Ali Ahmadi

Krishnendu Chatterjee

Kafshdar Amir

Tobias Goharshady

Roodabeh Meggendorfer

Ðorđe Safavi

Žikelić

Amir Kafshdar Goharshady

Tobias Meggendorfer

Roodabeh Safavi

Algorithms and Hardness Results for Computing Cores of Markov Chains

Keywords: 2012 ACM Subject Classification Software and its engineering → Formal software verification; Theory of computation → Graph algorithms analysis Markov Chains, Cores, Complexity Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.36

come

Introduction

Markov Chains. Discrete-time Markov chains (MCs) are arguably the most classical and standard mathematical formalism for modelling randomness in discrete-time probabilistic systems [START_REF] Paul | Markov chains: from theory to implementation and experimentation[END_REF]. In a nutshell, Markov chains comprise a set of states and a transition function, assigning to each state a distribution over successors. The system evolves by repeatedly drawing a successor state from the transition distribution of the current state. This can, for example, model communication over a lossy channel, a queuing network, or populations of predator and prey which grow and interact randomly. Indeed, Markov chains are an important tool in many areas, such as computer science [START_REF] Baier | Principles of model checking[END_REF], biology [START_REF] Paulsson | Summing up the noise in gene networks[END_REF], epidemiology [START_REF] Gómez | Discrete-time Markov chain approach to contact-based disease spreading in complex networks[END_REF],

and chemistry [START_REF] Daniel T Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF], to name a few. As such, analyzing MCs is an important question, and a central component of many modern model checkers, such as Prism [START_REF] Kwiatkowska | PRISM 4.0: Verification of probabilistic real-time systems[END_REF] and Storm [START_REF] Dehnert | A storm is coming: A modern probabilistic model checker[END_REF].

Markov Chains over Control-flow Graphs. An interesting family of MCs in verification are those that are defined over the control-flow graph (CFG) of a program [START_REF] Asadi | Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth[END_REF], i.e. MCs in which the underlying graph, ignoring the probabilities, is a CFG. Such MCs can serve as formal semantics for simple probabilistic programs. They also appear naturally as a result of applying (statistical) branch prediction to a non-probabilistic program [START_REF] Smith | A study of branch prediction strategies[END_REF].

Markov Decision Processes.

Extending MCs with non-determinism leads to the standard notion of Markov decision processes (MDPs) [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF], which is the most common formalism for systems that exhibit both probabilistic and non-deterministic behavior. The non-determinism can model a wide variety of real-world phenomena such as the behavior of a controller, an unknown set of inputs, or simply abstractions made to ease the verification of the underlying system. Analysis of MDPs is a central topic in formal verification and model checking, see e.g. [START_REF] Ashok | Continuous-time Markov decisions based on partial exploration[END_REF][START_REF] Ashok | Value iteration for long-run average reward in Markov decision processes[END_REF][START_REF] Baier | Principles of model checking[END_REF][START_REF] Brázdil | Verification of Markov decision processes using learning algorithms[END_REF][START_REF] Chatterjee | Computational approaches for stochastic shortest path on succinct MDPs[END_REF][START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF].

Probabilistic Programs. Extending classical programs with the ability of generating random numbers by sampling from pre-defined distributions leads to the framework of probabilistic programs. Such programs have a wide variety of use-cases including in randomized algorithms [START_REF] Devdatt | Concentration of Measure for the Analysis of Randomized Algorithms[END_REF][START_REF] Motwani | Randomized algorithms[END_REF], stochastic network protocols [START_REF] Wagemaker | Concurrent NetKAT -modeling and analyzing stateful, concurrent networks[END_REF], blockchain protocols and smart contracts [START_REF] Chatterjee | Ergodic mean-payoff games for the analysis of attacks in crypto-currencies[END_REF][START_REF] Chatterjee | Probabilistic smart contracts: Secure randomness on the blockchain[END_REF][START_REF] Chatterjee | Quantitative analysis of smart contracts[END_REF], and robotics [START_REF] Pack Kaelbling | Planning and acting in partially observable stochastic domains[END_REF][START_REF] Kress-Gazit | Temporal-logic-based reactive mission and motion planning[END_REF]. Hence, they have been widely studied by the programming languages and verification communities [START_REF] Batz | Relatively complete verification of probabilistic programs: an expressive language for expectationbased reasoning[END_REF][START_REF] Benjamin | On the hardness of analyzing probabilistic programs[END_REF][START_REF] Mciver | Abstraction, Refinement and Proof for Probabilistic Systems[END_REF][START_REF] Chatterjee | Termination analysis of probabilistic programs through positivstellensatz's[END_REF][START_REF] Chatterjee | Non-polynomial worstcase analysis of recursive programs[END_REF][START_REF] Huang | Modular verification for almost-sure termination of probabilistic programs[END_REF][START_REF] Wang | Quantitative analysis of assertion violations in probabilistic programs[END_REF][START_REF] Chatterjee | On lexicographic proof rules for probabilistic termination[END_REF].

