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Abstract—Contrary to classical steganalysis methods focused
on the detection performance, this paper proposes a reliable
steganalysis method targeting two goals: prescribing a given,
potentially very small, False-Positive (FP) rate while maximizing
the detection accuracy. This is the first step toward operational
steganalysis where the forensics agent needs an accurate FP rate
in order to make a decision. Because JPEG steganalysis at Quality
Factor (QF) 100 is associated with an accurate and robust distri-
bution of Cover images by computing the rounding error after
JPEG decompression, we use this domain to derive statistical tests
associated with theoretical FP rates. A Kolmogorov-Smirnov test
applied on different pixel positions of the 8× 8 block, associated
with an aggregation strategy, and a block filtering pre-processing
are combined to propose an accurate yet reliable detector for FP
going below 10−4. Experiments are both assessed on synthetic
images and the ”wild” ALASKA database using J-UNIWARD.

Index Terms—Steganalysis, reliability, false-positive rate,
Kolmogorov-Smirnov test

I. INTRODUCTION

Because the goal of Eve, the warden performing steganal-
ysis, is to decide from the output of a given detector if the
image under scrutiny should be considered either as Cover
(Negative outcome) or Stego (Positive), the operational use
of such a detector depends on its performances in terms
of False Positive (FP) and False Negative (FN) rates. Most
steganalysis detectors from the literature are validated in terms
of probability of error which generally penalizes equally FPs
from FNs and aggregate these two criteria into a single scalar.
From a broader decision-theoretic standpoint, and also in
connection with the practical needs of end-users, merging
these two criteria may not be desirable. In this article, we
investigate ways to obtain a detector with a strong control on
FP rate and, given that control, an FN rate as small as possible
which is reminiscent of the Neyman-Pearson classification
framework. While fixing the FN rate and minimizing FPs is
another possibility [1], as will be motivated in the following
paragraphs, we stress that the desired control is meant to be
valid for a vast class of JPEG Stego sources1 which calls for a

1The only restriction is on the quality factor (QF) which is restricted to 100
for reasons to be exposed in the sequel. However, the detector should work
for several acquisition devices, processing pipelines, or payloads.

precise statistical model of the Cover class and rules out most
(discriminative) machine learning approaches.

A. Toward Reliable Steganalysis

We motivate in this paper the need to design both accurate
and reliable detectors in steganalysis. If on one hand, accuracy
is related to the power of the test performed by the classifier,
i.e. the True Positive (TP) rate; reliability is related to the
possibility of controlling the error rates, and particularly the
FP rate.

Practically, FP rates may be estimated using Monte-Carlo
simulations (i.e. by testing on a large database of Cover
images), but this is only possible if the prescribed FP rate
is relatively high, for example prescribing a FP rate of 10−9

would require more than 10 billion images to have a reliable
estimation, which is expensive from a computational point of
view.

Moreover, to control the FP rate, the diversity of the Cover
images needs also to be controlled. It has been shown for
example in [2], [3] that a detector trained from a source
made of a base of images developed with a given software
will be efficient on a test base also developed with this same
software. However, it can become completely inefficient if the
tested images are developed with another software, while the
visual content between the two bases is extremely close. This
problem, known as the Cover Source Mismatch (CSM) can
complicate considerably the task of the warden.

Consequently, Eve needs to have theoretical guarantees on
her FP rates. In order to be practical, the relation between
the detection threshold used to discriminate Cover from Stego
images should be related to the FP rate by an explicit function,
and Monte-Carlo simulations can be used to assess, whenever
it is practically possible, the validity of the targeted FP rate.

It is also important to mention that the framework of reliable
steganalysis is different from standard steganalysis since it now
can be seen as a two-faced problem:

1) On one hand, Eve needs to accurately control the FP
error rate for potentially different sources of images and
arbitrary small rates (targeting 10−6),



2) On the other hand, the power of the test needs also
to be maximized. This second constraint of course is
dependent of the Stego scheme and the embedding rate.

A naive detector, which is an extreme point in the scope of
this new trade-off, consists in deciding that each steganalyzed
image is Cover, hence fixing the FP rate to zero, but in this
case, the power of the test would be null as well. On the other
side, Eve can use a steganalyzer associated with very high TP
rates, but if the FP rate is too important, the detector will also
be useless for her.

