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ScoreCAM GNN: a generalization of an optimal local post-hoc explaining method to any geometric deep learning models

Graph neural networks have shown impressive results in many daily applications. As many others deep approaches, they inherently lack of interpretability regarding the decisonal procedure designed while being optimized. Under the post-hoc local model-based paradigm, explaining methods suited for graph often try to find relevant subgraphs but the inherent geometric strucuture of graph turn this task in an untractable combinatorial optimization problem. Many relevant methods have been designed but often lack to provide meaningful results. Under the geometric deep learning framework, convolutional neural networks are particular case of graph neural networks. In this study we extend and generalize an explaining methods suited for convolutional neural network to graph neural network thank to theorical ground of the geometric deep learning framework. To show the relevance of our generalization, we lead a theoritical study regarding geometric priors those two models share and the computational cost impact it induces for explaining such models. We also lead a qualitative study on real-world dataset often used in the literature and compare our method to state-of-the-art methods. Finally, we lead a quantitative study between our method and benchmarked methods with respect to objectives metrics widely-used in the literature. We show that our method achieve stronger results regarding those three settings.

Introduction

Pattern recognition has been deeply investigated for decades. With the ongoing development of powerful computing units (GPUs, TPUs) and theoretical advances of deep learning methods, machines have been able to deal efficiently with high-dimensional data. From the signal processing viewpoint, deep representation learning model must both leverage data domain definition and data signal that they are handled. Nonetheless, many real-world data (e.g., pictures, chemical molecules, etc.) hold intrinsically geometric symmetries in their raw domain definitions. The study of invariants of complex structure is at a core interest of geometry studies. Both mathematical sides have been merged and unified as the Geometric Deep Learning (GDL) framework [START_REF] Michael | Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges[END_REF]. This work has allowed generalizing the geometrical aspect of ubiquitous deep models such as Convolutional Neural Network (CNN), Recurrent Neural Networks (RNNs) and Transformers [START_REF] Vaswani | Attention is All you Need[END_REF] that have achieved, in their own domain, test-of-time state-of-the-art results. Nonetheless, all these models are geometrically derived from a generalized model : the Graph Neural Network (GNN) [START_REF] Michael | Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges[END_REF].

More broadly, contemporain optimization problems (like classification problems) leveraging deep learning approaches turn out to be actually high-dimensional statistical non-convex optimization problems. The underlying decisional process embedded in the optimized classifier, used to decide whether if an object belongs to a given class or not, is encoded by the global classifier set up (i.e. architecture and final parameters). These decision rules triggered while model inferring are represented by tortuous complex numerical flows which are difficult to fairly describe by regular human-handlable numerical languages. Nowadays, deep methods are involved in real-world applications from the simplest document recognition tool up to heavy industrial projects and even in human healthcare. Due to this opaque flavor of these deep models and their wide deployment, we must prevent them from harming society and its development. The eXplanable Artificial Intelligence (XAI) [START_REF] Adadi | Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)[END_REF] field englobes the methods that have been designed to shed light on deep models opacity in order to have a better confidence, understanding, interpretability or explainability regarding them. Every XAI method can be qualified according to how the explanation is computed and what is the scope of provided explanations. The computation setup is either jointly trained or post-hoc regarding the model, meaning respectfully that the explainer supplies explanations while the explained model is trained or once the training is complete. The explanations scope, global or local, is specifying whether the explanation for a specific data instance (i.e. local) or more abstract and general (i.e. global) explanation taking into account the whole learning context. A common setting for deep classifier is the post-hoc local explanations setting and the global strategy is to find the most relevant subdomain and induce a signal of the explained instance that preserves the most classifier performance. When dealing with data structure such as a graph, finding relevant subgraphs often relies on a combinatorial heuristic process that is in practice intractable thus leading to sub-optimal solutions.

In this study, we propose a generalization to GNN models of a post-hoc local instance explaining method initially suited for CNN models. Our method has been built upon theoretical foundations of the GDL framework. It also gets rid of the combinatorial aspect often involved in state-of-the-art methods for explaining GNN models while fulfilling desirable properties that are legitimate for explaining method that other methods do not fulfill conjointly. Our new framework satisfies objective metrics used in the literature for assessing method quality. We illustrate these qualities in both quantitative and qualitative study on real-world data usually found in the literature.

