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process of trustworthy Machine Learning

(ML) algorithms designed to equip criti-
cal systems with advanced analytics and decision
functions. We start from the fundamental princi-
ples of ML and describe the core elements condi-
tioning its trust, particularly through its design:
namely domain specification, data engineering,
design of the ML algorithms, their implementa-
tion, evaluation and deployment. The latter com-
ponents are organized in an unique framework for
the design of trusted ML systems.

T his paper reviews the entire engineering

1. Introduction

Machine learning (ML) models are becom-
ing inevitable components of Artificial Intel-
ligence (AI) systems, including systems that
require  safety-critical environmental percep-
tion and decision-making. ML engineering

[Treveil et al., 2020, |Serban et al., 2021]] is a
new field leading to new issues and forcing com-
panies to adapt their engineering practices and
processes: 1) classic considerations on speci-
fication, traceability and validation are deeply
challenged [Bosch et al., 2021, |[Ozkaya, 2020]; 2)
processing data in ML algorithms requires new
processes with new best practices [Zinkevich, 2017]],
as highlighted by ML Model Operationalization
Management (MLOps) approaches; 3) advanced
perception and complex decisions of a ML system
must present new assesses trustworthiness through
security, privacy, safety, explainability, etc. and
other attributes related to specific concerns such
as application domain concerns. To maximize the
trustworthiness of ML-based critical systems, such
attributes — and the methods for concretely assessing
their values — must be clearly identified and mapped
onto the ML processes and its lifecycle.

This paper presents ML algorithm engineering as a
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pipeline of processes and details the main challenges
for reaching trustworthiness in the development
procedures of an industrialized ML component.
This paper is a result of the first year of the
Confiance.ai program [Braunschweig et al., 2022,
Chiaroni et al., 2021]] which gathers multiple com-
panies and research centers from different industries
working on the development of trustworthy safety-
and business-critical systems at scale.

2. ML Algorithm Engineering

Algorithm engineering (AE) refers to the process re-
quired to bridge the gap between algorithm and con-
crete implementation in a dedicated programming
paradigm to yield efficient, easily usable and well-
tested implementations. This process encompasses a
number of topics such as algorithm design, theoretical
analysis, implementation, tuning, debugging evalua-
tion, validation, and testing. Thus, AE is a method-
ology that combines theory with implementation and
validation conducted through experimentation.

.

Data / Knowledge \molementation
Engineering P
{ Capitalisation ]-—[ Evaluation ]

Figure 1: AE process focusing on problem scoping, algorithm
design and delivery

In essence, MLOps entails a set of practices and tools
focused on software and systems engineering with
close collaboration between ML developers, opera-
tion and engineering teams to improve quality of ser-
vices while ML Engineering is often portrayed as the
creation of a ML model, its fine-tuning, validation and
deployment.

In real-world industrial settings, the ML model is only
a small part of the overall system and significant addi-
tional engineering and system functionalities are re-
quired to ensure that the ML model can operate in
a reliable, predictable and scalable way with proper
engineering of data and model pipelines, monitoring
and logging, etc. To capture such issues, we present
a ML algorithm engineering pipeline (see fig. [2)),
where we distinguish requirements-driven develop-
ment, safety-driven development and ML-driven de-
velopment. At the starting point, data must be avail-
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able in size but also minimally prepared, validated
and representative of the task at hand for training.

Main subtasks are encapsulated as a series of steps
within the pipeline such as:

* Problem specification: It results in functional
and non-functional requirements covering ev-
ery aspect of the ML item: safety, performance,
Operational Design Domain (ODD), etc. The
ODD is the description of the specific operat-
ing condition(s) in which a safety-critical func-
tion or system is designed to properly operate
as expected, including but not limited to en-
vironmental conditions and other domain con-
straints [[Koopman and Fratrik, 2019]]. This usu-
ally drives the data collection task.

