]
,

ϕ(t, x) if t ∈
[
T

2
, T

] (108)

and

Θ̃(t) =






Θ

(
T

2

)
if t ∈

[
0,
T

2

]
,

Θ(t) if t ∈
[
T

2
, T

]
.

(109)

Then in view of the definition of ϕ and Θ, the functions ϕ̃(., x) and Θ̃(·) are non positive function of class
C1 on [0, T [. From now on, we fix the parameter s. We have the following result.

Proposition 3.4

Under the assumptions of Proposition 3.3, there exist a positive constant
C = C(C4, ‖b1‖∞, ‖b2‖∞, ‖c1‖∞, ‖c2‖∞, ‖d‖∞, µ1, µ2, T ) > 0 and a positive weight function κ such that every
solution ρ = (ρ1, ρ2) and ψ

i = (ψi
1, ψ

i
2) of (48) and (49), respectively, satisfy the following inequality:

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) +

2∑

i=1

∫

Q

κ2(|ψi
1|2 + |ψi

2|2) dx dt ≤ C

∫ T

0

∫

ω

|ρ1|2 dx dt, (110)

where the constant C4 is given by the Proposition 3.3.

Proof.

We proceed in two steps.
Step 1. We prove that there exist a constant C = C(C4, ‖b1‖∞, ‖b2‖∞, ‖d‖∞, T ) > 0 such that

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) +

2∑

i=1

Ĩ[0,T ](ρi) + Ĩ[0,T ](̺i) ≤ C

∫ T

0

∫

ω

|ρ1|2 dx dt, (111)

where Ĩ(·) is defined in the follow by (115).
Let us introduce a function β ∈ C1([0, T ]) such that

0 ≤ β ≤ 1, β(t) = 1 for t ∈ [0, T/2], β(t) = 0 for t ∈ [3T/4, T ], |β′(t)| ≤ C/T. (112)

For any (t, x) ∈ Q, we set
zi(t, x) = β(t)e−r(T−t)ρi(t, x), i = 1, 2,

23



where r > 0. Then in view of (50), the function z = (z1, z2) is solution of






−z1,t − (a(x)z1,x)x + b1z1 + dz2 = βe−r(T−t)̺1χωd
− β′e−r(T−t)ρ1 in Q,

−z2,t − (a(x)z2,x)x + b2z2 = βe−r(T−t)̺2χωd
− β′e−r(T−t)ρ2 in Q,

z1(t, 0) = z1(t, 1) = z2(t, 0) = z2(t, 1) = 0 on (0, T ),
z1(T, ·) = z2(T, ·) = 0 in Ω.

(113)

Using the classical energy estimates for the system (113) and using the definition of β and z, we get

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) +

∫ T/2

0

∫

Ω

(|ρ1|2 + |ρ2|2) dxdt +
∫ T/2

0

∫

Ω

a(x)(|ρ1,x|2 + |ρ2,x|2) dxdt

≤ C(‖b1‖∞, ‖b2‖∞, ‖d‖∞, T )
(∫ 3T/4

0

∫

Ω

(|̺1|2 + |̺2|2) dx dt+
∫ 3T/4

T/2

∫

Ω

(|ρ1|2 + |ρ2|2) dx dt
)
.

The functions ϕ̃ and Θ̃ defined by (108) and (109), respectively, have lower and upper bounds for (t, x) ∈
[0, T/2]×Ω. Furthermore, due to the hypothesis (2), we have that a ∈ C([0, 1]) and a > 0 in (0, 1]. Therefore,

there exist positive constants α1 and α2 such that a(x) ≥ α1 and
x2

a(x)
≥ α2. Then, we introduce the

corresponding weight functions in the above expression and we get

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) + Ĩ[0,T/2](ρ1) + Ĩ[0,T/2](ρ2)

≤ C(‖b1‖∞, ‖b2‖∞, ‖d‖∞, T )
(∫ 3T/4

0

∫

Ω

(|̺1|2 + |̺2|2) dx dt+
∫ 3T/4

T/2

∫

Ω

(|ρ1|2 + |ρ2|2) dx dt
)
,

(114)

where

Ĩ[a,b](l) =
∫ b

a

∫

Ω

Θ̃3 x2

a(x)
e2sϕ̃|l|2 dx dt+

∫ b

a

∫

Ω

Θ̃a(x)e2sϕ̃|lx|2 dx dt. (115)

Adding the term Ĩ[0,T/2](̺1) + Ĩ[0,T/2](̺2) on both sides of inequality (114), we have

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) + Ĩ[0,T/2](ρ1) + Ĩ[0,T/2](ρ2) + Ĩ[0,T/2](̺1) + Ĩ[0,T/2](̺2)

≤ C(‖b1‖∞, ‖b2‖∞, ‖d‖∞, T )
(∫ 3T/4

0

∫

Ω

(|̺1|2 + |̺2|2) dx dt+
∫ 3T/4

T/2

∫

Ω

(|ρ1|2 + |ρ2|2) dx dt
)

+Ĩ[0,T/2](̺1) + Ĩ[0,T/2](̺2).

