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Abstract

Decoding speech from brain activity is a long-awaited goal in both healthcare and
neuroscience. Invasive devices have recently led to major milestones in that regard:
deep learning algorithms trained on intracranial recordings now start to decode
elementary linguistic features (e.g. letters, words, spectrograms). However, ex-
tending this approach to natural speech and non-invasive brain recordings remains
a major challenge. To address these issues, we introduce a contrastive-learning
model trained to decode self-supervised representations of natural speech from the
non-invasive recordings of a large cohort of individuals. To evaluate this approach,
we curate and integrate four public datasets, encompassing 169 volunteers recorded
with magneto- or electro-encephalography (M/EEG), while they listened to natural
speech. The results show that our model can identify, from 3 seconds of MEG
signals, the corresponding speech segment with up to 44% accuracy out of 1,594
distinct possibilities – a performance that allows the decoding of phrases absent
from the training set. Model comparison and ablation analyses show that these
results directly benefit from the use of (i) a contrastive objective, (ii) pretrained
representations of speech and (iii) a common convolutional architecture simul-
taneously trained across multiple participants. Overall, these results delineate a
promising path to assist patients with communication disorders, without putting
them at risk for brain surgery.

1 Introduction1

Every year, thousands of patients suffer from brain or spinal cord injuries and suddenly lose their2

ability to communicate [Stanger and Cawley, 1996, Pels et al., 2017, Kübler et al., 2001, Pels et al.,3

2017, Claassen et al., 2019, Owen et al., 2006, Cruse et al., 2011]. Brain Computer Interface (BCI)4

has been raising high expectations to detect [Owen et al., 2006, Claassen et al., 2019, Birbaumer et al.,5

1999, King et al., 2013] and restore language abilities in such patients [Brumberg et al., 2009, Herff6

et al., 2015, Stavisky et al., 2018, Willett et al., 2021, Moses et al., 2021, Kennedy et al., 2022]: Over7

the past decades, several teams used BCI to efficiently decode phonemes, speech sounds [Pei et al.,8

2011, Akbari et al., 2019], hand gestures [Stavisky et al., 2018, Willett et al., 2021] and articulatory9

movements [Anumanchipalli et al., 2019, Moses et al., 2021] from electrodes implanted in the cortex10

or over its surface. For instance, Willett et al. [2021] decoded 90 characters per minute (with a11

94% accuracy, i.e. roughly ≈15-18 words per minute) from a spinal-cord injury patient recorded in12

the motor cortex during 10 hours of writing sessions. Similarly, Moses et al. [2021] decoded 15.213

words per minute (with 74.4% accuracy, and using a vocabulary of 50 words) in an anarthria patient14

implanted in the sensorimotor cortex and recorded over 48 sessions spanning over 22 hours.15

However, such invasive recordings face major practical challenges: these high-quality signals require16

(1) brain surgery (2) long training sessions and (3) can be difficult to maintain chronically. Several17

laboratories have thus focused on decoding language from non-invasive recordings of brain activity18

like magneto- and electro-encephalography (M/EEG). MEG and EEG are sensitive to macroscopic19

changes of electric and magnetic signals elicited in the cortex, and can be acquired with a safe and20
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potentially wearable setup [Boto et al., 2018]. However, these two devices produce notoriously noisy21

signals that vary greatly across sessions and across individuals [Schirrmeister et al., 2017, King et al.,22

2018, Hämäläinen et al., 1993]. It is thus common to engineer pipelines that output hand-crafted23

features, which, in turn, can be learned by a decoder trained on a single participant [Lawhern et al.,24

2018, Lopopolo and van den Bosch, 2020, Chan et al., 2011, Nguyen et al., 2017].25

In sum, decoding language from brain activity is, to date, either limited to invasive recordings or to26

impractical tasks. Interestingly, both of these approaches followed a similar method: i.e. (1) training27

a model on a single patient and (2) aiming to decode a limited set of interpretable features (MEL28

spectrogram, letters, phonemes, small set of words).29

Instead, we here propose to decode speech from non-invasive brain recordings by using (1) a single30

architecture trained across a large cohort of participants and (2) deep representations of speech learnt31

with self-supervised learning on a large quantity of speech data. For this, we introduce a convolutional32

neural network stacked onto a “Subject Layer” and trained with a contrastive objective to predict33

the representations of the audio waveform learnt by wav2vec 2.0 pretrained on 56k hours of speech34

[Baevski et al., 2020] (Figure 1). To validate our approach, we curate and integrate four public35

M/EEG datasets, encompassing the brain activity of 169 participants passively listening to sentences36

of short stories. With a sample of 3 seconds of M/EEG signals, our model identifies the matching37

audio segment (i.e. zero-shot decoding) with up to 72.5% top-10 accuracy (out of 1,594 segments)38

for MEG and up to 19.1% top-10 accuracy (out of 2,604 segments) for EEG.