Probabilistic programs often have variables that can take integer or real values and their formal semantics are usually defined by an infinite-state MC, in absence of non-determinism, or an infinite-state MDP, in its presence [START_REF] Chatterjee | Termination analysis of probabilistic programs through positivstellensatz's[END_REF][START_REF] Wang | Cost analysis of nondeterministic probabilistic programs[END_REF][START_REF] Chatterjee | Non-polynomial worstcase analysis of recursive programs[END_REF].

Cores. Fixing a probability threshold ∈ (0, 1), an -core of a probabilistic system is a set of states that is left by a random run of the system with probability at most . Intuitively, when analyzing a large probabilistic system, one is interested in finding a core that is left with very low probability and then ignore the set of states that are outside this core, since it is unlikely that a real-world run of the system visits them. If the core happens to be much smaller than the original system, this simple idea can lead to huge improvements in the runtime of formal analyses. For example, suppose that we have applied branch prediction to a huge program and hence have probabilities associated to every transition in its CFG. By finding a small core, we can focus any static analysis on a set of lines of the program that actually matter, i.e. a set of lines that is left with low probability, and ignore the lines that are rarely or never encountered.

The concept of cores was introduced in [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF] for the quantitative analysis of MCs and MDPs. Considering classical objectives such as mean-payoff, discounted sums of rewards, and hitting probabilities, [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF] provided a partial-exploration framework that efficiently finds cores in large MDPs and then uses them to obtain not only a faster analysis, but also rigorous error bounds. An equivalent notion, called stochastic invariants, was introduced in [START_REF] Chatterjee | Stochastic invariants for probabilistic termination[END_REF] in the context of probabilistic programs and used in [START_REF] Chatterjee | Sound and complete certificates for quantitative termination analysis of probabilistic programs[END_REF] to obtain quantitative bounds on their probability of termination.

Hardness of Computing a Core. Based on the discussion above, it is natural to aim for algorithms that find the smallest possible core in a probabilistic system, be it an MC, an MDP or a probabilistic program. In the case of probabilistic programs, any non-trivial formalization of this problem is undecidable as a direct result of the well-known Rice's theorem [START_REF] Gordon | Classes of recursively enumerable sets and their decision problems[END_REF]. In the case of finite-state MDPs, given a threshold ∈ (0, 1) and an integer k, deciding whether the MDP has an -core of size k is an NP-complete problem [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF]. However, the same problem was open when it comes to MCs [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF], with neither efficient PTIME algorithms nor NP-hardness results provided so far.

Our Contribution. In this work, we consider the problem of finding an optimal -core in a finite-state discrete-time Markov chain and its decision variant, i.e. deciding whether an -core of size k exists. We obtain both hardness results and efficient algorithms:

In Section 3, we prove that the decision problem is NP-complete. This settles the complexity for MCs and answers the open problem posed in [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF]. We also show that the problem remains NP-hard even when limited to acyclic MCs with bounded degree.

We then focus on positive results and provide a PTIME algorithm in Section 4 that is applicable to MCs over control-flow graphs.

In summary, our results show that computing cores in MCs is NP-hard in general and even over the very limited family of acyclic MCs with bounded degrees. Hence, in practice, cores should be computed using partial-exploration algorithms, as in [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF], or other heuristics with no theoretical guarantees. However, in certain important use-cases, such as MCs over CFGs, we can compute an optimal core in PTIME. Notably, this is applicable to the problem of finding the core lines of a program given branch prediction data.

Preliminaries

We start by recalling the definitions of Markov chains and cores and fixing the notation that is used throughout this work.

Discrete Probability Distributions.

Given a finite set X, a probability distribution over X is a function δ : X → [0, 1] which satisfies the condition x∈X δ(x) = 1. We use D(X) to denote the set of all probability distributions over X.

Markov Chains (MCs).

A finite state Markov chain M = (V, v 0 , δ) is an ordered triple consisting of a finite set of states/vertices V , a designated initial state v 0 ∈ V and a probabilistic transition function δ : V → D(V), which, to each state in V assigns a probability distribution over its successor states. We define the set of edges of M as

E = {(v, v) ∈ V × V | δ(v)(v) > 0}.
= (V, v 0 , δ) is an infinite sequence of states ρ = (v 0 , v 1 , v 2 , . . .) such that δ(v i)(v i+1
) > 0 holds for each i ∈ N. Note that we require each infinite path to start in the initial state v 0 of the chain.

A Markov chain M admits a probability measure P M over the set of all infinite paths in the Markov chain [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]. For each measurable set O ⊆ V ω of infinite paths in M , we use Cores in Markov Chains. We now define the concept of cores in Markov chains which are the central object of study in this work. The notion of a core was originally defined in [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF].

P M [O]
Given a probability threshold ∈ [0, 1], an -core in a Markov chain M = (V, v 0 , δ) is a set of states C ⊆ V such that a random infinite path in the Markov chain exits C with probability at most . More formally,

P reach (V \C) ≤ .
For a natural number k ∈ N, we say that C ⊆ V is an (, k)-core if it is an -core of size at most k, i.e. |C| ≤ k.