(116)

In order to eliminate the term Ĩ[0,T/2](̺1) + Ĩ[0,T/2](̺2) in the right hand side of (116), we use the classical
energy estimates for the system (51) and we obtain:

∫ T/2

0

∫

Ω

(|̺1|2 + |̺2|2) dxdt+
∫ T/2

0

∫

Ω

a(x)(|̺1,x|2 + |̺2,x|2) dxdt

≤ C(‖c1‖∞, ‖c2‖∞, ‖d‖∞, T )
(
α2
1

µ2
1

+
α2
2

µ2
2

)∫ T/2

0

∫

Ω

|ρ−2
∗ ρ1|2 dxdt

≤ C(‖c1‖∞, ‖c2‖∞, ‖d‖∞, T )
(
α2
1

µ2
1

+
α2
2

µ2
2

)∫ T/2

0

∫

Ω

e2sϕ|ρ1|2 dxdt,

where C is independent of µi, i = 1, 2. The functions ϕ̃ and Θ̃ have lower and upper bounds for (t, x) ∈
[0, T/2]×Ω. Moreover, the function

x2

a(x)
is non-decreasing on (0; 1] and

x2

a(x)
≥ α2 > 0 in (0, 1]. Then, from
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the previous inequality and using the fact that e2sϕ ≤ 1 for all (t, x) ∈ Q, we obtain

Ĩ[0,T/2](̺1) + Ĩ[0,T/2](̺2)

≤ C(‖c1‖∞), ‖c2‖∞, ‖d‖∞, T )
(
α2
1

µ2
1

+
α2
2

µ2
2

)∫ T/2

0

∫

Ω

Θ̃3 x2

a(x)
e2sϕ̃|ρ1|2 dxdt.

(117)

Replacing (117) in (116) and taking µi, i = 1, 2 large enough, we obtain

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) + Ĩ[0,T/2](ρ1) + Ĩ[0,T/2](ρ2) + Ĩ[0,T/2](̺1) + Ĩ[0,T/2](̺2)

≤ C(‖b1‖∞, ‖b2‖∞, ‖d‖∞, T )
∫ 3T/4

T/2

∫

Ω

(|ρ1|2 + |ρ2|2 + |̺1|2 + |̺2|2) dx dt.
(118)

The functions ϕ and Θ defined in (54) have the lower and upper bounds for (t, x) ∈ [T/2, 3T/4]×Ω. Moreover,

the function
x2

a(x)
is non-decreasing on (0, 1]. Using (93), the relation (118) becomes

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) + Ĩ[0,T/2](ρ1) + Ĩ[0,T/2](ρ2) + Ĩ[0,T/2](̺1) + Ĩ[0,T/2](̺2)

≤ C(‖b1‖∞, ‖b2‖∞, ‖d‖∞, T )
2∑

i=1

(
I[T/2;3T/4](ρi) + I[T/2;3T/4](̺i)

)

≤ C(C4, ‖b1‖∞, ‖b2‖∞, ‖d‖∞, T )
∫ T

0

∫

ω

|ρ1|2 dx dt,

(119)

where I(·) is defined by (60) and the constant C4 is defined in the Proposition 3.3.

On the other hand, since Θ = Θ̃ and ϕ = ϕ̃ in [T/2, T ]× Ω, we use again estimate (93) and we obtain

2∑

i=1

Ĩ[T/2,T ](ρi) + Ĩ[T/2,T ](̺i) ≤
2∑

i=1

I[T/2,T ](ρi) + I[T/2,T ](̺i)

≤ C(C4, ‖b1‖∞, ‖b2‖∞, ‖d‖∞, T )
∫ T

0

∫

ω

|ρ1|2 dx dt.
(120)

