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Programmable radio environments parametrized by reconfigurable intelligent surfaces (RISs) are emerging as a new wireless communications paradigm, but currently used channel models for the design and analysis of signal-processing algorithms cannot include fading in a manner that is faithful to the underlying wave physics. To overcome this roadblock, we introduce a physics-based end-to-end model of RIS-parametrized wireless channels with adjustable fading (coined PhysFad) which is based on a first-principles coupled-dipole formalism. PhysFad naturally incorporates the notions of space and causality, dispersion (i.e., frequency selectivity) and the intertwinement of each RIS element's phase and amplitude response, as well as any arising mutual coupling effects including long-range mesoscopic correlations. The latter are induced by reverberation and yield a highly nonlinear parametrization of wireless channels through RISs, a pivotal property which is to date completely overlooked. PhysFad offers the to-date missing tuning knob for physics-compliant adjustable fading. We thoroughly characterize PhysFad and demonstrate its capabilities for a prototypical problem of RIS-enabled over-the-air channel equalization in richscattering wireless communications. We also share a user-friendly version of our code to help the community transition towards physics-based models with adjustable fading.

I. INTRODUCTION

W IRELESS communication systems traditionally consider the wireless propagation environment to be an uncontrolled variable. Recently, a paradigm shift originated from the idea of using programmable metasurfaces as "reconfigurable intelligent surfaces" (RISs) to control the wireless environment. Precursors of this "smart radio environment" concept emerged in the early 2000s [START_REF] Sievenpiper | Two-dimensional beam steering using an electrically tunable impedance surface[END_REF], [START_REF] Holloway | Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles[END_REF] as well as roughly ten years later [START_REF] Kamoda | 60-GHz Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters[END_REF]- [START_REF] Cui | Coding metamaterials, digital metamaterials and programmable metamaterials[END_REF]. More recently, these concepts were introduced in the wireless communications community [START_REF] Liaskos | A New Wireless Communication Paradigm through Software-Controlled Metasurfaces[END_REF]- [START_REF] Basar | Wireless Communications Through Reconfigurable Intelligent Surfaces[END_REF] and are now envisioned to become a pillar of future sixth Generation (6G) wireless communications [START_REF]The Next Hyper-Connected Experience for All[END_REF].

The role of an RIS in wireless communication systems is to shape the wireless channels. For operation in free space, RISs are mainly deployed together with a wellaligned wave source as part of the transmit architecture, in order to implement beamforming and information encoding without costly phased-array hardware [START_REF] Cui | Coding metamaterials, digital metamaterials and programmable metamaterials[END_REF], [START_REF] Dai | Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results[END_REF], [START_REF] Tang | MIMO Transmission Through Reconfigurable Intelligent Surface: System Design, Analysis, and Implementation[END_REF]. For operation in quasi-free space with a blocked line-of-sight (LOS) between transmitter and receiver, RISs are mainly deployed as an alternative relaying mechanism [START_REF] Huang | Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication[END_REF], [START_REF] Tang | Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement[END_REF]- [START_REF] Renzo | Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison[END_REF]. In rich-scattering environments [START_REF]Reconfigurable Intelligent Surfaces for Rich Scattering Wireless Communications: Recent Experiments, Challenges, and Opportunities[END_REF], where multiple scattering yields a seemingly random superposition of reflected waves with all possible angles of arrival and polarizations, RISs are used to purposefully perturb the "disorder" to create a monochromatic [START_REF] Kaina | Shaping complex microwave fields in reverberating media with binary tunable metasurfaces[END_REF], [START_REF] Dupré | Wave-Field Shaping in Cavities: Waves Trapped in a Box with Controllable Boundaries[END_REF] or time-coherent polychromatic [START_REF] Del Hougne | Spatiotemporal Wave Front Shaping in a Microwave Cavity[END_REF], [START_REF] Imani | Metasurface-Programmable Wireless Network-on-Chip[END_REF] focus, for signal-to-noise (SNR) enhancement or over-theair equalization, respectively, as well as to optimize the rank of multiple-input multiple-output (MIMO) channels [START_REF] Del Hougne | Optimally diverse communication channels in disordered environments with tuned randomness[END_REF]. Besides these use cases in "active" communication, RISs are also used for encoding information into existing ambient waves in "passive" backscatter communication [START_REF] Zhao | Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[END_REF], [START_REF] Imani | Perfect Absorption in a Disordered Medium with Programmable Meta-Atom Inclusions[END_REF].

The successful deployment of RISs largely depends on the development of signal-processing tools [START_REF] Björnson | Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications[END_REF]. In the development of such tools, it is of uttermost importance to ensure that the underlying channel models are compatible with the experimental reality; otherwise, it may turn out later that the developed algorithms do not function in real life, or do not perform as well as expected. This gives rise to the need for end-to-end channel models that faithfully capture the wave physics involved in programmable wireless environments parametrized by RISs. Such models begin to emerge for the operation of RISs in free space [START_REF] Tang | Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement[END_REF], [START_REF] Zhao | Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[END_REF], [START_REF] Danufane | On the Path-Loss of Reconfigurable Intelligent Surfaces: An Approach Based on Green's Theorem Applied to Vector Fields[END_REF]- [START_REF] Abeywickrama | Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization[END_REF] (see Sec. II-A for details). However, free space is a very simple propagation environment without any of the complicated fading effects often encountered in reality. The intricacies of rich scattering lie mainly in the fact that any given reverberating ray encounters multiple RIS elements on its trajectory from transmitter to receiver, resulting in a highly nonlinear RIS-parametrization of rich-scattering wireless channels. In the sub-6 GHz regime, even office rooms give rise to substantial reverberation [START_REF] Kaina | Shaping complex microwave fields in reverberating media with binary tunable metasurfaces[END_REF], [START_REF] Del Hougne | Optimally diverse communication channels in disordered environments with tuned randomness[END_REF]; this rich scattering results in multipath wireless channels clearly beyond the free-space approximation. Although reverberation is weaker at higher millimeter-wave frequencies due to ACCEPTED MANUSCRIPT / CLEAN COPY stronger absorption by walls, many deployment scenarios for RIS-assisted wireless communication involve operation inside metallic scattering enclosures (e.g., vessels, trains, and planes) for which the free-space approximation is unsuitable even for millimeter waves. Thus, the benefits of RIS-parametrized wireless channels cannot be fully explored and reaped based on free-space models. At the same time, conventional models of fading channels are inherently of a statistical nature, and thus incompatible with the deterministic control that the RIS implements as part of the scattering environment (see Sec. II-B for details). An end-to-end channel model that faithfully emulates wave propagation in RIS-parametrized environments with adjustable fading is to date missing, let alone openly accessible to the community.

In this work, we fill the above-identified gap by developing an end-to-end channel model for RIS-empowered wireless communications with adjustable fading that fully complies with wave physics. We coin our model PhysFad and share it as an open-source software. PhysFad enables the community to explore the potential of RIS-parameterization of wireless channels beyond the simple free-space case. In a first use case, the input parameters of PhysFad can be chosen to represent generic wave scattering problems to output physics-compliant channel realizations that replace those originating from conventional random-matrix approaches. PhysFad's channel statistics can obey well-known fading models (e.g., Rician fading, see Sec. III-F for details) but, unlike statistical models, the channels will correctly include RIS parametrization, frequency selectivity, causality, and mesoscopic correlations [START_REF] Hsu | Correlation-enhanced control of wave focusing in disordered media[END_REF]. In a second use case, the input parameters of PhysFad can be judiciously chosen to study specific scenarios where specific antennas characteristics, RIS designs, or scattering environments properties (e.g., geometry, reflectivity, and absorption) must be captured. The generality of PhysFad implies that it can also readily be leveraged to model "traditional" non-programmable wireless communications channels without RISs, as well as backscattercommunication settings.

The paper is structured as follows: In Sec. II, we succinctly review the state-of-the-art on channel modeling. In Sec. III, we introduce PhysFad's channel model. We begin by introducing the underlying coupled-dipole formalism (Sec. III-A) and explain how it can model the basic entities in wireless communications, i.e., transceivers (Sec. III-B), the wireless environment (Sec. III-C), and RISs (Sec. III-D). We combine these elements into an end-to-end channel matrix formalism (Sec. III-E) and illustrate the implementation of adjustable fading (Sec. III-F). We provide a succinct algorithmic summary for PhysFad in Sec. III-G. In Sec. IV, we demonstrate PhysFad's time-domain capabilities. In Sec. V, we present a case study on RIS-enabled over-the-air channel equalization which showcases PhysFad's abilities: i) to include the nonlinear RIS parametrization; ii) to include channel fading; and iii) to yield causal time-domain responses. Finally, we discuss PhysFad's open-source code availability (Sec. VI) and provide concluding remarks (Sec. VII).