B. Prior works

As we shall see in section II, error rates can be controlled
within the framework of statistical hypothesis testing by
computing the p-value associated with a given test, which is
equivalent to deriving the distribution of the statistic used to
perform the test. We briefly highlight previous works following
rather similar approaches.

The pioneering work of Cogranne and Retraint [4] (see
e.g. Sec. 4 and Fig. 4) proposed to model the distribution of
the Generalized Likelihood Ratio Test (GLRT) as a Normal
distribution, for LSB matching in the spatial domain and on
RAW images. Note however that such a test relies on the
knowledge of the payload size, and also that the estimation of
noise associated with the Cover distribution is reliable only if
the noise is independently distributed, which is not the case
for various sources of images.

Previous works leverage the computation of p-values in
steganalysis, but this was either to assess the validity of the
Cover distribution or for detection purposes. In [5], Ker used
the Kolmogorov-Smirnov statistic (see section II for more
details) and its associated p-value on RS steganalysis to check
if the distribution of the Cover images after JPEG compression
and downscaling are similar to the distributions of Cover
images without compression.

In [6], Westfeld and Pfitmaan computed the p-value to detect
segments of the image that could be considered as carrying
the payload after various embeddings operating in the LSB
domain, one of the objectives there was to estimate the payload
size.

C. Outline of the paper

This paper proposes to design a reliable steganalysis scheme
in the JPEG domain. To control the distribution of Cover
contents, and to be immune to the CSM, the detection is
only performed for a quality factor equal to 100. This specific
setting enables obtaining a reliable distribution of the Cover
images, by computing the rounding error after the inverse DCT
transform [7], which is invariant to the CSM (see section III).

Section II presents different statistical tests and strategies to
aggregate several p-values generated from the same test image
on potential dependent samples.

Section IV investigates on synthetic images the impact of
different hypotheses such as the CLT, or the i.i.d. property
of the rounding errors. Section V presents practical results
and technical considerations necessary to achieve reliable

steganalysis. Both the control of the error rate and the detection
performance are benchmarked.

II. STATISTICAL TESTS AND FP RATES CONTROL

A statistical test is a procedure consisting in checking if
a (null) hypothesis H0 should be rejected based on collected
data. This is usually done by computing a statistic from the
data and, based on the precisely known distribution of this
statistic, by checking if the data is a rare event (having a
probability no greater than a prescribed small level α). If
so, H0 is rejected otherwise H0 cannot be rejected meaning
that the test is inconclusive. In our context, H0 is the fact
that an analyzed image is Cover and the processed data is
e. The corresponding detector assigns the Stego class to the
image when H0 is rejected and to the Cover class otherwise.
Consequently, the level α is the (theoretical) FP rate achieved
by the detector.

In [7], the authors envisaged using a likelihood ratio test.
This test also relies on the wrapped Gaussian model and
because of the limitations evoked in the previous section, it is
not possible to derive the exact distribution of the likelihood
ratio statistic. It also requires a model for the alternative
hypothesis H1 (Stego class) which is impossible without the
knowledge of the embedding rate.

We present the Kolmogorov-Smirnov test in the next sub-
section, followed by the Bonferroni procedure to control
the Family-Wise Error Rate (FWER) of multiple hypothesis
testing.

A. Kolmogorov-Smirnov (KS) Test

To test the equality between the sample distribution from
a given image and the Cover one, the Kolmogorov-Smirnov
(KS) test [8] appears as the most straightforward choice of
non-parametric test regarding assumptions. The KS test can
compare a sample with a one-dimensional reference proba-
bility distribution if the latter is continuous and has a known
cumulative distribution function. Moreover, the KS test can
also compare two samples. It can be instrumental if the
cumulative distribution of the reference distribution is not
known but can be sampled.

Let X and Y be one dimensional samples of size n and
n′ respectively, let FX and FY be the empirical cumulative
distributions defined for every x ∈ R such as FX(x) =
1
n

∑n
i=0 1[−∞;x](Xi) with 1[−∞;x](X) = 1 if X ≤ x, 0

otherwise. Finally, let F be a cumulative density function.
The KS statistic is the supremum vertical distance between

the two cumulative distributions:

Dn = supx|FX(x)− F (x)| One sample KS test
Dn,n′ = supx|FX(x)− FY(x)| Two-sample KS test

Under the null hypothesis, the distribution of the statistic is
known and tends toward a Kolmogorov distribution when n
and n′ tend toward infinity. In practice, assuming we observed
a KS distance d between the two cumulative distributions,
accurate approximations of the distribution can be used to



obtain the p-value: p = P (Dn,n′ > d) or P (Dn > d)
depending on the chosen test type (two or one-sample).

