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The main purpose of this paper is to apply the notion of hierarchical control to a coupled degenerate non linear parabolic equations. We use the Stackelberg-Nash strategy with one leader and two followers. The followers solve a Nash equilibrium corresponding to a bi-objective optimal control problem and the leader a null controllability problem. Since the considered problem is non linear, the associated cost is non-convex. We first prove the existence, uniqueness and the characterization of the Nash quasiequilibrium, which is a weak formulation of the Nash equilibrium because the cost associated to the non linear problem is non-convex. Next, we show that under suitable conditions, the Nash quasi-equilibrium is equivalent to the Nash equilibrium. Finally using some Carleman inequalities that we established, and the Kakutani's fixed point Theorem, we brough the states of our system to the rest at final time T .

Introduction

Let Ω = (0, 1) be an open and bounded domain of R. Let ω, ω 1 and ω 2 be three non empty open subsets of Ω such that ω i ∩ ω = ∅, for i = 1, 2. We fix T > 0 and set Q = (0, T ) × Ω, ω T = (0, T ) × ω, ω 1,T = (0, T ) × ω 1 and ω 2,T = (0, T ) × ω 2 . Then, we consider the following non linear coupled degenerate system        y 1,t -(a(x)y 1,x ) x + F 1 (y 1 ) = hχ ω + v 1 χ ω1 + v 2 χ ω2 in Q, y 2,t -(a(x)y 2,x ) x + F 2 (y 2 ) + d y 1 = 0 in Q, y 1 (t, 0) = y 1 (t, 1) = y 2 (t, 0) = y 2 (t, 1) = 0 on (0, T ), y 1 (0, •) = y 0 1 , y 2 (0, •) = y 0 2 in Ω.

(1)

In the system (1), y = y(t, x) = (y 1 , y 2 ) t is the state, v i = v i (t, x), i = 1, 2 and h = h(t, x) are different control functions whose act on the system through the subsets ω i and ω respectively. These functions v i and h are the followers and leader controls respectively. Here χ ω and χ ωi are respectively the characteristic function of the control set ω and ω i , y 0 = (y 0 1 , y 0 2 ) t ∈ [L 2 (Ω)] 2 is the initial data and the function d ∈ L ∞ (Q).

Our goal is to prove that, for any initial data y 0 ∈ [L 2 (Ω)] 2 , there exist a control h ∈ L 2 (ω T ) (called leader) and an associated Nash equilibrium (v 1 , v2 ) t = (v 1 (h), v2 (h)) t ∈ H = L 2 ((0, T ); L 2 (ω 1 )) × L 2 ((0, T ); L 2 (ω 2 )) (called followers) such that the associated state y of system (1) satisfies [START_REF] Araruna | Fernàndez-Cara: Stackelberg-Nash null controllability for some linear and semilinear degenerate parabolic equations[END_REF]. To do this, we shall follow the Stackelberg-Nash strategy which is described as follows:

1. For each choice of the leader h, we look for a Nash equilibrium pair for the costs J i , i = 1, 2 given by [START_REF] Araruna | News results on the Stackelberg-Nash exact control of linear parabolic equations[END_REF]. That is, find the controls (v 1 , v2 ) t = (v 1 (h), v2 (h)) t ∈ H satisfying J 1 (h; v1 , v2 ) ≤ J 1 (h; v 1 , v2 ), ∀v 1 ∈ L 2 ((0, T ); L 2 (ω 1 )), J 2 (h; v1 , v2 ) ≤ J 2 (h; v1 , v 2 ), ∀v 2 ∈ L 2 ((0, T ); L 2 (ω 2 )), [START_REF] Araruna | Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls[END_REF] or equivalently    J 1 (h; v1 , v2 ) = min v 1 ∈L 2 ((0,T );L 2 (ω1))

J 1 (h; v 1 , v2 ),

J 2 (h; v1 , v2 ) = min v 2 ∈L 2 ((0,T );L 2 (ω2)) J 2 (h; v1 , v 2 ). ( 8 
)
2. Once the Nash equilibrium has been identified and fixed for each h, we look for a control h such that y 1 (T, •; h; v1 ( h), v2 ( h)) = y 2 (T, •; h; v1 ( h), v2 ( h)) = 0 in Ω.

Remark 2

(a) In the linear case, the functionals J i , i = 1, 2 are differentiable and convex and in this case, the pair (v 1 , v2 ) is a Nash equilibrium for (J 1 , J 2 ) if and only if      ∂J 1 ∂v 1 (h; v1 , v2 )(v 1 , 0) = 0, ∀v 1 ∈ L 2 ((0, T ); L 2 (ω 1 )), vi ∈ L 2 ((0, T ); L 2 (ω i )), ∂J 2 ∂v 2 (h; v1 , v2 )(0, v 2 ) = 0, ∀v 2 ∈ L 2 ((0, T ); L 2 (ω 2 )), vi ∈ L 2 ((0, T ); L 2 (ω i )). [START_REF] Cannarsa | Vancostenoble: Null controllability of degenerate heat equations[END_REF] (b) In the semi-linear framework, the corresponding functionals J 1 and J 2 are not convex in general. For this reason, we must consider the weaker definition of Nash equilibrium given below.

Definition 1.1

Let the leader control h be given. The pair (v 1 , v2 ) is called a Nash quasi-equilibrium of functionals (J 1 , J 2 ) if the condition [START_REF] Cannarsa | Vancostenoble: Null controllability of degenerate heat equations[END_REF] is satisfied.

In this paper, we are interested by the concept of Stackelberg competition introduced by [START_REF] Stackelberg | Markform undGleichgewicht[END_REF]. It is a strategy game between several firms in which one of the firms (called the leader) moves first and the others firms (named followers) moves according to the leader's strategy. In case of many followers with each corresponding to a specific optimality objective, the Nash equilibrium is the most suitable.

In the framework of partial differential equations (PDEs), the hierarchic control was introduced by J-L. Lions in [START_REF] Lions | Hierarchic control[END_REF][START_REF] Lions | Some remarks on Stackelberg's optimization[END_REF] to study a bi-objective control problem for the wave and heat equations respectively. In the last years, other authors have used hierarchical control in the sense of Lions, see for instance [START_REF] Mercan | Optimal control for distributed linear systems subjected to null-controllability[END_REF][START_REF] Mercan | Optimal Control for Distributed Linear Systems Subjected to Null Controllability with Constraints on the State[END_REF][START_REF] Djomegne Njoukoué | Stackelberg control of a backward linear heat equation[END_REF][START_REF] Hernández-Santamaría | Robust Stackelberg controllability for linear and semilinear heat equations[END_REF][START_REF] Hernández-Santamaría | Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary[END_REF][START_REF] Foko Tiomela | Hierarchic control of a linear heat equation with missing data[END_REF][START_REF] Mophou | Robust hierarchic control for a population dynamics model with missing birth rate[END_REF][START_REF] Djomegne Njoukoué | Stackelberg control in an unbounded domain for a parabolic equation[END_REF]. There are in the literature some important results about Stackelberg-Nash strategy for PDEs. In [START_REF] Araruna | Stackelberg-Nash exact controllability for linear and semilinear parabolic equations[END_REF], F. D Araruna et al. developed the first hierarchical results within the exact controllability framework for class of parabolic equations (linear and semi-linear), with pointwise constraints on the followers. In [START_REF] Carreño | Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation[END_REF], N. Carreño and M. C. Santos applied the Stackelberg-Nash strategy to the Kuramoto-Sivashinsky equation with a distributed leader, and two followers. Their results were achieved by proving a partial null controllability result for a system of non linear fourth-order equations with boundary coupling terms. In [START_REF] Djomegne Njoukoué | Hierarchic control for a nonlinear parabolic equation in an unbounded domain[END_REF], the author studied the Stackelberg-Nash strategy for a non linear parabolic equation in an unbounded domain. His results were achieved using a Schauder's fixed point Theorem under the assumption that the uncontrolled domain is bounded. In [START_REF] Nina-Huaman | Stackelberg-Nash Controllability for Quasi-linear Parabolic. Equation in Dimension 1D, 2D, or 3D[END_REF], Dany Nina Huaman applied Stackelberg-Nash strategy to control a quasi-linear parabolic equations in dimensions 1D, 2D or 3D. In [START_REF] Boutaayamou | Stackelberg-Nash null controllability of a heat equation with general dynamic boundary conditions[END_REF], the authors applied hierarchical control to the anisotropic heat equation with dynamic boundary conditions and drift terms. Even though the hierarchical control of several types of problems has been intensively considered by researchers (see e.g [START_REF] Araruna | Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls[END_REF][START_REF] Araruna | Hierarchical control for the wave equation[END_REF] ) there only a few addressing the important case of coupled systems.

In the context of hierarchical strategy for coupled systems, Kéré et al. [START_REF] Kéré | Control of Stackelberg for a coupled parabolic equations[END_REF], considered a bi-objective control strategy for a coupled parabolic equations with a finite constraints on one of the states. Their results were achieved by means of an observability inequality of Carleman adapted to the constraints. In [START_REF] Santamaría | Hierarchic control for a coupled parabolic system[END_REF] and [START_REF] Hernández-Santamaría | Some remarks on the hierarchic control for coupled parabolic PDEs[END_REF], V. Hernández-Santamaría et al. studied a Stackelberg-Nash strategy for a cascade system of parabolic equations and for a cascade system of parabolic equations with the leader as a vector function acting in the two equations. More recently in [START_REF] Nina-Huaman | Limaco: Stackelberg-Nash Controllability for N-Dimensional Nonlinear Parabolic Partial Differential Equations[END_REF], J. Limaco et al. applied the Stackelberg-Nash strategy to a coupled quasi-linear parabolic system with controls acting in the interior on the domain.

In all the above cited works, the hierarchic strategy were applied to non degenerate systems. To the best of our knowledge, there do not exists any work in the literature addressing the Stackelberg-Nash strategy for a coupled degenerate parabolic system. As far as we know, the only work dealing with hierarchical strategy applied to a single degenerate equation is the one of F. D. Araruna et al. [START_REF] Araruna | Fernàndez-Cara: Stackelberg-Nash null controllability for some linear and semilinear degenerate parabolic equations[END_REF], where the authors studied the Stackelberg-Nash strategy for a semi-linear degenerate parabolic equations. In the present paper, the main novelty is that, we extend the results concerning the Stackelberg-Nash control to the coupled degenerate parabolic equation (1).

Main results

We will prove that if µ i , i = 1, 2 are sufficiently large, then the functionals J i , i = 1, 2 given by (4) are indeed convex. More precisely, we have the following results.

Theorem 1.1

Assume that (2), (3),

y 0 ∈ [L 2 (Ω)] 2 and y i d ∈ L ∞ ((0, T ); ω 1,d ) × L ∞ ((0, T ); ω 2,d ) are satisfied. Assume that h ∈ L 2 (ω T ) and µ i , i = 1, 2 are sufficiently large. Then, if (v 1 , v2 ) is a Nash quasi-equilibrium for J i , i = 1, 2, there exists a constant C > 0 independent of µ i , i = 1, 2 such D 2 i J i (h; v1 , v2 ) • (w i , w i ) ≥ C w i 2 L 2 ((0,T );L 2 (ωi)) , ∀w i ∈ L 2 ((0, T ); L 2 (ω i )), i = 1, 2. ( 11 
)
In particular, the functional (J 1 , J 2 ) are convex in (v 1 , v2 ) and therefore the pair (v 1 , v2 ) is a Nash equilibrium for J i , i = 1, 2 of the system (1).