Adding (119) and (120), we get

‖ρ1(0, ·)‖2L2(Ω) + ‖ρ2(0, ·)‖2L2(Ω) +

2∑

i=1

Ĩ[0,T ](ρi) + Ĩ[0,T ](̺i) ≤ C

∫ T

0

∫

ω

|ρ1|2 dx dt,

and then, we deduce the estimation (111).
Step 2. Now, we prove that there exist a constant C = C(C4, ‖b1‖∞, ‖b2‖∞, ‖c1‖∞, ‖c2‖∞, ‖d‖∞, µ1, µ2, T ) >
0 and a positive weight function κ such that

2∑

i=1

∫

Q

κ2(|ψi
1|2 + |ψi

2|2) dx dt ≤ C

∫ T

0

∫

ω

|ρ1|2 dx dt. (121)

Let us introduce the function

ϕ̂(t) = min
x∈Ω

ϕ̃(t, x) (122)

and define the weight function κ by:
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κ(t) = esϕ̂(t) ∈ L∞(0, T ). (123)

Then κ is a positive function of class C1 on [0, T ). Furthermore,
∂ϕ̂

∂t
is also a positive function on (0, T ).

Now, multiplying the first equation and the second equation of (49) by κ2ψi
1 and κ2ψi

2, respectively and
integrating by parts over Ω, we obtain that

1

2

d

dt

∫

Ω

κ2|ψi
1|2 dx +

∫

Ω

κ2a(x)|ψi
1,x|2 dx = −

∫

Ω

κ2 c1 |ψi
1|2 dx− 1

µi

∫

ωi

κ2ρ−2
∗ ρ1ψ

i
1 dx+ s

∫

Ω

κ2
∂ϕ̂

∂t
|ψi

1|2 dx

≤
(
‖c1‖∞ +

1

2

)∫

Ω

κ2|ψi
1|2 dx +

1

2µ2
i

∫

ωi

κ2|ρ1|2 dx

and

1

2

d

dt

∫

Ω

κ2|ψi
2|2 dx +

∫

Ω

κ2a(x)|ψi
2,x|2 dx = −

∫

Ω

κ2 c2 |ψi
2|2 dx−

∫

Ω

κ2 d |ψi
1ψ

i
2|2 dx+ s

∫

Ω

κ2
∂ϕ̂

∂t
|ψi

2|2 dx

≤
(
‖c2‖∞ +

‖d‖2∞
2

)∫

Ω

κ2|ψi
1|2 dx+

1

2µ2
i

∫

ωi

κ2|ψi
2|2 dx.

We obtain the two previous inequalities using the fact that
∂ϕ̂

∂t
is a positive function on [0, T ). Adding the

two previous inequalities, we obtain

d

dt

(∫

Ω

κ2(|ψi
1|2 + |ψi

2|2) dx
)

≤ C

∫

Ω

κ2(|ψi
1|2 + |ψi

2|2) dx+
1

µ2
i

∫

ωi

κ2|ρ1|2 dx,

where C = (‖c1‖∞, ‖c2‖∞, ‖d‖∞). Using Gronwall’s Lemma and the fact that ψi
1(x, 0) = ψi

2(x, 0) = 0 for
x ∈ Ω, we obtain that

∫

Ω

κ2(|ψi
1|2 + |ψi

2|2) dx ≤ C

∫

Q

κ2|ρ1|2 dx, ∀t ∈ [0, T ], (124)

where C = (‖c1‖∞, ‖c2‖∞, ‖d‖∞, T, µ1, µ2). Using the definition of ϕ̂ and κ given by (122) and (123),
respectively, we have

κ2(t) ≤ e2sϕ̃(t,x), ∀x ∈ Ω. (125)

Thanks to the fact that Θ̃−1 ∈ L∞(0, T ) and that the function
a(x)

x2
is non-decreasing on (0, 1], using (125),

we have ∫

Q

κ2(|ψi
1|2 + |ψi

2|2) dx ≤
∫

Q

Θ̃3 x2

a(x)
e2sϕ̃|ρ1|2 dx dt,

which combining with (124) and (111) yields

∫

Q

κ2(|ψi
1|2 + |ψi

2|2) dx ≤ C

∫ T

0

∫

ω

|ρ1|2dx dt,

where C = (C4, ‖b1‖∞, ‖b2‖∞, ‖c1‖∞, ‖c2‖∞, ‖d‖∞, T, µ1, µ2). Adding this latter inequality with (111), we
deduce (110).
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4 Null controllability problem

In this section, we will end the proof of Theorem 1.2. The proof is inspired by well-known results on the
controllability of non linear systems where controllability of linear systems and suitable fixed point arguments
are the main ingredients.