Related Work

Exploiting common patterns and regularities involved in data has always been a successful manner to perform in machine learning. In the context of deep learning, neural networks have shown to be universal function approximator [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF]. Along a dataset, such models have high abilities to interpolate data in high-dimensional space. However, for computational reasons, artificial neural networks with lower complexity are preferred. For physically structured data, exploiting the structure of the physical domain of the data as well as the geometric prior when conceiving neural networks allows to have performing models with low complexity. In GDL [START_REF] Michael | Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges[END_REF] they unified geometry studying and efficient high-dimensional learning study under the GDL blueprint which is the raw materials for conceiving efficient deep learning models with geometric priors. This blueprint has allowed to put under the same theoretical framework powerful and widely used deep models with strong geometric prior such as CNN, GNN and Transformers [START_REF] Vaswani | Attention is All you Need[END_REF]. A mapping f of depth L ∈ N that operates on a real-valued signal X evolving on a domain Ω assuming some regularities regarding a group G follows the GDL blueprint if f = C • L i=1 Pi • σi • Bi where for all i, Pi is a pooling mapping squeezing the signal in a subdomain Ω ⊂ Ω, σi is an element-wise non-linear mapping, Bi is a G-equivariant mapping i.e., Bi(φ(g)X) = φ(g)Bi(X) and C is a G-invariant mapping i.e., C(φ(g)X) = C(X) for all representation φ(g), g ∈ G. Graphs are defined by a set of nodes and edges describing relationship between nodes. But on any graph, node ordering does not matter it means seamlessly that the node set is unordered. Consequently, a desired flavor for GNN model is to be insensitive regarding signal when the domain definition is permutated. In other terms, GNNs are specific functions that follow the GDL blueprint with G = Σn, the group of permutations of size n. The GNN models are firstly formalized under the message-passing diffusion process introduced in [START_REF] Scarselli | The Graph Neural Network Model[END_REF] then extended [START_REF] Vı | E(n) Equivariant Graph Neural Networks[END_REF][START_REF] Battaglia | Relational inductive biases, deep learning, and graph networks[END_REF][START_REF] Defferrard | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[END_REF][START_REF] Gilmer | Neural Message Passing for Quantum Chemistry[END_REF][START_REF] Gori | A new model for learning in graph domains[END_REF][START_REF] Monti | Dual-Primal Graph Convolutional Networks[END_REF][START_REF] Sanchez-Lengeling | Evaluating Attribution for Graph Neural Networks[END_REF] with the successful Graph Convolutional Network (GCN) [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF] and Graph Attention Network (GAT) [START_REF] Veličković | Graph Attention Networks[END_REF] approaches achieving state-if-the-art results in chemistry and drug design [START_REF] Gaudelet | Unveiling new disease, pathway, and gene associations via multi-scale neural network[END_REF] , recommendation systems [START_REF] Ying | Graph Convolutional Neural Networks for Web-Scale Recommender Systems[END_REF][START_REF] Aligraph | A Comprehensive Graph Neural Network Platform[END_REF][START_REF]Proceedings of the 29th ACM International Conference on Information & Knowledge Management[END_REF] or traffic forecasting [START_REF] Derrow-Pinion | ETA Prediction with Graph Neural Networks in Google Maps[END_REF]. Grid structure that common data structure (e.g., pictures, temporal series. etc.) rely on are actually a special case of graphs. Furthermore, the adjacency of grids is specific : each node is only connected to its closest neighborhood and shares the same connectivity pattern. On top of that, node ordering matters over grid structure and given a node, it neighbor ordering matters as well. As a consequence, the suited group G in which f is locally G-invariant is no longer Σn. For preserving the equivariant feature and still fit the GDL blueprint, it implies that each neighboring must share the same local invariance scheme and so, it includes sharing the same parameters (i.e., also denoted as sharing parameters features) if the involved GDL-approved mapping is parametric. By including linear feature in the local aggregation mapping, this actually leads to build what is called the discrete convolution operator which is also known as been a translation equivariant linear operator. This construction has led to successful models such as CNN or RNN which have achieved long-term state-of-the-art results in computer vision [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF][START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] or speech recognition [START_REF] Bahdanau | End-toend attention-based large vocabulary speech recognition[END_REF][START_REF] Sutskever | Sequence to Sequence Learning with Neural Networks[END_REF]. Although these models turn out to be great solutions for many real-world problems, the suffer from a lack of interpretability and have opaque internals. To overcome this the lack of explainability of GNN models several methods have been designed. For graph classification problems, a common approach for explaining is the post-hoc local explaining paradigm. Attribution methods scope is to provide relevance to features regarding their impact on the classification, often under a white-box approach [START_REF] Baldassarre | Explainability Techniques for Graph Convolutional Networks[END_REF][START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF] that have model internal insights either thank to model parameters and local behavior or with relative contribution approach [START_REF] Schnake | Higher-Order Explanations of Graph Neural Networks via Relevant Walks[END_REF].

Perturbation-based methods act in a black-box fashion (i.e., completely blind from model internal for explaining) and their trouble model with node ablating procedure [START_REF] Ying | GNNExplainer: Generating Explanations for Graph Neural Networks[END_REF], or edges ablation [START_REF] Luo | Parameterized Explainer for Graph Neural Network[END_REF][START_REF] Sejr | Incorporating Structure into Neural Models for Language Processing[END_REF] or counterfactual adjunctions [START_REF] Lucic | CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks[END_REF]. Heuristic search methods [START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF][START_REF] Li | EGNN: Constructing explainable graph neural networks via knowledge distillation[END_REF] have also proven to be relevant for explaining as well as generative models [START_REF] Hao Yuan | XGNN: Towards Model-Level Explanations of Graph Neural Networks[END_REF]. Additionally, explaining methods suited for node classifiers have brought relevant results [START_REF] Huang | GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks[END_REF][START_REF] Vu | PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks[END_REF]. Evaluating the goodness of explaining methods is addressed by satisfying objective and context-free properties such as simplicity [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF], stability [START_REF] Alvarez | On the Robustness of Interpretability Methods[END_REF], constrastiveness [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF], completeness [START_REF] Kulesza | Too much, too little, or just right? Ways explanations impact end users' mental models[END_REF], compactness [START_REF] Lipton | The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF][START_REF] Murdoch | Definitions, methods, and applications in interpretable machine learning[END_REF] or faithfulness [START_REF] Jacovi | Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Yeh | On the (In)fidelity and Sensitivity of Explanations[END_REF]. Although some of those properties have high-level definitions that are difficult to design numerically, literature has proposed a formulation for some of them : the Infidelity [START_REF] Jacovi | Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Yeh | On the (In)fidelity and Sensitivity of Explanations[END_REF] measures how far an explanation perturbs is fidel (faithfulness) to model behavior; the Sparsity [START_REF] Lipton | The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF][START_REF] Murdoch | Definitions, methods, and applications in interpretable machine learning[END_REF] (compactess or sparsity) computes the ratio between explained graph size with respect to original graph size, more sparse explanation is preferred since explanations have to be concise. Although some GNN explainers have interesting results, they focus only on satisfying a few parts of the aforementioned properties or providing factually weak explanations leading to an unsafe real-life deployment. In the context of GNN, the inherent computational impact of the subgraph sampling procedure often used for local post-hoc explaining GNN models is a key issue for obtaining sustainable explanations. To bypass this concern, monte-carlo sampling approaches or optimizing surrogate models are preferred strategies [START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF][START_REF] Ying | GNNExplainer: Generating Explanations for Graph Neural Networks[END_REF][START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF]. According to these approaches, methods reach their optimal regime only asymptotically which is intractable in practice. Thus such methods provide only suboptimal solutions, and as a consequence, fail to fulfill the consistentness or even completeness properties. In this study, we propose a new approach that fulfills these properties. This method is a generalization of the ScoreCAM method [START_REF] Wang | Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks[END_REF] initially suited for CNN that has inherent desirable properties for explaining classifiers and especially for GNN-based model once generalized.

Our approach

Under the post-hoc local model-based paradigm, explaining a deep classifier consist in finding relevant substructure on the input that preserves classifier behavior (except for generative explanation [START_REF] Hao Yuan | XGNN: Towards Model-Level Explanations of Graph Neural Networks[END_REF]). This includes managing conjointly the domain and signal part that define the instanced input. In the context of GDL, the searching space complexity of both duality is unbalanced. Basically, the signal lean on a finite real Hilbert space which has favorable properties to apply efficient methods such as filtering to perform relevant sub-signal extraction. Regarding the domain, finding relevant substructure is highly dependent on the domain definition. Without any prior knowledge on data distribution, naive approach for extracting sub-grids from grid-like data such as RGB pictures of global size S ∈ N is an O(S 2 ) procedure. For graphlike data of size S, the same approach has an O(2 S ) cost. In the GNN literature, graphs are seen as the conjunction of a multidimensional signal and a domain. Formally, a graph G = (V, E) with node set V and edge set E is rather modeled by (X,A) such that X ∈ R |V |×F is the signal representation with F ∈ N is the signal space dimension, and A ∈ {0, 1} |V |×|V | the binary adjacency matrix describing domain topology. The signal part of graphs has a space vector structure, indeed making linear combinations of signals make sense whatever domain they lean on. Common filtering tools are thus still applicable for graph signals. The domain part does not have such topological and algebraic properties. Addressing GNN explanations needs to carefully design sampling procedures for both signal and domain aspects. While many GNN-suited explaining methods use combinatorial heuristics to find relevant subgraphs a key insight of attribution methods is to only consider the signal part of graph, leaving graph domain unchanged. It means discarding heuristic combinatorial drawbacks usually involved for explaining GNNs. Class Activation Mapping (CAM)-based methods, especially ScoreCAM provides its explanations with respect to this paradigm.