While the main negative result of this work is a proof of NP-completeness of the decision problem on whether a Markov chain contains an -core of at most a given size for ∈ (0, 1), we also strengthen this result by showing that the problem remains NP-complete even on a restricted class of Markov chains. We now formally define these restrictions.

Acyclic Markov Chains with Bounded Degree. A Markov chain M = (V, v 0 , δ) naturally induces a directed graph G M = (V, E), where the vertex and the edge sets of the graph are defined by the set of states and the set of edges of the Markov chain. A Markov chain M is said to be acyclic if its induced graph G M is acyclic, with the exception of a self-loop at one vertex. Note that the graph G V cannot be completely acyclic, since it is a finite, directed graph and every state in a Markov chain must have at least one successor state for the probabilities of its outgoing edges to sum up to 1. Thus, a Markov chain must contain a proper cycle or a probability 1 self-loop. Therefore, acyclic Markov chains can be viewed as Markov chains whose induced graphs are "closest" to being acyclic, with the exception of a single probability 1 self-loop.

For a vertex/state v ∈ V , we define its outdegree to be the number of edges whose source

vertex is v, i.e. out(v) = |{u ∈ V | (v, u) ∈ E}|.
Similarly, the indegree of v is defined as the number of edges whose target vertex is v, i.e. in(v) = |{u ∈ V | (u, v) ∈ E}|. Together, we define the degree of a vertex v to be the total number of edges that are incident to v, i.e.

deg(v) = out(v) + in(v).
Finally, the maximal vertex degree of a Markov chain M is defined to be maximal degree of all its vertices, i.e. max v∈V deg(v).

In this work, we consider Markov chains which are both acyclic and have their maximal degree bounded by a constant. Hardness Results

In this section, we show that the problem of computing the size of a minimal -core in a Markov chain is NP-hard for any non-trivial value of the probability threshold , i.e. any that is not equal to 0 or 1. Formally, given ∈ (0, 1), we prove in Theorem 1 that the problem of deciding whether a Markov chain M contains an (, k)-core for a given Markov chain M and a core size k is NP-complete. This implies that the problem of deciding whether a Markov chain contains an -core of size exactly k is also NP-complete, since one may always enlarge an (, k)-core in order to obtain an -core that contains exactly k states and so the two problems are immediately reducible to each other.

In [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF], the authors proved NP-completeness of the problem for MDPs. However, it was hitherto not known whether computing cores of given size could be made more efficient in the case of Markov chains. This was left as an open problem in [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF]Remark 3.7]. Our Theorem 1 solves the open problem of [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF] and answers the posed question negatively. We conclude this section with Theorem 2, which shows that the problem of deciding the existence of a core of at most given size remains NP-complete even if we restrict it to acyclic Markov chains whose maximal vertex degree is at most 3.

Theorem 1 (Hardness of Finding a Core in an MC). For an ∈ (0, 1), let Core be the language defined as

(M, k) | M is a Markov chain that contains an (, k)-core .
Then, Core is NP-complete for any ∈ (0, 1).

Proof.

To prove that Core is contained in NP, note that the probability of reaching a given set of states in a Markov chain can be computed in polynomial time by reduction to a system of linear equations [START_REF] Baier | Principles of model checking[END_REF]. Hence, an (, k)-core can serve as its own witness of linear size. Thus, Core is in NP.

To prove that Core is NP-hard, we show a reduction from the Vertex-Cover problem which is a classical example of an NP-complete problem. Recall that, given an undirected graph G = (V, E) and k ∈ N, the Vertex-Cover problem is concerned with deciding if there exists a set of vertices K ⊆ V of size k such that each edge in E is incident to at least one vertex in K.

only if (M G,k , k G,k) ∈ Core .
In the sequel, we say that a sequence of vertices u 1 , . . . , u s in a Markov chain (M, v, δ)

form a chain of length s, if δ(u i)(u i+1) = 1 for each 1 ≤ i ≤ s -1. Construction of k G,k . We set k G,k := 2 + 3 • n 2 + k. Construction of M G,k . Fix an enumeration V = {v 1 , . . . , v n } of vertices in G. We construct the Markov chain M G,k = (V G,k , v G,k , δ G,k) as follows: The state set V G,k consists of 4
disjoint subsets which we refer to as layers (see Figure 1 for a visualization of layers): n 10 in green and edges of probability p3 = 1 n 50 in blue. The edge of probability -M from the initial state v G,k to the first state v 1 1 of the chain in the first layer is colored in purple. Finally, dotted edges depict the remaining edges to the state t in the fourth layer, which are introduced in order to ensure the probabilities of outgoing edges from each state sum up to 1.

