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Introduction

Every year, thousands of patients suffer from brain or spinal cord injuries and suddenly lose their ability to communicate [START_REF] Carol | Demographics of rehabilitation robotics users[END_REF][START_REF] Elmar | Estimated prevalence of the target population for brain-computer interface neurotechnology in the netherlands[END_REF][START_REF] Kübler | Braincomputer communication: Unlocking the locked in[END_REF][START_REF] Elmar | Estimated prevalence of the target population for brain-computer interface neurotechnology in the netherlands[END_REF][START_REF] Claassen | Detection of brain activation in unresponsive patients with acute brain injury[END_REF][START_REF] Owen | Detecting awareness in the vegetative state[END_REF][START_REF] Cruse | Bedside detection of awareness in the vegetative state: a cohort study[END_REF]. Brain Computer Interface (BCI) has been raising high expectations to detect [START_REF] Owen | Detecting awareness in the vegetative state[END_REF][START_REF] Claassen | Detection of brain activation in unresponsive patients with acute brain injury[END_REF][START_REF] Birbaumer | A spelling device for the paralysed[END_REF][START_REF] King | Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness[END_REF] and restore language abilities in such patients [START_REF] Brumberg | Artificial speech synthesizer control by brain-computer interface[END_REF][START_REF] Herff | Brain-to-text: decoding spoken phrases from phone representations in the brain[END_REF][START_REF] Sergey D Stavisky | Decoding speech from intracortical multielectrode arrays in dorsal "arm/hand areas" of human motor cortex[END_REF][START_REF] Francis R Willett | High-performance brain-to-text communication via handwriting[END_REF][START_REF] David A Moses | Neuroprosthesis for decoding speech in a paralyzed person with anarthria[END_REF][START_REF] Kennedy | Slow firing single units are essential for optimal decoding of silent speech[END_REF]: Over the past decades, several teams used BCI to efficiently decode phonemes, speech sounds [START_REF] Pei | Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans[END_REF][START_REF] Akbari | Towards reconstructing intelligible speech from the human auditory cortex[END_REF], hand gestures [START_REF] Sergey D Stavisky | Decoding speech from intracortical multielectrode arrays in dorsal "arm/hand areas" of human motor cortex[END_REF][START_REF] Francis R Willett | High-performance brain-to-text communication via handwriting[END_REF] and articulatory movements [START_REF] Gopala K Anumanchipalli | Speech synthesis from neural decoding of spoken sentences[END_REF][START_REF] David A Moses | Neuroprosthesis for decoding speech in a paralyzed person with anarthria[END_REF] from electrodes implanted in the cortex or over its surface. For instance, [START_REF] Francis R Willett | High-performance brain-to-text communication via handwriting[END_REF] decoded 90 characters per minute (with a 94% accuracy, i.e. roughly ≈15-18 words per minute) from a spinal-cord injury patient recorded in the motor cortex during 10 hours of writing sessions. Similarly, [START_REF] David A Moses | Neuroprosthesis for decoding speech in a paralyzed person with anarthria[END_REF] decoded 15.2 words per minute (with 74.4% accuracy, and using a vocabulary of 50 words) in an anarthria patient implanted in the sensorimotor cortex and recorded over 48 sessions spanning over 22 hours. However, such invasive recordings face major practical challenges: these high-quality signals require

(1) brain surgery (2) long training sessions and (3) can be difficult to maintain chronically. Several laboratories have thus focused on decoding language from non-invasive recordings of brain activity like magneto-and electro-encephalography (M/EEG). MEG and EEG are sensitive to macroscopic changes of electric and magnetic signals elicited in the cortex, and can be acquired with a safe and Preprint. Under review. potentially wearable setup [START_REF] Boto | Moving magnetoencephalography towards real-world applications with a wearable system[END_REF]. However, these two devices produce notoriously noisy signals that vary greatly across sessions and across individuals [START_REF] Tibor Schirrmeister | Deep learning with convolutional neural networks for eeg decoding and visualization[END_REF][START_REF] King | Encoding and decoding neuronal dynamics: Methodological framework to uncover the algorithms of cognition[END_REF][START_REF] Hämäläinen | Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain[END_REF]. It is thus common to engineer pipelines that output hand-crafted features, which, in turn, can be learned by a decoder trained on a single participant [START_REF] Vernon J Lawhern | Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces[END_REF][START_REF] Lopopolo | Part-of-speech classification from magnetoencephalography data using 1-dimensional convolutional neural network[END_REF][START_REF] Alexander M Chan | Decoding word and category-specific spatiotemporal representations from meg and eeg[END_REF][START_REF] Chuong H Nguyen | Inferring imagined speech using eeg signals: a new approach using riemannian manifold features[END_REF].

In sum, decoding language from brain activity is, to date, either limited to invasive recordings or to impractical tasks. Interestingly, both of these approaches followed a similar method: i.e. (1) training a model on a single patient and (2) aiming to decode a limited set of interpretable features (MEL spectrogram, letters, phonemes, small set of words).