* Data engineering: A ML model requires large
amounts of data, which helps the model learn
how to perform its purpose. Before it can be
used, data need to be cleaned, organized, an-
alyzed and visualized to support feature engi-
neering. Data acquisition is the process of ag-
gregating data into a homogeneous set. Among
other properties, the collected data need to be
sizable, accessible, understandable, relevant, re-
liable, and usable. Data preparation, or data
processing, is the process of transforming raw
data to make it usable for the model’s purpose.
Thus, one of the key challenges is to establish
data sets that are of sufficient quality for train-
ing and inference. The importance of this task
is highlighted by the data-first ML movement
[Zhou et al., 2021]].

e ML Algorithm Design: The ML algorithm has
to be designed or selected from existing ML li-
braries. By feeding a training set to the ML
algorithm, it can learn appropriate parameters
and features. Once training is complete, the
model will be refined by using the validation
dataset. This may involve modifying or discard-
ing variables and includes a process of tweaking
model-specific settings (hyperparameters) until
an acceptable accuracy level is reached. Differ-
ent models can be employed, validated and fine-
tuned.

* Implementation: To develop a ML component,
one has to decide on the targeted hardware and
system platform, the IDE (Integrated Develop-
ment Environment) and the language for devel-
opment. These choices can typically impact the
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time-behavior or the power consumption. Em-
bedded systems can be highly constrained.

* Evaluation and verification: Finally, after an ac-
ceptable set of hyperparameters is found and the
model accuracy is optimized, the model is tested
on a data set and/or assessed through formal ver-
ification. The evaluation can go beyond func-
tional performance (such as accuracy) and en-
compass metrics relative to any other expected
performance criteria. Example of such metrics
are: explainability, interpretability, biais. Based
on the feedback, one may return to training the
model to adjust performance through output set-
tings, or deploy the model as needed.

* Model Deployment: The integration of the ML
model as a component in the overall system re-
quires a tuning to the system characteristics,
or indirectly to the environment of deployment;
this adaptation can imply additional iterations of
specification, development and testing. In addi-
tion, one should ensure that the model, once de-
ployed, is monitored, that maintenance tasks can
be performed, and that the model can be adapted
to the evolution of the environment of deploy-
ment.

It is crucial to consider the evolution of the data, and
its model for continuous deployment, as data might
change overnight, then impacting the performance
of models. Continuous integration, development, de-
ployment and testing need to be always in the loop
for MLOps.

The following paragraphs further detail the im-
portant subtasks of the ML algorithm engineering
pipeline. However, we do not describe in more de-
tails the implementation of the models nor their de-
ployments, as these tasks are very dependent on the
computing targets.

3. Problem specification

The first step of ML algorithm engineering process
is to state the problem precisely. Operational re-
quirements at the system level (i.e. where the sys-
tem is considered as a black box) are derived into
functional and physical requirements at the ML com-
ponent level. The resulting requirements can for
example be related to the component’s functional
performance, safety, integrability or maintainability.
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They can also for example combine customer re-
quirements, operational constraints, regulatory re-
strictions, or implementation realities. In all cases,
the functions should be evaluated for their safety re-
lated attributes.

Ideally, the design of a component should be based on
a clear input domain and a clear input-to-output re-
lation. However, in ML, the traditional programming
paradigm is no longer suitable: 1) the environment’s
complexity is often difficult to reduce to a clear input
domain; 2) instead of hard coding a clear input-to-
output relation, one provides examples of inputs and
outputs to a machine to generate the algorithms.

The requirements have to be refined and completed
up to the point where they allow the development of
the ML-based component. In particular, in the case
of supervised machine learning, data could be con-
sidered as detailed requirements of the intended be-
havior of the ML-based component. Similarly, the
structure of the ML model, its parameters and hyper-
parameters could also be considered as detailed re-
quirements for the ML-based component. The idea
of the ODD [Gyllenhammar et al., 2020] can be used
to indicate where ML-based critical systems can op-
erate safely. In the automotive domain, an example
of ODD are the closed roads, weather conditions, and
presence of pedestrians or animals, etc.