F S T T C S 2 0 2 2
The first layer consists of the initial state v G,k of the Markov chain M G,k , as well as of

n 3 states v 1 1 , . . . , v 1 n 3 that form a chain of length n 3 .
The second layer consists of n chains where each chain has length 3

• n. For each 1 ≤ i ≤ n and 1 ≤ j ≤ 3 • n, we use v 2 i,j
to denote the j-th state along the i-th chain.

The third layer also consists of n chains where each chain has length 3 • n + 1. For each

1 ≤ i ≤ n and 1 ≤ j ≤ 3 • n + 1, we use v 3 i,j
to denote the j-th state along the i-th chain.

The fourth layer consists of a single state t.

In addition to transition probabilities defined by the chains specified above, the probabilistic transition relation δ G,k is defined as follows:

The last vertex in the chain in the first layer is connected to the vertex t in the fourth layer by an edge of probability

1, i.e. δ G,k (v 1 n 3)(t) = 1.
The initial state v G,k is connected to the first state of each chain in the second layer and each chain in the third layer by an edge of probability

p 1 = 1 n 3 , i.e. δ G,k (v G,k)(v 2 i,1) = δ G,k (v G,k)(v 3 i,1) = 1 n 3 for each 1 ≤ i ≤ n.
For each 1 ≤ i ≤ n, the last state in the i-th chain in the second layer is connected to the first states of all but the i-th chain in the third layer by an edge of probability

p 2 = 1 n 10 , i.e. δ G,k (v 2 i,3•n)(v 3 j,1) = 1 n 10 for each j = i.
For each edge (v i , v j) in graph G with i < j, the last state of the i-th chain in the second layer and the first state of the j-th chain in the third layer are connected by an edge of

probability p 3 = 1 n 50 , i.e. δ G,k (v 2 i,3•n)(v 3 j,1) = 1 n 50 .
The initial state v G,k is connected to the first state v 1 1 of the chain of length n 3 in the first layer by an edge of probability

-M where M = n • p 1 + (n -k) • (n -k -1) • p 1 • p 2 , i.e. δ G,k (v G,k)(v 1 1) = -M . By our choices of p 1 and p 2 , one can see that M ≤ 2 n 2 ≤ 1 n < since we assume that n > 1 > 1.
Vertex t in the fourth layer has a probability 1 self-loop, i.e. δ G,k (t)(t) = 1.

Finally, for each vertex for which the probabilities of outgoing edges do not sum up to 1,

we introduce an additional edge to t of the probability needed to make this sum equal to 1. This ensures that our construction of M G,k indeed yields a Markov chain. Correctness of reduction. To prove correctness of the reduction, it remains to show that

M G,k contains n 3 + 6 • n 2 + n + 2
(G, k) ∈ Vertex-Cover if and only if (M G,k , k G,k) ∈ Core . First, suppose that (G, k) ∈ Vertex-Cover and let K ⊆ V be a vertex cover of size k in G. Then, letting C = {v G,k , t} ∪ {v 3 i,1 , . . . , v 2 i,3n+1 | v i ∈ K} ∪ {v 2 i,1 , . . . , v 3 i,3n | v i ∈ K} defines an (, k G,k)-core in M G,k . Indeed, we have that |C| = 2 + k • (3 • n + 1) + (n -k) • 3 • n = 2 + 3 • n 2 + k = k G,
(M , k G,k)-core. Thus, it suffices to show that (MG,k , k G,k) ∈ Core M implies (G, k) ∈ Vertex-Cover .
To see this, note that

n 3 > k G,k = 2 + 3 • n 2 + k as we assume that n ≥ 4 and k ≤ n. Hence, no (, k G,k)-core in M G,k can contain the whole chain v 1 1 , . . . , v 1 n 3 and the probability of visiting a state in v 1 1 , . . . , v 1 n 3 that is not contained in a (, k G,k)-core is always equal to -M . Hence, any (, k G,k)-core in M G,k can be modified into an (, k G,k)-core
(n + 1) • p 1 > n • p 1 + (n -k) • (n -k -1) • p 1 • p 2 = M due to p 2 = 1
n 10 , we may conclude that the core must contain all states from at least n chains as otherwise the probability of leaving the core via an edge of probability p 1 would be at least (n + 1) • p 1 . Thus, the core must consist of v G,k , t and all states in exactly n chains. Finally, since the core is of size at and MG,k , for each chain in MG,k the probability of an edge from the initial state v G,k to the first state in the chain is equal to p 1 . Hence, since we assume that C contains exactly n chains and does not contain any states in the remaining n chains, the probability of leaving the core in exactly one step is n • p 1 . On the other hand, for each 1 ≤ i ≤ n, the probability of first entering the i-th chain in the second layer and then moving to a chain in the third layer that is not contained in C is at least:

most k G,k = 3 • n 2 + k + 2
(n -k) • p 1 • p 2 , if the i-th chain in the third layer is also contained in C; (n -k -1) • p 1 • p 2 , otherwise.
This is because C contains at most k chains in the third layer, and the last state in the i-th chain in the second layer is connected to the first states of all but the i-th chains in the third layer by an edge of probability p 2 . Therefore, as C contains at least n -k chains in the second layer, we conclude that the probability of leaving C is at least n

•p 1 +(n-k)•(n-k-1)•p 1 •p 2 = M ,
(M G,k , k G,k) ∈ Core implies (G, k) ∈ Vertex-Cover .
Let C be an (M , k G,k)-core in MG,k that satisfies the properties in the previous observations.