Figure 1: Method We aim to decode speech from the brain activity of healthy participants recorded
with magnetoencephalography (MEG) or electroencephalography (EEG) while they listen to stories
and/or sentences. For this, our model extracts the deep contextual representations of 3 s speech signals
(Y ) from a pretrained self-supervised model (wav2vec 2.0: Baevski et al. [2020]) and learns the
representations Z of the brain activity on the corresponding 3 s window (X) that maximally align with
these speech representations with a contrastive loss (CLIP: Radford et al. [2021]). The representation
Z is given by a deep convolutional network. At evaluation, we input the model with left-out sentences
and compute the probability of each 3 s speech segment given each brain representation. The resulting
decoding can thus be “zero-shot” in that the audio snippets predicted by the model need not be present
in the training set. This approach is thus more general than standard classification approaches where
the decoder can only predict the categories learnt during training.

39
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2 Method40

We first formalize the general task of neural decoding and then describe and motivate the different41

components of our model, before describing the datasets, preprocessing, training and evaluation.42

2.1 Problem formalization43

We aim to decode speech from a time series of high-dimensional brain signals recorded with44

non-invasive magneto-encephalography (MEG) or electro-encephalography (EEG) while healthy45

volunteers passively listened to spoken sentences in their native language. How spoken words are46

represented in the brain is largely unknown [Hickok and Poeppel, 2007]. Thus, it is common to train47

decoders in a supervised manner to predict a latent representation of speech known to be relevant to48

the brain [Akbari et al., 2019, Angrick et al., 2019b,a, Krishna et al., 2020, Komeiji et al., 2022]. For49

example, the Mel spectrogram is often targeted for neural decoding because it representats sounds50

similarly to the cochlea [Mermelstein, 1976]. Let X ∈ RC×T be a segment of a brain recording51

of a given subject while she listens to a speech segment of the same duration, with C the number52

of M/EEG sensors and T the number of time steps. Let Y ∈ RF×T be the latent representation of53

speech, using the same sample rate as X for simplicity, here the Mel spectrogram with F frequency54

bands. Thus, supervised decoding consists of finding a decoding function: freg : RC×T → RF×T55

such that freg predicts Y given X . We denote by Ŷ = freg(X) the representation of speech decoded56

from the brain. When freg belongs to a parameterized family of models like deep neural networks, it57

can be trained with a regression loss Lreg(Y, Ŷ ) (e.g. the Mean Square Error),58

min
freg

∑
X,Y

Lreg(Y,freg(X)). (1)

Empirically, we observed that this direct regression approach faces several challenges: decoding59

predictions appear to be dominated by a non-distinguishable broadband component when speech is60

present (Figure 2.A-B). This challenge motivates our three main contributions: the introduction of a61

contrastive loss, a pre-trained deep speech representation, and a dedicated brain decoder.62

2.2 Model63

2.2.1 Contrastive loss64

First, we reasoned that regression may be an ineffective loss because it departs from our objective:65

decoding speech from brain activity. Consequently, we replaced it with a contrastive loss, namely,66

the “CLIP” loss (originally for Contrastive Language-Image Pre-Training) by Radford et al. [2021],67

which was originally designed to match latent representations in two modalities, text and images.68

We implement the CLIP loss as follows: Let X be a brain recording segment and Y ∈ RF×T69

the latent representation of its corresponding sound (a.k.a “positive sample”). We sample N − 170

negative samples Ȳj∈{1,...,N−1} over our dataset and we add the positive sample as ȲN = Y . We71

want our model to predict the probabilities ∀j ∈ {1, . . . , N}, pj = P
[
Ȳj = Y

]
. We thus train a72

model fclip mapping the brain activity X to a latent representation Z = fclip(X) ∈ RF×T . The73

estimated probability can then be approximated by the dot product of Z and the candidate speech74

latent representations Yj , followed by a softmax:75

p̂j =
e⟨Z,Ȳj⟩∑N

j′=1 e
⟨Z,Ȳj′ ⟩

, (2)

with ⟨·,·⟩ the inner product over both dimensions of Z and Ŷ . We then train fclip with a cross-entropy76

between pj and p̂j . Note that for a large enough dataset, we can neglect the probability of sampling77

twice the same segment, so that we have pj = 1j=N , and the cross-entropy simplifies to78

LCLIP(p, p̂) = − log(p̂N ) = −⟨Z,Y ⟩+ log
( N∑

j′=1

e⟨Z,Ȳ ′
j ⟩
)
. (3)