II. STATE-OF-THE-ART AND OUR CONTRIBUTION

A channel model is a mathematical description of the relationship between the transmitted signal and the observation at the receiver side; a channel simulator is a software that exactly evaluates the channels in a specific scenario without seeking a mathematical description. Full-wave simulations or ray tracing can constitute very accurate channel simulators if enough care is taken in representing the specific propagation environment in the simulator. However, channel simulations, especially full-wave simulations, are often computationally expensive when targeting complex wireless scenarios, and do not offer mathematical insight into the channels.

A wide variety of channel models (e.g., Rayleigh, Rice, Weibull, and Nakagami-m) are used to describe fading wireless environments through statistical approaches [START_REF] Simon | Digital Communication over Fading Channels[END_REF]. However, given the advent of "smart radio environments," it becomes crucial to accurately include the deterministic RIS-based parametrization of the wireless environment in the channel models. Clearly, such deterministic control is not compatible with the statistical philosophy of traditional channel models. Moreover, given the complexity of wave physics and its underlying principles, including the longrange mesoscopic correlations [START_REF] Hsu | Correlation-enhanced control of wave focusing in disordered media[END_REF] that are a major reason for the nonlinearity of the RIS-parametrization of richscattering wireless channels, causality (a system's output cannot temporally precede its input), the notion of space (i.e., the spatial location of the involved entities), dispersion (i.e., frequency selectivity), the intertwinement of an RIS element's phase and amplitude response, and energy conservation, it is tremendously difficult to formulate accurate channel models for deterministic RIS-based control of wireless fading channels.

Given the above-listed challenges, RIS-parametrized wireless channels have to date mainly been studied in free space without fading; we survey the three leading free-space approaches in Sec. II-A. Next, we survey attempts at marrying together the statistical nature of random-matrix approaches to fading and the deterministic nature of RIS-controlled wireless channels in Sec. II-B. We highlight in what aspects such ad hoc modifications of random-matrix approaches are incompatible with wave physics. Then, we contextualize the coupled-dipole formalism on which PhysFad builds in Sec. II-C.

A. Free Space RIS-Parametrized Channel Models 1) Discrete Array of Mutually Independent Reflectors:

The simplest and most common model discretizes the RIS into elements with a fixed reflection coefficient that does not depend on the configuration of neighboring RIS elements [START_REF] Özdogan | Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling[END_REF]- [START_REF] Najafi | Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces[END_REF]. Dispersion (frequency-selectivity) and the influence of the angle of incidence are usually neglected. The reflection coefficients for different states of the RIS elements are often assumed to be arbitrarily tunable or to be ±1, but their values can also be determined from equivalent circuit models [START_REF] Abeywickrama | Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization[END_REF], [START_REF] Li | Intelligent Reflecting Surface Enhanced Wideband MIMO-OFDM Communications: From Practical Model to Reflection Optimization[END_REF], full-wave simulations, or experiments. For RISs with sub-wavelength elements, applying such a model ACCEPTED MANUSCRIPT / CLEAN COPY typically requires grouping multiple RIS elements into macropixels. The applicability of such simple models has been confirmed with experimental prototypes [START_REF] Tang | Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement[END_REF], [START_REF] Zhao | Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[END_REF]. Interelement mutual coupling within this modeling framework is hence not always significant but can be accounted for as in Ref. [START_REF] Williams | A Communication Model for Large Intelligent Surfaces[END_REF].

2) Inhomogeneous Surface-Impedance Sheet: Assuming the RIS is a homogenizable metasurface (i.e., sub-wavelength unit cell dimensions and spacing), in free space the RIS can be modeled macroscopically in terms of a continuous surface impedance [START_REF] Danufane | On the Path-Loss of Reconfigurable Intelligent Surfaces: An Approach Based on Green's Theorem Applied to Vector Fields[END_REF], [START_REF] Renzo | Communication Models for Reconfigurable Intelligent Surfaces: From Surface Electromagnetics to Wireless Networks Optimization[END_REF].

3) Mutually Coupled Impedance-Modulated Antennas: Each RIS element can be interpreted as an impedancemodulated backscatter antenna. Then, following earlier works about mutual coupling between antennas [START_REF] Ivrlač | Toward a Circuit Theory of Communication[END_REF], [START_REF]Precoding for multiuser MIMO systems with single-fed parasitic antenna arrays[END_REF], the mutual coupling between transceiving antennas and all RIS elements can be rigorously formulated and related to the end-to-end channel matrix [START_REF] Gradoni | End-to-End Mutual Coupling Aware Communication Model for Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances[END_REF].

B. Ad Hoc Modified Statistical Approaches

The universality of random-matrix based models of fading channels originates from the fact that they require very little to no information about the wireless system that is being modeled. In other words, they are agnostic to system-specific features; this property simplifies design and analysis, yet it becomes problematic once deterministic effects, such as a specific RIS configuration, are supposed to be taken into account. A representative example is the Rayleigh fading model, which has been extensively studied from a wave-physics perspective. Specifically, "universal" features of wave-chaotic fields inside complex scattering enclosures have been described as the superposition of a large number of plane waves with random phases, amplitudes, and directions [START_REF] Stöckmann | Quantum Chaos: An Introduction[END_REF]- [START_REF] Gradoni | Predicting the statistics of wave transport through chaotic cavities by the random coupling model: A review and recent progress[END_REF]. Given the importance of nonuniversal deterministic effects, ad hoc modifications of random-matrix approaches were explored in the frequency domain to include some deterministic features such as direct paths [START_REF] Baranger | Short paths and information theory in quantum chaotic scattering: transport through quantum dots[END_REF]- [START_REF] Del Hougne | Implementing nonuniversal features with a random matrix theory approach: Application to space-to-configuration multiplexing[END_REF]. Corresponding time-domain results are still under development [START_REF] Ma | Predicting the Time-domain Wave Properties in Chaotic Reverberating Environments[END_REF]. Alternatively, geometry-based stochastic channel models, which statistically describe the explicit locations of scatterers, were proposed and adopted by popular channel simulators such as COST 2100 [START_REF] Liu | The COST 2100 MIMO channel model[END_REF] and QuaDRiGa [START_REF] Jaeckel | QuaDRiGa: A 3-D Multi-Cell Channel Model With Time Evolution for Enabling Virtual Field Trials[END_REF].

It remains an open challenge how to incorporate the deterministic features of a specific RIS configuration in a random-matrix framework. The use of a series of random RIS configurations is compatible with the "universality" of random-matrix models [START_REF] Del Hougne | Implementing nonuniversal features with a random matrix theory approach: Application to space-to-configuration multiplexing[END_REF], however, the deterministic programming of the scattering environment with optimized RIS configurations is not. Currently, the common strategy is to formulate the end-to-end channel matrix as H = H RX-RIS Φ RIS H RIS-TX , where H RX-RIS and H RIS-TX are random matrices emulating fading (e.g., Rayleigh) between the multi-antenna transceivers and the RIS, and Φ RIS contains the reflection coefficients of the RIS elements [START_REF] Tahir | Analysis of Uplink IRS-Assisted NOMA Under Nakagami-m Fading via Moments Matching[END_REF]- [START_REF] Sun | Channel Eigenvalues and Effective Degrees of Freedom of Reconfigurable Intelligent Surfaces[END_REF]. Such formulations represent a one-way cascade of multiple scattering events, followed by one interaction with the RIS and further multiple scattering events. However, in general, the RIS is an inseparable part of the scattering environment and in the presence of strong multipath, rays typically bounce off the RIS multiple times, sabotaging any linear relationship between the RIS configuration and channel coefficients. Indeed, experiments showed that the impact of any given RIS element on the channel coefficients is in general not independent from the configuration of the other RIS elements [START_REF] Dupré | Wave-Field Shaping in Cavities: Waves Trapped in a Box with Controllable Boundaries[END_REF]. This dependence does not originate from coupling between neighboring RIS elements, but from reverberation-induced long-range correlations: a given ray typically encounters multiple, not necessarily neighboring, RIS elements during its trajectory. Common cascaded models are built upon an assumption of linearity and hence fail by construction to capture this pivotal nonlinearity of how an RIS parametrizes a rich-scattering wireless channel. Yet this reverberation is a fundamental property of non-trivial scattering media that can be harnessed as a virtue: for instance, recent experiments demonstrated reverberation-assisted deeply sub-wavelength localization using an RIS and a single-antenna receiver [START_REF] Del Hougne | Deeply Subwavelength Localization with Reverberation-Coded Aperture[END_REF]. A linear approximation based on a single interaction with the RIS and the absence of long-range mesoscopic correlations approximately holds only in the high-attenuation regime according to experimental evidence [START_REF] Kaina | Shaping complex microwave fields in reverberating media with binary tunable metasurfaces[END_REF], [START_REF] Del Hougne | Intensity-only measurement of partially uncontrollable transmission matrix: demonstration with wave-field shaping in a microwave cavity[END_REF]. However, the use of random matrices (H RX-RIS and H RIS-TX ) which lack any notion of space is always incompatible with causality, which is a particularly pressing problem when working in the time domain (see Secs. IV and V).