ScoreCAM CNN

ScoreCAM [START_REF] Wang | Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks[END_REF] is an attribution method that is originally derived from GradCAM [START_REF] Ramprasaath | Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization[END_REF] method. GradCAM has addressed major concerns directed towards CAM method i.e. the dependence on classifier architecture, gradient saturation, gradient vanishing or false confidence issues.

GradCAM for GNN have been designed [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF]. Since CNNs are particular cases of GNNs built upon the same theoretical playground, it implies that GradCAM for GNN is suffering from the same theoretical concerns as it original CNN version. ScoreCAM for CNN addressed those problems by proposing increase-ofconfidence, smoothing-with-normalization and use of upsampling methods that are relevant in the grid-like domain. Therefore regarding graph-like data, for instance, the meaning of upsampling is unclear due to weaker assumptions on the graph domain definition rather than those made on the grid-like domain. So, a naive adaptation of ScoreCAM to GNN models may lead to irrelevant results in this context. In the following, we leverage attribution methods that have aesthetic properties for explaining graph-like data while improving and adapting original ScoreCAM methods to GNN models.

ScoreCAM GNN

This part introduces the workflow and key features of ScoreCAM GNN. The overall algorithm is described in Algorithm 1. It expands the initial definition of ScoreCAM in accordance with the constraints easing due to the CNN-to-GNN opening. We consider an optimized classifier f θ that follows the GDL blueprint with L ∈ N as descriptor-part depth.

Generalization needs adaptation

The original implementation of ScoreCAM has introduced interesting concepts, we generalize here each of these key points to be able to provide GNN explanations under the ScoreCAM paradigm. It appears that L-hop data gathering and normalization still have relevance even in the context of GNN while upsampling approach is not applicable anymore due to significant theoretical divergence between CNN and GNN. Now we provide further insights regarding these two statements.

High-level information and normalization

The original ScoreCAM implementation uses high-level information and feature map smoothing to provide CNN explanations. Since both CNN and GNN follow the GDL blueprint, they use deep data hierarchization principle. As long as you dive in the descriptor side of the classifier, you have access to higher-level of data representation. At the latest feature map X L ∈ R |V |×F L , we have gathered information of L-hops in a single node representation. For instance, in CNN context, this rich information allows encoding high-level data (e.g., meaningful combination of low frequency details) that are more intelligible for humans. Applying normalization is still doable since R |V |×F L have a space vector structure. The normalization map is a Σ |V | -equivariant mapping with interesting smoothing effects. Indeed graph has a discrete and unorganized domain definition, with the local invariant (e.g., convolution on neighborhoods) mapping involved in GDL definition. Considering solely binary attributions (encountered in classical the GNN explainer), it is more likely to produce an incomplete information retrieval whereas local information is coming from local neighboring in f θ definition. The smoothing allows diffusing locally, binary attribution, one node neighboring; which is more Fidel toward model definition. Both high-level information aggregation and smoothing has compatible properties with theoretical GNN definition. Consequently, these features are intertwined in our ScoreCAM GNN definition. We define the smoothing operator S for all real vector x = (xi)i such that x = λ1K for any λ ∈ R,

S(x) = x -mini xi maxi xi -mini xi (1) 
Upsampling relevance reconsideration As well, the original ScoreCAM method exploits high-level feature map upsampling approach in order to fit to any CNN architecture that may use local or global pooling in their definition. The upsampling to original input dimension allows performing input masking (i.e., input perturbation) to compute score of the masked feature map. In the context of GNN, due to far weaker priors on domain topology (with respect to the grid domain) , the upsampling operator definition is not clear. Upsampling stretches a signal, which has underlying vector space structure, on a domain that is extended from the initial one. With the regularities of grid-like domain, it is easy to extend such domains to broader ones. For instance, taking pictures of a real world scene is just a discretizing procedure of a continuous physical scene (i.e light is diffused thanks to photons) on a finite grid structure. The amount of informations embedded in the captured physical phenomenon is not varying regarding the grid size even in a small neighborhood (i.e when applying umsampling procedures). This independence is largely due to the regularity of the grid domain. For graph like data that do not have such topological assumptions, we cannot define such domain stretching that preservs the embedded information amount. For instance, what is the meaning of introducing new node in a graph in a given neighborhood especially when involved graph represent actually of chemical molecules or a social network. Consequently, we withdraw the use of upsampling procedures for our ScoreCAM implementation.

Masking procedures Seamlessly to the CNN world, masking process is a signal masking procedure.

For a graph G = (X, A), the graph masked by a mask M such that dim(X) = dim(M) is a graph GM = (X • M, A) where • denotes the Hadamard product.

ScoreCAM general definition

With including legitimate features for GNN, we define ScoreCAM GNN for an input graph G = (X, A) belonging to class c ∈ N composed of N ∈ N nodes, each represented by a real-valued vector and an optimized classifier f θ with a depth L ∈ N for the graph descriptor part such that the latest layer is X L ∈ R N ×F L , we have:

ScoreCAM (G, f θ ) = ReLU [ F L k=1 g c k I k ] (2) 
where

s c k = [f θ (G S(X L k ) )]c and g c k = e s c k F L k=1 e s c k (3) 
s c k is the probability of input graph G masked by S(X L k ) to belonging to the class of G, i.e., the c-th class1 .

Results

We have compared ScoreCAM GNN with four local post-hoc explaining methods achieving state-of-the-art results : two white-box methods DeepLIFT [START_REF] Baldassarre | Explainability Techniques for Graph Convolutional Networks[END_REF], GradCAM [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF] and two black-box methods GNNExplainer [START_REF] Ying | GNNExplainer: Generating Explanations for Graph Neural Networks[END_REF] and GraphSVX [START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF]. To highlight ScoreCAM GNN relevance, we have compared our method according to three viewpoints:

• theoretical advantages of white-box approaches • numerical performances with respect to two objectives metrics • qualitative assessment MNISTSuperpixel and REDDIT-BINARY that do not need any prior knowledge and are fully human understandable contrary to BBBP, BACE, PROTEINS which require chemical knowledge.