Following [Radford et al., 2021], we use the other elements of the batch as negative samples at train79

time. At test time, the negative samples correspond to all of the segments of the test but the positive80

one.81
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Figure 2: Design choices. A. Illustration of a 3 s speech sound segment (bottom) and its corresponding
Mel spectrogram (top). B. Mel-spectrogram predicted with a direct regression loss Lreg of a brain
decoder (orange). C. Replacing the regression loss with a CLIP loss [Radford et al., 2021] improves
reconstruction in the same subject, still using the mel-spectrogram as the speech representation. D.
Now replacing the mel-spectrogram with wav2vec 2.0 [Baevski et al., 2020]. The probabilities given
by Eq. (2) are used to rebuild a mel-spectrogram. E. Architecture of the brain module. Architecture
used to process the brain recordings. For each layer, we note first the number of output channels,
while the number of time steps is constant throughout the layers. The model is composed of a spatial
attention layer, then a 1x1 convolution without activation. A “Subject Layer” is selected based on the
subject index s, which consists in a 1x1 convolution learnt only for that subject with no activation.
Then, we apply five convolutional blocks made of three convolutions. The first two use residual skip
connection and increasing dilation, followed by a BatchNorm layer and a GELU activation. The third
convolution is not residual, and uses a GLU activation (which halves the number of channels) and no
normalization. Finally, we apply two 1x1 convolutions with a GELU in between.

2.2.2 Speech module82

Second, the Mel spectrogram is a low-level representation of speech and is thus unlikely to match the83

rich variety of cortical representations [Hickok and Poeppel, 2007]. Consequently, we replaced the84

Mel spectrograms Y with latent representations of speech, that are either learned end-to-end (“Deep85

Mel” model) or learned with an independent self-supervised speech model (“wav2vec 2.0”, Baevski86

et al. [2020]) As detailed in the result section, the “Deep Mel” model uses an architecture similar87

to the brain module, but proved less efficient than its pretrained counterpart. We will thus focus the88

decoding results obtained with wav2vec 2.0.89

Wav2vec 2.0 is trained to transform the raw waveform with convolutional and transformer blocks to90

predict masked parts of its own latent representations. Baevski et al. [2020] showed that the resulting91

model can be efficiently fine-tuned to achieve state-of-the-art performance in speech recognition.92

Besides, this model effectively encodes a wide variety of linguistic features [Millet and Dunbar,93

2022, Adolfi et al., 2022]. Finally, recent work shows the existence of linear correspondence between94

the activations of the brain and those of wav2vec 2.0 [Millet et al., 2022, Vaidya et al., 2022].95

Consequently, we here test whether this model effectively helps the present decoding task. In practice,96

we use the wav2vec2-large-xlsr-531, which has been pre-trained on 56k hours of speech from97

53 different languages.98

2.2.3 Brain module99

Finally, for the brain module, we use a deep neural network fclip, input with raw M/EEG times series100

X and a one-hot-encoding of the corresponding subject s, and outputs the latent brain representation101

Z, with the same sample rate as X . This architecture consists of (1) a spatial attention layer over the102

M/EEG sensors followed (2) by a subject-specific 1x1 convolution designed to leverage inter-subject103

1https://github.com/pytorch/fairseq/blob/main/examples/wav2vec
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Table 1: Datasets, noting chs. for channels and subj. for subjects.
Train set Test set

Dataset Lang. Type # Chs. # Subj. Total duration # Segments Vocab. # Segments Vocab.
Schoffelen2019 Dutch MEG 273 96 80.7 h 5774 1755 1465 755
Gwilliams2022 English MEG 208 21 49.2 h 6171 1870 1594 793
Broderick2019 English EEG 128 19 18.8 h 7316 1393 2604 757
Brennan2019 English EEG 60 33 6.7 h 1545 514 242 153

variability, which input to (3) a stack of convolutional blocks. An overview of the model is given104

in Figure 2. In the following, given a tensor U , we will note U (i,...) access to specific entries in the105

tensor.106

Spatial attention and subject layer. The brain data is first remapped onto D1 = 270 channels107

with a spatial attention layer based on the location of the sensors. The 3D sensor locations are first108

projected on a 2D plane obtained with the MNE-Python function find_layout [Gramfort et al.,109

2013], which uses a device-dependent surface designed to preserve the channel distances. Their 2D110

positions are finally normalized to [0, 1]. For each output channel, a function over [0, 1]2 is learnt,111

parameterized in the Fourier space. The weights over the input sensors is then given by the softmax112

of the function evaluated at the sensor locations. Formally, each input channel i has a location (xi, yi)113

and each output channel j is attached a function aj over [0, 1]2 parameterized in the Fourier space as114

zj ∈ CK×K with K=32 harmonics along each axis, i.e.115

aj(x, y) =

K∑
k=1

K∑
l=1

Re(z
(k,l)
j ) cos (2π(kx+ ly)) + Im(z

(k,l)
j ) sin (2π(kx+ ly)) . (4)