To state the main contribution of this paper, we assume that the control regions satisfy the following assumptions:

   ω 1,d = ω 2,d : the common observability set will be denoted by ω d ,

ω d ∩ ω = ∅. (12) 
Our main result of this paper is the following:

Theorem 1.2 Suppose that (12) holds, the µ i , i = 1, 2 are large enough, a(•) satisfies (2) and the function F i , i = 1, 2 satisfy (3). Let O 2 be a non-empty subset of ω such that the following inequality holds:

d ≥ d 0 > 0 in (0, T ) × O 2 . ( 13 
)
Then, there exists a positive real weight function κ = κ(t) (the definition of κ will be given later) such that for any

y i d = (y i 1,d , y i 2,d ) t ∈ L 2 ((0, T ); ω 1,d ) × L 2 ((0, T ); ω 2,d ) satisfying T 0 ω d κ -2 |y i j,d | 2 dxdt < +∞, i, j = 1, 2, (14) 
and for any y 0 ∈ [L 2 (Ω)] 2 , there exist a control h ∈ L 2 (ω T ) and an associated Nash equilibrium

(v 1 , v2 ) ∈ H = L 2 ((0, T ); L 2 (ω 1 )) × L 2 ((0, T ); L 2 (ω 2 )
) such that the corresponding solution to (1) satisfies (9).

Remark 3

In this work, we assume that ω i ∩ ω = ∅. This means that the followers control cannot act on the leader's domain.

The rest of this paper is organized as follows. In Section 2, we give the proof of existence, uniqueness and characterization of Nash equilibrium. Section 3 deals with the proof of some suitable Carleman estimates. In Section 4, we deduce the null controllability result of system [START_REF] Ait Ben Hassi | Null controllability of degenerate parabolic cascade systems[END_REF]. Concluding remarks is made in Section 5.

Preliminary results

Well-posedness result of system (1)

In the sequel, the usual norm in L ∞ (Q) will be denoted by • ∞ . In order to study the well-posedness of system (1), we introduce as in [START_REF] Cannarsa | Vancostenoble: Null controllability of degenerate heat equations[END_REF][START_REF] Cannarsa | Vancostenoble: Carleman estimates for a class of degenerate parabolic equations[END_REF][START_REF] Cannarsa | Global Carleman estimates for degenerate parabolic operators with applications[END_REF] the weight spaces H 1 a (Ω) and H 2 a (Ω) as follows (in the sequel, abs. cont. means absolutely continuous):

H 1 a (Ω) = {u ∈ L 2 (Ω) : u is abs. cont. in [0, 1] : √ au x ∈ L 2 (Ω), u(0) = u(1) = 0}, H 2 a (Ω) = {u ∈ H 1 a (Ω) : a(x)u x ∈ H 1 (Ω)}, (15) 
endowed respectively with the norms

u 2 H 1 a (Ω) = u 2 L 2 (Ω) + √ au x 2 L 2 (Ω) , u ∈ H 1 a (Ω), u 2 H 2 a (Ω) = u 2 H 1 a (Ω) + (a(x)u x ) x 2 L 2 (Ω) , u ∈ H 2 a (Ω). (16) 
Under the assumptions (2), we have the following embedding (see [START_REF] Floridia | Well-posedness for a class of nonlinear degenerate parabolic equations[END_REF]Lemma 2.2])

H 1 a (Ω) ֒→ L ∞ (Ω). ( 17 
)
Proceeding as in [1, Proposition 2.3] by using the semi-group theory or using the variational approach [29, Theorem 1.1, page 37], we can prove the following result.

Proposition 2.1

Assume that (2) and (3) are valid. Let

y 0 ∈ [L 2 (Ω)] 2 , h ∈ L 2 (ω T ) and (v 1 , v 2 ) t ∈ H = L 2 ((0, T ); L 2 (ω 1 ))× L 2 ((0, T ); L 2 (ω 2 )
). Then, the system (1) admits a unique weak solution

y ∈ H = L 2 ((0, T ); [H 1 a (Ω)] 2 ) ∩ [C([0, T ]; L 2 (Ω))] 2 . ( 18 
)
Moreover, there exists a constant C = C(T, K) > 0 such that the following estimation holds:

sup τ ∈[0,T ] y 1 (τ, •) 2 L 2 (Ω) + sup τ ∈[0,T ] y 2 (τ, •) 2 L 2 (Ω) + y 1 2 L 2 ((0,T );H 1 a (Ω)) + y 2 2 L 2 ((0,T );H 1 a (Ω)) ≤ C v 1 2 L 2 (ω1,T ) + v 2 2 L 2 (ω2,T ) + h 2 L 2 (ωT ) + y 0 1 2 L 2 (Ω) + y 0 2 2 L 2 (Ω) , ( 19 
)
where K is the Lipschitz constant.

We state the Hardy-Poincaré inequality that will be useful for the rest of the paper. This inequality is similar to the one stated on [2, Proposition 2.1] as well as its proof.

Proposition 2.2 (Hardy-Poincaré inequality)

Assume that a :

[0; 1] -→ R + is in C([0; 1]
), a(0) = 0 and a > 0 on (0; 1]. Furthermore, assume that a is such that there exists θ ∈ (0; 1) such that the function x -→ a(x)

x θ is non-increasing in a neighbourhood of zero. Then, there is a constant C > 0 such that for any z, locally absolutely continuous on (0; 1], continuous at 0 and satisfying z(0) = 0 and

1 0 a(x)|z ′ (x)| 2 dx < +∞, the following inequality holds 1 0 a(x) x 2 |z(x)| 2 dx < C 1 0 a(x)|z ′ (x)| 2 dx. ( 20 
)
Moreover, under the same hypothesis on z and the fact that the function x -→ a(x)

x θ is non-increasing on (0; 1], then the inequality [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] 

holds with C = 4 (1 -θ) 2 .

Characterization of Nash equilibrium

First, we give the following characterization of Nash quasi-equilibrium pair (recall Definition 1.1) (v 1 , v2 ) of (1) for J i , i = 1, 2 given by (4).

Proposition 2.3

Let h ∈ L 2 (ω T ) and assume that µ i , i = 1, 2 are sufficiently large. Let also (v 1 , v2 ) ∈ H = L 2 ((0, T ); L 2 (ω 1 ))× L 2 ((0, T ); L 2 (ω 2 )) be the Nash quasi-equilibrium pair for (J 1 , J 2 ). Then, there exists

p i = (p i 1 , p i 2 ) ∈ H such that Nash quasi-equilibrium pair (v 1 , v2 ) ∈ H is characterized by vi = - 1 µ i ρ -2 * p i 1 in (0, T ) × ω i , (21) 
where y = (y 1 , y 2 ) and p i = (p i 1 , p i 2 ) are solutions of the following optimality systems

         y 1,t -(a(x)y 1,x ) x + F 1 (y 1 ) = hχ ω - 1 µ 1 ρ -2 * p 1 1 χ ω1 - 1 µ 2 ρ -2 * p 2 1 χ ω2 in Q, y 2,t -(a(x)y 2,x ) x + F 2 (y 2 ) + dy 1 = 0 in Q, y 1 (t, 0) = y 1 (t, 1) = y 2 (t, 0) = y 2 (t, 1) = 0 on (0, T ), y 1 (0, •) = y 0 1 , y 2 (0, •) = y 0 2 in Ω (22) and            -p i 1,t -a(x)p i 1,x x + F ′ 1 (y 1 )p i 1 + dp i 2 = α i y 1 -y i 1,d χ ω i,d in Q, -p i 2,t -a(x)p i 2,x x + F ′ 2 (y 2 )p i 2 = α i y 2 -y i 2,d χ ω i,d in Q, p i 1 (t, 0) = p i 1 (t, 1) = p i 2 (t, 0) = p i 2 (t, 1) = 0 on (0, T ), p i 1 (T, •) = p i 2 (T, •) = 0 in Ω. ( 23 
)
Proof.

If (v 1 , v2 ) is a Nash quasi-equilibrium in the sense of the Definition 1.1, then we have

α i T 0 ω i,d (y 1 -y i 1,d )z i 1 + (y 2 -y i 2,d )z i 2 dx dt +µ i T 0 ωi ρ 2 * vi v i dx dt = 0, for all v i ∈ L 2 ((0, T ); L 2 (ω i )), (24) 
where

z i = (z i 1 , z i 2 )
is the solution of the following system

       z i 1,t -a(x)z i 1,x x + F ′ 1 (y 1 )z i 1 = v i χ ωi in Q, z i 2,t -a(x)z i 2,x x + F ′ 2 (y 2 )z i 2 + dz i 1 = 0 in Q, z i 1 (t, 0) = z i 1 (t, 1) = z i 2 (t, 0) = z i 2 (t, 1) = 0 on (0, T ), z i 1 (0, •) = z i 2 (0, •) = 0 in Ω. ( 25 
)
If we multiply ( 23) by z i solution of ( 25) and integrate by parts on Q, we obtain

α i T 0 ω i,d (y 1 -y i 1,d )z i 1 + (y 2 -y i 2,d )z i 2 dx dt = T 0 ωi v i p i 1 dx dt = 0.
Combining this latter equality with [START_REF] Hernández-Santamaría | Robust Stackelberg controllability for linear and semilinear heat equations[END_REF], we obtain

T 0 ωi v i p i 1 + µ i ρ 2 * vi dx dt = 0, for all v i ∈ L 2 ((0, T ); L 2 (ω i )),
from where ( 21)-( 23) follows.

Remark 4

1. Notice that the existence and uniqueness of a solution for (22)-( 23) implies the existence and uniqueness of a Nash quasi-equilibrium in the sense of Definition 1.1. Proposition 2.1 guarantees the existence and uniqueness of solution for system (22)- [START_REF] Hernández-Santamaría | Some remarks on the hierarchic control for coupled parabolic PDEs[END_REF].

2. Using the idea of [16, Proposition 2.1], we can prove the existence of a constant C > 0 such that

(v 1 , v2 ) H ≤ C 1 + h L 2 (ωT ) . (26) 
Now, we introduce the following results useful for proving the Theorem 1.1. We consider the system

   z t -(a(x)z x ) x + c(t, x)z = g in Q, z(•, 0) = z(•, 1) = 0 in (0, T ), z(0, •) = z 0 in Ω. ( 27 
)
We set

K := H 1 ((0, T ); L 2 (Ω)) ∩ L 2 ((0, T ); H 2 a (Ω)) ∩ C([0, T ]; H 1 a (Ω)). ( 28 
)
Then we have the following result proved in [2, Theorem 2.1].

Theorem 2.1 Let z 0 ∈ H 1 a (Ω), c ∈ L ∞ (Q) and g ∈ L 2 (Q).
Then, the system (27) admits a unique weak solution z ∈ K. Moreover there exists a positive constant C = C(T ) such that

sup t∈[0,T ] z(t) 2 H 1 a (Ω) + T 0 z t 2 L 2 (Ω) + (a(x)z x ) x 2 L 2 (Ω) dx dt ≤ C( z 0 2 H 1 a (Ω) + g 2 L 2 (Q) ). ( 29 
) Lemma 2.1 Let z 0 ∈ H 1 a (Ω), c ∈ L ∞ (Q) and g ∈ L 2 (Q). Then the unique weak solution z ∈ K of (27) belongs to L ∞ (Q). Moreover there exists a positive constant C = C(T ) such that z L ∞ (Q) ≤ C( z 0 H 1 a (Ω) + g L 2 (Q) ). ( 30 
)
Proof. Let t ∈ [0, T ], then by ( 29), we have

sup t∈[0,T ] z(t) H 1 a (Ω) ≤ C y 0 H 1 a (Ω) + g L 2 (Q) . (31) 
Using the embedding [START_REF] Floridia | Well-posedness for a class of nonlinear degenerate parabolic equations[END_REF], we obtain for almost every t ∈ [0, T ],

z(t) L ∞ (Ω) ≤ C z(t) H 1 a (Ω) . Therefore z L ∞ (Q) ≤ C sup t∈[0,T ] z(t) H 1 a (Ω) . (32) 
Combining ( 31) and ( 32), we deduce [START_REF] Mophou | Robust hierarchic control for a population dynamics model with missing birth rate[END_REF].

Next, we prove Theorem 1.1 establishing the equivalence between Nash quasi-equilibrium and Nash equilibrium in the semi-linear case. The technique of the proof is inspired by [START_REF] Araruna | Stackelberg-Nash exact controllability for linear and semilinear parabolic equations[END_REF]Proposition 1.4].

Proof of Theorem 1.1.