Furthermore, ML Model requirements should express
the expected properties of the ML Model with their
acceptable tolerances. The ML Model specification ac-
tivity steps are:

* ML Data Requirements are developed from the
analysis of the subsystem requirements (includ-
ing the ODD).

* ML Model requirements that specify nonfunc-
tional requirements like performance objectives
are stated in quantitative terms with tolerances
where applicable.

* ML model requirements should define the ML
Model outputs properties (e.g. boundaries, nor-
malization).

* ML Model requirements should define the ex-
pected ML Model response to robustness or gen-
eralization issues (e.g. specification of adversar-
ial attacks) .

* Derived ML Model Requirements and the reason
for their existence are defined.
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* Derived ML Model Requirements, if any, are pro-
vided to the system processes, including the sys-
tem safety assessment process.

* Each subsystem requirement allocated to ML
Item should be covered by either ML Model
requirement(s) or ML Data requirement(s) or
both.

* ML Model requirements should be consistent
with ML Data requirements.

* ML Data Requirements conform to the Require-
ments Standards, should be verifiable and con-
sistent.

4. Data Engineering

Data Engineering (DE) is a discipline that aims to
organize, structure, trace and select data in such a
way that its quality, availability, relevance and trace-
ability can be guaranteed throughout the life cycle
of the data. DE is then grouping all the engineering
aspects of systems, processing, models and manage-
ment of data, including but not limited to big data.
[ISO/IEC 25024:2015, 2015]], in the SQuaRE series
of normative references for system and software qual-
ity, sets requirements and methods for the evalua-
tion of the quality of data. In particular, this SQuaRE
standard highlights the need that quality characteris-
tics be “specified, measured, and evaluated whenever
possible using validated or widely accepted measures
and measurement methods”. DE is known that run-
ning ML end-to-end requires a large amount of time
dedicated to preparing data, which includes acquir-
ing, cleaning, organizing, analyzing, visualizing, and
feature engineering.

The goal of data acquisition is to find data sets that
can be used to train ML models. This activity faces
the following issue: how to search valuable data for
the downstream task?

After gathering the data from relevant sources we
need to move forward to data engineering which aims
at improving the quality of a data set. This stage helps
us gain a better understanding of the data and pre-
pares it for further evaluation.

Data processing is the cornerstone of ML, as it will
shape the input where data is the raw facts and fig-
ures, which could be structured and unstructured and
acquisition means acquiring data for the given task at
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hand. Specifically, data sets tend to be unbalanced,
have a high degree of heterogeneity, lack labels, tend
to drift over time, contain implicit dependencies and
generally require vast amounts of pre-processing ef-
fort before they are usable.

4.1 ODD-based data set specification

Data sets should sufficiently cover the input domain.
To reach this objective, descriptive attributes are used
to characterize each data sample. These attributes
correspond to explicit and interpretable operating pa-
rameters associated with the complex input space.
This could come from the system requirements where
operational design domain is specified. Thus, a data
set specification (DSS) specifies a group of data ele-
ments and the conditions under which this group is
collected. A DSS can define the sequence in which
data elements are included, whether they are manda-
tory, what verification rules should be employed and
the characteristics of the collection (e.g. its scope).
Then, DSS consists in mapping required diversity to
fully cover the operational design domain. The map-
ping produces an exhaustive list of attributes, which
correspond to the dimensions that will be explored
and sampled to achieve the targeted diversity and
completeness.

These attributes are linked to the expected scenarios
and conditions as well as semantic intra-class variabil-
ity. The data sets should also be highly representative
and complete, particularly regarding the coverage of
corner case inputs.

4.2 Data Segregation

The fundamental goal of a supervised ML system is to
use an accurate model based on the quality of its pat-
tern prediction for data that it has not been trained
on. As such, existing labeled data is used as a proxy
for future/unseen data, this data segregation task in-
volves breaking processed data into three indepen-
dent data sets —- train, validation, and test:

* Training set is used to initially train the algo-
rithm and teach it how to process information.
This set defines model classifications through pa-
rameters, establishing the behavior of the ma-
chine learning model.