The output is given by a softmax attention based on the evaluation of aj at each input position (xi, yi):116

117

∀j ∈ [D1],SA(X)(j) =
1∑D1

i=1 e
aj(xi,yi)

(
C∑
i=1

eaj(xi,yi)X(i)

)
(5)

with SA the spatial attention. In practice, as aj is periodic, we scale down (x, y) to keep a margin of118

0.1 on each side. We then apply a spatial dropout by sampling a location (xdrop, ydrop) and removing119

from the softmax each sensor that is within a distance of ddrop of the sampled location. We then add120

a 1x1 convolution (i.e. with a kernel size of 1) without activation and with the same number D1 of121

output channels. Finally, to leverage inter-subject variability, we learn a matrix Ms ∈ RD1,D1 for122

each subject s ∈ [S] and apply it after the spatial attention layer along the channel dimension. This123

is similar but more expressive than the subject embedding used by Chehab et al. [2021] for MEG124

encoding, and follows decade of research on subject alignment [Xu et al., 2012, Haxby et al., 2020].125

Residual dilated convolutions. We then apply a stack of five blocks of three convolutional126

layers. For the k-th block, the first two convolutions are applied with residual skip connections127

(except for the very first one where the number of dimension potentially doesn’t match), outputs128

D2 = 320 channels and are followed by batch normalization [Ioffe and Szegedy, 2015] and a GELU129

activation [Hendrycks and Gimpel, 2016]. The two convolutions are also dilated to increase their130

receptive field, respectively by 22kmod 5 and 22k+1mod 5 (with k zero indexed). The third layer in131

a block outputs 2D2 channels and uses a GLU activation [Dauphin et al., 2017] which halves the132

number of channels. All convolutions use a kernel size of 3 over the time axis, a stride of 1, and133

sufficient padding to keep the number of time steps constant across layers. The output of the model134

is obtained by applying two final 1x1 convolutions: first with 2D2 outputs, followed by a GELU,135

and finally with F channels as output, thus matching the dimensionality of speech representations.136

Given the expected delay between a stimulus and its corresponding brain responses, we further shift137

the input brain signal by 150 ms into the future to facilitate the alignment between Y and Z.138

2.3 Datasets139

We test our approach on four public datasets, two based on MEG recordings and two on EEG.140

All datasets and their corresponding studies were approved by the relevant ethics committee and141

are publicly available for fundamental research purposes. Informed consent was obtained from all142

human research participants. We provide an overview of the main characteristics of the datasets143
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on Table 1, including the number of train and test segments and vocabulary size over both splits.144

For all datasets, healthy adult volunteers passively listened to speech sounds (accompanied with145

some memory or comprehension questions to ensure participants were attentive), while their brain146

activity was recorded with MEG or EEG. In Schoffelen et al. [2019], Dutch-speaking participants147

listened to decontextualized Dutch sentences and word lists (Dutch sentences for which the words148

are randomly shuffled). The study was approved by the local ethics committee (CMO – the local149

“Committee on Research Involving Human Subjects” in the Arnhem-Nijmegen region). In Gwilliams150

et al. [2022], English-speaking participants listened to four fictional stories from the Masc corpus151

[Ide et al., 2010] in two identical sessions of one hour [Gwilliams et al., 2020]. The study was152

approved by the Institution Review Board (IRB) ethics committee of New York University Abu153

Dhabi. In Broderick et al. [2018], English-speaking participants listened to extracts of “The old154

man and the see”. The study was approved by the Ethics Committees of the School of Psychology155

at Trinity College Dublin, and the Health Sciences Faculty at Trinity College Dublin. In Brennan156

and Hale [2019], English-speaking participants listened to a chapter of “Alice in Wonderlands”. See157

Section A.1 in the Appendix for more details. The study was approved by the University of Michigan158

Health Sciences and Behavioral Sciences Institutional Review Board (HUM00081060).159

2.4 Preprocessing160

M/EEG is generally considered to capture neural signals from relatively low frequency ranges161

[Hämäläinen et al., 1993]. Consequently, we first resampled all brain recordings down to 120 Hz with162

Torchaudio [Yang et al., 2021] and then split the data into training, validation, and testing splits with163

a size roughly proportional to 70%, 20%, and 10%. We define a “sample” as a 3 s window of brain164

recording with its associated speech representation. A “segment” is a unique 3 s window of speech165

sound. As the same segment can be presented to multiple subjects (or even within the same subject in166