Algorithm 1: ScoreCAM GNN algorithm

Input: A graph G = (X, A) that belongs to class c, a GNN model f θ Output: ScoreCAM(G, f θ ) X L ← the lastest activated feature map of f θ through G; F L ← the feature dimension of X L ; foreach k ∈ {1, . . . , F L } do XL k ← S(X L k ); I k ← X • XL k ; G k ← G XL k graph signal masking procedure; s c k ← [f θ (G k )] c ; foreach k ∈ {1, . . . , F } do g c k ← e s c k F L k=1 e s c k ; X exp ← ReLU [ F L k=1 g c k I k ]; return explained graph (X exp , A)

Black-box vs. white-box paradigms in GNN explanation context

Under local post-hoc fashion, the two main explanation paradigms (i.e., white box and black box) have a huge impact on the computational cost of those explainers. Black-box explainers such as GNNExplainer [START_REF] Ying | GNNExplainer: Generating Explanations for Graph Neural Networks[END_REF] and GraphSVX [START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF] look for relevant subgraphs by directly focusing their attention to graph topology modality which is inherently combinatorial approaches. With respect to their own decision processes, it requires at least one model inference (in practice multiple inferences ) to quantify the relevance of the considered subgraph. Furthermore, this black-box paradigm often deals with optimizing a surrogate model that on one side, increase inevitably the amount of computations; and on the second side these additional optimization models deal with complex high-dimensional searching space and do not have compliant convergence properties. It means that obtained optimized model is dependent on initialization conditions leading to inconsistent explanations if we run several times this explainer on a given instance. Furthermore, it often needs to find relevant subgraph of the input which is itself a combinatorial optimization problem. The white-box set up is more suited to graph structure since it has at most a polynomial dependence (often just linear) on the model inference cost to produce explanations. But those theoretical considerations are not only those that have to be taken into account. Indeed it appears that even white-box explainer such as DeepLIFT or GradCAM supplies suboptimal explanations as highlighted further.

Paradigms practical comparative study

Experimental setup

Datasets We convey our experiments with 5 real-world datasets for graph classification tasks. We have used them because those datasets have been widely used in [START_REF] Baldassarre | Explainability Techniques for Graph Convolutional Networks[END_REF][START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF][START_REF] Huang | GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks[END_REF][START_REF] Lucic | CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks[END_REF][START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Schnake | Higher-Order Explanations of Graph Neural Networks via Relevant Walks[END_REF][START_REF] Ying | GNNExplainer: Generating Explanations for Graph Neural Networks[END_REF][START_REF] Hao Yuan | XGNN: Towards Model-Level Explanations of Graph Neural Networks[END_REF][START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF] to illustrate explaining methods for GNN. REDDIT-BINARY [START_REF] Yanardag | Deep Graph Kernels[END_REF] a dataset composed of 2000 graphs. Each of them represents on question/answer-based threads of Reddit, namely r/IAmA and r/AskReddit. In these graphs, nodes represents a user and there is a link between two users if one has answered to the other; BBBP for Blood-brain barrier penetration (BBBP ) [START_REF] Wu | MoleculeNet: a benchmark for molecular machine learning[END_REF] dataset comes from a recent study on the modeling and prediction of the barrier permeability; PROTEINS [START_REF] Borgwardt | Protein function prediction via graph kernels[END_REF] is a dataset of proteins that are classified as enzymes or non-enzymes. Nodes represent the amino acids and two nodes are connected by an edge if they are less than a short distance; BACE provides quantitative (IC50) [START_REF] Wu | MoleculeNet: a benchmark for molecular machine learning[END_REF] and qualitative binding results for a set of inhibitors of human beta-secretase 1 i.e., BACE -1. All data are experimental values reported in scientific literature over the past decade, some with detailed crystal structures available; MNISTSuperpixel has been introduced by [START_REF] Michael | Geometric deep learning: going beyond Euclidean data[END_REF]. In a nutshell, MNISTSuperpixel is a superpixel version of the well-known handwritten digit MNIST dataset. The use of such dataset allows us to better illustrate the effects of our axiom-consistent explanation of abstract graph representation through the highly human-readable aspect of MNIST images. Each graph of MNISTSuperpixel instance is a graph that represents the original 28×28 pixels MNIST instance. They share the same label. Those graphs are composed of 75 nodes (superpixels) where these nodes are linked according to their spatial relations. The MNIST dataset (and as an extension, the MNISTSuperpixel dataset) has been designed to classify hand-written digits. Distinguishing a digit from another revolves around the search for discriminative patterns or singularities that identify one digit (in terms of ground truth labels) as a unique possibility. In Table 7, we have resumed each dataset features.

Learning procedures

We have used two main GNN configurations for classifying our instances. This architecture is derived from those used in [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF] that perform as well GNN explanations. One configuration is based on GCN a module that we refer to GCNModel. The other one is based on GAT the module and will be referred further as GATModel. A detailed model setup is provided in Appendix.

Benchmarking normalization process Explaining methods suited for GNN acts in several paradigms, we have set up a standardized pipeline to compare compared methods. We give all necessary details in Appendix regarding this pipeline and how it has been developed.

Desirable properties for explaning method

To justify the relevance of explaining methods, authors have designed desirable raw properties that methods have to fulfill. Those properties do not have both theoretical and numerical foundations yet but they have a common and meaningful sense for many explaining applications. The most the method check raw properties the most it relevance is. We have listed below the most used properties and we have led a comparative study of properties fulfillment between ScoreCAM GNN method and compared methods.

• stability [START_REF] Alvarez | On the Robustness of Interpretability Methods[END_REF] emphases on the ability of the method to provide similar explanation for similar inputs.

• contrastiveness [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] emphases on the ability to provide explanations based on a relative approach rather than an absolute one. Indeed, as a human we rather explain a phenomenon P with respect to an other phenomenon Q, not P by its own.

• completeness [START_REF] Kulesza | Too much, too little, or just right? Ways explanations impact end users' mental models[END_REF] is the ability to provide explanations by encoding all groundtruth explaining information.

• soundness [START_REF] Kulesza | Too much, too little, or just right? Ways explanations impact end users' mental models[END_REF] is the ability of an explaining method to supply explanations only regarding necessary semantic information.

• compactness [START_REF] Lipton | The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery[END_REF][START_REF] Murdoch | Definitions, methods, and applications in interpretable machine learning[END_REF] is the ability to provide of an explaining method to provide concise explanations (e.g. few features, few parameters, etc.).