4.1 Null controllability of an auxiliary linear system

Here, we prove the null controllability of a linearized version of (22)-(23). In fact, for given b1, b2, c1, c2, d ∈
L∞(Q), we consider the linear systems






y1,t − (a(x)y1,x)x + b1y1 = hχω − 1

µ1
ρ−2
∗ p11χω1 −

1

µ2
ρ−2
∗ p21χω2 in Q,

y2,t − (a(x)y2,x)x + b2y2 + dy1 = 0 in Q,
y1(t, 0) = y1(t, 1) = y2(t, 0) = y2(t, 1) = 0 on (0, T ),

y1(0, ·) = y01 , y2(0, ·) = y02 in Ω

(126)

and 



−pi1,t −
(
a(x)pi1,x

)
x
+ c1p

i
1 + dpi2 = αi

(
y1 − yi1,d

)
χωd

in Q,

−pi2,t −
(
a(x)pi2,x

)
x
+ c2p

i
2 = αi

(
y2 − yi2,d

)
χωd

in Q,

pi1(t, 0) = pi1(t, 1) = pi2(t, 0) = pi2(t, 1) = 0 on (0, T ),
pi1(T, ·) = pi2(T, ·) = 0 in Ω,

(127)

and the corresponding adjoint systems (49)-(50). Thanks to the Proposition 3.4, we will able to prove the
null controllability of (126)-(127). We have the following result.

Proposition 4.1

Suppose that (12) holds, the µi, i = 1, 2 are large enough, a(·) satisfies (2) and the coefficients b1, b2, c1,
c2 and d belong to L∞(Q). If the condition (13) is satisfied, then for any y0 ∈ [L2(Ω)]2 and κ−2yij,d ∈ L2(Q),

there exists a control h̄ ∈ L2(ωT ) such that the corresponding solutions to (126) and (127) satisfies (9).
Furthermore, there exists a positive constant C depending on C4, ‖b1‖∞, ‖b2‖∞, ‖c1‖∞, ‖c2‖∞, ‖d‖∞, µ1, µ2

and T such that

‖h̄‖L2(ωT ) ≤ C

(
α2
1

2∑

i=1

∥∥κ−1y1i,d
∥∥2
L2(ωd,T )

+ α2
2

2∑

i=1

∥∥κ−1y2i,d
∥∥2
L2(ωd,T )

+ ‖y01‖2L2(Ω) + ‖y02‖2L2(Ω)

)1/2

.

(128)

Proof.

To prove this null controllability problem, we proceed in three steps using a penalization method.
Step 1. For any ε > 0, we consider the following cost function:

Jε(h) =
1

2ε

∫

Ω

(
|y1(T, ·)|2 + |y2(T, ·)|2

)
dx +

1

2

∫

ωT

|h|2 dx dt. (129)

Then we consider the optimal control problem:

inf
h∈L2(ωT )

Jε(h). (130)
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We can prove that Jε is continuous, coercive and strictly convex. Then, the optimization problem (130)
admits a unique solution hε and arguing as in [16], we prove that

hε = ρ1ε in ωT , (131)

with (ρε, ψ
i
ε) is the solution of the following systems






−ρ1ε,t − (a(x)ρ1ε,x)x + b1ρ1ε + dρ2ε = (α1ψ
1
1ε + α2ψ

2
1ε)χωd

in Q,
−ρ2ε,t − (a(x)ρ2ε,x)x + b2ρ2ε = (α1ψ

1
2ε + α2ψ

2
2ε)χωd

in Q,
ρ1ε(t, 0) = ρ1ε(t, 1) = ρ2ε(t, 0) = ρ2ε(t, 1) = 0 on (0, T ),

ρ1ε(T, ·) = −1

ε
y1ε(T, ·) ρ2ε(T, ·) = −1

ε
y2ε(T, ·) in Ω

(132)

and 



ψi
1ε,t −

(
a(x)ψi

1ε,x

)
x
+ c1ψ

i
1ε = − 1

µi
ρ−2
∗ ρ1εχωi

in Q,

ψi
2ε,t −

(
a(x)ψi

2ε,x

)
x
+ c2ψ

i
2ε + dψi

1ε = 0 in Q,

ψi
1ε(t, 0) = ψi

1ε(t, 1) = ψi
2ε(t, 0) = ψi

2ε(t, 1) = 0 on (0, T ),
ψi
1ε(0, ·) = ψi

2ε(0, ·) = 0 in Ω,

(133)

where (yε, p
i
ε) is the solution of systems (126)-(127) associated to the control hε.