Instead, we here propose to decode speech from non-invasive brain recordings by using (1) a single architecture trained across a large cohort of participants and (2) deep representations of speech learnt with self-supervised learning on a large quantity of speech data. For this, we introduce a convolutional neural network stacked onto a "Subject Layer" and trained with a contrastive objective to predict the representations of the audio waveform learnt by wav2vec 2.0 pretrained on 56k hours of speech [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] (Figure 1). To validate our approach, we curate and integrate four public [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF]) and learns the representations Z of the brain activity on the corresponding 3 s window (X) that maximally align with these speech representations with a contrastive loss (CLIP: [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]). The representation Z is given by a deep convolutional network. At evaluation, we input the model with left-out sentences and compute the probability of each 3 s speech segment given each brain representation. The resulting decoding can thus be "zero-shot" in that the audio snippets predicted by the model need not be present in the training set. This approach is thus more general than standard classification approaches where the decoder can only predict the categories learnt during training.

Method

We first formalize the general task of neural decoding and then describe and motivate the different components of our model, before describing the datasets, preprocessing, training and evaluation.

Problem formalization

We aim to decode speech from a time series of high-dimensional brain signals recorded with non-invasive magneto-encephalography (MEG) or electro-encephalography (EEG) while healthy volunteers passively listened to spoken sentences in their native language. How spoken words are represented in the brain is largely unknown [START_REF] Hickok | The cortical organization of speech processing[END_REF]. Thus, it is common to train decoders in a supervised manner to predict a latent representation of speech known to be relevant to the brain [START_REF] Akbari | Towards reconstructing intelligible speech from the human auditory cortex[END_REF], Angrick et al., 2019b[START_REF] Krishna | Speech synthesis using eeg[END_REF][START_REF] Komeiji | Transformer-based estimation of spoken sentences using electrocorticography[END_REF]. For example, the Mel spectrogram is often targeted for neural decoding because it representats sounds similarly to the cochlea [START_REF] Mermelstein | Distance measures for speech recognition, psychological and instrumental[END_REF]. Let X ∈ R C×T be a segment of a brain recording of a given subject while she listens to a speech segment of the same duration, with C the number of M/EEG sensors and T the number of time steps. Let Y ∈ R F ×T be the latent representation of speech, using the same sample rate as X for simplicity, here the Mel spectrogram with F frequency bands. Thus, supervised decoding consists of finding a decoding function: f reg : R C×T → R F ×T such that f reg predicts Y given X. We denote by Ŷ = f reg (X) the representation of speech decoded from the brain. When f reg belongs to a parameterized family of models like deep neural networks, it can be trained with a regression loss L reg (Y, Ŷ ) (e.g. the Mean Square Error),

min freg X,Y L reg (Y, f reg (X)). (1) 
Empirically, we observed that this direct regression approach faces several challenges: decoding predictions appear to be dominated by a non-distinguishable broadband component when speech is present (Figure 2.A-B). This challenge motivates our three main contributions: the introduction of a contrastive loss, a pre-trained deep speech representation, and a dedicated brain decoder.

Model

Contrastive loss

First, we reasoned that regression may be an ineffective loss because it departs from our objective:

decoding speech from brain activity. Consequently, we replaced it with a contrastive loss, namely, the "CLIP" loss (originally for Contrastive Language-Image Pre-Training) by [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF],

which was originally designed to match latent representations in two modalities, text and images.

We implement the CLIP loss as follows: Let X be a brain recording segment and Y ∈ R F ×T the latent representation of its corresponding sound (a.k.a "positive sample"). We sample N -1 negative samples Ȳj∈{1,...,N-1} over our dataset and we add the positive sample as ȲN = Y . We want our model to predict the probabilities ∀j ∈ {1, . . . , N }, p j = P Ȳj = Y . We thus train a model f clip mapping the brain activity X to a latent representation Z = f clip (X) ∈ R F ×T . The estimated probability can then be approximated by the dot product of Z and the candidate speech latent representations Y j , followed by a softmax:

pj = e ⟨Z, Ȳj ⟩ N j ′ =1 e ⟨Z, Ȳj ′ ⟩ , (2) 
with ⟨•,•⟩ the inner product over both dimensions of Z and Ŷ . We then train f clip with a cross-entropy between p j and pj . Note that for a large enough dataset, we can neglect the probability of sampling twice the same segment, so that we have p j = 1 j=N , and the cross-entropy simplifies to