C. Channel Modeling via the Coupled-Dipole Formalism

In this paper, we introduce PhysFad, a rigorous physicsbased end-to-end channel model for RIS-parametrized wireless environments with adjustable fading. The purpose of PhysFad is not to simulate a specific wireless setting, but to model different types of RIS-parametrized fading channels while respecting all aspects of wave physics. Because PhysFad is derived from first principles, it naturally complies with the wave-physical reality in both frequency and time domains. PhysFad is built upon an exact analytical formulation. The underlying coupled-dipole formalism is conceptually related to frameworks of mutually coupled antennas [START_REF] Gradoni | End-to-End Mutual Coupling Aware Communication Model for Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances[END_REF], [START_REF] Ivrlač | Toward a Circuit Theory of Communication[END_REF], [START_REF]Precoding for multiuser MIMO systems with single-fed parasitic antenna arrays[END_REF]. PhysFad's approach of decomposing the surfaces of the scattering environment into a discrete collection of dipoles is quite common in electromagnetism [START_REF] Draine | Discrete-Dipole Approximation For Scattering Calculations[END_REF]. For instance, the equivalent surface current distribution of antennas is often modeled as collection of discrete dipoles [START_REF] Balanis | Advanced Engineering Electromagnetics[END_REF], which is closely related to the method of moments [START_REF] Harrington | Field Computation by Moment Methods[END_REF] and also resembles time-domain finite-element boundary integrals [START_REF] Jiao | A fast time-domain finite element-boundary integral method for electromagnetic analysis[END_REF]. The coupled-dipole formalism has been used for decades to model light scattering [START_REF] Purcell | Scattering and absorption of light by nonspherical dielectric grains[END_REF]- [START_REF] Vries | Point scatterers for classical waves[END_REF], and also for years in the metamaterials community [START_REF] Bowen | Using a discrete dipole approximation to predict complete scattering of complicated metamaterials[END_REF]- [START_REF] Yoo | Analytic Model of a Coax-Fed Planar Cavity-Backed Metasurface Antenna for Pattern Synthesis[END_REF]. Recently, the coupleddipole formalism was employed to model slow and fast fading in rich scattering environments without RISs in Ref. [START_REF] Del Hougne | Deeply Subwavelength Localization with Reverberation-Coded Aperture[END_REF] and Ref. [START_REF] Del Hougne | Robust position sensing with wave fingerprints in dynamic complex propagation environments[END_REF], respectively.

III. THE PHYSFAD CHANNEL MODEL

In this section, we introduce the PhysFad channel model, which employs a generic scalar 2D coupled-dipole formalism ACCEPTED MANUSCRIPT / CLEAN COPY whose essential aspects are described in Sec. III-A. PhysFad describes each of the three entities affecting the wireless channels, namely the transceiving antennas, the scattering environment, and the programmable RIS elements, as a dipole or a collection of dipoles with specific properties, as presented in Secs. III-B-III-D. These components are combined into a channel model in terms of the end-to-end channel matrix in Sec. III-E, whose fading level can be adjusted as shown in Sec. III-F. The overall channel model is summarized in Sec. III-G.

We develop PhysFad based on the 2D coupled-dipole formalism; future work can extend our formalism to a dyadic 3D version and determine the parameters such that they describe a specific type of a transceiver antenna, a specific RIS, and a specific wireless environment. Specific devices can be modeled via the collective response of a collection of dipoles with suitable parameters [START_REF] Bertrand | Global polarizability matrix method for efficient modeling of light scattering by dense ensembles of non-spherical particles in stratified media[END_REF] and/or by including multi-pole terms [START_REF] Lemaire | Coupled-multipole formulation for the treatment of electromagnetic scattering by a small dielectric particle of arbitrary shape[END_REF]. We leave such developments for future work; we envision a public library of dipole collections that are preoptimized to mimic the scattering properties (e.g., anisotropy) of common transceivers, RIS elements and scattering objects. In this paper, our goal is to describe a generic formalism that is representative of typical wireless communication scenarios. Without loss of generality, we will hence work with arbitrary units such that the central operating frequency as well as the medium's permittivity and permeability are all defined to be unity in the following.

A. Coupled-Dipole Formalism

A dipole is a system which consists of a pair of charges of equal magnitude q, but opposite sign, that are separated by some distance δ [START_REF] Novotny | Principles of Nano-Optics[END_REF]. Working in 2D, we consider dipoles in the x -y plane whose dipole moments are oriented along the vertical z axis. For concreteness, picture our 2D dipoles as vertical vias inside a parallel-plate waveguide of height δ which should be less than half a wavelength [START_REF] Pulido-Mancera | Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface[END_REF]. The ability of the coupled-dipole formalism to faithfully describe wave propagation in this setting has been verified in multiple full-wave simulations and experiments (see, for example, Refs. [START_REF] Imani | Analytical modeling of printed metasurface cavities for computational imaging[END_REF], [START_REF] Pulido-Mancera | Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface[END_REF], [START_REF] Yoo | Analytic Model of a Coax-Fed Planar Cavity-Backed Metasurface Antenna for Pattern Synthesis[END_REF]). Equivalently, by the image theorem, we can think of infinitely long vias in absence of the waveguide [START_REF] Pulido-Mancera | Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface[END_REF]. The dipole moment p(f ) = qδ = I ȷ(2πf ) δ quantifies the dipole's polarity, where ȷ ≜ √ -1 and I and f denote current and frequency, respectively. The polarizability α quantifies the dipole's tendency to acquire a dipole moment when an electric field is applied. The dipole moment p i (f ) of the ith dipole is related to the local electric field at the dipole's position r i via the dipole's frequency-dependent polarizability α i (f ):

p i (f ) = α i (f )E loc (r i , f ). (1) 
We use the following Lorentzian model for the polarizability [START_REF] Novotny | Principles of Nano-Optics[END_REF]:

α i (f ) = χ 2 i 4π 2 f 2 res,i -4π 2 f 2 + ȷ(γ R i + 2πf Γ L i ) , (2) 
where the charge term χ 2 i has dimensions of the square of a charge over the charge's mass and acts like an amplitude 

q C = A • s Dipole Moment p C • m = A • s • m Electric Field E V • m -1 = A -1 • s -3 • kg • m Polarizability α C • V -1 • m 2 = A 2 • s 4 • kg -1 Charge Term χ 2 C 2 • kg -1 = A 2 • s 2 • kg -1 Resonance Frequency fres s -1 Radiation Damping γ R s -2 Absorptive Damping Term Γ L s -1 Free Space Green's Function G C -1 • V • m -2 = A -2 • s -4 • kg Wavenumber k m -1 Permittivity ϵ F • m -1 = A 2 • s 4 • kg -1 • m -3 Dipole Size δ m
term of α i (f ), f res is the resonance frequency, γ R i denotes inevitable radiation damping, and Γ i ≥ 0 is the absorptive damping term. Energy conservation requires Im(α

-1 (f )) ≥ γ R i χ 2 i = k 2 4ϵδ [79]
, [START_REF] Strickland | Dynamic polarizability tensor for circular cylinders[END_REF], where ϵ denotes the permittivity and k is the wavenumber.

The local field E loc at the ith dipole is the superposition of the external field E ext exciting the system and the fields radiated by the other dipoles:

E loc (r i , f ) = E ext (r i , f ) + j̸ =i G ij (r i , r j , f ) p j (f ). (3) 
In Eq. ( 3), the contribution of p j to E loc (r i , f ) is weighted by

G ij (r i , r j , f ) = -ȷ k 2 4ϵδ H (2) 0 (k |r i -r j |) (4) 
which represents the 2D free-space Green's function between the positions r i and r j with H

(2) 0 (•) denoting a Hankel function of the second kind [START_REF] Harrington | Time-Harmonic Electromagnetic Fields[END_REF]. 1 Substituting Eq. ( 1) into Eq. ( 3), we obtain

α -1 i (f )p i (f ) - j̸ =i G ij (r i , r j , f ) p j (f ) = E ext (r i , f ), (5) 
which can be solved for the dipole moments via matrix inversion at each considered frequency (see Sec. III-E). The symbols used above and their SI units are summarized in Table I.

Having recalled the well-established 2D coupled-dipole formalism, we now relate the essential parameters of each dipole (r i , f res,i , χ i , Γ L i ) to its role in the wireless communication system.

B. Modeling of Transceivers

The first ingredient are the transceivers that generate and capture the waves that carry the information. In most wireless communication systems, the utilized antennas are resonant within the operated frequency band. A convenient example is a half-wave dipole made up of thin wires which is naturally well-described by a dipole resonant at the central operating frequency. Crucial antenna properties, such as central operating frequency and bandwidth, can be adjusted via f res,i , χ i , and Γ L i as shown in Fig. 1. Non-resonant antenna properties that are essentially flat within the considered frequency band can be obtained by choosing f res,i ≫ 1. In order to act as transmitter, we impose a desired non-zero external electric field at the transmitting dipole's location (see also Sec. III-E). The external field is zero everywhere except at the transmitting dipoles' locations.