Let h ∈ L 2 (ω T ) be given and let (v 1 , v2 ) be the associated Nash quasi-equilibria. For any w 1 , w 2 ∈ L 2 (ω 1,T ) and s ∈ R, let us de note by y s = (y s 1 , y s 2 ) the solution of the following system

       y s 1,t -a(x)y s 1,x x + F 1 (y s 1 ) = hχ ω + (v 1 + sw 1 )χ ω1 + v 2 χ ω2 in Q, y s 2,t -a(x)y s 2,x x + F 2 (y s 2 ) + dy s 1 = 0 in Q, y s 1 (t, 0) = y s 1 (t, 1) = y s 2 (t, 0) = y s 2 (t, 1) = 0 on (0, T ), y s 1 (0, •) = y 0 1 , y s 2 (0, •) = y 0 2 in Ω (33) 
and let us set y i := y s i | s=0 . Now, we have

D 1 J 1 (h; v1 + sw 1 , v2 ) • w 2 -D 1 J 1 (h; v1 , v2 ) • w 2 = sµ 1 T 0 ω1 ρ 2 * w 1 w 2 dxdt +α 1 T 0 ω 1,d (y s 1 -y 1 1,d )z 1,s 1 + (y s 2 -y 1 2,d )z 1,s 2 dxdt -α 1 T 0 ω 1,d (y 1 -y 1 1,d )z 1 1 + (y 2 -y 1 2,d )z 1 2 dxdt, (34) 
where

z 1,s = (z 1,s 1 , z 1,s 2 )
is the derivative of the state y s i with respect to v1 + sw 1 in the direction w 2 , i.e. z 1,s is the solution to

           z 1,s 1,t -a(x)z 1,s 1,x x + F ′ 1 (y s 1 )z 1,s 1 = w 2 χ ω1 in Q, z 1,s 2,t -a(x)z 1,s 2,x x + F ′ 2 (y s 2 )z 1,s 2 + dz 1,s 1 = 0 in Q, z 1,s 1 (t, 0) = z 1,s 1 (t, 1) = z 1,s 2 (t, 0) = z 1,s 2 (t, 1) = 0 on (0, T ), z 1,s 1 (0, •) = z 1,s 2 (0, •) = 0 in Ω, (35) 
and we have used the notation

z 1 i := z 1,s i | s=0 , i = 1, 2. Let us introduce the adjoint of (35)            -p 1,s 1,t -a(x)p 1,s 1,x x + F ′ 1 (y s 1 )p 1,s 1 + dp 1,s 2 = α 1 y s 1 -y 1 1,d χ ω 1,d in Q, -p 1,s 2,t -a(x)p 1,s 2,x x + F ′ 2 (y s 2 )p 1,s 2 = α 1 y s 2 -y 1 2,d χ ω 1,d in Q, p 1,s 1 (t, 0) = p 1,s 1 (t, 1) = p 1,s 2 (t, 0) = p 1,s 2 (t, 1) = 0 on (0, T ), p 1,s 1 (T, •) = p 1,s 2 (T, •) = 0 in Ω. ( 36 
)
and let us use the notation

p 1 i := p 1,s i | s=0 .
Multiplying the first and the second equation of ( 35) by p 1,s 1 and p 1,s 2 , respectively and integrating by parts over Q, we obtain

α 1 T 0 ω 1,d (y s 1 -y 1 1,d )z 1,s 1 + (y s 2 -y 1 2,d )z 1,s 2 dxdt = Q w 2 p 1,s 1 χ ω1 dxdt. (37) 
From ( 34) and (37), we have

D 1 J 1 (h; v1 + sw 1 , v2 ) • w 2 -D 1 J 1 (h; v1 , v2 ) • w 2 = sµ 1 T 0 ω1 ρ 2 * w 1 w 2 dxdt + T 0 ω1 (p 1,s 1 -p 1 1 )w 2 dxdt. (38) 
Note that

   (y s 1 -y 1 ) t -(a(x)(y s 1 -y 1 ) x ) x + [F 1 (y s 1 ) -F 1 (y 1 )] = sw 1 χ ω1 , (y s 2 -y 2 ) t -(a(x)(y s 2 -y 2 ) x ) x + [F 2 (y s 2 ) -F 2 (y 2 )] + d(y s 1 -y 1 ) = 0 and        -(p 1,s 1 -p 1 1 ) t -a(x)(p 1,s 1 -p 1 1 ) x x + [F ′ 1 (y s 1 ) -F ′ 1 (y 1 )] p 1,s 1 + F ′ 1 (y 1 )p 1,s 1 -p 1 1 + d(p 1,s 2 -p 1 2 ), = α 1 (y s 1 -y 1 )χ ω 1,d , -(p 1,s 2 -p 1 2 ) t -a(x)(p 1,s 2 -p 1 2 ) x x + [F ′ 2 (y s 2 ) -F ′ 2 (y 2 )] p 1,s 2 + F ′ 2 (y 2 )p 1,s 2 -p 1 2 = α 1 (y s 2 -y 2 )χ ω 1,d .
Consequently, using that F ∈ C 2 (R), we obtain that the following limits

η 1 i = lim s→0 1 s (p 1,s i -p 1 i ) and φ i = lim s→0 1 s (y s i -y i ), for i = 1, 2 exist and satisfy        -η 1 1,t -a(x)η 1 1,x x + F ′ 1 (y 1 )η 1 1 + F ′′ 1 (y 1 )φ 1 p 1 1 + dη 1 2 = α 1 φ 1 χ ω 1,d in Q, -η 1 2,t -a(x)η 1 2,x x + F ′ 2 (y 2 )η 1 2 + F ′′ 1 (y 2 )φ 2 p 1 2 = α 1 φ 2 χ ω 1,d in Q, η 1 1 (t, 0) = η 1 1 (t, 1) = η 1 2 (t, 0) = η 1 2 (t, 1) = 0 on (0, T ), η 1 1 (T, •) = η 1 2 (T, •) = 0 in Ω (39) and        φ 1,t -(a(x)φ 1,x ) x + F ′ 1 (y 1 )φ 1 = w 1 χ ω1 in Q, φ 2,t -(a(x)φ 2,x ) x + F ′ 2 (y 2 )φ 2 + dφ 1 = 0 in Q, φ 1 (t, 0) = φ 1 (t, 1) = φ 2 (t, 0) = φ 2 (t, 1) = 0 on (0, T ), φ 1 (0, •) = φ 2 (0, •) = 0 in Ω. (40) 
Thus, from (38)-(40) for w 2 = w 1 , we have

D 2 1 J 1 (h; v1 , v2 ) • (w 1 , w 1 ) = T 0 ω1 ρ 2 * η 1 1 w 1 dxdt + µ 1 T 0 ω1 |w 1 | 2 dxdt. (41) 
Let us show that, for some constant C > 0 independent of h, η 1 , φ, w 1 , one has

T 0 ω1 ρ 2 * η 1 1 w 1 dxdt ≤ C w 1 2 L 2 (ω1,T ) . (42) 
The energy estimates associated to systems (40) and ( 39) are given respectively by

φ 1 2 L 2 (Q) + φ 2 2 L 2 (Q) ≤ C w 1 2 L 2 (ω1,T ) (43) 
and

η 1 1 2 L 2 (Q) + η 2 2 2 L 2 (Q) ≤ C w 1 2 L 2 (ω1,T ) . (44) 
As (v 1 , v2 ) is a Nash quasi-equilibrium, vi ∈ L 2 ((0, T ); ω i ) and

y i d ∈ L ∞ ((0, T ); ω 1,d ) × L ∞ ((0, T ); ω 2,d ), then, p 1 = (p 1 1 , p 1 
2 ) solution of (36) belongs to [L 2 ((0, T ); H 1 a (Ω))] 2 and using energy estimates, we obtain

p 1 1 2 L 2 (Q) + p 1 2 2 L 2 (Q) ≤ C, (45) 
where C is a positive constant which is independent of µ 1 and µ 2 . In addition with the change of variables t → Tt and applying Lemma 2.

1 with c = F ′ 1 (y 1 ) ∈ L ∞ (Q) and g = α 1 (y 1 -y 1 1,d )χ ω 1,d -dp 1 2 ∈ L 2 (Q)
and combining the result with (45), we deduce that

p 1 1 L ∞ (Q) ≤ C, (46) 
with C a positive constant independent of µ 1 and µ 2 . Using systems (39)-(40) and the estimates (43)-(46), we obtain

ω1,T ρ 2 * η 1 1 w 1 dxdt = Q ρ 2 * α 1 |φ 1 | 2 χ ω d -F ′′ 1 (y 1 )|φ 1 | 2 p 1 1 -dη 1 2 φ 1 dxdt ≤ α 1 φ 1 2 L 2 (Q) + F ′′ 1 ∞ φ 1 2 L 2 (Q) p 1 1 L ∞ (Q) + d ∞ η 1 2 L 2 (Q) φ 1 L 2 (Q) ≤ C w 1 2 L 2 (ω1,T ) , (47) 
where C is independent of µ 1 and µ 2 . We can use (42) in (41) and we obtain

D 2 1 J 1 (h; v1 , v2 ) • (w 1 , w 1 ) ≥ (µ 1 -C) ω1,T |w 1 | 2 dxdt, ∀w 1 ∈ L 2 (ω 1,T ).
In a similar way, we can prove that there exists a positive constant C independent of µ 1 and µ 2 such that

D 2 2 J 2 (h; v1 , v2 ) • (w 2 , w 2 ) ≥ (µ 2 -C) ω2,T |w 2 | 2 dxdt, ∀w 2 ∈ L 2 (ω 2,T ).
Taking µ i sufficiently large, then the functional J i , i = 1, 2 given by ( 4) is convex and therefore the pair (v 1 , v2 ) is a Nash equilibrium in the sense of (8).

Carleman estimates

In this section we establish an observability inequality that allows us to prove the null controllability of system ( 22)- [START_REF] Hernández-Santamaría | Some remarks on the hierarchic control for coupled parabolic PDEs[END_REF]. We start by proving an observability inequality for the adjoint systems associated to the linearized version of ( 22)-( 23)

       -ρ 1,t -(a(x)ρ 1,x ) x + b 1 ρ 1 + dρ 2 = α 1 ψ 1 1 χ ω 1,d + α 2 ψ 2 1 χ ω 2,d in Q, -ρ 2,t -(a(x)ρ 2,x ) x + b 2 ρ 2 = α 1 ψ 1 2 χ ω 1,d + α 2 ψ 2 2 χ ω 2,d in Q, ρ 1 (t, 0) = ρ 1 (t, 1) = ρ 2 (t, 0) = ρ 2 (t, 1) = 0 on (0, T ), ρ 1 (T, •) = ρ T 1 , ρ 2 (T, •) = ρ T 2 in Ω (48) and            ψ i 1,t -a(x)ψ i 1,x x + c 1 ψ i 1 = - 1 µ i ρ -2 * ρ 1 χ ωi in Q, ψ i 2,t -a(x)ψ i 2,x x + c 2 ψ i 2 + dψ i 1 = 0 in Q, ψ i 1 (t, 0) = ψ i 1 (t, 1) = ψ i 2 (t, 0) = ψ i 2 (t, 1) = 0 on (0, T ), ψ i 1 (0, •) = ψ i 2 (0, •) = 0 in Ω, ( 49 
) where b 1 , b 2 , c 1 , c 2 , d ∈ L ∞ (Q) and ρ T = (ρ T 1 , ρ T 2 ) ∈ [L 2 (Ω)] 2 .
Since the first assumption of ( 12) holds and if we set

̺ j = α 1 ψ 1 j + α 2 ψ 2 j , j = 1, 2, then we obtain        -ρ 1,t -(a(x)ρ 1,x ) x + b 1 ρ 1 + dρ 2 = ̺ 1 χ ω d in Q, -ρ 2,t -(a(x)ρ 2,x ) x + b 2 ρ 2 = ̺ 2 χ ω d in Q, ρ 1 (t, 0) = ρ 1 (t, 1) = ρ 2 (t, 0) = ρ 2 (t, 1) = 0 on (0, T ), ρ 1 (T, •) = ρ T 1 , ρ 2 (T, •) = ρ T 2 in Ω (50) and            ̺ 1,t -(a(x)̺ 1,x ) x + c 1 ̺ 1 = -ρ -2 * α 1 µ 1 χ ω1 + α 2 µ 2 χ ω2 ρ 1 in Q, ̺ 2,t -(a(x)̺ 2,x ) x + c 2 ̺ 2 + d̺ 1 = 0 in Q, ̺ 1 (t, 0) = ̺ 1 (t, 1) = ̺ 2 (t, 0) = ̺ 2 (t, 1) = 0 on (0, T ), ̺ 1 (0, •) = ̺ 2 (0, •) = 0 in Ω. (51) 
Classically, to establish Carleman inequality, we define some weight functions according to the nature of model. In our case, these functions are stated as follows: Since ω d ∩ ω = ∅ (recall (12)), then, there exists a non-empty open set

O 1 ⋐ ω d ∩ ω and σ ∈ C 2 ([0, 1]) be a function such that σ(x) > 0 in (0, 1), σ(0) = σ(1) = 0, σ x (x) = 0 in [0, 1] \ O 0 , (52) 
where O 0 ⋐ O 1 is an open subset. We refer to [START_REF] Fursikov | Controllability of evolution equations[END_REF] for the existence of such a function σ.