• simplicity [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] is the ability to provide human-friendly explanations rather than useless and complicated ones. This propertie is highly related to the compactess and soundness.

• faithfullness [START_REF] Jacovi | Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF] is the ability to retrieve the initial behavior of the explained model when instances are masked by their own explanations.

• consistency [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] is the ability to provide consistent explanations regarding a single instance expressed in the same context, to explain.

Some have proposed numerical formulations of these properties. As examples, [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF][START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF] for the contrastiveness , [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF][START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF] for the faithfulness , [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF][START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF] for the compactness or [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Hao Yuan | On Explainability of Graph Neural Networks via Subgraph Explorations[END_REF][START_REF] Duval | GraphSVX: Shapley Value Explanations for Graph Neural Networks[END_REF] for the faithfulness.

Those numerical formulations are heavily dependent on the study context (e.g. binary context in [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF]) and no numerical generalization have been proposed yet. But an analog numerical-based notion of faithfulness has been developed : the infidelity [START_REF] Yeh | On the (In)fidelity and Sensitivity of Explanations[END_REF]. This study shows that the advantages are : it is applicable in any general framework and it has been theoretically well-studied.

Objective assessment metrics Explaining internal decision processes involved in classification problems are often linked with the necessity to assess obtained saliency maps meaningfulness. Thus it requires task-related expert assessment which is subjective and consequently biased. Authors of [START_REF] Yeh | On the (In)fidelity and Sensitivity of Explanations[END_REF] propose an objective metric that is expert independent, to evaluate the quality of explanation maps provided by a XAI method.

• Infidelity: [START_REF] Yeh | On the (In)fidelity and Sensitivity of Explanations[END_REF] quantifies in which manner the explanation maps provided by an explanation mapping φ of predictions made by an optimized classifier f θ change when an input X is perturbed by a random variable I following a perturbation density P . It is defined by:

Infd(φ, f θ , X) = E I∼P [(I T φ(X, f θ ) -(f θ (X) -f θ (X -I))) 2 ] (4) 
• Spatial sparsity: Generally speaking, concise explanations are preferred over wide explanations that drown pertinent information. This statement does not depend on the context of the explanations, so it is an objective statement. A natural way to measure such conciseness in signal processing is the l0 sparsity [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF]. Achieving sparse explanations is thus a goal by itself. In other terms, the sparsity is an objective metric for quantifying explanation relevance in the context of XAI methods assessment. It is thus an appropriate objective goal that we aim to reach. Formally, given a vector X, an optimized classifier f θ and an explaining method φ, we have:

Spar(λ, f θ , φ, X) = 1 - φ(X, f θ ) < λ 0 dim(X) (5) 

Quality assessment: applications on real-world data

In order to provide graphical descriptions of explanations provided by ScoreCAM GNN, we have trained accurate classifiers on the MNISTSuperpixel and REDDIT-BINARY datasets. Firstly, we show results on REDDIT-BINARY, in order to show, with a few amount of context and knowledge, the ability of ScoreCAM GNN to localize meaningful information on real-world datasets. For MNISTSuperpixel results, we provide further insights on ScoreCAM explanation relevance since, as far as we know, this dataset has not been deeply investigated for GNN explanations. Consequently, we have furnished a detailed analysis that can be seen as a guideline for future explainer assessment.

• REDDIT-BINARY: This dataset contains actually two, three or four expert users by discussion in average [START_REF] Yanardag | Deep Graph Kernels[END_REF], relevant nodes are expert users since they bring the relevant information to the considered discussion. Here, we provide two discussions which have two experts arguing about the discussion subject.

(a) First thread (b) Second thread

Figure 1: ScoreCAM GNN results on this dataset

In Figure 1a, experts (red nodes) are clearly identified by ScoreCAM GNN while asking people (dark blue nodes) are not relevant to shed the light on since they do not add any added value to the question/answer process. Mid-light blue nodes are people with intermediate knowledge or discussing with experts in order to gain knowledge. In Figure 1b, only two experts are presents in the thread, correctly highlighted by ScoreCAM GNN. We observe that ScoreCAM GNN emphases on high degree nodes, which is in accordance with highlighting expert users. As mentioned in [START_REF] Ying | GNNExplainer: Generating Explanations for Graph Neural Networks[END_REF], expert users (high degree nodes) are at the heart of the discussion. They have a central role in the discussion guidance because they hugely interact with any other user by spreading their expert knowledge on them2 . Our method is thus in accordance with groundtruth explanations.

• MNISTSuperpixel: Regarding MNISTSuperpixel, we explain six instances chosen randomly and we overload original associated MNIST instances; seen as a groundtruth; with its graph explanation. 3 MNIST and its superpixel version deal with hand-written digits. Distinguishing digits is basically a multimodal separation task between digit curvature, axial symmetries and centroids. Basically in the context of GDL, a good explainer must encode and include underlying geometric prior, in order to fit as much as possible model behavior. Consequently, we must retrieve those symmetries in provided explanations. We have studied this geometrical-fitting goodness in the following examples. We have also added a spatial redundancy study in order to link with following Sparsity measurement, deeply investigated in the quantitative part.