The above discussed options model a "field-invasive" transceiver that inevitably scatters waves. Although less common, the 2D coupled-dipole formalism can also accommodate non-scattering transceivers. A non-scattering transmitter can be described without associated dipole simply through an external field. For instance, a non-invasive point source at location r t results in an external field E ext (r i , f ) = E0 α0 G it (r i , r t , f ), where E0 α0 describes how strongly the source emits. A non-invasive receiver at location r r is similarly modeled without dipole simply by evaluating the local electric field at r r using Eq. (3).

C. Modeling of the Scattering Environment

Having covered the transceivers, we now turn our attention to the wireless environment (excluding the RIS which is covered in the next subsection). For free-space scenarios, the scattering environment is trivial, as in most papers on RIS-parametrized channel modeling (Sec. II-A). But wireless communication is often concerned with non-trivial dynamic scattering environments that give rise to fading. To fully explore and reap the potential of RIS-parameterization in wireless communication, the ability to model fading in a physically justified and adjustable manner is thus crucial. This subsection gives a brief overview on how to use the coupleddipole formalism to introduce a scattering environment. We provide a specific example of implementation and characterization of adjustable Rician fading in Sec. III-F.

The first challenge is hence to introduce a scattering environment. Wave propagation in a static scattering environment yields multipath links that are at the origin of slow fading. As noted above, we decompose scattering surfaces into discrete collections of dipoles. For instance, in Refs. [START_REF] Del Hougne | Deeply Subwavelength Localization with Reverberation-Coded Aperture[END_REF], [START_REF] Del Hougne | Robust position sensing with wave fingerprints in dynamic complex propagation environments[END_REF] this technique was used to represent electrically large metallic enclosures which are of direct relevance to wireless communication inside vessels, planes, trains, or busses. These metallic enclosures were modeled as a dense fence of dipoles whose resonance frequency lies well above the considered frequency band. The latter guarantees that the properties of the enclosure are roughly the same at all considered frequencies. The fence density as well as the fence dipole parameters allow one to adjust the amount of reflection and absorption by the fence. Similarly, other complex propagation environments such as a outdoor settings with a multitude of reflecting objects surrounding the transceivers can be implemented. Illustrative examples of different classes of scattering environments are shown in Fig. 2, revealing fundamental differences between trivial wave propagation in free space and rich scattering inside enclosures or collections of obstacles. The spatial field distribution in Fig. 2d is known as speckle pattern and arises from the interference of countless waves reflected off the enclosure's walls. One can also include resonant scatterers in the wireless environment by utilizing dipoles whose resonance frequencies are chosen to lie within the operating band. The latter is the basis of our RIS model (Sec. III-D).

The second challenge is to add dynamic effects such that the scattering environment changes rapidly (corresponding to a short channel coherence time), giving rise to fast fading. This can be conveniently achieved by evaluating the channel (see Sec. III-E) for multiple variations of one or multiple scattering objects (see Sec. III-F). A simple example in Ref. [START_REF] Del Hougne | Robust position sensing with wave fingerprints in dynamic complex propagation environments[END_REF] involved one metallic object that rotates around its own axis and is at an arbitrary angular position at any given instant in time, emulating, e.g., a rotating fan.

D. RIS Element Modeling and Characterization

Having clarified how transceivers and the scattering environment (excluding RISs) can be incorporated into the coupled-dipole formalism, we now focus on RISs. An RIS is an array of elements with programmable scattering properties (usually in reflection). The vast majority of RIS prototypes relies on meta-atoms with programmable resonances. For instance, the RIS element from Ref. [START_REF] Kaina | Shaping complex microwave fields in reverberating media with binary tunable metasurfaces[END_REF] uses a PIN diode whose bias voltage controls whether the meta-atom is resonant or not at the operating frequency. A physically faithful RIS model should account for: i) the intertwinment of amplitude and phase in a typical Lorentzian resonator; ii) the frequencydependence of a typical Lorentzian resonator; and iii) the coupling effects between nearby RIS elements. Multiple recent papers on "electromagnetics-compliant" RIS models have discussed how to account for some or all of these aspects in free space [START_REF] Gradoni | End-to-End Mutual Coupling Aware Communication Model for Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances[END_REF], [START_REF] Abeywickrama | Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization[END_REF], [START_REF] Li | Intelligent Reflecting Surface Enhanced Wideband MIMO-OFDM Communications: From Practical Model to Reflection Optimization[END_REF], [START_REF] Williams | A Communication Model for Large Intelligent Surfaces[END_REF].

A physically faithful basic RIS element model consists hence of one dipole whose resonance frequency can be changed depending on the desired configuration. For a 1-bit programmable RIS, we simply switch between a resonance frequency at the center of the considered frequency band and a resonance frequency well outside the considered frequency band in order to emulate the two possible states. Multi-bit or continuous tuning of RIS elements can, of course, be implemented through a more fine-grained control of the RIS ACCEPTED MANUSCRIPT / CLEAN COPY element's resonance frequency. Our description of the RIS imposes no limitations on the spatial arrangement of the RIS elements, and can readily be applied to conformal or distributed RIS prototypes. The scattering properties of RIS elements can also be programmed mechanically as opposed to electrically; for instance, Ref. [START_REF] Liu | Flexible controls of broadband electromagnetic wavefronts with a mechanically programmable metamaterial[END_REF] experimentally presented an array of metal blocks with adjustable height. An interesting feature of this unconventional design is its broadband non-Lorentzian nature because the design is not based on a resonant phenomenon. PhysFad can accommodate such RIS designs by describing each RIS element as one (or multiple) non-resonant dipole(s) whose location(s) is (are) physically adjusted according to the desired RIS configuration.

We now characterize our basic RIS design in the conventional manner by evaluating the reflection coefficient R for various RIS configurations under normal incidence. In Fig. 3(a,b) we emulate a plane wave normally incident on an "infinitely" large 1-bit programmable RIS in which all metaatoms are in the same state (ON or OFF); then, we extract R for normal incidence by fitting the ensuing standing wave pattern. At the central operating frequency, our RIS design displays a phase difference of exactly π (Fig. 3(d)). Our results also show the expected frequency selectivity of the RIS that can be tuned, for instance, through the parameter χ RIS . We see in Fig. 3(c) that off resonance |R| = 0.70; this value increases to 0.88 if a five times denser dipole fence serves as ground plane. At resonance (at f = 1 for f RIS res = 1), |R| is slightly higher because there are essentially two barriers that prevent transmission toward the right side and we have set the absorptive damping term Γ L to zero for the RIS elements.

While we consider a planar RIS in Figs. 3(a-d), PhysFad is capable of simulating conformal and/or distributed RISs, as seen in Figs. 3(e,f). In Figs. 3(e-i) we characterize in situ a 45element 1-bit-programmable RIS whose properties are similar to the RIS from Figs. 3(a,b), but which is distributed in a conformal manner across two parts of the walls of the complex scattering enclosure from Fig. 2d. Specifically, we characterize the ability of the RIS to modulate the field, accounting for all possible angles of incidence [START_REF] Kaina | Shaping complex microwave fields in reverberating media with binary tunable metasurfaces[END_REF], [START_REF]Reconfigurable Intelligent Surfaces for Rich Scattering Wireless Communications: Recent Experiments, Challenges, and Opportunities[END_REF]. The field magnitude maps for two random RIS configurations at f = 1 are seen in Fig. 3(e,f) to differ, and this observation becomes clearer upon inspecting the magnitude of the transmission spectrum between the two transceivers as a function of frequency in Fig. 3g. The two curves differ strongly in the vicinity of f = 1 where the RIS efficiently modulates the field, but are almost identical at frequencies further away from f = 1. This observation relates once again to the frequency-selective nature of resonance-based RIS designs. The bandwidth of the considered transceivers is also clearly seen once again as a global envelope over the chaotic transmission spectrum.

To further visualize at which frequencies the transmission varies the most if random RIS configurations are applied, we superpose 100 such curves in Fig. 3h.