* Validation set is used to tune some hyperparam-
eters of a model (e.g. number of hidden layers,

FRANCE
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learning rate, number of neurons per layer for
neural netwoks), to anticipate some learning is-
sues (overfitting, underfitting, etc.) and to esti-
mate the accuracy of the model.

 Test set is used to assess the accuracy and perfor-
mance of the models. This set is meant to expose
any issues or mistraining in the model.

4.3 Data Characterization and scoping

[Nazabal et al., 2020]] have recently proposed to look
at data engineering problem looking through the
prism of the Data Organization, Data Quality issues,
and Feature Engineering reading grid.

* Data Organization: The first issue we face is
producing a representation of the data that is
well suited to the task at hand. The first step
is to structure the raw data so that it can be read
correctly (data parsing). In a second step, a ba-
sic exploration of the data produces metadata for
all elements (data dictionary). Then, data from
several sources are combined into one extended
table (data integration). In the last step, data is
transformed from the original desired raw for-
mat.

* Data Quality: Any problems in the data should
be diagnosed, repaired or even removed. Data
quality problems relate to the data itself but not
to the underlying structure of the data obtained
earlier, which must be qualified independently.
Common data cleaning operations include nor-
malizing the data (canonicalisation), resolving
missing entries (missing data), correcting errors
or abnormal values (anomalies).

* Feature Engineering: Once the data is orga-
nized and cleaned, the next question is how to
represent it in forms suitable for processing. Fea-
ture engineering specifically applies to ML algo-
rithms. Its processes can be based on some trans-
formations of the raw data or even dedicated to
creating new features from the raw data. This
process usually relies on expert knowledge and
is domain specific.

ML is generating renewed interest in data qual-
ity [Mattioli et al., 2022]]. One understands that data
qualification is a broad topic, that encompasses both
the data itself and its relation to the ML algorithm,
as well as a qualification of all the processes involved
in the creation of the data set. Nevertheless, there
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is no consensus on what comprises the data quality
dimensions.

For example, [Batini et al., 2016] proposed a classifi-
cation framework where dimensions are included in
the same cluster according to the similarity of the
characteristics they measure. They end up with eight
categories named after their representative dimen-
sion:

* Accuracy, correctness, validity and precision fo-
cus on the adherence to a given reality of interest.

* Completeness, pertinence and relevance refer to
the capability of representing all and only the rel-
evant aspects of the reality of interest.

* Redundancy, minimality, compactness and con-
ciseness refer to the capability of representing
the aspects of the reality of interest with the min-
imal use of informative resources.

* Readability, comprehensibility, clarity and sim-
plicity refer to ease of understanding and fruition
of data by users.

* Accessibility and availability are related to the
ability of the user to access information from
his or her culture, physical status/functions and
technologies available.

* Consistency, cohesion and coherence refer to the
capability of data to comply without contradic-
tions to all properties of the reality of interest, as
specified in terms of integrity constraints, data
edits, business rules and other formalisms.

e Usefulness, related to the advantage the user
gains from the use of information.

* Trust, including believability, reliability and rep-
utation, catching how much information derives
from an authoritative source. The trust cluster
encompasses also issues related to security.

5. ML Algorithm Design

This phase requires model technique selection and
application, model training, model hyperparameter
setting and adjustment, model validation, ensemble
model development and testing, algorithm selection,
and model optimization. Thus, this phase decides
first the model type, variant and, where applicable,
the structure of the model to be produced in the
Model Learning stage. The process of adaptation is
called training, in which samples of input data are
provided along with desired outcomes. The algorithm
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then optimally configures itself so that it can not only
produce the desired outcome when presented with
the training inputs, but can generalize to produce the
desired outcome from new, previously unseen data.
This training is the “learning” part of ML.

Numerous types of ML techniques are available, in-
cluding multiple types of classification models (to
identify the category that the input belongs to) and
regression models (to predict a continuous-valued at-
tribute) for supervised tasks, clustering models (to
group similar items into sets) for unsupervised tasks,
and reinforcement learning models (to provide an op-
timal set of actions).