Let τ ∈ [0, 1) be as in the assumption (2) and r, d ∈ R be such that

r ≥ 4ln(2) σ ∞ and d ≥ 5 a(1)(2 -τ ) . ( 53 
)
If r and d verify (53), then the interval

I = a(1)(2 -τ )(e 2r σ ∞ -1) d a(1)(2 -τ ) -1 , 4(e 2r σ ∞ -e r σ ∞ ) 3 d is non-empty
(see [START_REF] Birba | Controllability of nonlinear degenerate parabolic cascade systems[END_REF]). Then we can choose λ in this interval and for r, d satisfying (53), we define the following functions:

               Θ(t) = 1 (t(T -t)) 4 , ∀t ∈ (0, T ), δ(x) := λ x 0 y a(y) dy -d , ϕ(t, x) := Θ(t)δ(x), η(t, x) := Θ(t)e rσ(x) , Ψ(x) = e rσ(x) -e 2r σ ∞ , Φ(t, x) := Θ(t)Ψ(x). ( 54 
)
Using the second assumption in (53) on d, we observe that δ(x) < 0 for all x ∈ [0, 1]. Moreover, we have that Θ(t) → +∞ as t tends to 0 + and T -. Under assumptions (53) and the choice of the parameter λ, the weight functions ϕ and Φ defined by (54) satisfy the following inequalities which are needed in the sequel:

4 3 Φ ≤ ϕ ≤ Φ on Q, 2Φ ≤ ϕ on Q. ( 55 
)
Remark 5

The weight function

ρ * ∈ C ∞ ([0, T ]) in (4) is such that ρ * (t) ≥ e -sϕ * /2 , (56) 
where ϕ * = min x∈Ω ϕ(t, x) and ϕ is defined in (54). This weight function will help us to prove a Carleman inequality for the solution of system (48)-( 49). We can refer to [START_REF] Hernández-Santamaría | Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary[END_REF][START_REF] Araruna | Stackelberg-Nash exact controllability for linear and semilinear parabolic equations[END_REF][START_REF] Hernández Santamaría | corrigendum and addendum to "Hierarchic control for a coupled parabolic system[END_REF] for a similar use of weight function as (56).

Before going further, we consider the following result inspired by [1, Lemma 4.1] useful for the rest of the paper.

Lemma 3.1 (Caccioppoli's inequality)

Let O ′ be a subset of O 1 such that O ′ ⋐ O 1 . Let ρ = (ρ 1 , ρ 2 ) and ̺ = (̺ 1 , ̺ 2 ) be the solution of (50) and (51) respectively. Then, there exists a positive constant C such that

T 0 O ′ 2 i=1 (ρ 2 i,x + ̺ 2 i,x ) e 2sϕ dx dt ≤ C T 0 O1 s 2 Θ 2 2 i=1 (ρ 2 i + ̺ 2 i ) e 2sϕ dx dt, (57) 
where the weight functions ϕ and Θ are defined by (54).

We state the following Carleman type inequality in the degenerate case proved in [8, Proposition 3.3].

Proposition 3.1 Consider the following system with f ∈ L 2 (Q), a 0 ∈ L ∞ (Q) and z T ∈ L 2 (Ω),    -z t -(a(x)z x ) x + a 0 z = f in Q, z(t, 0) = z(t, 1) = 0 on (0, T ), z(T, •) = z T in Ω. (58)
Then, there exist two positive constants C and s 0 , such that every solution of (58) satisfies, for all s ≥ s 0 , the following inequality:

I(z) ≤ C Q |f | 2 e 2sϕ dx dt + sa(1) T 0 Θz 2 x (t, 1)e 2sϕ(t,1) dt , (59) 
where

I(z) = QT 1 sΘ |z t | 2 + |(a(x)z x ) x | 2 e 2sϕ dxdt + Q s 3 Θ 3 x 2 a(x) z 2 + sΘa(x)z 2 x e 2sϕ dx dt, (60) 
the functions Θ and ϕ are given by (54).

The next result is concerned with a classical Carleman estimate in suitable interval (b 1 , b 2 ) ⊂ [0, 1] proved in [START_REF] Fursikov | Controllability of evolution equations[END_REF].

Proposition 3.2

We consider the following system with f

∈ L 2 (Q b ), a 0 ∈ L ∞ (Q b ) and a ∈ C 1 ([b 1 ; b 2 ]) is a strictly positive function, -z t -(a(x)z x ) x + a 0 z = f in Q b , z(t, b 1 ) = z(t, b 2 ) = 0 on (0, T ), ( 61 
)
where

Q b := (0, T ) × (b 1 , b 2 ).
Then, there exist two positive constants C and s 2 , such that every solution of (61) satisfies, for all s ≥ s 1 , the following inequality holds

K(z) ≤ C Q b |f | 2 e 2sΦ dx dt + T 0 O1 s 3 η 3 z 2 e 2sΦ dx dt , (62) 
where

K(z) = QT 1 sη |z t | 2 + |(a(x)z x ) x | 2 e 2sΦ dxdt + Q (s 3 η 3 z 2 + sηz 2 x )e 2sΦ dx dt (63) 
and the functions η and Φ are defined by (54).

An intermediate Carleman estimate

Now, we state and prove one of the important result of this paper which is the intermediate Carleman estimate satisfied by solution of systems (50)-( 51). This inequality is obtained by using the Carleman estimates (59) and ( 62), the Hardy-Poincaré inequality [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] and the Caccioppoli's inequality (57).

Theorem 3.1

Assume that the hypotheses (2) on a(•) are satisfied. Then, there exists a constant C 1 > 0 such that every solution ρ and ̺ of (50) and (51) respectively, satisfy, for any s large enough, the following inequality

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C 1 T 0 O1 s 3 Θ 3 (ρ 2 1 + ρ 2 2 + ̺ 2 1 + ̺ 2 2 )e 2sΦ dx dt, (64) 
where the notation I(•) is defined by (60).

Proof. Let us choose an arbitrary open subset O

′ := (α, β) such that O ′ ⋐ O 1 .
Let us introduce the smooth cut-off function ξ : R → R defined as follows

   0 ≤ ξ ≤ 1, x ∈ R, ξ(x) = 1, x ∈ [0, α], ξ(x) = 0, x ∈ [β, 1]. ( 65 
)
Let ρ = (ρ 1 , ρ 2 ) t and ̺ = (̺ 1 , ̺ 2 ) t be respectively solutions of (50) and (51). We set ρ i = ξρ i , i = 1, 2 and

̺ i = ξ̺ i , i = 1, 2.
Then, ρ and ̺ are respectively solutions to

       -ρ 1,t -(a(x) ρ 1,x ) x + b 1 ρ 1 + d ρ 2 = ̺ 1 χ ω d -(a(x)ξ x ρ 1 ) x -ξ x a(x)ρ 1,x in Q, -ρ 2,t -(a(x) ρ 2,x ) x + b 2 ρ 2 = ̺ 2 χ ω d -(a(x)ξ x ρ 2 ) x -ξ x a(x)ρ 2,x in Q, ρ 1 (t, 0) = ρ 1 (t, 1) = ρ 2 (t, 0) = ρ 2 (t, 1) = 0 on (0, T ), ρ 1 (T, •) = ρ T 1 , ρ 2 (T, •) = ρ T 2 in Ω (66) and        ̺ 1,t -(a(x) ̺ 1,x ) x + c 1 ̺ 1 = G in Q, ̺ 2,t -(a(x) ̺ 2,x ) x + c 2 ̺ 2 + d ̺ 1 = -(a(x)ξ x ̺ 2 ) x -ξ x a(x)̺ 2,x in Q, ̺ 1 (t, 0) = ̺ 1 (t, 1) = ̺ 2 (t, 0) = ̺ 2 (t, 1) = 0 on (0, T ), ̺ 1 (0, •) = ̺ 2 (0, •) = 0 in Ω, (67) 
where

G = -ρ -2 * α 1 µ 1 χ ω1 + α 2 µ 2 χ ω2 ρ 1 -(a(x)ξ x ̺ 1 ) x -ξ x a(x)̺ 1,x .
Let us also set

ρ i = ϑρ i , i = 1, 2 and ̺ i = ϑ̺ i , i = 1, 2 with ϑ = 1 -ξ. Then, the support of ρ i and ̺ i is contained in [0, T ] × [α, 1] and are respectively solutions to        -ρ 1,t -a(x)ρ 1,x x + b 1 ρ 1 + dρ 2 = ̺ 1 χ O d -(a(x)ϑ x ρ 1 ) x -ϑ x a(x)ρ 1,x in Q α , -ρ 2,t -a(x)ρ 2,x x + b 2 ρ 2 = ̺ 2 χ O d -(a(x)ϑ x ρ 2 ) x -ϑ x a(x)ρ 2,x in Q α , ρ 1 (t, 0) = ρ 1 (t, 1) = ρ 2 (t, 0) = ρ 2 (t, 1) = 0 on (0, T ), ρ 1 (T, •) = ρ T 1 , ρ 2 (T, •) = ρ T 2 in Ω (68) and        ̺ 1,t -a(x)̺ 1,x x + c 1 ̺ 1 = G in Q α , ̺ 2,t -(a(x) ̺ 2,x ) x + c 2 ̺ 2 + d ̺ 1 = -(a(x)ϑ x ̺ 2 ) x -ϑ x a(x)̺ 2,x in Q α , ̺ 1 (t, 0) = ̺ 1 (t, 1) = ̺ 2 (t, 0) = ̺ 2 (t, 1) = 0 on (0, T ), ̺ 1 (0, •) = ̺ 2 (0, •) = 0 in Ω, (69) 
where

, G = -ρ -2 * α 1 µ 1 χ ω1 + α 2 µ 2 χ ω2 ρ 1 -(a(x)ϑ x ̺ 1 ) x -ϑ x a(x)̺ 1,x and Q α = (0, T ) × (α, 1).
We make the rest of the proof in three steps:

Step 1. We prove that there exists a constant C > 0 such that

I( ρ 1 ) + I( ρ 2 ) + I( ̺ 1 ) + I( ̺ 2 ) ≤ C T 0 O ′ s 2 Θ 2 (ρ 2 1 + ρ 2 2 + ̺ 2 1 + ̺ 2 2 )e 2sϕ dx dt. ( 70 
)
Applying the Carleman estimate (59) to the first equation of (66) with the second term f = -d ρ 2 + ̺ 1 χ O d -(a(x)ξ x ρ 1 ) xξ x a(x)ρ 1,x , and using the fact that ρ 1,x (t, 1) = 0, we obtain

I( ρ 1 ) ≤ C Q |-d ρ 2 + ̺ 1 χ O d -(a(x)ξ x ρ 1 ) x -ξ x a(x)ρ 1,x | 2 e 2sϕ dx dt (71) ≤ C Q |d ρ 2 | 2 + | ̺ 1 χ O d | 2 + |(a(x)ξ x ρ 1 ) x + a(x)ξ x ρ 1,x | 2 e 2sϕ dx dt.
From the definition of ξ, we have