-Leveraging symmetries: For instance n • 1193, the digit is a "1". It thus induces axial symmetric with a shallow curvature. Regarding DeepLIFT (Figure 2a) and GradCAM (Figure 2b) outputs, they do not leverage those symmetries and focus on irrelevant nodes. This mismatch between groundtruth and these outputs induces outlying information flow preventing user to grab key insight concerning this instance. ScoreCAM GNN (Figure 2d) fully leverages these intrinsincal geometric prior and distributes mainly its explanation on the barycenter of the digit in a spatially compact manner. In an analogous manner, a "8" (instance n • 444) is the only digit that has a self-crossing path in its writing process: this is one of the most relevant features that allow characterizing the digit eight. Our method fully targets this symmetric (i.e., multiaxial symmetries) signature (Figure 3d) whereas other methods fail to characterize such singularity. The instances n • 969 and n • 1036 are respectively digits "3" and "2" which are especially curvy in their provided representations. Attributing nodes importance relevance on curviest part of those digits is not enough, especially for explaining GNN models. ScoreCAM GNN is not only focusing on salient points that characterize the curvy structure but also on the node that is neighbors with most of those curvy characterizing nodes. Since ScoreCAM GNN is a white-box method, it leverages the local invariance introduced of GDL blueprints to supply its explanation maps. We retrieve this phenomenon in Figure 4d and Figure 5d. It shows that ScoreCAM deals closely with classifier internal (white-box fashion) and fit the theoretical framework, i.e., the GDL blueprint. In these examples, we observe also that ScoreCAM GNN outputs have explaining maps that have higher spatial sparsity than other methods. The locality of provided explanations is also fitted on groundtruth saliency regarding digit structure which is not the case of other methods. We have observed that ScoreCAM GNN produces more sparse explanation maps spatially. But we must not withdraw the intensity modality of the signal (i.e., attribution impor-tance). Indeed in Figure 6a while discarding symmetries, intensity distribution is almost uniform on the saliency maps. It does not allow to order efficiently which part is more important than another one regarding the underlying geometric prior. As a consequence and as shown in Figures 7b,6b it introduces information that is blurred and redundant in both modalities: spatially and in intensity although the involved digit structure is not particularly complex. In Figure 6d, nodes importance is mainly distributed over nodes that match with digit groundtruth spatial definition and also regarding intensity modality ScoreCAM GNN is carefully distributed which is consistent across other compared methods. Infidelity and Sparsity metrics are widely used to quantitatively assess in an objective manner the relevance of XAI methods [START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Baldassarre | Explainability Techniques for Graph Convolutional Networks[END_REF][START_REF] Hao Yuan | XGNN: Towards Model-Level Explanations of Graph Neural Networks[END_REF]. It thus quantifies the optimality of explanation methods. We first evaluate our proposed method under objective terms using these metrics with λ = 0.2 and P = N (0, 1).

• Concerning GCNModel, ScoreCAM GNN is respectively 88%, 74%, 99%, 89% less infidel than the average infidelity score of state-of-the-art methods for the BBBP, PROTEINS, REDDIT-BINARY , MNISTSuperpixel datasets (see Tables 1,2, 3, 5). While achieving lower bound of infidelity score over the whole experiment, ScoreCAM GNN also reaches in a significant manner the lower bound in average infidel score standard deviation. Moreover, concerning the BACE dataset (see Table 4), the ScoreCAM GNN has a 20% higher infidelity score compared the average infidelity score of the state-of-the-art methods.

• Concerning GATModel, ScoreCAM GNN is respectively 94%, 97%, 99%, 94%, 93% less infidel than the average infidelity score of state-of-the-art methods for the BBBP, PROTEINS, REDDIT-BINARY, BACE and MNISTSuperpixel dataset (see Tables 1,2, 3, 4, 5). While achieving lower bound of infidel score over the whole experiment, ScoreCAM GNN also reaches in a significant manner the lower bound in average infidel score standard deviation.

• Concerning GCNModel, ScoreCAM GNN is respectively 3.9, 1.4, 2.5, 3.3 times sparser than the average sparsity score of state-of-the-art methods for the BBBP, REDDIT-BINARY, BACE and MNISTSuperpixel (see Tables 1,3,4 5). While achieving lower bound of sparsity score over the whole experiment, ScoreCAM GNN also reach in a significant manner the lower bound in average sparsity score standard deviation. Moreover, concerning the PROTEINS dataset (see Table 2), the ScoreCAM GNN has a 6% lower sparsity score compared the average infidelity score of the state-of-the-art methods.

• Concerning GATModel, ScoreCAM GNN is respectively 3.9, 2.6, 1.4, 6.4, 2.2 times sparser than the average sparse score of state-of-the-art methods for the BBBP, PROTEINS, REDDIT-BINARY, BACE and MNISTSuperpixel dataset (see Tables 1, 2, 3, 4, 5). While achieving lower bound of sparsity score over the whole experiment, ScoreCAM GNN also reaches in a significant manner the lower bound in average sparsity score standard deviation.

We must notice that since GATModel allows representing broader class of graph representation functions, those models are able to mimic much better optimal classifier behavior. Since ScoreCAM GNN is a whitebox method, it takes advantage of this increasing representation quality compared to GCNModel models for explaining instances, resulting in significant decreases of infidelity issues compared to other state-of-the-art methods.

XAI Method

Model Table 5: MNISTSuperpixels Dataset -(↑) the higher the better, (↓) the lower the better

Properties fulfillment

With respect to our previous quantitative and qualitative studies, we summarize here the properties fulfillment of each compared methods and for ScoreCAM GNN as well.

• For the stability, considered methods all satisfy the property. For instances, DeepLIFT explains digit one based on, roughly, the same arguments (see Figure 2a, 6a, 7a). We observe the same behavior for GradCAM (see Figure 2b, 6b, 7b) as well as for GNNExplainer (see Figure 2c, 6c, 7c) and for ScoreCAM GNN (see Figure 2d, 6d, 7d).

• For the constrastivness, only DeepLIFT and ScoreCAM GNN fulfill this property. Indeed those two methods make an important difference between a digit one or eight (see Figure 2a and Figure 3a for DeepLIFT, Figure 2d and Figure 3d for ScoreCAM GNN) for instance, while it is not the case for GNNExplainer and GradCAM.

• For the completeness, it is unclear if any of the provided explanations catch all explaining groundtruth data regarding the task, we are not able to conclude here.

• For the soundness, only DeepLIFT and ScoreCAM GNN have soundful explanations since they focus on the digit it self whereas GNNExplainer or GradCAM are often focused on irrelevant features to provide their explanations (see Figure 4b for GradCAM and Figure 3c for GNNExplainer).

• For the compactess, thank to the spatial sparsity measure, we can objectively conclude that only ScoreCAM GNN fulfills the property.

• For the simplicity, ScoreCAM GNN is the only methods that provide insightful, lightweight and easily human interpretable.

• For the faithfulness, thank to the infidelity measure, we can objectively conclude that only ScoreCAM GNN fulfills the property.

• For the consistentness, only DeepLIFT, GradCAM and ScoreCAM GNN fulfill this property. Indeed, GraphSVX or GNNExplainer involve either sampling methods are non-converging optimization procedures; those two methods are seed-dependent leading to different possible explanations of the same instance being exprimed regarding the same context.

We observe that ScoreCAM GNN fulfills a majority of aforementioned properties whereas other compared methods fail to do so. 

Conclusion

The formalization of the geometric deep learning has allowed to have a better understanding of prediction models with strong geometric priors. In touchy contexts, these models remain seen as black-box ones. A need for understanding and interpretability raises for sustainable deployment of such tools. In this contribution, we have proposed an extension of the ScoreCAM CNN methods which has addressed serious concerns in the CNN world. Since CNN is a particular case of GNN, we have generalized this powerful explaining method to GNN models. We have designed this generalization in accordance with the GDL blueprint that is the backbone of geometric deep learning theory. We have proven that our proposed method has desirable properties especially in the context of GNN. Our method leverages the linear complexity of white-box models whereas black-box models often deal with subgraph sampling approaches which have exponential costs. So it has interesting computational abilities which is often a key issue of many procedures that deal with graphs. It appears also that other white-box models, although powerful in terms of computational complexity have shown to have weak results in terms of qualitative results even on common experiments, but also quantitatively regarding objective assessing metrics that are usually used to measure the quality of explaining methods. Our method has shown to be efficient in these three set up : theoretical, qualitative and quantitative assessments.