We use it to construct a vertex cover of size at most k in G and therefore prove Observation 6.

Observations 3 and 4 imply that C must contain v G,k , t and all states of exactly n chains of which at most k are in the third layer, such that for each 1 ≤ i ≤ n, C contains either the i-th chain in the second layer or the i-th chain in the third layer. Furthermore, by Observation 5 there does not exist an edge in MG,k of probability p 3 whose source state is in C but target state is not in C. But, by our construction of M G,k and MG,k , recall that we have an edge of probability p 3 from the last state in the i-th chain in the second layer to the first state of the j-th chain in the third layer if and only if i < j and (v i , v j) is an edge in G. For this not to be an edge whose source state is contained in C but target state is not contained in C, we must either have that the i-th chain in the second layer is not contained in C and therefore the i-th chain in the third layer is contained in C, or that the i-th chain in the second layer and the j-th chain in the third layer are both contained in C. Thus, for each edge (v i , v j) in G with i < j, the core C should contain at least one of the i-th chain in the third layer or the j-th chain in the third layer. Therefore, as a core must contain at most k chains in the third layer, defining

K = {i ∈ {1, . . . , n} | C contains the i-th chain in the third layer}.
gives rise to a vertex cover of size at most k in G. This concludes the proof.

Theorem 1 shows that the problem of deciding whether a Markov chain contains an -core of at most the given size k is NP-complete. Furthermore, Markov chains M G,k constructed in the proof of Theorem 1 are acyclic. This is because edges in M G,k only connect states from lower indexed layers to states in upper indexed layers, and the only cycle contained within a layer is a probability 1 self-loop at the state t in the fourth layer.

In the following theorem, we show that the Core problem remains NP-complete even if we restrict it to acyclic Markov chains that furthermore have maximal vertex degree of at most 3. Hence, even parametrizing Markov chains by the maximal vertex degree would F S T T C S 2 0 2 2

36:10 Algorithms and Hardness Results for Computing Cores of Markov Chains

not make the problem solvable in polynomial time, which indicates that the problem of computing cores of at most a given size is computationally a very challenging problem. While Theorem 2 generalizes the result of Theorem 1, the reason why we present them separately is that the construction in the proof of Theorem 2 is more complicated than that in Theorem 1.

To that end, we only note that the proof of Theorem 2 modifies the construction of Theorem 1 in a way which bounds the maximal vertex degree of M G,k , and we defer the details of this modification to Appendix A.

Theorem 2 (Proof in Appendix A). For an ∈ (0, 1), let Core * be the language defined as

(M, k) | M is an acyclic Markov chain of maximal vertex degree ≤ 3 that contains an (, k)-core .
Then, Core * is NP-complete for any ∈ (0, 1).

A PTIME Algorithm for Optimal Cores in MCs over CFGs

In this section, we provide a PTIME algorithm that, given a threshold ∈ (0, 1) and a

Markov chain M over the control-flow graph of a program P , outputs an optimal -core of M, i.e. an -core of minimum possible size. As mentioned in Section 1, MCs over CFGs are naturally obtained whenever (statistical) branch prediction is applied to a program. As such, finding a core in such MCs can directly help find a set of lines in the program that covers the vast majority of the runs and is left with very low probability. Any desired static analysis can then be limited to the lines in the core, leading to rigorous probabilistic bounds for the desired property. MCs over CFGs have also been studied in [START_REF] Asadi | Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth[END_REF].

Before presenting our algorithm, in Section 4.1 we first formally present a grammar for an imperative probabilistic programming language that can define both P and M at the same time. We then present our PTIME algorithm in Section 4.2.

Markov Chains Induced by Probabilistic Programs

Syntax Grammar. We consider a fragment of finite state first-order imperative probabilistic programs defined by the following grammar:

prog = atomic | if prob(p) prog else prog | while prob(p) do prog | prog ; prog (1)
In both the second and the third case, p ∈ (0, 1) is a probability parameter. The first case considers trivial programs that execute a single statement and immediately terminate.

The second case considers probabilistic if-branching, where the control-flow follows the if-branch and executes the first program with probability p, and it follows the else-branch and executes the second program with probability 1 -p. The third case considers a construct for probabilistic loops, where, in each iteration, the control-flow enters the loop and executes the inner-nested program with probability p upon which it returns to the loop entry, and it leaves the loop and terminates with probability 1 -p. Finally, the fourth case considers sequential composition of two programs, where the second program is executed upon termination of the first program.

In Markov chains induced by probabilistic programs, in addition to the initial state we also assume the existence of a designated terminal state. Thus, for the rest of this section, we slightly modify our definition of Markov chains in Section 2 and define them as tuples M = (V, s, δ, t), where the last element t ∈ V denotes the terminal state.