L CLIP (p, p) = -log(p N ) = -⟨Z,Y ⟩ + log N j ′ =1 e ⟨Z, Ȳ ′ j ⟩ . (3) 
Following [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF], we use the other elements of the batch as negative samples at train time. At test time, the negative samples correspond to all of the segments of the test but the positive one. Replacing the regression loss with a CLIP loss [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] improves reconstruction in the same subject, still using the mel-spectrogram as the speech representation. D. Now replacing the mel-spectrogram with wav2vec 2.0 [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF]. The probabilities given by Eq. ( 2) are used to rebuild a mel-spectrogram. E. Architecture of the brain module. Architecture used to process the brain recordings. For each layer, we note first the number of output channels, while the number of time steps is constant throughout the layers. The model is composed of a spatial attention layer, then a 1x1 convolution without activation. A "Subject Layer" is selected based on the subject index s, which consists in a 1x1 convolution learnt only for that subject with no activation. Then, we apply five convolutional blocks made of three convolutions. The first two use residual skip connection and increasing dilation, followed by a BatchNorm layer and a GELU activation. The third convolution is not residual, and uses a GLU activation (which halves the number of channels) and no normalization. Finally, we apply two 1x1 convolutions with a GELU in between.

Speech module

Second, the Mel spectrogram is a low-level representation of speech and is thus unlikely to match the rich variety of cortical representations [START_REF] Hickok | The cortical organization of speech processing[END_REF]. Consequently, we replaced the Mel spectrograms Y with latent representations of speech, that are either learned end-to-end ("Deep Mel" model) or learned with an independent self-supervised speech model ("wav2vec 2.0", [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF]) As detailed in the result section, the "Deep Mel" model uses an architecture similar to the brain module, but proved less efficient than its pretrained counterpart. We will thus focus the decoding results obtained with wav2vec 2.0.

Wav2vec 2.0 is trained to transform the raw waveform with convolutional and transformer blocks to predict masked parts of its own latent representations. [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] showed that the resulting model can be efficiently fine-tuned to achieve state-of-the-art performance in speech recognition.

Besides, this model effectively encodes a wide variety of linguistic features [Millet andDunbar, 2022, Adolfi et al., 2022]. Finally, recent work shows the existence of linear correspondence between the activations of the brain and those of wav2vec 2.0 [Millet et al., 2022[START_REF] Vaidya | Self-supervised models of audio effectively explain human cortical responses to speech[END_REF].

Consequently, we here test whether this model effectively helps the present decoding task. In practice, we use the wav2vec2-large-xlsr-531 , which has been pre-trained on 56k hours of speech from 53 different languages.

Brain module

Finally, for the brain module, we use a deep neural network f clip , input with raw M/EEG times series X and a one-hot-encoding of the corresponding subject s, and outputs the latent brain representation Z, with the same sample rate as X. This architecture consists of (1) a spatial attention layer over the M/EEG sensors followed (2) by a subject-specific 1x1 convolution designed to leverage inter-subject variability, which input to (3) a stack of convolutional blocks. An overview of the model is given in Figure 2. In the following, given a tensor U , we will note U (i,...) access to specific entries in the tensor.

Spatial attention and subject layer. The brain data is first remapped onto D 1 = 270 channels with a spatial attention layer based on the location of the sensors. The 3D sensor locations are first projected on a 2D plane obtained with the MNE-Python function find_layout [START_REF] Gramfort | Meg and eeg data analysis with mne-python[END_REF], which uses a device-dependent surface designed to preserve the channel distances. Their 2D positions are finally normalized to [0, 1]. For each output channel, a function over [0, 1] 2 is learnt, parameterized in the Fourier space. The weights over the input sensors is then given by the softmax of the function evaluated at the sensor locations. Formally, each input channel i has a location (x i , y i )

and each output channel j is attached a function a j over [0, 1] 2 parameterized in the Fourier space as z j ∈ C K×K with K=32 harmonics along each axis, i.e.

a j (x, y) = K k=1 K l=1
Re(z

(k,l) j ) cos (2π(kx + ly)) + Im(z (k,l) j ) sin (2π(kx + ly)) . (4) 
The output is given by a softmax attention based on the evaluation of a j at each input position (x i , y i ):

∀j ∈ [D 1 ], SA(X) (j) = 1 D1 i=1 e aj (xi,yi) C i=1 e aj (xi,yi) X (i) (5) 
with SA the spatial attention. In practice, as a j is periodic, we scale down (x, y) to keep a margin of 0.1 on each side. We then apply a spatial dropout by sampling a location (x drop , y drop ) and removing from the softmax each sensor that is within a distance of d drop of the sampled location. We then add a 1x1 convolution (i.e. with a kernel size of 1) without activation and with the same number D 1 of output channels. Finally, to leverage inter-subject variability, we learn a matrix M s ∈ R D1,D1 for each subject s ∈ [S] and apply it after the spatial attention layer along the channel dimension. This is similar but more expressive than the subject embedding used by [START_REF] Chehab | Deep recurrent encoder: A scalable end-to-end network to model brain signals[END_REF] for MEG encoding, and follows decade of research on subject alignment [START_REF] Xu | Regularized hyperalignment of multi-set fmri data[END_REF][START_REF] James V Haxby | Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies[END_REF].