Supplementary materials

This part provides either deeper understanding of previously introduced concepts and detailed benchmarking results.

Classifier definition and hyperparameters

All deep graph classifiers we have developed rely on GNN models and its derivation GCN and GAT presented below.

The Graph Neural Network model and main derivations

Before the formalism or GDL framework GNN was frames under the message passing scheme [START_REF] Scarselli | The Graph Neural Network Model[END_REF] that common GCN and GAT is derived from. More formally, GNN [START_REF] Scarselli | The Graph Neural Network Model[END_REF] model exploits a message passing scheme to propagate and aggregate signals along edges with respect to graph topology. This yields an abstract node representation that is used to solve the learning task. The message passing scheme is made of three steps with three distinct operators Message, Aggregate, Update:

1. The spreading step aims at computing the message m l i,j between node at the l -1 -th layer of the GNN with the operator Message defined as:

m l i,j = Message(h l-1 i , h l-1 j ) (6) 
where h l-1 i , h l-1 j ∈ R F l-1 are respectively the node representation of vi and vj at the l -1 -th layer of the GNN model.

2. The following step aggregate messages for each node vi relating to their neighboring nodes belonging to V {i} where V {i} = {vj|ai,j = 1 such that i = j} ⊂ V is the set containing every neighboring node set of vi. The aggregation step at the l -th layer produces an overall message m l i for node vi using the Aggregate() operator such that:

m l i = Aggregate({m l i,j |vj ∈ V {i} }) (7) 
3. The update step leads to a higher level of representation h l i for node vi at the l -th layer by combining aggregated messages m l i together with the representation h l-1 i of vi at depth l -1 -th such that:

h l i = Update(m l i , h l-1 i ) (8) 
Graph Convolutional Network The Graph Convolutional Network (GCN) [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF] is a generalization of the CNN model towards irregular data structure. The messaging passing scheme is defined as follows:

1. The spreading step between nodes vi and vj at the l -1 -th layer:

Message(h l-1 i , h l-1 j ) = ai,j dj di h l-1 j (9) 
where di = 1 +

v j ∈V {i} ai,j (10) 
2. The aggregation step between node vi and its neighbors is a sum over V {i} ∪ {vi}.

3. The update step yielding h l i for node vi from m l i and h l-1 i is defined as follows:

Update(m l i , h l-1 i ) = σ(θ T i,l m l i ) (11) 
where θ i,l ∈ R F l is a vector made of learning parameter vector and σ is a non-linear mapping.

The information diffusion process between H l and H l-1 can be algebraically resumed by:

H l = σ( D-1 2 Â D-1 2 H l-1 θ l ) (12) 
where  = A + IN , Di,i = ( j=1 Âi,j)i.

For each dataset, we have made several batch sizes, learning rate adjustments. We refer to GCNModel the classifier that has given architecture (according to the dataset learned) and achieving best results on testing set (with an 80/20 splitting ratio). We denote analogously by GATModel, the model based on GAT satisfying the same requirements and achieving best results as well. Note that we have performed our experiments on a Nvidia A100 40 Gb GPU coupled with an Intel Xeon CPU.

Benchmark standardization

To compare methods, we set up a general comparison pipeline. Indeed, explaining methods provide their graph classification in different manners either as a feature masking or node-wise important. We need to uniformize in order to have constantly node-wise importance quantification in order to be able to perform qualitative and quantitative assessment. Basically, given a graph with node features maps X ∈ R N ×F , if explanation X is a R F -valued vector we considered X • X ∈ R N ×F (Hadamard product applied columns wisely). If explanation X is a R N ×F -valued vector, we considered X • X ∈ R N ×F (regular Hadamard product). Then regardless the way of providing explanations, we consider S(X • X) which then projected on graph nodes space. To compare in an objective manner our method against others, we evaluate, for a given classifier φ, explanation mapping ψ and a dataset D, the averaged infidelity and averaged sparsity of explained graphs belonging to D ψ such that:

Baseline score invariance

The initial ScoreCAM implementation leverages relative score (with respect to a baseline) to compute the score of a given deep feature map. Based on our definition, we show that this score is independent from any given baseline. For any graph G = (X, A) belonging to class c, any optimized classifier f θ , any baseline graph G0 = (X0, A), the saliency score g c k is translation invariant, especially for G0 baseline score. In other terms, the score of the baseline does not impact explanations provided explanations.
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 2 Figure 2: Instance n • 1193 of MNISTSuperpixel
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 3 Figure 3: Instance n • 444 of MNISTSuperpixel
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 4 Figure 4: Instance n • 969 of MNISTSuperpixel
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 5 Figure 5: Instance n • 1036 of MNISTSuperpixel
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 6 Figure 6: Instance n • 346 of MNISTSuperpixel
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 7 Figure 7: Instance n • 478 of MNISTSuperpixel

Table 1 :