Q |(a(x)ξ x ρ 1 ) x + a(x)ξ x ρ 1,x | 2 e 2sϕ dx dt = Q ((a(x)ξ x ) x ρ 1 + 2a(x)ξ x ρ 1,x ) 2 e 2sϕ dx dt ≤ Q 2((a(x)ξ x ) x ) 2 ρ 1 2 + 8(a(x)ξ x ) 2 ρ 2 1,x e 2sϕ dx dt ≤ C T 0 O ′ (ρ 2 1 + ρ 2 1,x ) e 2sϕ dx dt. (72) 
In the other hand, using the fact that x 2 a(x) is non-decreasing on (0, 1], thanks to Hardy-Poincaré inequality [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] to the function e sϕ ̺ 1 and using the definition of ϕ, we get

Q | ̺ 1 | 2 e 2sϕ dx dt ≤ 1 a(1) Q a(x) x 2 ̺ 2 1 e 2sϕ dx dt ≤ C a(1) Q a(x)|( ̺ 1 e sϕ ) x | 2 dx dt ≤ C Q a(x) ̺ 2 1,x e 2sϕ dx dt + Q s 2 Θ 2 x 2 a(x) ̺ 2 1 e 2sϕ dx dt .
Using the fact that there exist a positive constant M 1 such that

1 ≤ M 1 Θ and Θ 2 ≤ M 1 Θ 3 , (73) 
we obtain

Q | ̺ 1 | 2 e 2sϕ dx dt ≤ C Q Θa(x) ̺ 2 1,x e 2sϕ dx dt + Q s 2 Θ 3 x 2 a(x) ̺ 2 1 e 2sϕ dx dt . (74) 
Proceeding as before, we obtain

Q |d ρ 2 | 2 e 2sϕ dx dt ≤ C Q Θa(x) ρ 2 2,x e 2sϕ dx dt + Q s 2 Θ 3 x 2 a(x) ρ 2 2 e 2sϕ dx dt . (75) 
Combining ( 71)-(75), we obtain

I( ρ 1 ) ≤ C T 0 O ′ (ρ 2 1 + ρ 2 1,x )e 2sϕ dx dt + C Q Θa(x) ̺ 2 1,x + s 2 Θ 3 x 2 a(x) ̺ 2 1 e 2sϕ dx dt +C Q Θa(x) ρ 2 2,x + s 2 Θ 3 x 2 a(x) ρ 2 2 e 2sϕ dx dt. (76) 
Arguing in the same way as in (76) with ρ 2 , ̺ 1 and ̺ 2 , we respectively obtain

I( ρ 2 ) ≤ C T 0 O ′ (ρ 2 2 + ρ 2 2,x )e 2sϕ dx dt + C Q Θa(x) ̺ 2 2,x + s 2 Θ 3 x 2 a(x) ̺ 2 2 e 2sϕ dx dt, (77) 
I( ̺ 1 ) ≤ C T 0 O ′ (̺ 2 1 + ̺ 2 1,x )e 2sϕ dx dt + C Q Θa(x) ρ 2 1,x + s 2 Θ 3 x 2 a(x) ρ 2 1 e 2sϕ dx dt (78) 
and

I( ̺ 2 ) ≤ C T 0 O ′ (̺ 2 2 + ̺ 2 2,x )e 2sϕ dx dt + C Q Θa(x) ̺ 2 1,x + s 2 Θ 3 x 2 a(x) ̺ 2 1 e 2sϕ dx dt. (79) 
Combining ( 76)-(79) and taking s large enough, we obtain

I( ρ 1 ) + I( ρ 2 ) + I( ̺ 1 ) + I( ̺ 2 ) ≤ C 2 i=1 T 0 O ′ (ρ 2 i + ̺ 2 i + ρ 2 i,x + ̺ 2 i,x )e 2sϕ dx dt.
Using Caccioppoli's inequality (57) in the left hand side of this latter estimate, we obtain (70).

Step 2. We prove that there exists a constant C > 0 such that

K(ρ 1 ) + K(ρ 2 ) + K(̺ 1 ) + K(̺ 2 ) ≤ C T 0 O1 s 3 Θ 3 (ρ 2 1 + ρ 2 2 + ̺ 2 1 + ̺ 2 2 )e 2sΦ dx dt, (80) 
where the notation K(•) is defined by (63). Since on Q α all the above systems are non degenerate, applying the classical Carleman inequality (62) to the first solution ρ 1 of (68

) with b 1 = α, b 2 = 1 and f = -dρ 2 + ̺ 1 χ O d -(a(x)ϑ x ρ 1 ) x -ϑ x a(x)ρ 1,x , we get K(ρ 1 ) ≤ C Q |dρ 2 | 2 + |̺ 1 χ ω d | 2 + |(a(x)ϑ x ρ 1 ) x + a(x)ϑ x ρ 1,x | 2 e 2sΦ dx dt + T 0 O1 s 3 η 3 ρ 2 1 e 2sΦ dx dt ≤ C Q |dρ 2 | 2 + |̺ 1 χ ω d | 2 + |(a(x)ϑ x ρ 1 ) x + a(x)ϑ x ρ 1,x | 2 e 2sΦ dx dt (81) 
+ T 0 O1 s 3 Θ 3 ρ 2 1 e 2sΦ dx dt
because η(t, x) := Θ(t)e rσ(x) ≤ Θ(t)e r σ(x) ∞ . Using the definition of the function ϑ, we have

Q |(a(x)ϑ x ρ 1 ) x + a(x)ϑ x ρ 1,x | 2 e 2sΦ dx dt = Q ((a(x)ϑ x ) x ρ 1 + 2a(x)ϑ x ρ 1,x ) 2 e 2sΦ dx dt ≤ Q 2((a(x)ϑ x ) x ) 2 ρ 1 2 + 8(a(x)ϑ x ) 2 ρ 2 1,x e 2sΦ dx dt ≤ C T 0 O ′ (ρ 2 1 + ρ 2 1,x ) e 2sΦ dx dt. (82) 
On the other hand, since x 2 a(x) is non-decreasing on (0, 1] and thanks to Hardy-Poincaré inequality [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] to the function e sΦ ̺ 1 , we get

Q |̺ 1 | 2 e 2sΦ dx dt ≤ 1 a(1) Q a(x) x 2 ̺ 2 1 e 2sΦ dx dt ≤ C a(1) Q a(x)|(̺ 1 e sΦ ) x | 2 dx dt ≤ C Q a(x)̺ 2 1,x + a(x)s 2 η 2 ̺ 2 1 e 2sΦ dx dt.
Using (73), the fact that a ∈ C 1 ([α; 1]) and η -1 ∈ L ∞ (Q), we get

Q ̺ 2 1 e 2sΦ dx dt ≤ C Q η̺ 2 1,x + s 2 η 3 ̺ 2 1 e 2sΦ dx dt. (83) 
Arguing as before, we obtain

Q |dρ 2 | 2 e 2sΦ dx dt ≤ C Q ηρ 2 2,x + s 2 η 3 ρ 2 2 e 2sΦ dx dt. (84) 
Combining ( 81)-(84), we obtain

K(ρ 1 ) ≤ C T 0 O ′ (ρ 2 1 + ρ 2 1,x )e 2sΦ dx dt + C T 0 O1 s 3 Θ 3 ρ 2 1 e 2sΦ dx dt +C Q η̺ 2 1,x + s 2 η 3 ̺ 2 1 e 2sΦ dx dt + C Q ηρ 2 2,x + s 2 η 3 ρ 2 2 e 2sΦ dx dt. ( 85 
)
Applying the same way as in (85) to ρ 2 , ̺ 1 and ̺ 2 , we respectively obtain

K(ρ 2 ) ≤ C T 0 O ′ (ρ 2 2 + ρ 2 2,x )e 2sΦ dx dt + C T 0 O1 s 3 Θ 3 ρ 2 2 e 2sΦ dx dt +C Q η̺ 2 2,x + s 2 η 3 ̺ 2 2 e 2sΦ dx dt, (86) 
K(̺ 1 ) ≤ C T 0 O ′ (̺ 2 1 + ̺ 2 1,x )e 2sΦ dx dt + C T 0 O1 s 3 Θ 3 ̺ 2 1 e 2sΦ dx dt +C Q ηρ 2 1,x + s 2 η 3 ρ 2 1 e 2sΦ dx dt (87) 
and

K(̺ 2 ) ≤ C T 0 O ′ (̺ 2 2 + ̺ 2 2,x )e 2sΦ dx dt + C T 0 O1 s 3 Θ 3 ̺ 2 2 e 2sΦ dx dt +C Q η̺ 2 1,x + s 2 η 3 ̺ 2 1 e 2sΦ dx dt. ( 88 
)
Combining ( 85)-(88) and taking s large enough, we obtain

K(ρ 1 ) + K(ρ 2 ) + K(̺ 1 ) + K(̺ 2 ) ≤ C 2 i=1 T 0 O ′ (ρ 2 i + ̺ 2 i + ρ 2 i,x + ̺ 2 i,x )e 2sΦ dx dt +C T 0 O1 s 3 Θ 3 (ρ 2 1 + ρ 2 2 + ̺ 2 1 + ̺ 2 
2 )e 2sΦ dx dt.

Combining this latter estimate with Caccioppoli's inequality (57), we obtain we obtain (80).

Step 3. Now, we prove the inequality (64).

Thanks to inequalities (55), the fact that a ∈ C 1 ([α, 1]) and the function

x 2 a(x) is non-decreasing on (0, 1],
one can prove the existence of a constant C > 0 such that for all (t, x) ∈ (0, T ) × [α, 1], we have

e 2sϕ ≤ e 2sΦ , x 2 a(x) e 2sϕ ≤ Ce 2sΦ , a(x)e 2sϕ ≤ Ce 2sΦ . ( 89 
)
Using (89), the inequality (80) becomes

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C T 0 O1 s 3 Θ 3 (ρ 2 1 + ρ 2 2 + ̺ 2 1 + ̺ 2 2 )e 2sΦ dx dt. ( 90 
)
Combining ( 70) and ( 90) and using the first inequality of (89), we obtain

I(ρ 1 + ρ 1 ) + I(ρ 2 + ρ 2 ) + I(̺ 1 + ̺ 1 ) + I(̺ 2 + ̺ 2 ) ≤ C T 0 O1 s 3 Θ 3 (ρ 2 1 + ρ 2 2 + ̺ 2 1 + ̺ 2 2 )e 2sΦ dx dt. ( 91 
)
Using the fact that

̺ i = ̺ i + ̺ i , i = 1, 2 and ρ i = ρ i + ρ i , i = 1, 2, then we have |̺ i | 2 ≤ 2 | ̺ i | 2 + |̺ i | 2 , |ρ i | 2 ≤ 2 | ρ i | 2 + |ρ i | 2 , |̺ i,x | 2 ≤ 2 | ̺ i,x | 2 + |̺ i,x | 2 , |ρ i,x | 2 ≤ 2 | ρ i,x | 2 + |ρ i,x | 2 . (92) 
Combining ( 91) and ( 92), we obtain the existence of a constant C 1 > 0 such that

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C 1 T 0 O1 s 3 Θ 3 (ρ 2 1 + ρ 2 2 + ̺ 2 1 + ̺ 2 
2 )e 2sΦ dx dt.

This completes the proof.

An observability inequality result

This part is devoted to the observability inequality of systems (50)-( 51). This inequality is obtained by using the intermediate Carleman estimate (64).

Proposition 3.3

Under the assumptions of Theorem 3.1, there exists a constant C 4 > 0, such that every solution ρ and ̺ of (50) and (51), respectively, satisfy, for s large enough, the following inequality:

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C 4 s 15 T 0 ω |ρ 1 | 2 dx dt, ( 93 
)
where the notation I(•) is defined by (60).

Proof.

The proof of this proposition is inspired by techniques from [START_REF] De Teresa | Insensitizing controls for a semilinear heat equation: Semilinear heat equation[END_REF]Lemma 1]. We will achieve it in two steps.