A common question is “Which ML architecture should
I use?”. The DEEL project establishes the following
table [[Delseny et al., 2021]] which gives a short sum-
mary of the most common ML techniques, and indi-
cates their main applications. Each kind of ML tech-
nique will rely on one or several hypothesis function
space(s), and one or several exploration algorithms
(not listed in this document) to minimize a loss func-
tion on the training dataset.

Techniques Applications

Linear models: Linear &
logistic regressions, SVM

Classification, Regression

>

Neighbourhood models: | Classification,  Regression
KNN, K means, Kernel | Clustering, Density estima-
density tion

Trees: decision trees, re-
gression trees

Classification, Regression

Graphical models:

Classification, Density esti-

els: Random Forest,

Adaboost, XGboost tion

Bayesian network, Con- | mation
ditional Random Fields
Combination of mod- | Classification, Regression,

Clustering, Density estima-

Neural networks, Deep
Learning

Classification, Regression

After choosing the model, among the various algo-
rithms present, one needs to tune the hyper param-
eters of each model to achieve the desired perfor-
mance.

* Select the right algorithm based on the learning
objective and data requirements.

* Configure and tune hyperparameters for optimal
performance and determine a method of itera-
tion to attain the best hyperparameters.
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Identify the features that provide the best results.
Determine whether model explainability or in-
terpretability is required.

Develop ensemble models for improved perfor-
mance.

Test different model versions for performance.
Identify requirements for the model’s operation
and deployment.

The resulting model can then be evaluated to deter-
mine whether it meets the business and operational
requirements.

6. Evaluation and Verification

Ensuring that a safety-critical system will perform ad-
equately in their intended operational environment is
a mandatory part of overall system validation. Tradi-
tional software validation includes traceability from
requirements to system level tests. However, the use
of ML techniques frustrates this approach due to the
use of training data rather than a traditional design
process. In addition, software validation should be
based on tests that show a level of performance that
is adapted to the criticality of the risks, and performed
on a data set that is fully representative of the factors
of influence of the model. As previously mentioned
however, the specification of the functional character-
istics of the model and of the environment of opera-
tion may lead to the multiplicity of the factors of influ-
ence, and a valid demonstration of the performance of
the model would imply relying on testing data sets of
huge volume (in the worst case, millions of sample).
Verification through formal methods or by simulation
are interesting tracks to fulfill this goal, but they are
still at an early stage of research.

Verification therefore requires at least ensuring that
training data and testing data cover all relevant op-
erational conditions. Making this problem tractable
in practice is generally accomplished by constraining
the operational environment to a subset of all possi-
ble situations that could be dealt with by a human
operator. That approach to limiting the operational
needs of the system is known as adopting an ODD
[Koopman and Fratrik, 2019].

The testing of an ML component aims at detecting
gaps between achieved and intended (targeted) be-
haviors of ML models. Formally, ML testing refers
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to any activity designed to reveal ML bugs, where a
ML bug refers to any imperfection in a ML item that
causes a discordance between the output of the model
and the output of reference. Examples of gaps could
be due to shift in training and testing data distribu-
tion, or wrong assessment of data fit to the task at
hand, therefore data is usually the cause of wrong or
unexpected errors.

This definition underlines three preliminary chal-
lenges to overcome. First, ML system may have dif-
ferent types of ‘required conditions’, i.e. properties
that should be verified — we may classify them into
basic functional requirements (e.g. correctness and
model relevance) and non-functional requirements
(e.g. efficiency, robustness, fairness, interpretabil-
ity). The verification of such properties requires the
use of different methods and metrics, which means
that the selection of the best tools for the verifica-
tion of the component must be preceded by a defi-
nition of the required conditions: "What do we want
to prove through testing?". Secondly, an ML bug may
exist in the data, the learning program, or the frame-
work. Here again, this means that the testing strat-
egy should either address the component itself, or
question other "sub-component", which may make the
testing more complex since establishing a causal link
between the bug and its source may be difficult, and
the definition of a testing protocol allowing the dis-
tinction of independent and dependent variables is
not trivial in an ML pipeline. Finally, the notion of
testing activity may encompass several radically dif-
ferent approaches for testing. This may include test
input generation, test oracle identification, test ade-
quacy evaluation, and bug triage. The selection of the
approach must be based on a trade-off between the
technical feasibility of performing such test on the ML
component and the required conditions initially for-
malized.