As we shall see in section IV, in our case the null hypothesis
might be different for each of the 64-pixel positions in a block.
This leads to 64 different hypothesis testing and the same
number of p-values. Since our global test is to know if the
image is Cover or not, we are facing a multiple hypothesis
testing problem.

B. Bonferroni procedure and Family-Wise Error Rate (FWER)

Multiple hypothesis testing problems occur when inferring
a parameter from a set of tests. The more tests are performed,
the more likely we are to observe an outlier statistic and thus
an error. Assuming we have a family of m different hypothesis,
we denote the number of type I error (false positive outcome)
as V ∈ [0,m]. The Family-Wise Error Rate (FWER) is defined
by the probability of observing at least one type I error among
the m hypothesis: FWER = P (V > 0)

Let α > 0 be our type I error parameter and let p be the
p-value of one of our test. We reject the null hypothesis if
p ≤ α. By definition of a p-value, P (p ≤ α) ≤ α. So by
correcting the threshold α to α

m (or multiplying the p-value p
by m), without any assumption on the dependence of the test,

FWER = P (V > 0) ≤ m× P
(
p ≤ α

m

)
≤ m α

m
= α.

This correction is called the Bonferroni procedure [8] and will
be used to aggregate our 64 tests into a single one.

III. JPEG STEGANALYSIS AT QF100

We formalize here the steganalysis problem, which consists
in analyzing JPEG images compressed with a Quality Factor
of 100. Note that QF100 images are quite popular on the
internet, since around 15% of uploaded images on Flickr are
compressed at QF100 [9].

JPEG images are defined on 8 × 8 blocks and every
following notation and property is block independent so, for
simplicity, let c denote a raw Cover image composed of a
single block 8 × 8. The two-dimensional Discrete Cosine
Transform is a function denoted DCT and its inverse is
DCT−1. We introduce the following notations:

c̃ = DCT{c} DCT domain image
[c̃] Compressed JPEG image
ĉ = DCT−1{[c̃]} Decompressed image

where [.] is the rounding function. Since we are working at
QF100, the quantification step is equal to one and does not
appear in those expressions. Each position in the 8× 8 block
can lead to different statistical models, so everywhere in this
paper, 0 ≤ i, j ≤ 7 will be used to index pixels, and 0 ≤
k, l ≤ 7 will index DCT coefficients.

The stenographer has no other choice than to insert its
secret message by modifying the DCT coefficients [c̃]kl,
typically by making ±1 moves on these coefficients. Butora
and Fridrich [7] showed that these modifications leave a

highly detectable pattern in the spatial rounding error after
decompression. We define this rounding errors as follows:

e = ĉ− [ĉ] rounding error in pixel domain
u = c̃− [c̃] rounding error in DCT domain

Moreover, the authors also suggest that these pixel errors e can
be adequately modeled by a wrapped Gaussian distribution,
denoted by ν

(
0, 1

12

)
, where 0 is the mean and 1

12 is the
variance. This statistical model could lead to the type of
control sought in this paper. Unfortunately, this is not the case
for small FP rates, as the following paragraphs will illustrate.

1) Associated hypotheses and distributions: The model
proposed in [7] is built upon the hypothesis that rounding
errors in the DCT domain (during JPEG compression) are
independent and identically distributed. The aforementioned
hypothesis consists in ukl ⊥⊥ uk′l′ whenever (k, l) 6= (k′, l′)
and ukl ∼ U[− 1

2
; 1
2 ] (uniform distribution on the

[
− 1

2 ; 1
2

]
interval)2.

A closer look at these random variables (see IV-B) reveals
that none of these assumptions hold even if, in first approxi-
mation, the wrapped Gaussian model efficiently characterizes
e.