Step 1. First, we want to eliminate the local term corresponding to ̺ 1 and ̺ 2 on the right hand side of (64). So, let O 2 be a non empty open set such that O 1 ⋐ O 2 ⋐ ω d ∩ ω. We introduce as in [START_REF] De Teresa | Insensitizing controls for a semilinear heat equation: Semilinear heat equation[END_REF] 

the cut off function ξ 1 ∈ C ∞ 0 (Ω) such that 0 ≤ ξ 1 ≤ 1 in Ω, ξ 1 = 1 in O 1 , ξ 1 = 0 in Ω \ O 2 , (94a) ξ 1,xx ξ 1/2 1 ∈ L ∞ (O 2 ), ξ 1,x ξ 1/2 1 ∈ L ∞ (O 2 ). ( 94b 
)
Set u 1 = s 3 Θ 3 e 2sΦ . Then u 1 (T ) = u 1 (0) = 0 and we have the following estimations:

|u 1 ξ 1 | ≤ s 3 Θ 3 e 2sΦ ξ 1 , |(u 1 ξ 1 ) t | ≤ Cs 4 Θ 8 e 2sΦ ξ 1 , |(u 1 ξ 1 ) x | ≤ Cs 4 Θ 4 e 2sΦ ξ 1 , |(a(x)(u 1 ξ 1 ) x ) x | ≤ Cs 5 Θ 5 e 2sΦ ξ 1 , ( 95 
)
where C is a positive constant.

If we multiply the first and the second equation of ( 50) by u 1 ξ 1 ̺ 1 and u 1 ξ 1 ̺ 2 , respectively, and integrate by parts over Q, we obtain

J 1 + J 2 + J 3 + J 4 + J 5 + J 6 + J 7 = Q u 1 ξ 1 (|̺ 1 | 2 + |̺ 2 | 2 )χ ω d dx dt, (96) 
where

J 1 = - α 1 µ 1 Q u 1 ξ 1 |ρ 1 | 2 χ ω1 dx dt - α 2 µ 2 Q u 1 ξ 1 |ρ 1 | 2 χ ω2 dx dt, J 2 = Q ρ 1 ̺ 1 ∂(u 1 ξ 1 ) ∂t dx dt, J 3 = Q ρ 2 ̺ 2 ∂(u 1 ξ 1 ) ∂t dx dt, J 4 = - Q (a(x)(u 1 ξ 1 ) x ) x ρ 1 ̺ 1 dx dt, J 5 = - Q (a(x)(u 1 ξ 1 ) x ) x ρ 2 ̺ 2 dx dt, J 6 = -2 Q a(x)(u 1 ξ 1 ) x ρ 1 ̺ 1,x dx dt, J 7 = -2 Q a(x)(u 1 ξ 1 ) x ρ 2 ̺ 2,x dx dt.
Let us estimate J i , i = 1, • • • , 7. Using Young's inequality, we have

J 1 ≤ α 1 µ 1 + α 2 µ 2 C Q s 3 Θ 3 e 2sΦ ξ 1 |ρ 1 | 2 dx dt ≤ α 2 1 µ 2 1 + α 2 2 µ 2 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |ρ 1 | 2 dx dt + C T 0 O2 s 3 Θ 3 a(x) x 2 e 2s(2Φ-ϕ) |ρ 1 | 2 dx dt, J 2 ≤ C Q s 4 Θ 8 e 2sΦ ξ 1 |ρ 1 ̺ 1 | dx dt ≤ δ 2 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |̺ 1 | 2 dx dt + C δ2 T 0 O2 s 5 Θ 13 a(x) x 2 e 2s(2Φ-ϕ) |ρ 1 | 2 dx dt, J 3 ≤ C Q s 4 Θ 8 e 2sΦ ξ 1 |ρ 2 ̺ 2 | dx dt ≤ δ 3 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |̺ 2 | 2 dx dt + C δ3 T 0 O2 s 5 Θ 13 a(x) x 2 e 2s(2Φ-ϕ) |ρ 2 | 2 dx dt, J 4 ≤ C Q s 5 Θ 5 e 2sΦ ξ 1 |ρ 1 ̺ 1 | dx dt ≤ δ 4 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |̺ 1 | 2 dx dt + C δ4 T 0 O2 s 7 Θ 7 a(x) x 2 e 2s(2Φ-ϕ) |ρ 1 | 2 dx dt, J 5 ≤ C Q s 5 Θ 5 e 2sΦ ξ 1 |ρ 2 ̺ 2 | dx dt ≤ δ 5 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |̺ 2 | 2 dx dt + C δ5 T 0 O2 s 7 Θ 7 a(x) x 2 e 2s(2Φ-ϕ) |ρ 2 | 2 dx dt, J 6 ≤ C Q s 4 Θ 4 a(x)e 2sΦ ξ 1 |ρ 1 ̺ 1,x | dx dt ≤ δ 6 2 Q sΘa(x)e 2sϕ |̺ 1,x | 2 dx dt + C δ6 T 0 O2 s 7 Θ 7 a(x)e 2s(2Φ-ϕ) |ρ 1 | 2 dx dt, J 7 ≤ C Q s 4 Θ 4 a(x)e 2sΦ ξ 1 |ρ 2 ̺ 2,x | dx dt ≤ δ 7 2 Q sΘa(x)e 2sϕ |̺ 2,x | 2 dx dt + C δ7 T 0 O2 s 7 Θ 7 a(x)e 2s(2Φ-ϕ) |ρ 2 | 2 dx dt.
Finally, choosing the constants δ i such that

δ 2 = δ 3 = δ 4 = δ 5 = 1 4C 1 and δ 6 = δ 7 = 1 2C 1
, where C 1 is the constant obtained to Theorem 3.1, it follows from (96) and the previous inequalities that

T 0 O1 s 3 Θ 3 e 2sΦ (|̺ 1 | 2 + |̺ 2 | 2 ) dx dt ≤ 1 2C 1 I(̺ 1 ) + 1 2C 1 I(̺ 2 ) + α 2 1 µ 2 1 + α 2 2 µ 2 2 T 0 Q s 3 Θ 3 x 2 a(x) e 2sϕ |ρ 1 | 2 dx dt + C T 0 O2 s 7 Θ 13 a(x) x 2 e 2s(2Φ-ϕ) (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt +C T 0 O2 s 7 Θ 7 a(x)e 2s(2Φ-ϕ) (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt. (97) 
Combining ( 64) with (97) and taking µ i , i = 1, 2 large enough, we obtain

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C T 0 O2 s 7 Θ 13 a(x) x 2 e 2s(2Φ-ϕ) (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt +C T 0 O2 s 7 Θ 7 a(x)e 2s(2Φ-ϕ) (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt. (98) Since a(x) 
x 2 and a(x) are bounded on O 2 , then using (98), we obtain the existence of a positive constant C 2 such that

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C 2 T 0 O2 s 7 Θ 13 e 2s(2Φ-ϕ) (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt. (99) 
Step 2. Now, we want to eliminate the local term ρ 2 on the right hand side of (99). We take a non empty open set

O 3 such that O 2 ⋐ O 3 ⋐ ω d ∩ ω. Let ξ 2 ∈ C ∞ 0 (Ω) a cut off function such that 0 ≤ ξ 2 ≤ 1 in Ω, ξ 2 = 1 in O 2 , ξ 2 = 0 in Ω \ O 3 , (100a) ξ 2,xx ξ 1/2 2 ∈ L ∞ (O 3 ), ξ 2,x ξ 1/2 2 ∈ L ∞ (O 3 ). ( 100b 
)
We set u 2 = s 7 Θ 13 e 2s(2Φ-ϕ) . Then, there exists a positive constant C such that the following inequalities holds:

|u 2 ξ 2 | ≤ s 7 Θ 13 e 2s(2Φ-ϕ) ξ 2 , |(u 2 ξ 2 ) t | ≤ Cs 8 Θ 18 e 2s(2Φ-ϕ) ξ 2 , |(u 2 ξ 2 ) x | ≤ Cs 8 Θ 14 e 2s(2Φ-ϕ) ξ 2 , |(a(x)(u 2 ξ 2 ) x ) x | ≤ Cs 9 Θ 15 e 2s(2Φ-ϕ) ξ 2 . (101) 
Multiplying the first equation of (50) by u 2 ξ 2 ρ 2 and integrating by parts over Q, we obtain

Q du 2 ξ 2 |ρ 2 | 2 dx dt = K 1 + K 2 + K 3 + K 4 + K 5 + K 6 + K 7 , (102) 
where

K 1 = - Q ρ 1 ρ 2 (u 2 ξ 2 ) t dx dt, K 2 = - Q u 2 ξ 2 ρ 1 ρ 2,t dx dt, K 3 = Q (a(x)(u 2 ξ 2 ) x ) x ρ 1 ρ 2 dx dt, K 4 = 2 Q a(x)(u 2 ξ 2 ) x ρ 1 ρ 2,x dx dt, K 5 = Q u 2 ξ 2 ρ 1 (a(x)ρ 2,x ) x dx dt, K 6 = - Q b w1 1 u 2 ξ 2 ρ 1 ρ 2 dx dt, K 7 = Q u 2 ξ 2 ̺ 1 ρ 2 χ ω d dx dt. Let us estimate K i , i = 1, • • • , 7.
Using inequalities (101), we have

K 1 ≤ γ 1 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |ρ 2 | 2 dx dt + C γ1 T 0 O3 s 13 Θ 33 a(x) x 2 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt, K 2 ≤ γ 2 2 Q 1 sΘ e 2sϕ |ρ 2,t | 2 dx dt + C γ2 T 0 O3 s 15 Θ 27 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt, K 3 ≤ γ 3 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |ρ 2 | 2 dx dt + C γ3 T 0 O3 s 15 Θ 27 a(x) x 2 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt, K 4 ≤ γ 4 2 Q sΘa(x)e 2sϕ |ρ 2,x | 2 dx dt + C γ4 T 0 O3 s 15 Θ 27 a(x)e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt, K 5 ≤ γ 5 2 Q 1 sΘ e 2sϕ |(a(x)ρ 2,x ) x | 2 dx dt + C γ5 T 0 O3 s 7 Θ 7 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt, K 6 ≤ γ 6 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |ρ 2 | 2 dx dt + C γ6 T 0 O3 s 11 Θ 23 a(x)
x 2 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt.

For K 7 , we have

K 7 ≤ γ 7 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |ρ 2 | 2 dx dt + C γ7 T 0 O3 s 11 Θ 23 a(x) x 2 e 2s(4Φ-3ϕ) |̺ 1 | 2 dx dt.
Thanks to (55), we have 4Φ -3ϕ ≤ 0, then Θ 23 e 2s(4Φ-3ϕ) ∈ L ∞ (Q). Furthermore, a(x)

x 2 is bounded on O 3 . Then, K 7 becomes

K 7 ≤ γ 7 2 Q s 3 Θ 3 x 2 a(x) e 2sϕ |ρ 2 | 2 dx dt + C γ7,s T 0 O3 |̺ 1 | 2 dx dt.
We choose the constants γ i such that

γ 1 = γ 3 = γ 6 = γ 7 = d 0 4C 2 and γ 2 = γ 5 = γ 4 = d 0 C 2
, where C 2 is the constant obtained in (99) and d 0 is defined in [START_REF] Carreño | Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation[END_REF]. Using the condition ( 13) and the fact that a(x) x 2 and a(x) are bounded on O 3 , we obtain from (102)

d 0 T 0 O2 s 7 Θ 13 e 2s(4Φ-3ϕ) |̺ 2 | 2 dx dt ≤ d 0 2C 2 I(̺ 2 ) + C 3 T 0 O3 s 15 Θ 33 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt +C(s) T 0 O3 |̺ 1 | 2 dx dt. (103) 
Putting the estimate (103) in (99), we get

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C 4 T 0 O3 s 15 Θ 33 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt + C(s) T 0 O3 |̺ 1 | 2 dx dt. (104) 
In order to eliminate the last term in the previous inequality, we establish the energy estimates for the system (51) and we obtain:

T 0 O3 (|̺ 1 | 2 + |̺ 2 | 2 ) dxdt ≤ C( c 1 ∞ , c 2 ∞ , d ∞ , T ) α 2 1 µ 2 1 + α 2 2 µ 2 2 T 0 O3 |ρ -2 * ρ 1 | 2 dxdt. (105) 
Using the definition of ρ * (t) given in Remark 5, we get ρ -2 * ≤ e sϕ * ≤ e sϕ . Furthermore, Θ ∈ L ∞ ((0, T )) and

x 2 a(x)
is non-decreasing on (0, 1]. Then, the inequality (105) becomes

T 0 O3 (|̺ 1 | 2 + |̺ 2 | 2 ) dxdt ≤ C( c 1 ∞ , c 2 ∞ , d ∞ , T ) α 2 1 µ 2 1 + α 2 2 µ 2 2 T 0 O3 Θ 3 x 2 a(x) e 2sϕ |ρ 1 | 2 dxdt. (106) 
Combining ( 106) with (104) and taking µ i , i = 1, 2 large enough, we obtain

I(ρ 1 ) + I(ρ 2 ) + I(̺ 1 ) + I(̺ 2 ) ≤ C 4 T 0 O3 s 15 Θ 33 e 2s(4Φ-3ϕ) |ρ 1 | 2 dx dt. (107) 
Thanks to (55), we have 4Φ -3ϕ ≤ 0, then Θ 33 e 2s(4Φ-3ϕ) ∈ L ∞ (Q). Furthermore, using the fact that, O 3 ⊂ ω, we deduce the inequality (93) and we complete the proof of Proposition 3.3.