6.1 Quality Control

Quality control (QC) is an essential part of the verifi-
cation and validation of the ML component. QC may
be performed through an estimation of the success of
the task solved by the component. Traditional metrics
for regression problems include Mean Squared Error
(MSE) or Mean Absolute Error (MAE), while classifi-
cation problems can be evaluated through precision,
accuracy and recall. In classification problems, a con-
fusion matrix (depicting the distribution of true/false
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negatives/positives for each class) is a practical tool
for visualizing of the errors, and allows the compu-
tation of most metrics (precision, recall, sensitivity,
specificity, F1 score, ROC curve, etc.).

The most common evaluation protocol consist in
maintaining a hold-out validation set. This consists
on setting apart some portion of the data as the test
set. The process would be to train the model with the
remaining fraction of the data, tuning its parameters
with the validation set and finally evaluating its per-
formance on the test set. The reason to split data in
three parts is to avoid information leaks. The main
inconvenient of this method is that if there is small
amount of data available, the validation and test sets
will contain so few samples that the tuning and evalu-
ation processes of the model will not be effective. An
alternative is k-Fold, which consists in splitting the
data into k partitions of equal size.

Another interesting approach is: Iterated k-fold vali-
dation with shuffling. This technique is relevant when
having little data available and it is needed to evalu-
ate models as precisely as possible.

Functional performance evaluation has its own chal-
lenges. The selection of the most adapted metrics to
reflect the desired level of performance, as well as
the selection of a suitable protocol for testing, require
careful work. However, the notion of QC should go
further beyond a simple estimation of functional per-
formance.

First, we note that the recourse to a validation set, in
this context, is part of the ML algorithm design step.
Here the focus is made on the technical validity of
the algorithm design. This means that there are only
few links between this testing activity and, for ex-
ample, the operational constraints established in the
specification phase. In the same idea, the influence of
the training data is ignored at this stage, since tradi-
tional protocols do not necessarily take into account
the informational value of the data points in each set
(hence, a risk for representativeness, or a risk of ig-
noring corner case values either in training or test-
ing). QC should then encompass more than a simple
evaluation procedure of the ML algorithm: QC pro-
cedures should be formalized and deployed ideally at
each stage of the ML pipeline, with different objec-
tives and verification strategy for each stage, but with
one overarching objective in my mind: "How can I
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ensure the quality of all the processes involved in the
development of the ML component".

Although each domain has their own traditional ways
of performing qualification (for example, data quali-
fication has its own procedures), their link with the
particularities and the constraints of ML components
is not always well established. In addition, some as-
pects of the verification and validation strategies are
underestimated, or at least not part of the routine, in
ML engineering. For example, information emanat-
ing from data engineering about the limits and con-
straints of the data should reflect in the overall strat-
egy of the evaluation of the model. The system in
which the ML component is intended must also pro-
vide its own set of constraints with which to check the
compliance of the component.

This means that all brick of the ML pipeline should
include specific QC procedures, and the information
should propagate to the relevant bricks of the pipeline
and condition the overall evaluation of the quality of
the component.

6.2 Algorithm / Component Characteri-
zation

ML software includes many different components
(data, learning algorithms, etc.). The testing phase
must therefore include steps to verify each ones of
these components.