Gwilliams et al. [2022]), the splits are defined so that one segment is always assigned to the same split167

across repetitions. We ensure that there is no identical sentences across splits, and checked that each168

sentence was pronounced by a unique speaker. Furthermore, we exclude all segments overlapping169

over different splits. For clarity, we restrict the test segments to those that contain a word at a fixed170

location (here 500 ms into the sample).171

M/EEG data can suffer from large artifacts, e.g. eye movements, or variations in the electro-magnetic172

environment [Hämäläinen et al., 1993]. To limit their impact, we apply a “baseline correction” (i.e.173

we subtract to each input channel its average over the first 0.5 s) and a robust scaler with scikit-learn174

[Pedregosa et al., 2011]. We clamp values greater than 20 after normalization to minimize the impact175

of large outlier samples. For the Mel spectrogram, we use 120 Mel bands (see Section A.2 in the176

Appendix) [Young et al., 2002], with a normalized STFT with a frame size of 512 samples and hop177

length of 128 samples, using audio sampled at 16kHz. We apply log-compression, i.e. log(ϵ+mel),178

with ϵ=10−5. When using wav2vec 2.0, we average the activations of the last four layers of its179

transformer. We use standard normalization for both representations. To further assess the gains180

from using a self supervised representation, we also test a “Deep Mel” variant, where we train a181

deep transformation of the Mel, with the same architecture as the one applied to the brain recording,182

without the spatial attention and subject layer, and matching the output dimension of wav2vec 2.0.183

This transformation is trained along with the brain decoder using the contrastive objective (3). By184

definition, the Deep Mel model only sees the audio from the each of the studied datasets (unlike185

wav2vec 2.0).186

2.5 Training187

One training epoch is defined as 1,200 updates using Adam [Kingma and Ba, 2014] with a learning188

rate of 3·10−4 and a batch size of 128. We stop training when no improvement is observed on the189

valid set for 10 epochs and keep the best model based on the valid loss. For the direct regression of190

the Mel spectrogram, we use the MSE loss. We use two V100 GPUs with 16GB of memory.191

2.6 Evaluation192

Segment-level evaluation. In Figure 2, we estimate the Mel spectrogram from the model output.193

Given a segment and its matching audio (here the sentence “Thank you for coming Ed”), we retrieve194

the predicted distribution over the 1, 594 segments given by (2). We use this distribution to average195
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Table 2: Results. Top-10 segment-level accuracy (%) for a random baseline model that predicts a
uniform distribution over the segments (‘random’), a convolutional network trained to predict the Mel
spectrograms with a regression loss (‘base’), the same model trained with a contrastive loss (‘+ clip’)
and our model, i.e. trained to predict the features of wav2vec 2.0 with a contrastive loss (‘+ wav2vec
2.0’). ± indicates the standard deviation across three random initializations of the model’s weights.

Method Schoffelen2019 Gwilliams2022 Broderick2019 Brennan2019 Mean
Random model 1.5 ± 0.18 2.2 ± 0.16 4.1 ± 0.09 7.6 ± 0.13 3.8
Base model 19.3 ± 0.83 14.9 ± 0.56 1.3 ± 0.19 6.6 ± 0.53 10.5
+ CLIP 51.5 ± 0.47 58.6 ± 0.28 13.3 ± 0.54 14.5 ± 1.33 34.5
+ Deep Mel 57.7 ± 0.16 64.4 ± 1.67 16.5 ± 0.26 23.7 ± 0.90 40.6
+ wav2vec 2.0 67.2 ± 0.09 72.5 ± 0.22 19.1 ± 1.15 31.4 ± 1.59 47.5

the Mel spectrogram of each candidate segment. Similarly, the top-10 segment accuracy indicates196

whether the true segment is in the top-10 most likely segments according to the same probabilities.197

Word-level evaluation. We also evaluate the model at the word level (Figure 4). For each word of198

the test set, we select a 3 s segment starting with this word. We input the model with the corresponding199

brain recordings, and output the probability distribution over all test segments including the true200

segment. To obtain the distribution over the vocabulary, we group the candidate segments by their201

first word and sum the probabilities within each group.202

2.7 Code availability203

The code to reproduce the present study will be made publicly available upon publication.204

3 Results205

3.1 Accurately decoding speech from M/EEG recordings206

Our model predicts the proper segment, out of more than 1,000 possible ones, with a top-10 accuracy207

of 72% and 67% for MEG datasets (top-1 accuracy of 44% and 36%) (Table 2). For more than208

half of samples, the true audio segment is ranked first or second in the decoders’ predictions. For209

comparison, a model that predicts a uniform distribution over the vocabulary (‘random model’) only210

achieves a 2% top-10 accuracy on the same MEG datasets. Decoding performance for EEG datasets211

is lower: our model reaches 19% and 31% top-10 accuracy. While modest, these scores are four212

times higher than the random baseline.213

3.2 Effect of contrastive loss, deep speech representations, and number of participants214

Our ablation highlights the importance of: (1) the contrastive loss, (2) the use of deep speech215

representations [Baevski et al., 2020] and (3) the combination of a large number of participants. First,216

a model trained to predict the Mel spectrogram with a regression objective (‘base model’ in Table217