To prove the needed observability inequality, we are going to improve the Carleman inequality (93). To this end, we modify the weight functions ϕ and Θ defined in (54) as follows:

ϕ(t, x) =        ϕ T 2 , x if t ∈ 0, T 2 , ϕ(t, x) if t ∈ T 2 , T (108) 
and

Θ(t) =        Θ T 2 if t ∈ 0, T 2 , Θ(t) if t ∈ T 2 , T . (109) 
Then in view of the definition of ϕ and Θ, the functions ϕ(., x) and Θ(•) are non positive function of class C 1 on [0, T [. From now on, we fix the parameter s. We have the following result.

Proposition 3.4

Under the assumptions of Proposition 3.3, there exist a positive constant

C = C(C 4 , b 1 ∞ , b 2 ∞ , c 1 ∞ , c 2 ∞ , d ∞ , µ 1 , µ 2 ,
T ) > 0 and a positive weight function κ such that every solution ρ = (ρ 1 , ρ 2 ) and ψ i = (ψ i 1 , ψ i 2 ) of (48) and (49), respectively, satisfy the following inequality:

ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + 2 i=1 Q κ 2 (|ψ i 1 | 2 + |ψ i 2 | 2 ) dx dt ≤ C T 0 ω |ρ 1 | 2 dx dt, (110) 
where the constant C 4 is given by the Proposition 3.3.

Proof.

We proceed in two steps.

Step 1. We prove that there exist a constant

C = C(C 4 , b 1 ∞ , b 2 ∞ , d ∞ , T ) > 0 such that ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + 2 i=1 I [0,T ] (ρ i ) + I [0,T ] (̺ i ) ≤ C T 0 ω |ρ 1 | 2 dx dt, (111) 
where I(•) is defined in the follow by (115).

Let us introduce a function

β ∈ C 1 ([0, T ]) such that 0 ≤ β ≤ 1, β(t) = 1 for t ∈ [0, T /2], β(t) = 0 for t ∈ [3T /4, T ], |β ′ (t)| ≤ C/T. (112) 
For any (t, x) ∈ Q, we set

z i (t, x) = β(t)e -r(T -t) ρ i (t, x), i = 1, 2,
where r > 0. Then in view of (50), the function z

= (z 1 , z 2 ) is solution of        -z 1,t -(a(x)z 1,x ) x + b 1 z 1 + dz 2 = βe -r(T -t) ̺ 1 χ ω d -β ′ e -r(T -t) ρ 1 in Q, -z 2,t -(a(x)z 2,x ) x + b 2 z 2 = βe -r(T -t) ̺ 2 χ ω d -β ′ e -r(T -t) ρ 2 in Q, z 1 (t, 0) = z 1 (t, 1) = z 2 (t, 0) = z 2 (t, 1) = 0 on (0, T ), z 1 (T, •) = z 2 (T, •) = 0 in Ω. ( 113 
)
Using the classical energy estimates for the system (113) and using the definition of β and z, we get

ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + T /2 0 Ω (|ρ 1 | 2 + |ρ 2 | 2 ) dxdt + T /2 0 Ω a(x)(|ρ 1,x | 2 + |ρ 2,x | 2 ) dxdt ≤ C( b 1 ∞ , b 2 ∞ , d ∞ , T ) 3T /4 0 Ω (|̺ 1 | 2 + |̺ 2 | 2 ) dx dt + 3T /4 T /2 Ω (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt .
The functions ϕ and Θ defined by ( 108) and ( 109), respectively, have lower and upper bounds for (t, x) ∈ [0, T /2] × Ω. Furthermore, due to the hypothesis (2), we have that a ∈ C([0, 1]) and a > 0 in (0, 1]. Therefore, there exist positive constants α 1 and α 2 such that a(x) ≥ α 1 and x 2 a(x) ≥ α 2 . Then, we introduce the corresponding weight functions in the above expression and we get

ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + I [0,T /2] (ρ 1 ) + I [0,T /2] (ρ 2 ) ≤ C( b 1 ∞ , b 2 ∞ , d ∞ , T ) 3T /4 0 Ω (|̺ 1 | 2 + |̺ 2 | 2 ) dx dt + 3T /4 T /2 Ω (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt , (114) 
where 

I
Adding the term I [0,T /2] (̺ 1 ) + I [0,T /2] (̺ 2 ) on both sides of inequality (114), we have

ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + I [0,T /2] (ρ 1 ) + I [0,T /2] (ρ 2 ) + I [0,T /2] (̺ 1 ) + I [0,T /2] (̺ 2 ) ≤ C( b 1 ∞ , b 2 ∞ , d ∞ , T ) 3T /4 0 Ω (|̺ 1 | 2 + |̺ 2 | 2 ) dx dt + 3T /4 T /2 Ω (|ρ 1 | 2 + |ρ 2 | 2 ) dx dt + I [0,T /2] (̺ 1 ) + I [0,T /2] (̺ 2 ). (116) 
In order to eliminate the term I [0,T /2] (̺ 1 ) + I [0,T /2] (̺ 2 ) in the right hand side of (116), we use the classical energy estimates for the system (51) and we obtain:

T /2 0 Ω (|̺ 1 | 2 + |̺ 2 | 2 ) dxdt + T /2 0 Ω a(x)(|̺ 1,x | 2 + |̺ 2,x | 2 ) dxdt ≤ C( c 1 ∞ , c 2 ∞ , d ∞ , T ) α 2 1 µ 2 1 + α 2 2 µ 2 2 T /2 0 Ω |ρ -2 * ρ 1 | 2 dxdt ≤ C( c 1 ∞ , c 2 ∞ , d ∞ , T ) α 2 1 µ 2 1 + α 2 2 µ 2 2 T /2 0 Ω e 2sϕ |ρ 1 | 2 dxdt,
where C is independent of µ i , i = 1, 2. The functions ϕ and Θ have lower and upper bounds for (t, x) ∈

[0, T /2] × Ω. Moreover, the function x 2 a(x) is non-decreasing on (0; 1] and x 2 a(x) ≥ α 2 > 0 in (0, 1]. Then, from the previous inequality and using the fact that e 2sϕ ≤ 1 for all (t, x) ∈ Q, we obtain

I [0,T /2] (̺ 1 ) + I [0,T /2] (̺ 2 ) ≤ C( c 1 ∞) , c 2 ∞ , d ∞ , T ) α 2 1 µ 2 1 + α 2 2 µ 2 2 T /2 0 Ω Θ 3 x 2 a(x) e 2s ϕ |ρ 1 | 2 dxdt. (117) 
Replacing (117) in (116) and taking µ i , i = 1, 2 large enough, we obtain

ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + I [0,T /2] (ρ 1 ) + I [0,T /2] (ρ 2 ) + I [0,T /2] (̺ 1 ) + I [0,T /2] (̺ 2 ) ≤ C( b 1 ∞ , b 2 ∞ , d ∞ , T ) 3T /4 T /2 Ω (|ρ 1 | 2 + |ρ 2 | 2 + |̺ 1 | 2 + |̺ 2 | 2 ) dx dt. (118) 
The functions ϕ and Θ defined in (54) have the lower and upper bounds for (t, x) ∈ [T /2, 3T /4]×Ω. Moreover, the function x 2 a(x) is non-decreasing on (0, 1]. Using (93), the relation (118) becomes

ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + I [0,T /2] (ρ 1 ) + I [0,T /2] (ρ 2 ) + I [0,T /2] (̺ 1 ) + I [0,T /2] (̺ 2 ) ≤ C( b 1 ∞ , b 2 ∞ , d ∞ , T ) 2 i=1 I [T /2;3T /4] (ρ i ) + I [T /2;3T /4] (̺ i ) ≤ C(C 4 , b 1 ∞ , b 2 ∞ , d ∞ , T ) T 0 ω |ρ 1 | 2 dx dt, (119) 
where I(•) is defined by (60) and the constant C 4 is defined in the Proposition 3.3. On the other hand, since Θ = Θ and ϕ = φ in [T /2, T ] × Ω, we use again estimate (93) and we obtain

2 i=1 I [T /2,T ] (ρ i ) + I [T /2,T ] (̺ i ) ≤ 2 i=1 I [T /2,T ] (ρ i ) + I [T /2,T ] (̺ i ) ≤ C(C 4 , b 1 ∞ , b 2 ∞ , d ∞ , T ) T 0 ω |ρ 1 | 2 dx dt. (120) 
Adding ( 119) and (120), we get

ρ 1 (0, •) 2 L 2 (Ω) + ρ 2 (0, •) 2 L 2 (Ω) + 2 i=1 I [0,T ] (ρ i ) + I [0,T ] (̺ i ) ≤ C T 0 ω |ρ 1 | 2 dx dt,
and then, we deduce the estimation (111).

Step 2. Now, we prove that there exist a constant

C = C(C 4 , b 1 ∞ , b 2 ∞ , c 1 ∞ , c 2 ∞ , d ∞ , µ 1 , µ 2 , T ) > 0 and a positive weight function κ such that 2 i=1 Q κ 2 (|ψ i 1 | 2 + |ψ i 2 | 2 ) dx dt ≤ C T 0 ω |ρ 1 | 2 dx dt. (121) 
Let us introduce the function

φ(t) = min x∈Ω ϕ(t, x) (122) 
and define the weight function κ by:

κ(t) = e s φ(t) ∈ L ∞ (0, T ). ( 123 
)
Then κ is a positive function of class C 1 on [0, T ). Furthermore, ∂ φ ∂t is also a positive function on (0, T ). Now, multiplying the first equation and the second equation of (49) by κ 2 ψ i 1 and κ 2 ψ i 2 , respectively and integrating by parts over Ω, we obtain that We obtain the two previous inequalities using the fact that ∂ φ ∂t is a positive function on [0, T ). Adding the two previous inequalities, we obtain

d dt Ω κ 2 (|ψ i 1 | 2 + |ψ i 2 | 2 ) dx ≤ C Ω κ 2 (|ψ i 1 | 2 + |ψ i 2 | 2 ) dx + 1 µ 2 i ωi κ 2 |ρ 1 | 2 dx, where C = ( c 1 ∞ , c 2 ∞ , d ∞ )
. Using Gronwall's Lemma and the fact that ψ i 1 (x, 0) = ψ i 2 (x, 0) = 0 for x ∈ Ω, we obtain that

Ω κ 2 (|ψ i 1 | 2 + |ψ i 2 | 2 ) dx ≤ C Q κ 2 |ρ 1 | 2 dx, ∀t ∈ [0, T ], (124) 
where

C = ( c 1 ∞ , c 2 ∞ , d ∞ , T, µ 1 , µ 2 )
. Using the definition of φ and κ given by ( 122) and (123), respectively, we have κ 2 (t) ≤ e 2s ϕ(t,x) , ∀x ∈ Ω.