Residual dilated convolutions. We then apply a stack of five blocks of three convolutional layers. For the k-th block, the first two convolutions are applied with residual skip connections (except for the very first one where the number of dimension potentially doesn't match), outputs D 2 = 320 channels and are followed by batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]] and a GELU activation [START_REF] Hendrycks | Gaussian error linear units (gelus)[END_REF]. The two convolutions are also dilated to increase their receptive field, respectively by 2 2k mod 5 and 2 2k+1 mod 5 (with k zero indexed). The third layer in a block outputs 2D 2 channels and uses a GLU activation [START_REF] Yann | Language modeling with gated convolutional networks[END_REF] which halves the number of channels. All convolutions use a kernel size of 3 over the time axis, a stride of 1, and sufficient padding to keep the number of time steps constant across layers. The output of the model is obtained by applying two final 1x1 convolutions: first with 2D 2 outputs, followed by a GELU, and finally with F channels as output, thus matching the dimensionality of speech representations.

Given the expected delay between a stimulus and its corresponding brain responses, we further shift the input brain signal by 150 ms into the future to facilitate the alignment between Y and Z.

Datasets

We test our approach on four public datasets, two based on MEG recordings and two on EEG.

All datasets and their corresponding studies were approved by the relevant ethics committee and are publicly available for fundamental research purposes. Informed consent was obtained from all human research participants. We provide an overview of the main characteristics of the datasets on Table 1, including the number of train and test segments and vocabulary size over both splits.

For all datasets, healthy adult volunteers passively listened to speech sounds (accompanied with some memory or comprehension questions to ensure participants were attentive), while their brain activity was recorded with MEG or EEG. In [START_REF] Schoffelen | A 204-subject multimodal neuroimaging dataset to study language processing[END_REF], Dutch-speaking participants listened to decontextualized Dutch sentences and word lists (Dutch sentences for which the words are randomly shuffled). The study was approved by the local ethics committee (CMO -the local "Committee on Research Involving Human Subjects" in the Arnhem-Nijmegen region). In [START_REF] Gwilliams | Meg-masc: a high-quality magneto-encephalography dataset for evaluating natural speech processing[END_REF], English-speaking participants listened to four fictional stories from the Masc corpus [START_REF] Ide | The manually annotated sub-corpus: A community resource for and by the people[END_REF] in two identical sessions of one hour [START_REF] Gwilliams | Neural dynamics of phoneme sequencing in real speech jointly encode order and invariant content[END_REF] 

Preprocessing

M/EEG is generally considered to capture neural signals from relatively low frequency ranges [START_REF] Hämäläinen | Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain[END_REF]. Consequently, we first resampled all brain recordings down to 120 Hz with Torchaudio [Yang et al., 2021] and then split the data into training, validation, and testing splits with a size roughly proportional to 70%, 20%, and 10%. We define a "sample" as a 3 s window of brain recording with its associated speech representation. A "segment" is a unique 3 s window of speech sound. As the same segment can be presented to multiple subjects (or even within the same subject in [START_REF] Gwilliams | Meg-masc: a high-quality magneto-encephalography dataset for evaluating natural speech processing[END_REF]), the splits are defined so that one segment is always assigned to the same split across repetitions. We ensure that there is no identical sentences across splits, and checked that each sentence was pronounced by a unique speaker. Furthermore, we exclude all segments overlapping over different splits. For clarity, we restrict the test segments to those that contain a word at a fixed location (here 500 ms into the sample).

M/EEG data can suffer from large artifacts, e.g. eye movements, or variations in the electro-magnetic environment [START_REF] Hämäläinen | Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain[END_REF]. To limit their impact, we apply a "baseline correction" (i.e.

we subtract to each input channel its average over the first 0.5 s) and a robust scaler with scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]. We clamp values greater than 20 after normalization to minimize the impact of large outlier samples. For the Mel spectrogram, we use 120 Mel bands (see Section A.2 in the Appendix) [START_REF] Young | The htk book[END_REF], with a normalized STFT with a frame size of 512 samples and hop length of 128 samples, using audio sampled at 16kHz. We apply log-compression, i.e. log(ϵ + mel), with ϵ=10 -5 . When using wav2vec 2.0, we average the activations of the last four layers of its transformer. We use standard normalization for both representations. To further assess the gains from using a self supervised representation, we also test a "Deep Mel" variant, where we train a deep transformation of the Mel, with the same architecture as the one applied to the brain recording, without the spatial attention and subject layer, and matching the output dimension of wav2vec 2.0.

This transformation is trained along with the brain decoder using the contrastive objective (3). By definition, the Deep Mel model only sees the audio from the each of the studied datasets (unlike wav2vec 2.0).

Training

One training epoch is defined as 1,200 updates using Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a learning rate of 3•10 -4 and a batch size of 128. We stop training when no improvement is observed on the valid set for 10 epochs and keep the best model based on the valid loss. For the direct regression of the Mel spectrogram, we use the MSE loss. We use two V100 GPUs with 16GB of memory.