MCs induced by Probabilistic Programs. We now formally define how a probabilistic program generated by the above syntax grammar induces a Markov chain. Given a probabilistic program P , consider its parse tree according to the grammar. In order to define the Markov chain M P that is induced by P , we start by constructing a Markov chain associated to each leaf node in the parse tree and traverse the parse tree bottom-up in order to construct Markov chains associated to parent programs. The Markov chain M P associated to the probabilistic program P is then defined to be the Markov chain associated to the root program in the parse tree.

MCs for Leaves. The leaves of the parse tree are trivial atomic statements. A Markov chain associated to an atomic statement is defined via M atomic = (V atomic , s, δ atomic , t), where

The state space consists of two states V atomic = {s, t}, and the probabilistic transition function is defined via δ atomic (s

)(t) = δ atomic (t)(t) = 1.
Non-leaf nodes in the parse tree correspond to subprograms that are obtained either by probabilistic if-branching, probabilistic loops or sequential composition constructs. We consider each of the three cases and describe how a Markov chain associated to a parent node program is constructed from Markov chains associated to the children node programs.

Branching Nodes. Suppose that a parent node program is given by if prob(p) prog 1 else prog 2 ,

and let M 1 = (V 1 , s 1 , δ 1 , t 1
) and M 2 = (V 2 , s 2 , δ 2 , t 2) be the Markov chains associated to prog 1 and prog 2 , respectively. To construct the Markov chain associated to the parent node program, we introduce two new states s and t and consider M = (V, s, δ, t), where

V = {s, t} ∪ V 1 ∪ V 2 and δ : V → D(V) is defined via δ(s)(s 1) = p, δ(s)(s 2) = 1 -p, δ(v) = δ 1 (v) for each v ∈ V 1 \{t 1 }, δ(v) = δ 2 (v) for each v ∈ V 2 \{t 2 }, δ(t 1)(t) = δ(t 2)(t) = 1, and
δ(t)(t) = 1.
Intuitively

= (V, s, δ, t), where V = {s, t} ∪ V 1 and δ : V → D(V) is defined via δ(s)(s 1) = p, δ(s)(t) = 1 -p, δ(v) = δ 1 (v) for each v ∈ V 1 \{t 1 }, δ(t 1)(s) = 1, and
δ(t)(t) = 1.
Intuitively, the Markov chain M has initial state s from which a random infinite path either moves to the initial state s 1 of M 1 with probability p, or to the terminal state t of M with probability 1 -p where it stays indefinitely due to the probability 1 self-loop. Then, upon reaching terminal states t 1 of M 1 , a random infinite path moves to the initial state s of M with probability 1.

Sequential Composition Nodes.

Finally, suppose that a parent node program is

prog 1 ; prog 2 ,
and let

M 1 = (V 1 , s 1 , δ 1 , t 1) and M 2 = (V 2 , s 2 , δ 2 , t 2)
be the Markov chains associated to prog 1 and prog 2 , respectively. To construct the Markov chain associated to the parent node program, we introduce two new states s and t and consider M = (V, s, δ, t), where

V = {s, t} ∪ V 1 ∪ V 2 and δ : V → D(V) is defined via δ(s)(s 1) = 1, δ(t 1)(s 2) = 1, δ(t 2)(t) = 1, δ(v) = δ 1 (v) for each v ∈ V 1 \{t 1 }, δ(v) = δ 2 (v) for each v ∈ V 2 \{t 2 }, and
δ(t)(t) = 1.
Intuitively, the Markov chain M has initial state s from which a random infinite path with probability 1 moves to the initial state s 1 of M 1 . Then, upon reaching the terminal state t 1

of M 1 , it with probability 1 moves to the initial state s 2 of M 2 . Finally, upon reaching the terminal state t 2 of M 2 , it with probability 1 moves to the terminal state t of M where it stays indefinitely due to the probability 1 self-loop.

It is easy to see that the Markov chains obtained above are over the CFG of their corresponding program and that, conversely, any MC over a CFG can be obtained by a probabilistic program generated by our grammar.

PTIME Algorithm for Optimal Core Computation

We now present our polynomial time algorithm for computing the size of a smallest -core in a Markov chain induced by a probabilistic program generated by the syntax grammar in Equation [START_REF] Asadi | Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth[END_REF]. Given ∈ [0, 1] and a probabilistic program P that can be generated by the grammar in Equation (1), our algorithm first constructs its parse tree T P . It then performs dynamic programming on the parse tree. In particular, it traverses the parse tree bottom-up Then, once it has computed the sequence (a P [0], . . . , a P [|V P |]) for the root node program P , the algorithm can immediately conclude that the minimal size of an -core in P is

k min = min 1 ≤ k ≤ |V P | | a P [k] ≤ .
In what follows, we describe how our algorithm computes such a sequence for each program in the parse tree T P of P . We then prove the correctness of our algorithm and that it runs in polynomial time.