The in situ characterization [START_REF] Kaina | Shaping complex microwave fields in reverberating media with binary tunable metasurfaces[END_REF], [START_REF]Reconfigurable Intelligent Surfaces for Rich Scattering Wireless Communications: Recent Experiments, Challenges, and Opportunities[END_REF] consists in evaluating at each frequency the standard deviation σ of the complexvalued transmission coefficient across a series of random RIS configurations. If the RIS efficiently modulates the field at a given frequency, σ will be high. The resulting curve is plotted as thick gray line in Fig. 3i. This characterization is specific to the choice of transceiver locations. To extract more universal characteristics of the RIS, we average out this dependence by repeating the above procedure for multiple randomly chosen transceiver locations within the enclosure, and averaging over the corresponding standard deviations. The resulting curve (black line in Fig. 3i) confirms the operational bandwidth (frequency selectivity) previously obtained in Fig. 3(c,d) for normal incidence. 
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E. End-to-End Channel Modeling

We are now in a position to bring together all the ingredients of PhysFad in order to identify the end-to-end channel model. We formulate PhysFad in terms of the electric field E loc,i (r i , f ) at the ith transceiver location r i , which is directly proportional to the current I i and voltage V i across this transceiver:

I i (f ) = jωp i (f ) δ = ȷωα i (f ) δ E loc,i (r i , f ), (6a) 
V i (f ) = Z i I i (f ) = ȷωα i (f )Z i δ E loc,i (r i , f ), (6b) 
where Z i denotes the load impedance at the transceiver. We refer in the following to the input-output relation between electric fields at N R receiving antennas and N T transmitting antennas as the N R × N T complex-valued channel matrix H, because in our case of identical transceivers this is directly proportional to the usual definition as the input-output relation in terms of voltages.

Let us consider the most general MIMO scenario involving N T transmitters and N R receivers (Sec. III-B), N E dipoles that constitute the scattering environment (Sec. III-C), and N RIS dipoles that constitute the RIS (Sec. III-D). Following the coupled-dipole formalism (Sec. III-A), we note that the total number of dipoles in our system is N ≜ N T +N R +N E +N RIS , and we begin by rewriting Eq. ( 5) in matrix form:

W(f )p(f ) = E ext (f ), (7) 
where the vector p(f

) = [p 1 (f ) p 2 (f ) • • • p N (f )]
contains the dipole moments of our N dipoles at frequency f , and

E ext (f ) = [E ext,1 (f ) E ext,2 (f ) • • • E ext,N (f )
] is comprised of the corresponding external electric fields. For the sake of readability, we are now printing E ext (r n , f ) as E ext,n (f ). The ith diagonal entry of the N ×N complex-valued matrix W(f ) is the inverse polarizability α -1 i (f ) of our ith dipole (see Eq. ( 2) for the analytical expression), and the (i, j)th offdiagonal entry is -G ij (f ), i.e., the negative of the 2D freespace Green's function between the locations of the ith and jth dipoles (see Eq. ( 4) for the analytical expression).

The wave equation's linearity allows us to perform our calculations independently at each desired frequency, implying ACCEPTED MANUSCRIPT / CLEAN COPY great potential for parallelizing the evaluation of H and allowing us to henceforth drop the frequency dependence. Recall that we know W and E ext , and our goal is to compute p whose entries for the receiving dipoles must be multiplied by the corresponding inverse polarizabilities to obtain the received fields (see Eq. ( 2)). Using standard matrix-inversion techniques, we thus first invert W to evaluate p, yielding

p = W -1 E ext . (8) 
Next, we multiply both sides of Eq. ( 8) by diag([α -1 i α -1 2 . . . α -1 N ]), which is a diagonal matrix containing the inverse polarizabilities:

diag([α -1 i α -1 2 . . . α -1 N ])p = VE ext , (9) 
where we introduce

V ≜ diag([α -1 i α -1 2 . . . α -1 N ])W -1
. The end-to-end channel matrix H is now simply the N R × N T portion of the N × N matrix V that links the N T transmitting dipoles to the N R receiving dipoles. Without loss of generality, let us assume that the dipole indices are in the following order: transmitters, receivers, scattering environment, and RIS. Then,

H = V[(N T + 1) : (N T + N R ), 1 : N T ]. (10) 
An illustration for a 2×2 MIMO example is provided in Fig. 4.

Recall that the external field is zero for all but the transmitting dipoles, i.e., E ext,i = 0 ∀ i > N T . Remark 1: Being derived from first principles, PhysFad inherently complies with all aspects of wave physics and hence does not require any ad hoc corrections that are commonly used in unphysical channel models to ensure compliance with specific physical properties such as pathloss. If all dipoles constituting the scattering environment are removed, PhysFad collapses to the free-space channel model of an RIS as mutually coupled impedance-modulated antennas from Sec. II-A3 [START_REF] Gradoni | End-to-End Mutual Coupling Aware Communication Model for Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances[END_REF]. Moreover, the conventional free-space channel model of an RIS as a discrete array of mutually independent reflectors (Sec. II-A1) can be obtained from PhysFad after multiple simplifying assumptions. Considering a SISO case in free space, the received electric field is E r = i∈RIS G ri p i + G rt p t , where the last term is the LOS contribution. Assuming that the local field at the transmitter is dominated by the imposed external field and assuming negligible coupling between RIS elements,

p t ≈ α t E ext,t and p i ≈ α i G it p t , yielding E r ≈ i∈RIS G ri α i G it + G rt α t E ext,t
, where α i encodes the configuration of the ith RIS element (see Fig. 4(c)).

F. Adjustable Fading

In the previous subsections, we established PhysFad's endto-end channel model. Now, we explore in depth PhysFad's ability to implement adjustable fading. Because fading is a property of the uncontrolled part of the scattering environment (Sec. III-C), we leave the RIS aside in this section. We illustrate how the tuning of a single parameter in a PhysFad model faithfully yields any desired Rician fading statistics in a physics-compliant manner.

It is well established that complex scattering enclosures (see Fig. 2d), also known as reverberation chambers (RCs), are ideally suited to emulate a radio environment with Rician fading [START_REF] Yeh | First-principles model of time-dependent variations in transmission through a fluctuating scattering environment[END_REF], [START_REF] Holloway | On the Use of Reverberation Chambers to Simulate a Rician Radio Environment for the Testing of Wireless Devices[END_REF]- [START_REF] Lemoine | On the K-Factor Estimation for Rician Channel Simulated in Reverberation Chamber[END_REF]. In Rician environments, the Kfactor determines the relative strength of direct and scattered paths between a transmitter and a receiver. The Rayleigh environment is a special case of the Rician environment in which the direct contribution is negligible. In RC-based emulations of Rician environments, a wireless device is exposed to a statistical ensemble of fields by rotating a large irregularly shaped metallic object -the so-called "modestirrer" -inside the RC [START_REF] Yeh | First-principles model of time-dependent variations in transmission through a fluctuating scattering environment[END_REF], [START_REF] Holloway | On the Use of Reverberation Chambers to Simulate a Rician Radio Environment for the Testing of Wireless Devices[END_REF]. This mode-stirrer is easily implemented as part of the scattering environment in PhysFad [START_REF] Del Hougne | Robust position sensing with wave fingerprints in dynamic complex propagation environments[END_REF]. The K-factor is defined as [START_REF] Simon | Digital Communication over Fading Channels[END_REF] 

K(f ) = |µ(f )| 2 2 [σ(f )] 2 , (11) 
where µ(f ) is the average and σ(f ) is the standard deviation of the ensemble of complex-valued transmissions H 12 between two antennas. This definition is best understood by plotting the measured transmission values in the complex plane (see Fig. 5(d,e) for examples). Thereby, we find an approximately circular cloud of points that is centered off the origin; |µ| is the distance between the cloud's center and the origin, and σ is the cloud's radius. Hence, Eq. ( 11) compares the direct and scattered intensities. The "direct" component is often referred to as LOS, although, to be precise, we note that it represents the interference of all paths that are static, i.e., paths that are not affected by the mode-stirrer rotations [START_REF] Yeh | First-principles model of time-dependent variations in transmission through a fluctuating scattering environment[END_REF]. In many practical scenarios, the LOS path dominates the static contribution but, even with blocked LOS, the cloud is typically centered off the origin (i.e., there is a non-LOS (NLOS) static contribution).

In RC-based experiments emulating Rician environments, it is possible to finely adjust the value of K by using directive antennas and tuning their orientation, or by tuning the amount of absorption of the RC [START_REF] Yeh | First-principles model of time-dependent variations in transmission through a fluctuating scattering environment[END_REF], [START_REF] Holloway | On the Use of Reverberation Chambers to Simulate a Rician Radio Environment for the Testing of Wireless Devices[END_REF]. The former limits the applicability to directive antennas, excluding the use of omnidirectional antennas such as dipoles or small antennas. In our simulations, we can make use of a convenient tuning knob not available to the experimentalist: we can adjust the transparency of the environment via the resonance frequency f Scat.Env. res of its constitutive dipoles. If f Scat.Env. res is orders of magnitude above the operating frequency, the environment essentially does not scatter the waves and is effectively transparent, such that we are effectively dealing with free space where only the LOS component exists (i.e., K → ∞).