Step 2. If we multiply the first and the second equation of (132) by y1ε and y2ε respectively, then we
multiply the first and the second equation of (133) by pi1ε and pi2ε respectively, we integrate by parts over Q
and add the different equations, we obtain from (131)

‖hε‖2L2(ωT ) +
1

ε
‖y1ε(T, ·)‖2L2(Ω) +

1

ε
‖y2ε(T, ·)‖2L2(Ω) = −

∫

Ω

y01ρ1ε(0, ·) dx−
∫

Ω

y02ρ2ε(0, ·) dx+

α1

2∑

i=1

∫

ωd,T

y1i,dψ
1
iεdx dt + α2

2∑

i=1

∫

ωd,T

y2i,dψ
2
iεdx dt.

Using the Young inequality, we obtain

‖hε‖2L2(ωT ) +
1

ε
‖y1ε(T, ·)‖2L2(Ω) +

1

ε
‖y2ε(T, ·)‖2L2(Ω)

≤
(
α2
1

2∑

i=1

∥∥κ−1y1i,d
∥∥2
L2(ωd,T )

+ α2
2

2∑

i=1

∥∥κ−1y2i,d
∥∥2
L2(ωd,T )

+ ‖y01‖2L2(Ω) + ‖y02‖2L2(Ω)

)1/2

×
(

2∑

i=1

∥∥κψ1
iε

∥∥2
L2(Q)

+

2∑

i=1

∥∥κψ2
iε

∥∥2
L2(Q)

+ ‖ρ1ε(0, ·)‖2L2(Ω) + ‖ρ2ε(0, ·)‖2L2(Ω)

)1/2

.

(134)

Using the observability inequality (110), we deduce from (134) the existence of a positive constant C depend-
ing on C4, ‖b1‖∞, ‖b2‖∞, ‖c1‖∞, ‖c2‖∞, ‖d‖∞, µ1, µ2 and T such that

‖hε‖L2(ωT ) ≤ C

(
α2
1

2∑

i=1

∥∥κ−1y1i,d
∥∥2
L2(ωd,T )

+ α2
2

2∑

i=1

∥∥κ−1y2i,d
∥∥2
L2(ωd,T )

+ ‖y01‖2L2(Ω) + ‖y02‖2L2(Ω)

)1/2

,

(135)

‖y1ε(T, ·)‖L2(Ω) ≤ C
√
ε

(
α2
1

2∑

i=1

∥∥κ−1y1i,d
∥∥2
L2(ωd,T )

+ α2
2

2∑

i=1

∥∥κ−1y2i,d
∥∥2
L2(ωd,T )

+ ‖y01‖2L2(Ω) + ‖y02‖2L2(Ω)

)1/2

(136)
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and

‖y2ε(T, ·)‖L2(Ω) ≤ C
√
ε

(
α2
1

2∑

i=1

∥∥κ−1y1i,d
∥∥2
L2(ωd,T )

+ α2
2

2∑

i=1

∥∥κ−1y2i,d
∥∥2
L2(ωd,T )

+ ‖y01‖2L2(Ω) + ‖y02‖2L2(Ω)

)1/2

.

(137)
Using (135)-(137) and systems (126)-(127) associated to the control hε given by (131), we can extract sub-
sequences still denoted by hε, yε and piε such that when ε→ 0, we have

hε ⇀ h̄ weakly in L2(ωT ), (138a)

yiε ⇀ yi weakly in L2((0, T );H1
a(Ω)), i = 1, 2, (138b)

pijε ⇀ pij weakly in L2((0, T );H1
a(Ω)), i, j = 1, 2, (138c)

yiε(T, ·) −→ 0 strongly in L2(Ω), i = 1, 2. (138d)

Arguing as in [30, 16], using convergences (138), we prove that (y, pi) is a solution of (126)-(127)
corresponding to the control h̄ and also y satisfies (9). Furthermore, using the convergence (138a), we
have that h̄ satisfies (128).

4.2 Proof of Theorem 1.2

We have proved in Proposition 2.3 and Theorem 1.1 that the Nash equilibrium for (J1, J2) given by (4),
(v̂1, v̂2) is characterised by (21)-(23). In Proposition 4.1, we proved that the linear systems (126)-(127) is
null controllable at time t = T . We are now going to prove that, there exists a control h̄ ∈ L2(ωT ) such that
the solution of (22)-(23) satisfies (9).