The behaviors of ML-based systems depend on the
data used to train them. Any problems in the data
affect the quality of the resulting model, and by cas-
cade effect, may lead to other problems in the oper-
ation of the model. Consideration should be given to
the ability of the data to train or evaluate a particular
model (completeness of the data), whether the data is
representative of the data that the system will have to
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process, whether the data contains a lot of noise (par-
ticularly on labels), whether there is a bias between
training and test data, whether there is any poison-
ing of the data or data containing adversarial noise.
There are also different methodologies that can be
used to search for such bugs.

ML, especially the phase for training the model, is
computationally intensive. Deep learning frame-
works (e.g., pytorch, tensorflow, etc.) simplify the
writing of learning programs, making it easier for
developers. Therefore, they play a more impor-
tant role in ML development than in traditional soft-
ware development. For this reason, it is impor-
tant to test these frameworks and check that they
do not contain any bugs. Various authors have
shown that the most widely used frameworks are far
from being bug-free, and have proposed methodolo-
gies for testing these frameworks: [Xiao et al., 2018,
Guo et al., 2018} |Sun et al., 2017].

It is also necessary to detect bugs that may occur in
the model training software. These software have
two components: the optimization algorithm de-
signed by the developer or taken from a framework,
and the actual training code that developers write to
use, deploy or configure the optimization algorithm.
A bug in the training phase can come from the design
of the optimizer, a misconfiguration, or a misuse of
the optimizer, as well as from errors in the code using
it. We can cite, as an example, [|Schaul et al., 2013]],
who proposed unit tests designed for stochastic op-
timization. They can be used to test learning algo-
rithms in order to detect bugs as early as possible.
[Zhang et al., 2020] proposed an idealized workflow
of ML testing, detailing the different component,
which we reproduce in Figure

6.3 Certification and Assurance Case

Certification standards should impose neither a spe-
cific model nor a specific training technique. The fo-
cus should rather be on the properties, such as ex-
plainability and robustness that the model must pos-
sess after training. Other properties such as maintain-
ability, auditability, etc. could also be checked at this
stage. The depth of demonstration of these proper-
ties can vary depending on the requirements. If these
properties are required for the overall safety demon-
stration, then in-depth demonstration is necessary. To
illustrate that purpose, the Federal Aviation Admin-
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istration (FAA) launched in 2016 an initiative called
“Overarching Properties”. The objective of this initia-
tive is to develop a minimum set of properties such
that if a product is shown to possess all these prop-
erties, then it can be certified. As of 2019, the three
overarching properties retained are:

* Intent. The defined intended functions are cor-
rect and complete with respect to the desired sys-
tem behavior.

* Correctness. The implementation is correct with
respect to its defined intended functions, under
foreseeable operating conditions.

* Innocuousness. Any part of the implementation
that is not required by the defined intended be-
havior has no unacceptable safety impact.

These properties are, by construction, too abstract to
constitute an actionable and complete means of com-
pliance for certification. In practice, they shall be re-
fined to be applicable, leaving an opportunity to es-
tablish a specific set of methods for the implementa-
tion and verification of these properties for the certi-
fication of ML systems.

However, following the FAA Initiative, if no require-
ment stems from the safety assessment and compo-
nent specification, then the ML model could remain
a “black box”, without explainability and/or robust-
ness demonstration. Some verification activities can
be performed directly on the model, before imple-
mentation. If it is the case, it should be demonstrated
that the results of these verification activities are pre-
served after implementation.

The assurance of a system is typically communicated
in the form of an assurance case, capturing “a rea-
soned and compelling argument, supported by a body
of evidence, that a system, service or organization will
operate as intended for a defined application in a de-
fined environment”.

6.4 Explainability

A first way to assess the explainability of results pro-
duced by ML is through a human evaluation. This is,
to date, the most reliable approach to assessing ex-
plainability. [[Doshi-Velez and Kim, 2017]] have pro-
posed a taxonomy of explainability assessment meth-
ods. This human-based approach uses the results of
human evaluation on simplified tasks. The second

Confiance.ai program

Page 10

one, based on function, does not require human ex-
periments but uses a quantitative metric as a proxy
for the quality of the explanation (e.g. through the
depth of a decision tree).