IV. PLAYING IN A SANDBOX

A. Starting in a controlled environment ...

We introduce our approach through a simple framework
where most difficulties are controlled. In this sandbox, an
image x is composed of n independent and identically dis-
tributed pixels sampled from a uniformly discrete distribution
between 0 and 255. This way we can ensure that the host
content follows the i.i.d. assumption. This image is split into

2the symbol ⊥⊥ defines two random variables which are independently
distributed.
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8×8 blocks. Thus, we end up with 64 rounding error samples
(eij) of the same sizes.

Our family of null hypothesis is

H0 =

{
Hi,j0 : eij ∼ ν

(
0,

1

12

)
, ∀ 0 ≤ i, j ≤ 7

}
.

H2
0 respectively denotes the family of null hypothesis concern-

ing the squared rounding error whose, by abuse of notation,
is denoted by ν2.

The wrapped Gaussian cumulative distribution function and
the one for the squared error are derived from [7] as follows.
For all x ∈ R,

Fν(µ,s)(x) = 1√
2πs

∑
n∈Z

[
Φ
(
− 1

2 − µ+ [µ]− n
)

− Φ (−x− µ+ [µ]− n)
]
,

and,
Fν2(µ,s)(x) = 2Fν(µ,s)(

√
|x|)− 1,

where Φ is the cumulative distribution function of the normal
distribution.

Using the one sample KS test, we obtain a set of 64 p-
values p = (pij) and we can correct them using the Bonferroni
procedure. The new p-values are simply p∗ = (p∗ij), where
p∗ij = 64× pij for all 0 ≤ i, j ≤ 7.

Finally, we define the following classifier:

δα(x) =

{
Stego if mini,j p

∗
ij ≤ α,

Cover otherwise.

The probability of type I error of this classifier is the
probability to classify a Cover image as stego:

Px∈cover (δα(x) = stego) = FWER(H0) ≤ α.

We use the spatial rounding error e but also its (elemen-
twise) squared value e2. The motivation behind the squared
error is twofold.

First, depending on the implementation of the rounding
error, x 7→ x − [x] or x 7→ [x] − x do not have the same
support which can lead to a shift in the mean. The rounding
function itself can also have different implementations, but by
”folding” the distribution on itself, there is no such difference
anymore. This can be done using the absolute value function
or the square function. Note also that since the distribution
of the rounding error is symmetric, ”folding” the distribution
generates a more accurate empirical CDF for the KS test, it can
be seen as a way to artificially double the number of observed
samples.

Second, we know that steganalysers using the variance of
the rounding error are quite powerful. Since the variance is
computed from the squared error, we hope to benefit from
this detection power (see sections IV and V).

Figure 1 represents the empirical false positive rate as a
function of α. It was obtained using ”sandbox images” as
explained earlier. Both the error and the squared error give
promising results on the guarantees. The slight offset around
α = 1 is due to the Bonferroni procedure but remains
consistent with the upper bound.
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Fig. 2: Steganalysis results on Alaska dataset: 10k Stego
images embedded with J-UNIWARD at payload 0.1 bpnzac
and 70k Cover images. Legend is shared with figure 1 : in blue
KS

(
e, ν

(
0, 1

12

))
, in orange KS

(
e2, ν2

(
0, 1

12

))
. Black lines

are the results without Bonferroni procedure and aggregation
for the squared error.

B. ... and going into the wild

The Alaska database [9] has been generated to promote
an important diversity by using a large number of devel-
opment pipelines and camera sensors. We now benchmark
our steganalysis scheme on JPEG images at QF100 directly
downloaded from https://alaska.utt.fr. Here results are very
different. Indeed, Figure 2 shows two things. First, the ROC
curves show a better power for the ”folded” rounding error.
Second, the upper bound on the false positive rate is violated
for both features. We can think of the following hypotheses
to explain this result:

(a) In uniform areas of the image, the rounding error has
intra and inter blocks correlations which have an impact
on the overall distribution.

(b) The i.i.d. wrapped Gaussian model is not accurate
enough. For example, dependencies inside the same

https://alaska.utt.fr
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Fig. 3: Empirical mean and variances of rounding errors for
the 64 pixels positions, estimation using 104 images.

sample eij are not modeled. One can also empirically
observe a different variance Var(eij) between corners,
borders, and inner positions in the block where the
wrapped Gaussian has a single variance for each position
(see Figure 3).