2) achieves 10% top-10 accuracy on average across datasets – i.e. nearly five times lower than our218

model, when using the model output to rank the candidate segments by cosine similarity.219

Second, predicting the Mel spectrogram with a contrastive loss leads to a 3X improvement over the220

base model, and gains another 16 points by using wav2vec 2.0 as the speech representation. We221

verified that the wav2vec 2.0’s latent representations provide higher decoding performances than those222

learnt end-to-end with contrastive learning, as shown by the results of the Deep Mel model on Table 2.223

Third, to test whether our model effectively leverage the inter-individual variability, we trained it224

on a variable number of subjects and computed its accuracy on the first 10% of subjects. As shown225

in Figure 3B, decoding performance increases as the model is trained with more subjects on the226

two MEG datasets. This ability to learn from multiple subjects is strengthened by another ablation227

experiment: training on all participants, but without the subject-specific layer, leads to a drop of 17%228

accuracy on average across the four datasets (Table 3). However, this last gain is relatively modest229

compared to the a subject embedding introduced recently [Chehab et al., 2021].230
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Table 3: Ablations. Top-10 segment-level accuracy (%) for our model and its ablated versions. Delta
refers to the average decrease in accuracy of each ablated version compared to our model.

Arch. change Schoffelen2019 Gwilliams2022 Broderick2019 Brennan2019 Mean Delta
Our model 67.2 ± 0.09 72.5 ± 0.22 19.1 ± 1.15 31.4 ± 1.59 47.5 0.00

\wo spatial attention dropout 61.6 ± 0.14 71.2 ± 0.93 19.0 ± 1.07 30.2 ± 1.70 45.5 -2.00
\w subj. embedding* 59.5 ± 0.24 72.0 ± 0.77 20.2 ± 1.24 30.2 ± 0.77 45.4 -2.08
\wo GELU, \w ReLU 61.4 ± 0.67 72.2 ± 0.05 19.2 ± 0.79 26.4 ± 1.03 44.8 -2.72
\wo spatial attention 60.0 ± 1.32 69.5 ± 0.44 17.9 ± 0.34 26.0 ± 0.61 43.3 -4.18
\wo final convs 62.3 ± 0.07 71.0 ± 0.47 15.7 ± 1.13 22.7 ± 2.05 43.0 -4.57
\wo initial 1x1 conv. 57.8 ± 1.12 69.6 ± 0.37 17.9 ± 0.31 26.3 ± 1.43 42.9 -4.62
\wo skip connections 59.2 ± 0.71 68.0 ± 0.60 16.7 ± 0.29 25.7 ± 4.32 42.4 -5.13
\wo non-residual GLU conv. 63.5 ± 0.68 73.0 ± 0.67 17.0 ± 0.03 6.70 ± 0.57 40.0 -7.50
\wo subject-specific layer 38.3 ± 0.77 49.2 ± 0.23 11.8 ± 0.14 21.5 ± 0.59 30.2 -17.30
\wo clamping brain signal 1.1 ± 0.26 57.6 ± 13.4 4.0 ± 0.14 11.0 ± 1.92 18.4 -29.10

*: we used the subject embedding from [Chehab et al., 2021] instead of the subject layer.

Finally, other design choices modestly but significantly impact the performance of our model.231

Performance systematically decreases when removing skip connections, the spatial attention module,232

the initial or final convolutional layers (Table 3). We also show how essential clamping is to train the233

model, except for the [Gwilliams et al., 2022] dataset, which led to similar performances, although234

with a doubling of the training time. See Section A.2 in the Appendix for more ablations analyses.235

Figure 3: Segment-level decoding. A. Probability distribution of the decoded rank for each segment
(lower is better) for each dataset. The gray dotted line indicates the number of segments in the test
set. B. Top-10 accuracy obtained for the first 10% of subjects (y-axis) as a function of the number
of subjects seen during training (x-axis). The line and confidence intervals represent the mean and
standard error of the mean (SEM) across participants, respectively.

