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Large Eddy Simulations (LES) of turbulent forced convection of power-law fluids and heat transfer, 
flowing in a heated horizontal rotating pipe at isoflux conditions, is carried out, with an extended 
Smagorinsky model [1], for two power law indices (n=0.75 and n=1), at various rotation rates  
(0≤N≤3) and Reynolds and Prandtl numbers Res=4000 and Prs=1. The apparent viscosity η of the non-
newtonian fluid is modeled by η=Kγn-1, where n is the flow index and K the consistency.  

The turbulent viscosity, in the non-Newtonian Smagorinsky model [1], is computed by 

νt=Csfs(fn∆)2
ijS , where ∆ is the computational filter, fs the van Driest wall damping function and fn the 

correction function for the change in viscosity. This model was implemented in a finite difference 
laboratory code, second-order accurate in space and time. The time advancement was based on a 
fractional step method. The grid size 653 was found to provide an accurate prediction of the turbulence 
statistics, in agreement with the literature data [2, 3] and to give a good compromise between the 
required CPU-time and accuracy. 

Results indicate a great dependence of the dynamic and thermal fields on the rotation rate: for the 
shear-thinning fluid, the apparent viscosity is enhanced in the buffer and log regions with increasing 
rotation rate N (Fig. 1), reducing the turbulent fluctuations.  This reduction leads to a depressed RMS 
of temperature in these regions (Fig. 2). The LES predictions for n=0.75 show a decrease of both the 
friction factor and Nusselt number when N varies from 0 to 0.5 and an increase with increasing N for 
N≥1. Contours of the temperature fluctuations at N=3 reveals an increase of the turbulent intensities in 
the core region, meaning that the high speed fluid near the wall transports heat from the wall towards 
the core region, inducing an augmentation of the Nusselt number when N increases (Fig.3).  

 

      
Figure 1: Mean viscosity profiles             Figure 2: RMS of temperature fluctuations  
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Fig. 3: Contours lines of the temperature fluctuations for n = 0.75 
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