Dynamic Programming on the Parse Tree. The algorithm starts by computing the sequence (a P [0], a P [START_REF] Asadi | Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth[END_REF], . . . , a P [|V P |]) from each leaf node program P in the parse tree, upon which it traverses the parse tree bottom-up in order to compute the sequence for each node in the tree. We now describe the dynamic programming steps for each construct type in the syntax grammar:

Atomic statement at a leaf node. Recall that the Markov chain associated to an atomic statement is defined via M atomic = (V atomic , s, δ atomic , t) with V atomic = {s, t} and

δ atomic (s)(t) = δ atomic (t)(t) = 1.
Hence, its state space consists of 2 states and its sequence (a atomic [0], a atomic [START_REF] Asadi | Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth[END_REF], a atomic [START_REF] Ashok | Continuous-time Markov decisions based on partial exploration[END_REF]) is defined via

a atomic [k] =    1, k = 0, 1 0, k = 2
One can easily verify by inspection that each a atomic [k] is indeed the minimal probability with which a set of k states in M atomic may be left.

a prog [k] =    1, k = 0, 1 p•aprog 1 [k-2] 1-p•(1-aprog 1 [k-2]) , k ≥ 2
To see that this formula defines the minimal probability with which a set of k states in the Markov chain M prog of prog may be left, note that for any positive probability threshold > 0, an -core in M prog must contain the source state, the terminal state and the total of k -2 states in the Markov chain M prog 1 of prog

p • a prog 1 [k -2] • ∞ i=0 p • (1 -a prog 1 [k -2]) i = p • a prog 1 [k -2] 1 -p • (1 -a prog 1 [k -2])
.

Sequential
a prog [k] =    1, k = 0, 1 min j1,j2≥0,j1+j2=k-2 a prog 1 [j 1] + (1 -a prog 1 [j 1]) • a prog 2 [j 2] , k ≥ 2
To see that this formula indeed defines the minimal probability with which a set of k states in the Markov chain M prog of prog may be left, note that for any positive probability threshold > 0, an -core in M prog must contain the source state, the terminal state and the total of k -2 states in the Markov chains M prog 1 of prog 1 and M prog 2 of prog 2 . Thus, if we denote by j 1 and j 2 the number of these k -2 states that are contained in M prog 1 and M prog 2 , by the correctness of the algorithm for child node programs we conclude that the above formula minimizes the probability with which a set of k states in the Markov chain M prog of prog may be left.

Analysis of each case above and induction on the depth of the parse tree T P allows us to conclude the following theorem. Note that this immediately shows the correctness of our algorithm.

Runtime Analysis.

Let n = |M P | be the size of the Markov chain induced by a probabilistic program P . Note that our dynamic programming algorithm processes each node in the parse tree T P in O(n 2) time. Hence, as the size of the parse tree is linear in n, we conclude that the algorithm runs in O(n 3) time and therefore has polynomial runtime in the size of the underlying Markov chain. Moreover, note that the n in turn is linear in the size of the parse tree which is linear in the size of the program code.

Conclusion

An -core in a Markov chain is a set of states that is left by a random run with probability at most . In this work, we considered the problem of finding an optimal (smallest) -core in a given Markov chain M . For every ∈ {0, 1}, we proved that the problem is NP-hard.

Moreover, this NP-hardness is preserved even when we limit our instances to acyclic MCs with bounded degree 3. Our NP-hardness result answered an open problem posed by [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF].

We then showed that for Markov chains over control-flow graphs of structured programs, the problem can be solved in PTIME. In summary, our results demonstrate that there is no efficient algorithm for the general case of the problem unless P=NP, and hence practitioners should use sampling and partial-exploration algorithms with no theoretical guarantees of optimality, such as the one provided by [START_REF] Kretínský | Of cores: A partial-exploration framework for Markov decision processes[END_REF]. However, in the important special case of MCs over CFGs, a PTIME algorithm exists.

F S T T C S 2 0 2 2

or the third layer and that this happens with probability p 1 for each chain. Furthermore, this construction ensures that each state in the first layer has a vertex degree of at most 3.

Finally, due to the assumption that n > 1 √ 1-which is equivalent to < 1 -1 n 2 , we have that the probability of reaching v 1, * 2n from the initial state v 1, * 1 is at least

2n-1 i=1 (1 -p 1,i) > (1 - 1 n 2) 2n-1 ≥ 1 - 1 n 2 > ,
therefore an -core in M G,k must contain all states in the sequence v 1, * 1 , . . . , v 1, * 2n .

Extension of sequence lengths. Sequences in the second layer of M * G,k have length 4n, instead of length 3n as was the case in our construction of M G,k . As in the proof of Theorem 1, for each 1 ≤ i ≤ n and 1 ≤ j ≤ 4n, we use v 2 i,j to denote the j-th state along the i-th sequence. We note that in M * G,k these sequences do not form chains as the probabilities of transitions between successive states will not be 1, as we specify below.