Evaluation

Segment-level evaluation. In Figure 2, we estimate the Mel spectrogram from the model output.

Given a segment and its matching audio (here the sentence "Thank you for coming Ed"), we retrieve the predicted distribution over the 1, 594 segments given by ( 2). We use this distribution to average whether the true segment is in the top-10 most likely segments according to the same probabilities.

Word-level evaluation. We also evaluate the model at the word level (Figure 4). For each word of the test set, we select a 3 s segment starting with this word. We input the model with the corresponding brain recordings, and output the probability distribution over all test segments including the true segment. To obtain the distribution over the vocabulary, we group the candidate segments by their first word and sum the probabilities within each group.

Code availability

The code to reproduce the present study will be made publicly available upon publication.

Results

Accurately decoding speech from M/EEG recordings

Our model predicts the proper segment, out of more than 1,000 possible ones, with a top-10 accuracy of 72% and 67% for MEG datasets (top-1 accuracy of 44% and 36%) (Table 2). For more than half of samples, the true audio segment is ranked first or second in the decoders' predictions. For comparison, a model that predicts a uniform distribution over the vocabulary ('random model') only achieves a 2% top-10 accuracy on the same MEG datasets. Decoding performance for EEG datasets is lower: our model reaches 19% and 31% top-10 accuracy. While modest, these scores are four times higher than the random baseline.

Effect of contrastive loss, deep speech representations, and number of participants

Our ablation highlights the importance of: (1) the contrastive loss, (2) the use of deep speech representations [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] and (3) the combination of a large number of participants. First, a model trained to predict the Mel spectrogram with a regression objective ('base model' in Table 2) achieves 10% top-10 accuracy on average across datasets -i.e. nearly five times lower than our model, when using the model output to rank the candidate segments by cosine similarity.

Second, predicting the Mel spectrogram with a contrastive loss leads to a 3X improvement over the base model, and gains another 16 points by using wav2vec 2.0 as the speech representation. We verified that the wav2vec 2.0's latent representations provide higher decoding performances than those learnt end-to-end with contrastive learning, as shown by the results of the Deep Mel model on Table 2.

Third, to test whether our model effectively leverage the inter-individual variability, we trained it on a variable number of subjects and computed its accuracy on the first 10% of subjects. As shown in Figure 3B, decoding performance increases as the model is trained with more subjects on the two MEG datasets. This ability to learn from multiple subjects is strengthened by another ablation experiment: training on all participants, but without the subject-specific layer, leads to a drop of 17% accuracy on average across the four datasets (Table 3). However, this last gain is relatively modest compared to the a subject embedding introduced recently [START_REF] Chehab | Deep recurrent encoder: A scalable end-to-end network to model brain signals[END_REF]. *: we used the subject embedding from [START_REF] Chehab | Deep recurrent encoder: A scalable end-to-end network to model brain signals[END_REF] instead of the subject layer.

Finally, other design choices modestly but significantly impact the performance of our model.

Performance systematically decreases when removing skip connections, the spatial attention module, the initial or final convolutional layers (Table 3). We also show how essential clamping is to train the model, except for the [START_REF] Gwilliams | Meg-masc: a high-quality magneto-encephalography dataset for evaluating natural speech processing[END_REF] dataset, which led to similar performances, although with a doubling of the training time. See Section A.2 in the Appendix for more ablations analyses. 

Discussion

Here, we aimed to decode the perception of natural speech from non-invasive brain recordings.

Our results, based on the largest decoding study of M/EEG responses to speech to date, show that combining (1) a contrastive objective, (2) a convolutional architecture enhanced by a "Subject Layer", and (3) pretrained speech representations allows the decoding of new 3 s speech sounds with up to 44% top-1 accuracy out of more than 1,500 possibilities.

Our approach contributes to the rapid transformation of hand-crafted pipelines into their end-to-end counterparts. In particular, this study shows how self-supervised and contrastive learning can improve both (1) the analyses of brain signals and (2) the definition of the linguistic features that should be used for decoding. In particular, previous models were typically trained on individual subjects to categorize a very small number of highly-repeated categories and/or hand-crafted features [START_REF] Ali | Enhancing the decoding accuracy of eeg signals by the introduction of anchored-stft and adversarial data augmentation method[END_REF][START_REF] Jayaram | Moabb: trustworthy algorithm benchmarking for bcis[END_REF][START_REF] Vernon J Lawhern | Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces[END_REF] 6 distinct part-of-speech (48% accuracy), 10 words (83% accuracy) and 3 words (70% accuracy), from MEG signals. Finally, both [START_REF] Dash | Decoding imagined and spoken phrases from noninvasive neural (meg) signals[END_REF] and [START_REF] Wang | Towards decoding speech production from single-trial magnetoencephalography (meg) signals[END_REF] trained a classifier to decode 5 distinct sentences from MEG activity (both around 94% accuracy). Given the combinatorics of language, such single-subject / limited-vocabulary approach necessarily limits the possibility to decode natural speech. By contrast, our model effectively achieves "zero-shot" decoding by matching a large number of brain recordings to the deep representations of their corresponding speech sounds.