By sweeping across the different values of f Scat.Env. res , we can therefore conveniently adjust the K-factor via a single parameter in our PhysFad model. Our focus here is on the easy tunability of K; of course, if the goal is to only simulate the case of K → ∞ with a LOS link in free space (i.e., no fading), it is computationally more efficient to simply remove the dipoles that constitute the environment, as opposed to making them transparent. The most challenging part in sweeping all possible values of K is to implement the Rayleigh condition ACCEPTED MANUSCRIPT / CLEAN COPY 9) for the considered example, highlighting the part of V that is the sought-after end-to-end channel matrix H, see also Eq. ( 10). The external field is zero for all but the transmitting dipoles, i.e., E ext,i = 0 ∀ i > N T . c) Parameterization of W through a binary RIS configuration. The RIS configuration dictates the resonance frequencies of the dipoles (indices from l to N , see a) representing the RIS, and thereby their inverse polarizability. Ultimately, these inverse polarizabilities appear along the diagonal of W. In addition, the adjustable fading is implemented via the part of W shaded in gray: the position of the scatterers via the off-diagonal gray entries, and their "transparency" (see Sec. III-F) via the diagonal gray entries.

(i.e., K = 0) because even with a blocked LOS 2 , some other short paths that are not affected by the stirring usually persist. We tackle this challenge by using a multitude of irregularly shaped mode-stirrers, as seen in the top left inset in Fig. 5a. Of course, if the goal is to sweep through a range of K values that does not include the Rayleigh condition (K = 0), this can be implemented in a computationally more efficient manner by reducing the number of mode-stirrers and by optimizing their shape, size, and location; however, this is beyond the scope of this paper.

We summarize in Fig. 5 our results on tuning Rician fading from K < -20 dB to K > 50 dB by sweeping a single parameter: f Scat.Env. res . In Fig. 5(a), we show that as f Scat.Env. res is increased, |µ| is initially almost zero because the stirring process is very efficient and removes all static paths. As the transparency of the scattering environment begins to set in, the value of |µ| increases and then stabilizes once the scattering environment is already essentially transparent. In the same subfigure, we plot the dependence of σ on f Scat.Env. res . σ is initially constant and finite, but tends towards zero as the scattering environment's transparency sets in, and eventually only the LOS path remains significant. Consequently, the K-factor defined in Eq. ( 11) is initially constant at below -20 dB for all 12 considered channel coefficients in our 3 × 4 MIMO system. As the scattering environment's transparency sets in, K increases towards infinity. For two iconic fading settings, we plot all obtained realizations of the channel coefficient in Fig. 5(d,e). The probability density functions (PDFs) of the real and imaginary parts faithfully follow the 2 For f Scat.Env. res ≈ 1, the black dipoles in the center of the room are strongly scattering such that they block the LOS between transmitter and receiver. As the value of f Scat.Env. res gets further away from unity, this LOS block gradually becomes transparent and a LOS link becomes more and more significant.

expected Gaussian statistics. At the same time, the PDF of the magnitudes is well described through a Rician function.

In Fig. 5(c), we plot the impact of sweeping the scattering environment's transparency on the effective rank ⟨R eff (H)⟩ [START_REF] Roy | The effective rank: A measure of effective dimensionality[END_REF] of the considered 3 × 4 channel matrix H. Initially, the effective rank is high, albeit not at the maximum possible value of 3. Not reaching full rank is expected in random scattering environments; only by judiciously engineering the scattering environment with an RIS, it is possible to achieve full rank [START_REF] Del Hougne | Optimally diverse communication channels in disordered environments with tuned randomness[END_REF], [START_REF] Del Hougne | Optimal Multiplexing of Spatially Encoded Information across Custom-Tailored Configurations of a Metasurface-Tunable Chaotic Cavity[END_REF]. As the scattering environment's transparency sets in, ⟨R eff (H)⟩ decreases and eventually stabilizes very close to its minimum possible value of unity. Indeed, in free-space the channels are barely distinguishable from one another.

Remark 2: Even though the PDFs of the channel coefficient follow the desired Rician distributions in the above examples, this does not imply that the above procedure could be replaced by generating a random matrix following the same distribution. The crucial difference is that each channel realization above is physically sound, whereas a random matrix knows nothing about space, causality, mesoscopic correlations, etc. (see Sec. II-C). In particular, a common random-matrix-generated channel would violate causality and, if RISs are included, fail to capture the nonlinear nature of the RIS parametrization. Unless proven otherwise, one should assume that such unphysical properties preclude a faithful representation of real-life systems.

In future work, we intend to implement other common fading models, like Weibull and Nakagami-m [START_REF] Hashemi | The indoor radio propagation channel[END_REF], [START_REF] Nakagami | The m-Distribution -A General Formula of Intensity Distribution of Rapid Fading[END_REF], in a physically justified manner in PhysFad. Incidentally, a rich literature about statistical distributions that were experimentally measured in RCs already offers clear indications on how to implement certain instances of Weibulldistributed channels in PhysFad [START_REF] Orjubin | Statistical model of an undermoded reverberation chamber[END_REF]. 
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G. Algorithmic Summary of PhysFad

The above subsections detail the components combined by PhysFad into a channel model which translates an RISparametrized wireless environment into a physics-compliant end-to-end channel matrix representation with controllable level of fading. PhysFad represents all entities affecting the wireless communication channel as discrete dipoles. Below we summarize the steps required to generate wireless channel realizations using PhysFad:

1) Identify the desired wireless scenario by representing it as a 2D horizontal slice: a) Specify the number and location of transceiving antennas. b) Define the geometry of the scattering environment (e.g., enclosure, obstacles, etc.). c) Discretize continuous surfaces of the scattering environment by representing them as dipole fences. d) Specify the number and location of the RIS elements.

2) Fine-tune each dipole's parameters (χ, f res , Γ L ) to capture specific antenna characteristics, RIS designs, and/or environmental properties (e.g., wall reflectivity). 3) Define the available programmable states of the RIS elements (i.e., 1-bit (binary), multi-bit, or continuous) by assigning suitable options for the resonance frequency f RIS res . 4) Input the desired RIS configuration and obtain the corresponding end-to-end channel matrix using the procedure illustrated in Fig. 4. 5) To obtain multiple realizations of a fading channel: a) Define what processes cause the fading (e.g., moving scatterers). For Rician fading, define a multitude of scatterers as in Fig. 5 and choose f res for all dipoles constituting the scattering environment according to the desired K value (see Fig. 5

(b)). b) Convert this information into PhysFad input parameters

following the above steps. The computational complexity of PhysFad is dominated by the inversion of the N ×N matrix W. Standard methods from computational linear algebra can perform this matrix inversion efficiently and robustly. The evaluation of the channel matrix can be performed in parallel for different frequencies thanks to the wave equation's linearity. Care must be taken to avoid that the spatial coordinates of two dipoles accidentally coincide because the Hankel function from Eq. ( 4) is not defined for a zero argument.

PhysFad is in general easy to deploy; the specific use case determines the workload of the above-listed points. In the first use case, the goal is to produce physics-compliant realizations of channels that can replace unphysical conventional randommatrix approaches, including RIS parametrization if desired. A specific example is given for Rician fading in Fig. 5. In this example, a single parameter, f Scat.Env. res , has to be adjusted to obtain a desired value of K. In fact, the necessary value of f Scat.Env. res can readily be read off Fig. 5b. Therefore, parameter estimation is extremely easy in this use case.

In the second use case, the PhysFad model represents a specific scenario. Here, the workload will depend on the list of aspects of the specific scenario that are supposed ACCEPTED MANUSCRIPT / CLEAN COPY to be captured faithfully. We recommend to initially use a half-wavelength spacing for the dipole fence to discretize continuous scattering surfaces like walls. If the reverberation time 3 in PhysFad is lower (higher) than desired for the specific scenario, then the dipole separation in the fence should be reduced (increased). Thus, the amount of required dipoles is related not only to the physical dimensions of the environment but also to its desired characteristics. Alternatively, if the reverberation time must be reduced, the absorption parameter Γ L i of the dipoles constituting the scattering environment can be increased. To impose specific anisotropic transceiver radiation patterns or scattering responses of RIS elements, the antenna or RIS element must be described through a collection of dipoles whose individual properties are optimized so that the collective response is the desired one [START_REF] Bertrand | Global polarizability matrix method for efficient modeling of light scattering by dense ensembles of non-spherical particles in stratified media[END_REF]. We envision a public library containing preoptimized dipole collections for common antennas, RIS elements, and other scattering objects. Hence, in the second use case of PhysFad, the parameter estimation workload to meet specific requirements (e.g., in terms of radiation patterns) can be made minimal, too.

IV. TIME-DOMAIN REPRESENTATION

An important feature of PhysFad is that it naturally incorporates a notion of space and causality which is essential to work with the channel impulse response (CIR) in the time domain. Causality is a universal principle that must be satisfied in any real system: the output of a system cannot temporally precede the input. Thereby, causality is intimately linked to a notion of space that is completely absent in statistical channel models (see Sec. II-C).

PhysFad is formulated in the frequency domain, but because it inherently includes a notion of space and causality, it is sufficient to perform an inverse Fourier transform of the channel's spectrum H(f ) to obtain the corresponding physics-compliant CIR h(t). Technically, care must be taken in the choice of window function applied to H(f ) to minimize windowing artefacts like sidelobes. To compute the received time-domain signal s out (t), one can either convolute the emitted signal s in (t) with the CIR h(t), or, more efficiently, multiply the emitted signal's spectrum with the transmission spectrum H(f ) before performing the inverse Fourier transform.