4 Discussion236

Here, we aimed to decode the perception of natural speech from non-invasive brain recordings.237

Our results, based on the largest decoding study of M/EEG responses to speech to date, show that238

combining (1) a contrastive objective, (2) a convolutional architecture enhanced by a “Subject Layer”,239

and (3) pretrained speech representations allows the decoding of new 3 s speech sounds with up to240

44% top-1 accuracy out of more than 1,500 possibilities.241

Our approach contributes to the rapid transformation of hand-crafted pipelines into their end-to-end242

counterparts. In particular, this study shows how self-supervised and contrastive learning can improve243

both (1) the analyses of brain signals and (2) the definition of the linguistic features that should244

be used for decoding. In particular, previous models were typically trained on individual subjects245

to categorize a very small number of highly-repeated categories and/or hand-crafted features [Ali246

et al., 2022, Jayaram and Barachant, 2018, Lawhern et al., 2018]. For example, Sun and Qin [2016],247

Sree and Kavitha [2017], and Moinnereau et al. [2018] all developed a decoder to classify 11, 5 and248

2 distinct imagined phonemes, respectively, from EEG signals. Similarly, Lopopolo and van den249

Bosch [2020], Chan et al. [2011], Nguyen et al. [2017] respectively developed a decoder to classify250
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Figure 4: A. Single-word prediction for the first three subjects of Gwilliams et al. [2022] listening to
the sentence “Thank you for coming, Ed”. Text color indicates whether the decoded word is accurate.
Text size is proportional to the log-probability output by our model. B. Top-1 accuracy at the word
level (as explained in Section 2.6) as a function of the number of negatives during inference. C. The
R2 summarize how word frequency, part-of-speech tag, word embedding, and contextual embedding
respectively predict the accuracy of single-word and single-segment decoding (Appendix A.4). Error
bars are the SEM across participants.

6 distinct part-of-speech (48% accuracy), 10 words (83% accuracy) and 3 words (70% accuracy),251

from MEG signals. Finally, both Dash et al. [2020] and Wang et al. [2017] trained a classifier to252

decode 5 distinct sentences from MEG activity (both around 94% accuracy). Given the combinatorics253

of language, such single-subject / limited-vocabulary approach necessarily limits the possibility to254

decode natural speech. By contrast, our model effectively achieves “zero-shot” decoding by matching255

a large number of brain recordings to the deep representations of their corresponding speech sounds.256

One remarkable phenomenon revealed by the present study is the difference of performance obtained257

between with EEG and MEG: while EEG is known to be less precise than MEG, we did not expect258

such a strong difference. This result thus holds great promises for the development of a safe and259

scalable system based on the analysis of magnetic – rather than electric – fields. It should be stressed260

that while the scientific community should remain vigilant that this approach will not be adapted261

to decode brain signals without the consent of the participants, this possibility appears unlikely at262

this stage: Unlike other biomarkers, such as fingerprints, DNA and facial features, electro-magnetic263

signals cannot be acquired unbeknownst to the participants. Furthermore, teeth clenching, eye blinks264

and other muscle movements are known to massively corrupt these signals, and thus presumably265

provide a simple way to counter downstream analyses. In any case, we believe that open science266

remains the best way to responsibly assess risks and benefits in this domain.267

The present non-invasive study is limited to speech perception. It thus differs from the recent268

achievements obtained in a small set of heavily-trained patients implanted for clinical purposes and269

tasked to produce language [Herff et al., 2015, Martin et al., 2016, Angrick et al., 2019b, Willett et al.,270

2021, Moses et al., 2021, Angrick et al., 2021, Kohler et al., 2021]. In particular, Willett et al. [2021]271

showed that a 1 s time window of neuronal activity in the motor cortex suffices to decode one of 26272

characters with 94.1% top-1 accuracy during a spelling task. Similarly, Moses et al. [2021] showed273

that 4 s of neuronal activity recorded in the sensory-motor cortices is sufficient to decode the intention274

to communicate one of 50 words with a median word error rate of 25.6%. We deliberately chose to275
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focus on speech perception here, because speech production generates muscle activity, which can276

be easily read with EEG and MEG. Consequently, decoding speech production could be trivial in277

healthy participant, without ensuring any kind of utility for patients with an inability to control facial278

muscles.279

While our approach remains to be adapted to language production, the possibility of leveraging data280

from (i) multiple subjects and (ii) large natural language datasets, together with (iii) the multiplication281

of public neuroimaging datasets, makes us hopeful about possibility of decoding intended commu-282

nication from non-invasive recordings of brain activity. This possibility could also be accelerated283

by the development of new MEG hardwares: the MEG used in the present study makes use of284

superconducting quantum interference device (SQUID) and necessitates to cool the sensors down285

to ≈ 4◦K with a very large tank of liquid helium. However, several room-temperature sensors are286

now available, and already show signal-to-noise ratio comparable to SQUIDs [Boto et al., 2018].287

Combined with A.I. systems, these new devices will thus likely contribute to improve the diagnosis,288

prognosis and restoration of language processing in non- or poorly-communicating patients without289

putting them at risks for brain surgery.290
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A Appendix478

A.1 Datasets479

The data from Schoffelen et al. [2019] was provided (in part) by the Donders Institute for Brain,480