One remarkable phenomenon revealed by the present study is the difference of performance obtained between with EEG and MEG: while EEG is known to be less precise than MEG, we did not expect such a strong difference. This result thus holds great promises for the development of a safe and scalable system based on the analysis of magnetic -rather than electric -fields. It should be stressed that while the scientific community should remain vigilant that this approach will not be adapted to decode brain signals without the consent of the participants, this possibility appears unlikely at this stage: Unlike other biomarkers, such as fingerprints, DNA and facial features, electro-magnetic signals cannot be acquired unbeknownst to the participants. Furthermore, teeth clenching, eye blinks and other muscle movements are known to massively corrupt these signals, and thus presumably provide a simple way to counter downstream analyses. In any case, we believe that open science remains the best way to responsibly assess risks and benefits in this domain.

The present non-invasive study is limited to speech perception. It thus differs from the recent achievements obtained in a small set of heavily-trained patients implanted for clinical purposes and tasked to produce language [START_REF] Herff | Brain-to-text: decoding spoken phrases from phone representations in the brain[END_REF][START_REF] Martin | Word pair classification during imagined speech using direct brain recordings[END_REF], Angrick et al., 2019b[START_REF] Francis R Willett | High-performance brain-to-text communication via handwriting[END_REF][START_REF] David A Moses | Neuroprosthesis for decoding speech in a paralyzed person with anarthria[END_REF], Angrick et al., 2021[START_REF] Kohler | Synthesizing speech from intracranial depth electrodes using an encoder-decoder framework[END_REF]. In particular, Willett et al. [2021] showed that a 1 s time window of neuronal activity in the motor cortex suffices to decode one of 26 characters with 94.1% top-1 accuracy during a spelling task. Similarly, Moses et al. [2021] showed that 4 s of neuronal activity recorded in the sensory-motor cortices is sufficient to decode the intention to communicate one of 50 words with a median word error rate of 25.6%. We deliberately chose to focus on speech perception here, because speech production generates muscle activity, which can be easily read with EEG and MEG. Consequently, decoding speech production could be trivial in healthy participant, without ensuring any kind of utility for patients with an inability to control facial muscles.

While our approach remains to be adapted to language production, the possibility of leveraging data from (i) multiple subjects and (ii) large natural language datasets, together with (iii) the multiplication of public neuroimaging datasets, makes us hopeful about possibility of decoding intended communication from non-invasive recordings of brain activity. This possibility could also be accelerated by the development of new MEG hardwares: the MEG used in the present study makes use of superconducting quantum interference device (SQUID) and necessitates to cool the sensors down to ≈ 4 • K with a very large tank of liquid helium. However, several room-temperature sensors are now available, and already show signal-to-noise ratio comparable to SQUIDs [START_REF] Boto | Moving magnetoencephalography towards real-world applications with a wearable system[END_REF].

Combined with A.I. systems, these new devices will thus likely contribute to improve the diagnosis, prognosis and restoration of language processing in non-or poorly-communicating patients without putting them at risks for brain surgery. 

  M/EEG datasets, encompassing the brain activity of 169 participants passively listening to sentences of short stories. With a sample of 3 seconds of M/EEG signals, our model identifies the matching audio segment (i.e. zero-shot decoding) with up to 72.5% top-10 accuracy (out of 1,594 segments) for MEG and up to 19.1% top-10 accuracy (out of 2,604 segments) for EEG.
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 1 Figure 1: Method We aim to decode speech from the brain activity of healthy participants recorded with magnetoencephalography (MEG) or electroencephalography (EEG) while they listen to stories and/or sentences. For this, our model extracts the deep contextual representations of 3 s speech signals (Y ) from a pretrained self-supervised model (wav2vec 2.0: Baevski et al. [2020]) and learns the representations Z of the brain activity on the corresponding 3 s window (X) that maximally align with these speech representations with a contrastive loss (CLIP:[START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]). The representation Z is given by a deep convolutional network. At evaluation, we input the model with left-out sentences and compute the probability of each 3 s speech segment given each brain representation. The resulting decoding can thus be "zero-shot" in that the audio snippets predicted by the model need not be present in the training set. This approach is thus more general than standard classification approaches where the decoder can only predict the categories learnt during training.