We plot examples of s out (t) for three illustrative settings in Fig. 6 to demonstrate the time-domain capabilities of PhysFad. First, we consider the transmission of a Gaussian pulse between two transceivers in free space. Naively, if the pulse is emitted at time t = 0, one may expect the pulse to arrive at the receiver exactly at time t = D/c, where D is the separation between the transmitting and receiving dipoles. Specifically, the maximum of the pulse should arrive at that time, but due to the finite bandwidth the signal rises and falls before and after this time, respectively. This naive assumption is exactly verified in Fig. 6c for the case of two transceivers that are not resonant within the considered frequency interval. However, in Fig. 6b, where we consider two resonant transceivers, the pulse arrives later than "expected" (and is slightly distorted). This deviation from the naive picture is in fact due to the wellunderstood interaction of pulses with resonators that results in pulse delays (see, e.g., Ref. [START_REF] Asano | Anomalous time delays and quantum weak measurements in optical micro-resonators[END_REF]). The fact that PhysFad faithfully captures such subtleties evidences once again how deeply routed it is in wave physics. We also reconsider the rich-scattering scenarios in an enclosure and in a collection of obstacles. Therein, s out (t) is seen to be lengthy due to severe multipath. Moreover, the maximum of s out (t) is not associated with the shortest path but occurs at a later time at which many paths happen to interfere constructively. A difference in the shape of s out (t) related to the transceiver nature (resonant or not) is again apparent.

Remark 3: If the difference in arrival times of different multipath pulses is comparable to or smaller than the pulse duration, these pulses will temporally overlap and interfere. Then, a peak of s out (t) cannot be straightforwardly related to a specific path, and peaks of s out (t) slightly before t = D/c can occur, as in Fig. 6i. Such interference-induced peaks hence do not violate causality. If the pulse duration is reduced such that individual arriving pulses can be distinguished in s out (t), the first peak corresponds to the shortest path and occurs at t = D/c.

V. CASE STUDY: RIS-ENABLED OVER-THE-AIR EQUALIZATION

In this section, we present a case study on RIS-enabled overthe-air channel equalization that is ideally suited to highlight the unique capabilities of PhysFad in capturing the timedomain aspects of RIS-parametrized fading environments. Shaping the CIR in a multipath environment to make it pulselike (as if communication takes place in free space) is a form of over-the-air equalization that is relevant to scenarios with limited (de)modulation capabilities, such as in the Internet-of-Things or Wireless Networks-on-Chips (WNoCs). If one operates with simple On-Off-Keying (OOK) schemes, a lengthy CIR due to multipath directly results in inter-symbol interference, unless one reduces the symbol rate. 4 The ability to impose pulse-like CIRs is hence highly desirable for OOK in fading environments.

Rigorous demonstrations of RIS-assisted over-the-air channel equalization were reported with experiments in the 2.5 GHz regime [START_REF] Del Hougne | Spatiotemporal Wave Front Shaping in a Microwave Cavity[END_REF], and recently based on full-wave simulations in the context of WNoCs [START_REF] Imani | Metasurface-Programmable Wireless Network-on-Chip[END_REF]. However, there is also a significant timely interest in studying these aspects based on channel models [START_REF] Zhang | Spatial Equalization Before Reception: Reconfigurable Intelligent Surfaces for Multi-Path Mitigation[END_REF], [START_REF] Arslan | Over-the-air equalization with reconfigurable intelligent surfaces[END_REF]. To date, such studies emulate fading through cascaded random matrices as outlined in Sec. II-C. But random matrices are ignorant of the spatial arrangement of transceivers, implying that such models inevitably do not obey causality which is a prerequisite for studying timedomain phenomena. This would be immediately obvious if the considered CIRs were plotted in the time domain. Moreover, the common cascaded models fail to capture the nonlinear parametrization of the multipath wireless channel through the RIS.

In the following, we report a rigorous study of RISenabled over-the-air equalization based on a channel model, namely PhysFad. The study's purpose is to demonstrate how PhysFad allows us to evaluate algorithms for challenging RIS-empowered communication problems involving fading, as well as that the achieved results are in line with wave physics and previous experimental results. To start, it is important to understand that the LOS path can never be altered by the RIS, because it does not interact with the RIS. Therefore, in aiming at a pulse-like CIR, either all NLOS taps must be suppressed through destructive interferences, or one NLOS tap must be substantially enhanced through constructive interferences so that the persisting LOS and other NLOS taps become negligible. The ability of the RIS to control NLOS taps depends on: i) the amount of RIS elements (and their properties); and ii) the amount of reverberation. The former is obvious, the latter is also intuitive: the more reverberation there is, the more often any given path is likely to interact with the RIS, and hence to be controllable. Incidentally, this dwelltime-enhanced path sensitivity is the basis of the recently reported deeply sub-wavelength localization [START_REF] Del Hougne | Deeply Subwavelength Localization with Reverberation-Coded Aperture[END_REF].

We consider two qualitatively different regimes. First, we pursue the strategy of imposing one dominant NLOS channel tap inside an irregularly shaped scattering enclosure with a large amount of reverberation; second, we reduce the amount of reverberation by adding loss to the dipoles constituting the scattering environment, and explore the alternative strategy of cancelling all NLOS taps through destructive interference in this setting with a lower amount of reverberation. In both cases, we define our cost function as the ratio of signal intensity in the desired tap of the CIR to the total signal intensity:

C = t0+∆t/2 t0-∆t/2 h 2 (t)dt ∞ 0 h 2 (t)dt , (12) 
where t 0 is the peak time and ∆t is the width of the CIR tap that we desire to make the only significant tap. We use the simple iterative Algorithm 1 to optimize the RIS configuration such that it maximizes C, where PhysFad is used in each iteration to generate the CIRs needed to compute C via Eq. [START_REF]The Next Hyper-Connected Experience for All[END_REF]. To be clear, our contribution is not Algorithm 1 itself, which has already been used in Refs. [START_REF] Del Hougne | Spatiotemporal Wave Front Shaping in a Microwave Cavity[END_REF], [START_REF] Imani | Metasurface-Programmable Wireless Network-on-Chip[END_REF] Representative results from this case study are synthesized in Fig. 7. For the scenario with a high amount of reverberation, Fig. 7(a) shows that it is possible to optimize the RIS such that one NLOS tap clearly dominates all other taps (LOS and NLOS) by at least one order of magnitude. Thereby, with appropriate synchronization, it is possible to communicate via OOK modulation without inter-symbol interference, despite operating in a strongly multipath environment. Moreover, the desired received signal strength is substantially enhanced. As expected, using fewer RIS elements deteriorates the overthe-air equalization performance, as seen in Fig. 7(b). For the scenario with a lower amount of reverberation, Fig. 7(c shows that it is possible to optimize the RIS such that only the LOS tap remains significant. Moreover, we note that in most cases the optimization has not converged after N RIS iterations, which is clear evidence of correlations between the optimal configuration of different RIS elements. In other words, the channel's RIS parametrization is nonlinear. The impact of the RIS on the CIR can hence not be approximated in a linear fashion, justifying the need for the iterative trialand-error Algorithm 1. We also empirically observe that running Algorithm 1 multiple times yields different outcomes of similar quality.

VI. OPEN SOURCE REUSABLE CODE

Our goal is to encourage wireless communication practitioners to develop novel algorithms for RIS-parametrized fading channels based on channel models that are faithful to wave physics. To that end, we do not limit our paper to describing a suitable channel model, but we take active steps toward helping the wireless community to deploy PhysFad in their future work. Indeed, the works cited in Sec. II-A provide mathematical expressions related to RIS-parametrized channel models in free space without fading, but the barrier toward deployment is still high if community members have to first understand such papers in every mathematical detail and then write their own codes to implement the models. In contrast, we share in Ref. [START_REF] Del Hougne | PhysFad[END_REF] our source code to determine the end-to-end channel matrix in an exemplary rich-scattering RIS-parametrized environment. We also share our source code to generate physics-compliant realization of Rician channels (Fig. 5). Our open-code approach endows the community with an easy-to-use tool to integrate PhysFad into algorithmic design processes without a need for extensive coding.

VII. CONCLUSIONS AND OUTLOOK

PhysFad provides a physically justified channel model for RIS-parametrized wireless environments with adjustable fading. In this paper, we have detailed its principles and highlighted some of its features related to adjustable fading, the nonlinearity of multipath channels' RIS parametrization, causality and the time-domain representation. Moreover, we provided a prototypical case-study demonstration of using PhysFad to evaluate a signal-processing technique in the context of RIS-enabled over-the-air channel equalization. We openly share associated codes with the wireless community to facilitate the use of PhysFad.