Thanks to the fact that Θ -1 ∈ L ∞ (0, T ) and that the function a(x) x 2 is non-decreasing on (0, 1], using (125), we have

Q κ 2 (|ψ i 1 | 2 + |ψ i 2 | 2 ) dx ≤ Q Θ 3 x 2 a(x) e 2s ϕ |ρ 1 | 2 dx dt,
which combining with (124) and (111) yields

Q κ 2 (|ψ i 1 | 2 + |ψ i 2 | 2 ) dx ≤ C T 0 ω |ρ 1 | 2 dx dt, where C = (C 4 , b 1 ∞ , b 2 ∞ , c 1 ∞ , c 2 ∞ , d ∞ , T, µ 1 , µ 2 )
. Adding this latter inequality with (111), we deduce (110).

Null controllability problem

In this section, we will end the proof of Theorem 1.2. The proof is inspired by well-known results on the controllability of non linear systems where controllability of linear systems and suitable fixed point arguments are the main ingredients.

Null controllability of an auxiliary linear system

Here, we prove the null controllability of a linearized version of ( 22)-( 23). In fact, for given b

1 , b 2 , c 1 , c 2 , d ∈ L ∞ (Q), we consider the linear systems          y 1,t -(a(x)y 1,x ) x + b 1 y 1 = hχ ω - 1 µ 1 ρ -2 * p 1 1 χ ω1 - 1 µ 2 ρ -2 * p 2 1 χ ω2 in Q, y 2,t -(a(x)y 2,x ) x + b 2 y 2 + dy 1 = 0 in Q, y 1 (t, 0) = y 1 (t, 1) = y 2 (t, 0) = y 2 (t, 1) = 0 on (0, T ), y 1 (0, •) = y 0 1 , y 2 (0, •) = y 0 2 in Ω (126) and            -p i 1,t -a(x)p i 1,x x + c 1 p i 1 + dp i 2 = α i y 1 -y i 1,d χ ω d in Q, -p i 2,t -a(x)p i 2,x x + c 2 p i 2 = α i y 2 -y i 2,d χ ω d in Q, p i 1 (t, 0) = p i 1 (t, 1) = p i 2 (t, 0) = p i 2 (t, 1) = 0 on (0, T ), p i 1 (T, •) = p i 2 (T, •) = 0 in Ω, (127) 
and the corresponding adjoint systems (49)-(50). Thanks to the Proposition 3.4, we will able to prove the null controllability of (126)-(127). We have the following result. 

4 , b 1 ∞ , b 2 ∞ , c 1 ∞ , c 2 ∞ , d ∞ , µ 1 , µ 2 and T such that h L 2 (ωT ) ≤ C α 2 1 2 i=1 κ -1 y 1 i,d 2 L 2 (ω d,T ) + α 2 2 2 i=1 κ -1 y 2 i,d 2 L 2 (ω d,T ) + y 0 1 2 L 2 (Ω) + y 0 2 2 L 2 (Ω) 1/2 . ( 128 
)
Proof.

To prove this null controllability problem, we proceed in three steps using a penalization method.

Step 1. For any ε > 0, we consider the following cost function:

J ε (h) = 1 2ε Ω |y 1 (T, •)| 2 + |y 2 (T, •)| 2 dx + 1 2 ωT |h| 2 dx dt. ( 129 
)
Then we consider the optimal control problem:

inf h∈L 2 (ω T ) J ε (h). ( 130 
)
We can prove that J ε is continuous, coercive and strictly convex. Then, the optimization problem (130) admits a unique solution h ε and arguing as in [START_REF] Djomegne Njoukoué | Hierarchic control for a nonlinear parabolic equation in an unbounded domain[END_REF], we prove that

h ε = ρ 1ε in ω T , (131) 
with (ρ ε , ψ i ε ) is the solution of the following systems          -ρ 1ε,t -(a(x)ρ 1ε,x ) x + b 1 ρ 1ε + dρ 2ε = (α 1 ψ 1 1ε + α 2 ψ 2 1ε )χ ω d in Q, -ρ 2ε,t -(a(x)ρ 2ε,x ) x + b 2 ρ 2ε = (α 1 ψ 1 2ε + α 2 ψ 2 2ε )χ ω d in Q, ρ 1ε (t, 0) = ρ 1ε (t, 1) = ρ 2ε (t, 0) = ρ 2ε (t, 1) = 0 on (0, T ),

ρ 1ε (T, •) = - 1 ε y 1ε (T, •) ρ 2ε (T, •) = - 1 ε y 2ε (T, •) in Ω (132) and            ψ i 1ε,t -a(x)ψ i 1ε,x x + c 1 ψ i 1ε = - 1 µ i ρ -2 * ρ 1ε χ ωi in Q, ψ i 2ε,t -a(x)ψ i 2ε,x x + c 2 ψ i 2ε + dψ i 1ε = 0 in Q, ψ i
1ε (t, 0) = ψ i 1ε (t, 1) = ψ i 2ε (t, 0) = ψ i 2ε (t, 1) = 0 on (0, T ),

ψ i 1ε (0, •) = ψ i 2ε (0, •) = 0 in Ω, (133) 
where (y ε , p i ε ) is the solution of systems ( 126)-(127) associated to the control h ε .

Step 2. If we multiply the first and the second equation of (132) by y 1ε and y 2ε respectively, then we multiply the first and the second equation of (133) by p i 1ε and p i 2ε respectively, we integrate by parts over Q and add the different equations, we obtain from (131) In this way, we introduce a multivalued mapping w -→ Λ(w).

h ε 2 L 2 (ωT ) + 1 ε y 1ε (T, •) 2 L 2 (Ω) + 1 ε y 2ε (T, •) 2 L 2 (Ω) = -
We want to prove that this mapping has a fixed point y. Of course, this will imply that there exists a control h ∈ L 2 (ω T ) such that the solution of ( 22)-( 23) satisfies [START_REF] Boutaayamou | Stackelberg-Nash null controllability of a heat equation with general dynamic boundary conditions[END_REF].

To this end, we will use the Kakutani's fixed point Theorem that can be applied on Λ. Proceeding as in [START_REF] Nina-Huaman | Limaco: Stackelberg-Nash Controllability for N-Dimensional Nonlinear Parabolic Partial Differential Equations[END_REF]Theorem 1.3] or [8, Theorem 1.1], we can prove the following properties for every w ∈ W :

• Λ(w) is a non empty, closed and convex set of W .

• Λ(w) is a bounded and compact set of W .

• The application w -→ Λ(w) is upper hemi-continuous. This end the proof of Theorem 1.2 and furthermore the proof of null controllability of system (1).

Conclusion remarks

We proved the Stackelberg-Nash null controllability of a coupled degenerate non linear parabolic equations with one leader and two followers. Since our functionals are not convex because the system is non linear, we considered first the Nash quasi-equilibrium. In the first time, for each leader fixed, we have proved the existence, uniqueness and characterization of Nash quasi-equilibrium. Then using some hypothesis, we have showed the equivalence between Nash quasi-equilibrium and Nash equilibrium. By suitable Carleman estimates, we have established an observability inequality which is the key to deduce our controllability result. As future direction, we will extend the results obtained in this paper to a more general system of m cascade coupled parabolic degenerate PDEs as in [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF].

2s ϕ |l| 2

 2 dx dt + b a Ω Θa(x)e 2s ϕ |l x | 2 dx dt.

Proposition 4. 1

 1 Suppose that[START_REF] Cannarsa | Global Carleman estimates for degenerate parabolic operators with applications[END_REF] holds, the µ i , i = 1, 2 are large enough, a(•) satisfies (2) and the coefficients b 1 , b 2 , c 1 , c 2 and d belong to L ∞ (Q). If the condition (13) is satisfied, then for any y 0 ∈ [L 2 (Ω)] 2 and κ -2 y i j,d ∈ L 2 (Q), there exists a control h ∈ L 2 (ω T ) such that the corresponding solutions to (126) and (127) satisfies (9). Furthermore, there exists a positive constant C depending on C

2 L 2 2 i=1κ -1 y 2 i,d 2 L 2 2 L 2 ( 2 L 2 ( 2 L 2 2 i=1κ -1 y 1 i,d 2 L 2 2 2 2 i=1κ -1 y 2 i,d 2 L 2 2 L 2 ( 2 L 2 2 2 2 i=1κ -1 y 2 i,d 2 L 2 2 L 2 (

 22222222222221222222222222222222 (ω d,T ) + α 2 2 (ω d,T ) + y 0 1 Q) + ρ 1ε (0, •) 2 L 2 (Ω) + ρ 2ε (0, •) inequality (110), we deduce from (134) the existence of a positive constant C depending on C 4 , b 1 ∞ , b 2 ∞ , c 1 ∞ , c 2 ∞ , d ∞ , µ 1 , µ 2 and T such that h ε L 2 (ωT ) ≤ C α 2 1 (ω d,T ) + α (ω d,T ) + y 0 1 (ω d,T ) + α (ω d,T ) + y 0 1 Combining (19), (128) and (26), we obtainy 1 L 2 ((0,T );H 1 a (Ω)) + y 2 L 2 ((0,T );H 1 a (Ω)) ≤ C y 0 1 L 2 (Ω) + y 0 2 L 2 (Ω) . (142)For every w ∈ W , we defineI(w) = h ∈ L 2 (ω T ), (y, p i ) solution of (139) -(140) satisfies (9) with h verifying (128) (143) and Λ(w) = (y, p i ) : (y, p i ) is the state associated to a control h ∈ I(w) and (y, p i ) satisfies (142) . (144)

Acknowledgments

We would like to thank the reviewers and the editors for their valuable comments and suggestions which helped us to improve significantly the paper.

L 2 (ω d,T ) + y 0 1 2

.

(137) Using ( 135)-(137) and systems (126)-(127) associated to the control h ε given by (131), we can extract subsequences still denoted by h ε , y ε and p i ε such that when ε → 0, we have

Arguing as in [START_REF] Mophou | Robust hierarchic control for a population dynamics model with missing birth rate[END_REF][START_REF] Djomegne Njoukoué | Hierarchic control for a nonlinear parabolic equation in an unbounded domain[END_REF], using convergences (138), we prove that (y, p i ) is a solution of ( 126)-(127) corresponding to the control h and also y satisfies [START_REF] Boutaayamou | Stackelberg-Nash null controllability of a heat equation with general dynamic boundary conditions[END_REF]. Furthermore, using the convergence (138a), we have that h satisfies (128).

Proof of Theorem 1.2

We have proved in Proposition 2.3 and Theorem 1.1 that the Nash equilibrium for (J 1 , J 2 ) given by ( 4), (v 1 , v2 ) is characterised by ( 21)- [START_REF] Hernández-Santamaría | Some remarks on the hierarchic control for coupled parabolic PDEs[END_REF]. In Proposition 4.1, we proved that the linear systems (126)-( 127) is null controllable at time t = T . We are now going to prove that, there exists a control h ∈ L 2 (ω T ) such that the solution of ( 22)-( 23) satisfies [START_REF] Boutaayamou | Stackelberg-Nash null controllability of a heat equation with general dynamic boundary conditions[END_REF].

We define W = [L 2 ((0, T ); H 1 a (Ω))] 2 . For every w ∈ W , we consider the linearized system for ( 22)-( 23)

where

Observe that systems (139)-(140) are of the form (126)-(127

Thanks to the hypothesis of F 1 and F 2 given by (3), we have that b w 1 , b w 2 , c w 1 and c w 2 belong to L ∞ (Q). In view of Proposition 4.1, there exits a control h(w) ∈ L 2 (ω T ) such that the solution (y, p i ) to (139)-( 140) with h = h(w) satisfies [START_REF] Boutaayamou | Stackelberg-Nash null controllability of a heat equation with general dynamic boundary conditions[END_REF].
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