 1 BBBP Dataset -(↑) the higher the better, (↓) the lower the better

		type Mean Infidelity (↓) Mean Sparsity (↑)
	DeepLIFT	GAT	8.31 (± 26.35)	0.06 (± 0.01)
	GradCAM	GAT	5.85 (± 6.83)	0.77 (± 0.01)
	GNNExplainer	GAT	6.70 (± 29.19)	0.11 (± 0.01)
	GraphSVX	GAT	7.62 (± 29.94)	0.05 (± 0.01)
	ScoreCAM GNN	GAT	0.43(± 0.30)	0.98 (± 0.01)
	DeepLIFT	GCN	5.84 (± 11.43)	0.08 (± 0.01)
	GradCAM	GCN	5.32 (± 8.14)	0.77 (± 0.01)
	GNNExplainer	GCN	7.89 (± 32.37)	0.10 (± 0.01)
	GraphSVX	GCN	7.20 (± 29.21)	0.05 (± 0.01)
	ScoreCAM GNN	GCN	0.25 (± 0.18)	0.98 (± 0.01)
	XAI Method	Model type Mean Infidelity (↓) Mean Sparsity (↑)
	DeepLIFT	GAT	20.83 (± 729.67)	0.07 (± 0.02)
	GradCAM	GAT	6.67 (± 49.26)	0.85 (± 0.02)
	GNNExplainer	GAT	21.11 (± 624.80)	0.49 (± 0.06)
	GraphSVX	GAT	6.09 (± 46.62)	0.05 (± 0.01)
	ScoreCAM GNN	GAT	0.44 (± 1.38)	0.97 (± 0.01)
	DeepLIFT	GCN	12.75 (± 246.14)	0.08 (± 0.01)
	GradCAM	GCN	6.25 (± 41.60)	0.89 (± 0.02)
	GNNExplainer	GCN	22.97 (± 1093.25)	0.48 (± 0.05)
	GraphSVX	GCN	13.60 (± 516.29)	0.05 (± 0.01)
	ScoreCAM GNN	GCN	3.60 (± 21.68)	0.73 (± 0.08)
	Table 2: PROTEINS Dataset -(↑) the higher the better, (↓) the lower the better
	XAI Method	Model type Mean Infidelity (↓) Mean Sparsity (↑)
	DeepLIFT	GAT	9.56 (± 1.36)	1.0 (± 0.01)
	GradCAM	GAT	6.95 (± 0.97)	0.86 (± 0.02)
	GNNExplainer	GAT	6.34 (± 3.62)	0.71 (± 0.54)
	GraphSVX	GAT	7.32 (± 12.42)	0.04 (± 1.34)
	ScoreCAM GNN	GAT	0.01 (± 0.1)	0.97 (± 0.03)
	DeepLIFT	GCN	5.46 (± 9.56)	0.76 (± 0.06)
	GradCAM	GCN	6.98 (± 1.01)	0.86 (± 0.02)
	GNNExplainer	GCN	4.36 (± 8.05)	1.0 (± 0.01)
	GraphSVX	GCN	7.34 (± 11.75)	0.04 (± 0.01)
	ScoreCAM GNN	GCN	0.01 (± 1.2)	0.97 (± 0.02)

Table 3 :

 3 REDDIT-BINARY Dataset -(↑) the higher the better, (↓) the lower the better

	XAI Method	Model type Mean Infidelity (↓) Mean Sparsity (↑)
	DeepLIFT	GAT	6.23 (± 8.22)	0.04 (± 0.01)
	GradCAM	GAT	13.67 (± 24.03)	0.36 (± 0.11)
	GNNExplainer	GAT	6.62 (± 29.33)	0.06 (± 0.01)
	GraphSVX	GAT	5.08 (± 17.48)	0.04 (± 0.01)
	ScoreCAM GNN	GAT	0.51 (± 1.81)	0.97 (± 0.01)
	DeepLIFT	GCN	7.61 (± 31.34)	0.06 (± 0.01)
	GradCAM	GCN	9.12 (± 16.1)	0.35 (± 0.11)
	GNNExplainer	GCN	3.39 (± 7.67)	0.16 (± 0.04)
	GraphSVX	GCN	5.29 (± 16.43)	0.04 (± 0.01)
	ScoreCAM GNN	GCN	7.58 (± 19.8)	0.40 (± 0.02)

Table 4 :

 4 BACE Dataset -(↑) the higher the better, the lower the better

	XAI Method	Model type Mean Infidelity (↓) Mean Sparsity (↑)
	DeepLIFT	GAT	307.08 (± 469.43)	0.10 (± 0.05)
	GradCAM	GAT	85.84 (± 62.94)	0.48 (± 0.15)
	GNNExplainer	GAT	201.67 (± 106.18)	0.51 (± 0.38)
	GraphSVX	GAT	851.77 (± 132.90)	0.01 (± 0.34)
	ScoreCAM GNN	GAT	23.89 (± 0.37)	0.62 (± 0.08)
	DeepLIFT	GCN	862.51 (± 26.31)	0.14 (± 0.06)
	GradCAM	GCN	340.88 (± 92.17)	0.46 (± 0.15)
	GNNExplainer	GCN	592.14 (± 31.33)	0.27 (± 0.19)
	GraphSVX	GCN	583.58 (± 23.15)	0.01 (± 0.03)
	ScoreCAM GNN	GCN	68.67 (± 7.01)	0.74 (± 0.04)

Table 6 :

 6 Summarization of properties fulfillment

		DeepLIFT GradCAM GraphSVX GNNExplainer ScoreCAM GNN
	stability					
	constrastiveness					
	completeness	∼	∼	∼	∼	∼
	soundness		x	x	x	
	compactness		x	x	x	
	simplicity		x	x	x	
	faithfulness	x	x	x	x	
	consistentness			x	x	

We denote here the sake of clarityI k = X • S(X L k )

We do not compare our results with those provide in[13, 48, 

[START_REF] Pope | Explainability Methods for Graph Convolutional Neural Networks[END_REF][START_REF] Baldassarre | Explainability Techniques for Graph Convolutional Networks[END_REF] since they have shown to produce similar results on this task.3 Note that, since GraphSVX does not provide enough high sparsity, we choose to remove it from the subjective evaluation.

Graph Attention Network

The Graph Attention Network (GAT) [START_REF] Veličković | Graph Attention Networks[END_REF] is an upgraded version of the GCN model which essentially differs during the aggregating step. The messaging passing scheme is defined as follows:

1. The spreading step between nodes vi and vj at the l -1 -th layer. For a regular GCN model, the spreading process is defined by:

where wi,j =

which is a non-parametric weight, it is fully determined by the graph topology.

For a GAT model, wi,j is a learning parameter. Firstly, we define the mapping r : R

where r is a mapping represented by a single layer feedforward neural network, then:

wi,j = exp(w i,j )

2. The aggregation step between node vi and its neighbors is a sum over V {i} ∪ {vi}.

3. The update step that yields h l i for node vi from m l i and h l-1 i is defined as follows:

where θ i,l ∈ R F l is a learning parameter vector.

Classifier architecture and performances

Note that following notations, features dimension F and number of classes C, are introduced in Table 7.

For the dataset BBBP, BACE, PROTEINS, classifiers were designed as follows 4 : [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF]) [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF])

GAT-based and for the dataset MNISTSuperpixel and REDDIT-BINARY, classifiers were designed as follows : [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF]) ↓ ReLU(GCN [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF]) ↓ ReLU(GCN [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF]) [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF]) ↓ ReLU(GAT [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF]) ↓ ReLU(GAT [START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF][START_REF] Jacovi | Aligning Faithful Interpretations with their Social Attribution[END_REF]) ↓ Concatenation[GAP,GMP] ↓ Linear(F, C) GAT-based 4 Global Average Pooling (GAP) are a projection to graph node space with a feature-wise averaging as node feature and Global Maximum Pooling (GMP) instead applies feature-wise maximum projection.