Figure 2 :

 2 Figure 2: Design choices. A. Illustration of a 3 s speech sound segment (bottom) and its corresponding Mel spectrogram (top). B. Mel-spectrogram predicted with a direct regression loss L reg of a brain decoder (orange). C. Replacing the regression loss with a CLIP loss[START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] improves reconstruction in the same subject, still using the mel-spectrogram as the speech representation. D. Now replacing the mel-spectrogram with wav2vec 2.0[START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF]. The probabilities given by Eq. (2) are used to rebuild a mel-spectrogram. E. Architecture of the brain module. Architecture used to process the brain recordings. For each layer, we note first the number of output channels, while the number of time steps is constant throughout the layers. The model is composed of a spatial attention layer, then a 1x1 convolution without activation. A "Subject Layer" is selected based on the subject index s, which consists in a 1x1 convolution learnt only for that subject with no activation. Then, we apply five convolutional blocks made of three convolutions. The first two use residual skip connection and increasing dilation, followed by a BatchNorm layer and a GELU activation. The third convolution is not residual, and uses a GLU activation (which halves the number of channels) and no normalization. Finally, we apply two 1x1 convolutions with a GELU in between.

Figure 3 :

 3 Figure 3: Segment-level decoding. A. Probability distribution of the decoded rank for each segment (lower is better) for each dataset. The gray dotted line indicates the number of segments in the test set. B. Top-10 accuracy obtained for the first 10% of subjects (y-axis) as a function of the number of subjects seen during training (x-axis). The line and confidence intervals represent the mean and standard error of the mean (SEM) across participants, respectively.

Figure 4 :

 4 Figure 4: A. Single-word prediction for the first three subjects of Gwilliams et al. [2022] listening to the sentence "Thank you for coming, Ed". Text color indicates whether the decoded word is accurate. Text size is proportional to the log-probability output by our model. B. Top-1 accuracy at the word level (as explained in Section 2.6) as a function of the number of negatives during inference. C. The R 2 summarize how word frequency, part-of-speech tag, word embedding, and contextual embedding respectively predict the accuracy of single-word and single-segment decoding (Appendix A.4). Error bars are the SEM across participants.

Figure A. 1 :

 1 Figure A.1: Top-1 accuracy as a function of vocabulary size for word presented during random word lists in Schoffelen et al. [2019]. Error bar indicate SEM across participants.

Table 1 :

 1 Datasets, noting chs. for channels and subj. for subjects.

	Train set	Test set

  . The study was approved by the Institution Review Board (IRB) ethics committee of New York University Abu Dhabi. In Broderick et al. [2018], English-speaking participants listened to extracts of "The old man and the see". The study was approved by the Ethics Committees of the School of Psychology at Trinity College Dublin, and the Health Sciences Faculty at Trinity College Dublin. In Brennan and Hale [2019], English-speaking participants listened to a chapter of "Alice in Wonderlands". See Section A.1 in the Appendix for more details. The study was approved by the University of Michigan Health Sciences and Behavioral Sciences Institutional Review Board (HUM00081060).

Table 2 :

 2 Results. Top-10 segment-level accuracy (%) for a random baseline model that predicts a uniform distribution over the segments ('random'), a convolutional network trained to predict the Mel spectrograms with a regression loss ('base'), the same model trained with a contrastive loss ('+ clip') and our model, i.e. trained to predict the features of wav2vec 2.0 with a contrastive loss ('+ wav2vec 2.0'). ± indicates the standard deviation across three random initializations of the model's weights.

	Method	Schoffelen2019 Gwilliams2022 Broderick2019 Brennan2019 Mean
	Random model	1.5 ± 0.18	2.2 ± 0.16	4.1 ± 0.09	7.6 ± 0.13	3.8
	Base model	19.3 ± 0.83	14.9 ± 0.56	1.3 ± 0.19	6.6 ± 0.53	10.5
	+ CLIP	51.5 ± 0.47	58.6 ± 0.28	13.3 ± 0.54	14.5 ± 1.33	34.5
	+ Deep Mel	57.7 ± 0.16	64.4 ± 1.67	16.5 ± 0.26	23.7 ± 0.90	40.6
	+ wav2vec 2.0	67.2 ± 0.09	72.5 ± 0.22	19.1 ± 1.15	31.4 ± 1.59	47.5
	the Mel spectrogram of each candidate segment. Similarly, the top-10 segment accuracy indicates

Table 3 :

 3 Ablations. Top-10 segment-level accuracy (%) for our model and its ablated versions. Delta refers to the average decrease in accuracy of each ablated version compared to our model.