Cognition and Behaviour with a “RU-DI-HD-1.0” licence2. The data for Gwilliams et al. [2022] is481

available under CC0 1.0 Universal3. The data for Broderick et al. [2018] is available under the same482

licence4 Finally, the data from Brennan and Hale [2019] is available under the CC BY 4.0 licence5483

All audio files were provided by the authors of each dataset.484

A.2 Extra Results485

In this Section, we provide extra analysis with regard to the number of MEL band used, and the486

clamping value.487

A.2.1 Effect of clamping488

Clamping is essential due to the sensitivity of electro-magnetic recordings to perturbations. As489

explained in Section 2.4, we first use a quantile based robust scaler such that the range [-1, 1] maps to490

the [0.25, 0.75] quantile range. The scaling is computed independently for each recording. Thus it is491

expected most values for M/EEG recordings would have a scale of the order of 1. In the following492

table, we provide the top-10 accuracy for the Wav2Vec2.0 based model from Table 2. We observe that493

extending the clamping range from 20 to 100 doesn’t allow the model to extract more information,494

which would be expected if large scale values are outliers without useful information on the underlying495

brain dynamics. On the other hand, when removing entirely clamping, we observe a collapse of the496

performance. This is expected, as extreme outliers will impact for instance the BatchNorm mean497

and standard deviation estimate, and one outlier can impact the entire batch. Outliers can also cause498

extreme gradients and throw off the optimization process. Interestingly, on Gwilliams2022, the drop499

is limited, potentially due to builtin preprocessing.500

Clamping value Schoffelen2019 Gwilliams2022 Broderick2019 Brennan2019 Mean
20 67.2 ± 0.09 72.5 ± 0.22 19.1 ± 1.15 31.4 ± 1.59 47.5
100 60.6 ± 2.38 72.4 ± 0.31 20.0 ± 0.54 31.5 ± 1.96 46.1
no clamping 1.1 ± 0.26 57.6 ± 13.39 4.0 ± 0.14 11.0 ± 1.92 18.4

501

A.3 Effect of the number of Mels502

We now study the impact of the number of Mel bands. 120 bands is usually considered high enough503

for most practical use [Young et al., 2002], which we selected for the main evaluation in Table 2. We504

study the impact of the numer of Mel bands for different versions of the model. For clarity, we only505

provide the average top-10 accuracy overall datasets. We observe a small increase of the accuracy506

when using more Mel bands. Interestingly, when using the Deep Mel model, 20 bands is sufficient to507

achieve the best performance.508

# Mel bands
Model value 20 40 80 120

Base model 9.5 10.0 10.3 10.5
+ CLIP 32.2 33.3 33.7 34.5
+ Deep Mel 40.7 40.6 40.3 40.6

509

2https://data.donders.ru.nl/collections/di/dccn/DSC_3011220.01_297
3https://osf.io/rguwj/
4https://datadryad.org/stash/dataset/doi:10.5061/dryad.070jc
5https://deepblue.lib.umich.edu/data/concern/data_sets/bg257f92t
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Figure A.1: Top-1 accuracy as a function of vocabulary size for word presented during random word
lists in Schoffelen et al. [2019]. Error bar indicate SEM across participants.

A.4 Analyses of single-trial predictions510

Does our model predict all words similarly? To address this question, we evaluate whether our511

model’s ability to decode individual words depends on their properties, namely their zipf frequency512

as provided by Wordfreq 6, as well as their part-of-speech tag and their word embedding as provided513

by spaCy 7. Similarly, we evaluate whether the decoding of the entire 3 s speech segment varies with514

its linguistic properties, as assessed by its average word embedding as well as its sentence embedding,515

as computed with Laser 8. For this, we trained a regularized ridge regression with scikit-learn9’s516

default parameters to predict the softmax probability of the true word output by the decoder, given a517

feature. We then estimate the R2 with a 5-split cross-validation: i.e. how well the feature predicts the518

probability of being selected by the decoder. The results, displayed in Figure 4-C, show that the word519

and segment embedding effectively explain the single-trial decoding accuracy. These results thus520

suggest that our decoder uses semantic and contextual information to make its predictions.521

A.5 Decoding of isolated words522

To what extent can our approach be used to decode words presented in isolation? To explore this issue,523

we evaluated our model using a subset from Schoffelen et al. [2019], where subjects are presented524

with random word lists. We use a segment ranging from -300 ms to +500 ms relative to word onset.525

The results, displayed in Supplementary Figure A.1, show that our model reaches a top-1 accuracy526

of 25.0% with a vocabulary size of 50. While this performance is low, it is interesting to compare527

it to Moses et al. [2021] who report a top-1 accuracy of 39.5% with a model trained to decode the528

production of individual words, without the use of a language model, i.e. independently of context.529

6https://pypi.org/project/wordfreq/
7https://spacy.io
8https://github.com/facebookresearch/laser
9https://scikit-learn.org
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