Automatic assessment of explainability allows for
more objective procedures and easier scalability than
human assessment. However, it requires the defini-
tion of metrics, which are not easy to establish and
may depend on the application domains. As an il-
lustration, we can cite [Cheng et al., 2018|]] who an-
alyzed the impact of object masking in the image
domain, [[Zhou et al., 2018] defined the concepts of
metamorphic relationship models useful to help end-
users understand the operation of an ML system.

7. Conclusion

As any critical system, a critical system which embeds
ML needs to have well defined development methods
from its design to its deployment and qualification.
This requires a complete tool chain ensuring trust at
all stages, as:

1. Specification, knowledge and data management;

2. Algorithm and system architecture design;

3. Characterization, verification and validation of
ML functions;

4. Deployment, particularly on embedded architec-
ture;

5. Qualification, certification from a system per-
spective.

To guarantee a trustworthy algorithmic design (ro-
bust, reliable...), we presented how algorithm engi-
neering can integrate the ML paradigms and specific
challenges that arise. We noted that the ML engineer-
ing pipeline requires several specific activities meant
to ensure the overall trustworthiness, in terms of de-
sign and evaluation. Depending on the stage of the
ML engineering cycle, several properties should be
assessed, and the approaches should leverage knowl-
edge and best practices for various disciplines.

In addition, the safety and security of critical systems
which embed ML require the demonstration of the fol-
lowing four properties:

e Validity: to guarantee that an Al-based system
will do what it is meant to do — everything that
it is meant to do and just what it is meant to do.
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e Security: to ensure robustness and resilience to
adversarial conditions, such as decoying and cy-
berattacks.

* Explainability: to be able to provide human-
level, understandable and context-relevant jus-
tifications and explanations.

* Responsibility: to be compliant with ethical, le-
gal and regulatory frameworks.

Here, the robustness characterizes its ability to pro-
vide correct answers in the face of unknown sit-
uations or maliciousness. However, this property
is harder to prove than accuracy. Indeed, a non-
accurate system cannot be robust. But more impor-
tantly, an accurate system may not be robust. This
is the case of a learning-based system that has memo-
rized the training data and will make wrong decisions
in the future based on new data. This phenomenon
is called overfitting.

Moreover, ML remains vulnerable, and if one is not
careful, particularly sensitive to so-called "adversar-
ial" attacks, attacks that take advantage of the func-
tioning of the underlying algorithms to generate small
perturbations in the analyzed data and force the Al to
return an incorrect result. Many defenses have been
proposed in the last few years by the scientific com-
munity but are sometimes refuted with new attacks
making them obsolete. This is why it is necessary
to develop methods and tools to design robust algo-
rithms and at least characterize their robustness.

It is also necessary to prove that ML-based critical sys-
tems are controllable, i.e. well-founded or consistent,
if it can be proved that they only do what is expected
of them. The questions related to the problems of
robustness and consistency are beginning to be the
subject of work related to formal proofs. The latter
aim at providing a priori guarantees on the reliabil-
ity of a system, contrary to validation methodologies
by direct experimentation which aim at providing a
posteriori guarantees. Finally, understanding Al and
its reasoning is necessary to determine how much we
can trust it.

For ML approaches, data are therefore crucial for
learning, testing and validation. It is not enough to
have a lot of data, it must be of "good quality" and
representative of the domain of use of the system con-
cerned, without which these approaches give poor re-
sults. New methodologies need to be defined for a
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better control of data acquisition, exploration, enrich-
ment, annotation and preparation stages.

An algorithm engineering based approach for ML-
based safety critical system allows a sound definition
of each separate steps to conduct the development of
an ML component. This allows in particular the iden-
tification of the variety of tasks, activities and fields
of expertise involved in the development, and helps
spotting the properties of trustworthiness that need
to be checked. The development of a trustworthy ML
component still requires an important amount of re-
search and practice towards a comprehensive frame-
work providing all the necessary guarantees of com-
pliance.
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