	Arch. change	Schoffelen2019 Gwilliams2022 Broderick2019 Brennan2019 Mean	Delta
	Our model	67.2 ± 0.09	72.5 ± 0.22	19.1 ± 1.15	31.4 ± 1.59	47.5	0.00
	\wo spatial attention dropout	61.6 ± 0.14	71.2 ± 0.93	19.0 ± 1.07	30.2 ± 1.70	45.5	-2.00
	\w subj. embedding*	59.5 ± 0.24	72.0 ± 0.77	20.2 ± 1.24	30.2 ± 0.77	45.4	-2.08
	\wo GELU, \w ReLU	61.4 ± 0.67	72.2 ± 0.05	19.2 ± 0.79	26.4 ± 1.03	44.8	-2.72
	\wo spatial attention	60.0 ± 1.32	69.5 ± 0.44	17.9 ± 0.34	26.0 ± 0.61	43.3	-4.18
	\wo final convs	62.3 ± 0.07	71.0 ± 0.47	15.7 ± 1.13	22.7 ± 2.05	43.0	-4.57
	\wo initial 1x1 conv.	57.8 ± 1.12	69.6 ± 0.37	17.9 ± 0.31	26.3 ± 1.43	42.9	-4.62
	\wo skip connections	59.2 ± 0.71	68.0 ± 0.60	16.7 ± 0.29	25.7 ± 4.32	42.4	-5.13
	\wo non-residual GLU conv.	63.5 ± 0.68	73.0 ± 0.67	17.0 ± 0.03	6.70 ± 0.57	40.0	-7.50
	\wo subject-specific layer	38.3 ± 0.77	49.2 ± 0.23	11.8 ± 0.14	21.5 ± 0.59	30.2 -17.30
	\wo clamping brain signal	1.1 ± 0.26	57.6 ± 13.4	4.0 ± 0.14	11.0 ± 1.92	18.4 -29.10

https://github.com/pytorch/fairseq/blob/main/examples/wav2vec

https://pypi.org/project/wordfreq/

https://spacy.io

https://github.com/facebookresearch/laser

https://scikit-learn.org

A Appendix

A.1 Datasets

The data from [START_REF] Schoffelen | A 204-subject multimodal neuroimaging dataset to study language processing[END_REF] was provided (in part) by the Donders Institute for Brain, Cognition and Behaviour with a "RU-DI-HD-1.0" licence 2 . The data for [START_REF] Gwilliams | Meg-masc: a high-quality magneto-encephalography dataset for evaluating natural speech processing[END_REF] is available under CC0 1.0 Universal 3 . The data for [START_REF] Michael P Broderick | Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech[END_REF] is available under the same licence 4 Finally, the data from [START_REF] Brennan | Hierarchical structure guides rapid linguistic predictions during naturalistic listening[END_REF] is available under the CC BY 4.0 licence 5 All audio files were provided by the authors of each dataset.

A.2 Extra Results

In this Section, we provide extra analysis with regard to the number of MEL band used, and the clamping value.

A.2.1 Effect of clamping

Clamping is essential due to the sensitivity of electro-magnetic recordings to perturbations. As explained in Section 2.4, we first use a quantile based robust scaler such that the range [-1, 1] maps to the [0.25, 0.75] quantile range. The scaling is computed independently for each recording. Thus it is expected most values for M/EEG recordings would have a scale of the order of 1. In the following table, we provide the top-10 accuracy for the Wav2Vec2.0 based model from Table 2. We observe that extending the clamping range from 20 to 100 doesn't allow the model to extract more information, which would be expected if large scale values are outliers without useful information on the underlying brain dynamics. On the other hand, when removing entirely clamping, we observe a collapse of the performance. This is expected, as extreme outliers will impact for instance the BatchNorm mean and standard deviation estimate, and one outlier can impact the entire batch. Outliers can also cause extreme gradients and throw off the optimization process. Interestingly, on Gwilliams2022, the drop is limited, potentially due to builtin preprocessing. We now study the impact of the number of Mel bands. 120 bands is usually considered high enough for most practical use [START_REF] Young | The htk book[END_REF], which we selected for the main evaluation in Table 2. We study the impact of the numer of Mel bands for different versions of the model. For clarity, we only provide the average top-10 accuracy overall datasets. We observe a small increase of the accuracy when using more Mel bands. Interestingly, when using the Deep Mel model, 20 bands is sufficient to achieve the best performance. Does our model predict all words similarly? To address this question, we evaluate whether our model's ability to decode individual words depends on their properties, namely their zipf frequency as provided by Wordfreq 6 , as well as their part-of-speech tag and their word embedding as provided by spaCy 7 . Similarly, we evaluate whether the decoding of the entire 3 s speech segment varies with its linguistic properties, as assessed by its average word embedding as well as its sentence embedding, as computed with Laser 8 . For this, we trained a regularized ridge regression with scikit-learn 9 's default parameters to predict the softmax probability of the true word output by the decoder, given a feature. We then estimate the R 2 with a 5-split cross-validation: i.e. how well the feature predicts the probability of being selected by the decoder. The results, displayed in Figure 4-C, show that the word and segment embedding effectively explain the single-trial decoding accuracy. These results thus suggest that our decoder uses semantic and contextual information to make its predictions.

Clamping value

# Mel bands

A.5 Decoding of isolated words

To what extent can our approach be used to decode words presented in isolation? To explore this issue, we evaluated our model using a subset from [START_REF] Schoffelen | A 204-subject multimodal neuroimaging dataset to study language processing[END_REF], where subjects are presented with random word lists. We use a segment ranging from -300 ms to +500 ms relative to word onset.

The results, displayed in Supplementary