We define W = [L2((0, T );H1
a(Ω))]

2. For every w ∈W , we consider the linearized system for (22)-(23)





y1,t − (a(x)y1,x)x + bw1 y1 = hχω − 1

µ1
ρ−2
∗ p11χω1 −

1

µ2
ρ−2
∗ p21χω2 in Q,

y2,t − (a(x)y2,x)x + bw2 y2 + dy1 = 0 in Q,
y1(t, 0) = y1(t, 1) = y2(t, 0) = y2(t, 1) = 0 on (0, T ),

y1(0, ·) = y01 , y2(0, ·) = y02 in Ω

(139)

and 




−pi1,t −
(
a(x)pi1,x

)
x
+ cw1 p

i
1 + dpi2 = αi

(
y1 − yi1,d

)
χωi,d

in Q,

−pi2,t −
(
a(x)pi2,x

)
x
+ cw2 p

i
2 = αi

(
y2 − yi2,d

)
χωi,d

in Q,

pi1(t, 0) = pi1(t, 1) = pi2(t, 0) = pi2(t, 1) = 0 on (0, T ),
pi1(T, ·) = pi2(T, ·) = 0 in Ω,

(140)

where

bwi =

∫ 1

0

F ′
i (σwi)dσ, cwi = F ′

i (wi), i = 1, 2. (141)

Observe that systems (139)-(140) are of the form (126)-(127) with bi = bwi =

∫ 1

0

F ′
i (σwi)dσ, i = 1, 2 and

ci = cwi = F ′
i (wi), i = 1, 2.

Thanks to the hypothesis of F1 and F2 given by (3), we have that bw1 , b
w
2 , c

w
1 and cw2 belong to L∞(Q).

In view of Proposition 4.1, there exits a control h̄(w) ∈ L2(ωT ) such that the solution (y, pi) to (139)-(140)
with h̄ = h̄(w) satisfies (9).
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Combining (19), (128) and (26), we obtain

‖y1‖L2((0,T );H1
a(Ω)) + ‖y2‖L2((0,T );H1

a(Ω)) ≤ C
(
‖y01‖L2(Ω) + ‖y02‖L2(Ω)

)
. (142)

For every w ∈ W , we define

I(w) =
{
h̄ ∈ L2(ωT ), (y, p

i) solution of (139)− (140) satisfies (9) with h̄ verifying (128)
}

(143)

and

Λ(w) =
{
(y, pi) : (y, pi) is the state associated to a control h̄ ∈ I(w) and (y, pi) satisfies (142)

}
. (144)

In this way, we introduce a multivalued mapping

w 7−→ Λ(w).

We want to prove that this mapping has a fixed point y. Of course, this will imply that there exists a control
h̄ ∈ L2(ωT ) such that the solution of (22)-(23) satisfies (9).

To this end, we will use the Kakutani’s fixed point Theorem that can be applied on Λ. Proceeding as in
[33, Theorem 1.3] or [8, Theorem 1.1], we can prove the following properties for every w ∈ W :

• Λ(w) is a non empty, closed and convex set of W .

• Λ(w) is a bounded and compact set of W .

• The application w 7−→ Λ(w) is upper hemi-continuous.

This end the proof of Theorem 1.2 and furthermore the proof of null controllability of system (1). �

5 Conclusion remarks

We proved the Stackelberg-Nash null controllability of a coupled degenerate non linear parabolic equations
with one leader and two followers. Since our functionals are not convex because the system is non linear,
we considered first the Nash quasi-equilibrium. In the first time, for each leader fixed, we have proved
the existence, uniqueness and characterization of Nash quasi-equilibrium. Then using some hypothesis, we
have showed the equivalence between Nash quasi-equilibrium and Nash equilibrium. By suitable Carleman
estimates, we have established an observability inequality which is the key to deduce our controllability result.
As future direction, we will extend the results obtained in this paper to a more general system of m cascade
coupled parabolic degenerate PDEs as in [20].
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[15] L. L. Djomegne Njoukoué, G. Deugoué: Stackelberg control in an unbounded domain for a parabolic
equation. Journal of Nonlinear Evolution Equations and Applications. 2021(5), 95-118 (2021).
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[18] R. G. Foko Tiomela, G. Mophou, G. N’guérékata: Hierarchic control of a linear heat equation with
missing data. Math. Appl. Sci. 43(10), 1-22 (2020).

[19] A. V. Fursikov, Y. O. Imanuvilov: Controllability of evolution equations. Lecture Notes Series, Research
Institute of Mathematics. Seoul National University, Seoul, Korea. 34 (1996).
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