V. PRACTICAL APPROACHES

In this section, we modify the classifier 3 w.r.t. two aspects.
A filter on the variance of the pixel values in one block is
introduced to favor noisy blocks. The test is also changed from
one-sample KS test to a two-sample KS test in order to obtain
a more reliable null hypothesis.

A. Filtering the rounding errors

In natural images, the content and the processing pipeline
can create correlations between pixels values but section IV
shows that independent pixels lead to a correct false positive
rate upper bound. So if we filter out the most correlated
pixels and keep only the noisiest ones, we tend toward the
independent noise setting of the sandbox framework. This is
done using the variance of the pixel values in each block. If
the variance of a block is less or equal than a threshold s, the
rounding errors of these blocks are discarded, otherwise, they
are kept to perform the test.

If most images have a sufficient amount of textures to be
kept by this filter, some others will lose most of their blocks, if
not all. Performing the KS test on a few samples is possible but
can lead to outliers very easily. That is why we only classify
images with at least 100 blocks remaining after filtering. The
value of s is studied in Figure 4 and shows that the higher
the variance threshold, the closer to the guarantee. However,
the higher this threshold, the more images are not classified
because they do not have enough blocks remaining. For the
rest of the paper, we choose to fix s = 20 such that only
noisy blocks are used and only 3% images are not classified
in Alaska. This filter should deal with the first hypothesis (a).

B. Increasing reliability with two-sample tests

The possibility that the wrapped Gaussian is not accurate
enough can be bypassed by using the two-sample KS test. The
idea would be to use some Cover images at the disposition of

3The code related to this classifier can be found on Gitlab.
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reliability of the detector for 70k Cover images. Note that
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the steganalyser to build 64 reference samples of rounding
errors. A larger reference sample should have better detection
power but is associated with a larger complexity to compute
the 64 tests. A small reference can lead to a poor representation
of the true distribution and increase the chance of a false
positive. For the rest of this paper, around 100 images were
used to build a sample vector of 75 × 103 rounding errors.
Practically, we can notice that false-positive guarantees are
already obtained with 15 images to build the training set, but
we prefer to take some margin, which also boosts the detection
power by learning a more accurate and generalizable model.
This change can be seen as a change in the null hypothesis
and should address the second point (b).

C. Steganalysis performances

Figure 5a shows the results of this detector on the Alaska
dataset embedded with J-UNIWARD using a payload of 0.1
bpnzac (bit per non-zero AC coefficient). Both detection and
false positive rate guarantee are satisfactory. Note however that
the proposed classifier is, for low FP rates, very far to be as
powerful as the score based on the variance of the rounding
error proposed in [7], [10]. This illustrates the trade-off that we
are currently facing between classical and reliable steganalysis.

Figure 6 shows that the detection power increases with
higher payloads. Since Cover images are not changing when
the payload changes, we always have the same amount of
false positives. The dataset was voluntarily unbalanced toward
Cover images (70k Cover vs 10k stego) to be able to observe
low false-positive values.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, the rounding error is used to build a reliable
steganalysis detector for JPEG images at QF100, where the
practical/actual false positive rate is upper bounded by a
prescribed FP rate α that can be chosen by the forensics
agent. This detector is composed of 64 two-sample KS tests for

https://gitlab.cristal.univ-lille.fr/elevecqu/toward-reliable-jpeg-stega-qf100-wifs2022
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Fig. 5: Steganalysis results on Alaska: 10k Stego images
embedded with J-UNIWARD at payload 0.1 bpnzac and 70k
Cover images. Note that 3% of 80k images were not classified
because of the filter. Black lines are the results without the
Bonferroni procedure and aggregation.

every position in the 8× 8 blocks where the reference sample
is obtained from a training phase with known Cover images.
The p-values of every test are corrected by the Bonferroni
procedure and used for the decision to increase the power of
the test by aggregating different observations.

We have also noticed that the i.i.d. wrapped Gaussian
approximation of the rounding error proposed in [7] struggles
to represent the complexity of natural images but the two-
sample test combined with a filter on the noisiest blocks of
the image increases considerably the reliability of the detector.

Future perspectives encompass the study of the robustness
of this detector for other JPEG compressors than the one
used to generate the Alaska database. Bigger datasets or smart
Cover sampling can also be used to confidently observe tiny
false positive rates such as 10−6 or below. Future analyses will
also refine the distribution of rounding errors of each pixel
position.
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