Looking forward, on the one hand, we envision that PhysFad in its current form will serve as basis for many RIS-related generic algorithmic explorations [START_REF] Saigre-Tardif | Self-Adaptive RISs Beyond Free Space: Convergence of Localization, Sensing and Communication under Rich-Scattering Conditions[END_REF]. On the other hand, we expect that i) PhysFad can be upgraded to a dyadic 3D version, and that ii) detailed models, based on the coupled-dipole formalism, of specific antenna and RIS designs will emerge, enabling physics-compliant simulations of specific wireless systems. PhysFad can also be deployed to study backscatter communications settings because impedance-modulated antennas like RFID tags are closely related to the RIS concept [START_REF] Zhao | Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[END_REF], [START_REF] Imani | Perfect Absorption in a Disordered Medium with Programmable Meta-Atom Inclusions[END_REF], [START_REF] Vardakis | Intelligently Wireless Batteryless RF-Powered Reconfigurable Surface[END_REF]. Beyond wireless communications, PhysFad will serve in the areas of mesoscopic wave physics and (extreme) wave scattering. VIII. ACKNOWLEDGMENT P.d.H. thanks Steven M. Anlage, Thomas M. Antonsen, Matthieu Davy, Romain Fleury, Edward Ott, and Zhen Peng for stimulating discussions.

Fig. 1 .

 1 Fig. 1. Impact of parameters Γ L i , χ i , and fres i on magnitude and phase of the Lorentzian polarizability α i (f ) defined in Eq. (2).

Fig. 2 .

 2 Fig. 2. Illustration of the impact of various scattering environments on the transmission spectrum's magnitude |H 12 | (top row) and spatial field distribution (bottom row, field magnitude plotted at the central frequency indicated by a red dot in the top row). The utilized parameters are {Γ L = 0, χ = 0.5, fres = 1} for the transceiver dipoles, and {Γ L = 0, χ = 50, fres = 10} for the fence dipoles. The spatial fields are evaluated using Eq. (3). The dipole locations are indicated through white dots on top of the spatial field maps. The three considered scattering environments are: free space (left); metallic electrically-large irregularly shaped enclosure (middle); disordered collection of metallic obstacles in free space, e.g., an outdoor environment (right).

Fig. 3 .

 3 Fig.3. Characterization of a 1-bit programmable RIS under normal plane wave incidence (left) and in situ (right). For the former, the setup involves a ground plane (white dipole fence with {Γ L = 0, χ = 50, fres = 10} and dipole separation dw = 0.25) and a series of programmable RIS elements (green/cyan-colored dipoles with {Γ L = 0, χ = 0.2, fres ∈ {1, 5}}, separation dw = 0.25, and ∆ = 0.25 in front of the ground plane). The 1-bit programmable RIS elements are either OFF resonance (f RIS res = 5, green) or ON resonance (f RIS res = 1, cyan). For f = 1, field magnitude plots for the two cases in a and b reveal standing wave patterns which result from the superposition of a plane wave travelling to the right and a reflected plane wave travelling to the left. We extract from these standing wave pattern the reflection coefficient R under normal incidence at each frequency. Magnitude and phase of R are plotted as a function of frequency in c and d, respectively. The phase difference at f = 1 reaches exactly the desired value of π. Moreover, in c and d we also display the reflection coefficient of the ON state for RIS elements with χ RIS = 0.1 (dashed dark blue). For the in situ characterization, we consider a distributed conformal 45-element 1-bit-programmable RIS inside the complex scattering enclosure from Fig.2d. Field magnitude maps for two random RIS configurations (ON [OFF] elements shown in green [cyan]) at f = 1 are displayed in e and f. The magnitude of the transmission spectrum H 12 between the two transceivers for the two cases is shown in g. The same quantity for 100 random RIS configurations is shown in h. The standard deviation σ of the complex-valued transmission spectra H 12 across random RIS configurations is shown as gray thick line in i. Other gray thin lines show σ for different randomly chosen transceiver locations. The average over these realizations of transceiver locations is shown as black thick line in i.

Fig. 4 .

 4 Fig. 4. Illustration of the link between the coupled-dipole formalism and the RIS-parametrized end-to-end channel matrix for a 2 × 2 MIMO example. a) Order of dipole indexing (without loss of generality), where k = N T + N R + N E and l = k + 1. b) Illustration of Eq. (9) for the considered example, highlighting the part of V that is the sought-after end-to-end channel matrix H, see also Eq. (10). The external field is zero for all but the transmitting dipoles, i.e., E ext,i = 0 ∀ i > N T . c) Parameterization of W through a binary RIS configuration. The RIS configuration dictates the resonance frequencies of the dipoles (indices from l to N , see a) representing the RIS, and thereby their inverse polarizability. Ultimately, these inverse polarizabilities appear along the diagonal of W. In addition, the adjustable fading is implemented via the part of W shaded in gray: the position of the scatterers via the off-diagonal gray entries, and their "transparency" (see Sec. III-F) via the diagonal gray entries.

Fig. 5 .

 5 Fig. 5. Illustration of adjustable Rician fading in a simple PhysFad model. The scattering environment consists of the fence (black), the dipole line in the center (black), and a disordered collection of dipoles (colored). The location of the black dipoles is always the same, whereas the location of the colored dipoles is randomly altered in each realization; the configuration of the dynamic dipoles is shown in three different colors for the first three realizations. The presented statistics are based on 5 × 10 4 realizations. We show the dependence of |µ| and σ (a), K (b), and ⟨R eff (H)⟩ (c) on the resonance frequency of the dipoles constituting the scattering environment. For a selected channel and two K-factor values, we show in (d,e) the cloud of channel coefficients in the complex plane (the green cross indicates the average). Probability density functions of the real and imaginary parts and the magnitude are shown with bars and fitted with Gaussian (real, imaginary) or Rician (magnitude) functions.

Fig. 6 .

 6 Fig. 6. Time-domain analysis of the settings considered in Fig. 2. Upon transmission of a Gaussian pulse s in (t) (top row), we obtain the received signal sout(t) for the cases of resonant (middle row) and non-resonant (bottom row) transceivers. The vertical green line indicates the instant in time t = D/c, where D is the transceiver separation. The horizontal axes are different in each column of the figure but the duration of the emitted pulses and the location of the vertical green line are the same in all cases.
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Fig. 7 .

 7 Fig. 7. Over-the-air channel equalization enabled by RISs in PhysFad based on Algorithm 1. We show four representative scenarios for environments with high (a,b) and low (c,d) amounts of reverberation, in each case for N RIS = 114 (a,c) and N RIS = 57 (b,d). For each example, we show the CIR intensities corresponding to 50 random RIS configurations (color-coded) and to the optimized RIS configuration (black), as well as the standard deviation over the former (bottom). The inset shows the considered setup including the optimized RIS configuration (filled symbol represent RIS elements configured to be resonant at the operating frequency). Additionally, an inset indicating the optimization dynamics is provided: the blue line and area represent average and standard deviation over the 50 random RIS configurations, and the red line the subsequent iterative optimization.

Algorithm 1 :

 1 Binary RIS Optimization for Over-the-Air Equalization

TABLE I SUMMARY

 I OF KEY VARIABLES, INDICATING THE UTILIZED SYMBOLS AND CORRESPONDING SI UNITS.

	Variable	Symbol	SI Units
	Charge		

  , but its implementation with our physically justified channel model, namely PhysFad. Algorithm 1 chooses the best out of 50 random RIS configurations and then tests element by element if flipping its state increases C. Multiple loops over all RIS elements are needed because the optimal configuration of a given RIS element depends on the configuration of all other RIS elements; this nonlinear RIS parametrization of the CIR can originate from various types of short-range and long-range correlations. To be sure that the algorithm converges to a local optimum, we perform 5N RIS iterations in Algorithm 1. For each setting, we study a distributed conformal binary RIS with different numbers of elements.

1

  Evaluate {C i } for 50 random RIS configurations {C 0 i }. 2 Select configuration C curr corresponding to C curr = max i ({C i }). 3 for i = 1, 2, . . . , 5N RIS do 4 Define C temp as C curr but with configuration of mod(i, N RIS )th RIS element flipped. Redefine C curr as C temp and C curr as C temp . Optimized RIS configuration C curr .

	8	end
	9 end
		Output:

5 Evaluate C temp . 6 if C temp > C curr then 7

The electric field induced at r i by a unit dipole moment p j (f ) at r j in free space is G ij (r i , r j , f ) p j (f ).

The reverberation time may be estimated as the inverse of the exponential decay rate of the average channel-impulse-response envelope over many realizations (see Sec. IV for the time-domain representation of wireless channels with PhysFad).

While over-the-air equalization maximizes the information transfer rate with simple modulation schemes like OOK, it does not necessarily maximize the modulation-scheme-independent channel capacity[START_REF]Reconfigurable Intelligent Surfaces for Rich Scattering Wireless Communications: Recent Experiments, Challenges, and Opportunities[END_REF],[START_REF] Imani | Metasurface-Programmable Wireless Network-on-Chip[END_REF].
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