Similarly, sequences in the third layer of M * G,k have length 4n + 1 instead of length 3n + 1 as was the case in M G,k and again they do not form chains. For each 1 ≤ i ≤ n and 1 ≤ j ≤ 4n + 1, we use v 3 i,j to denote the j-th state along the i-th sequence.

Redistributing transition probabilities p 2 in order to bound degrees. Recall, for each 1

≤ i ≤ n and each j = i, in M G,k we had an edge from v 2 i,3n to v 3 j,1 with δ G,k (v 2 i,3n)(v 3 j,1) = p 2 .
We now remove each such edge, and replace it with a new edge from v 2 i,j to v 3 j,i which has probability p 2,i,j . The new probabilities are defined as follows. For i = j, we set p 2,i,i = 0. Otherwise, we set p 2,i,1 = p 2 = 1 n 10 for each i > 1 and then for j = i and j > 1 we inductively define

p 2,i,j = p 2 j-1 l=1 (1 -p 2,i,l) .
For each 1 ≤ i ≤ n, we prove that each p 2,i,j ∈ [0, 1] by showing that each p 2,i,j < 1 n 9 by induction on j. Indeed, p 2,i,1 = 0 if i = 1 and p 2,i,1 = 1 n 10 < 1 n 9 if i > 1, as n ≥ 20. Then, for j > 1, by induction hypothesis we have

p 2,i,j = p 2 j-1 l=1 (1 -p 2,i,l) ≤ p 2 (1 -1/n) n = 1/n 10 (1 -1/n) n < 1/n 10 (1 -1/n) n-1 (1 -1/n) < e n 9 (n -1) < 1 n 9 .
Finally, for each v 3 i,j with j ≤ n, we set δ G,k (v 3 i,j)(v 3 i,j+1) = 1 -p 2,i,j .

This construction ensures that, once a random infinite path in M G,k reaches the first state v 2 i,1 of the i-th chain in the second layer, it is then equally likely to traverse the sequence v 2 i,1 , . . . , v 2 i,4n up to the j-th state v 2 i,j and then to move to the state v 3 j,i of the j-th chain in the third layer and that this happens with probability p 2 for each 1 ≤ j ≤ n with j = i. Furthermore, it ensures that the vertex degrees due to edges of probability p 2 from the second to the third layer do not exceed 3.

Redistributing transition probabilities p 3 in order to bound degrees. Recall, for each edge (v i , v j) in G with i < j, in M G,k we had an edge from v 2 i,3n to v 3 j,1 of probability δ G,k (v 2 i,3n)(v 3 j,1) = p 3 where p 3 = 1 n 50 .

F S T T C S 2 0 2 2 36:20 Algorithms and Hardness Results for Computing Cores of Markov Chains

We now remove this edge and replace them with a new edge from v 2 i,n+j to v 3 j,n+i of probability δ G,k (v 2 i,n+i)(v 3 j,n+i) = p 3,i,j . These probabilities are defined inductively via for each i < j for which (v i , v j) is an edge in G, with p 3,i,j = 0 whenever i ≥ j or when (v i , v j) is not an edge in G.

For each 1 ≤ i ≤ n, we prove that each p 3,i,j ∈ [0, 1] by showing that p 3,i,j < 1 n 49 by induction on j. Indeed, p 3,i,1 = 0 if (v i , v j) is not an edge in G and p 3,i,1 = p 3 = 1 n 50 < 1 Together with the splitting of edges of probability p 2 that we constructed above, this construction ensures that, once a random infinite path in M G,k reaches the first state v 2 i,1 of the i-th chain in the second layer, it either traverses the sequence v 2 i,1 , . . . , v 2 i,4n up to the j-th state v 2 i,j and then to move to the state v 3 j,i of the j-th chain in the third layer with probability p 2 for each j = i, or it traverses the sequence v 2 i,1 , . . . , v 2 i,4n up to the (n + j)-th state v 2 i,n+j and then to move to the state v 3 j,n+i of the j-th chain in the third layer with probability p 3 for each i < j such that (v i , v j) is an edge in G, or it traverses the sequence v 2 i,1 , . . . , v 2 i,4n up to the last state v 2 i,4n and then moves to the first state t * n+i in the fourth layer with remaining probability, as specified below.

n 49 if (v i , v j) is
Furthermore, the construction ensures that the vertex degrees due to edges of probability p 2 and p 3 from the second to the third layer do not exceed 3.

The single state t in the fourth layer of M G,k is replaced by a chain of 2n states t * 1 , . . . , t * 2n , with a probability 1 self-loop at t * 2n . For each 1 ≤ i ≤ n, the last state v 3 i,4n+1 of the i-th chain in the third layer is connected to t * i by an edge of probability 1. For each 1 ≤ i ≤ n, the last state v 2 i,4n of the i-th chain in the second layer is connected to t * n+i by an edge of

F

 Results for Computing Cores of Markov ChainsPaths in Markov Chains. An infinite path in a Markov chain M

 to denote the probability of a random infinite path in the Markov chain being an element of the set O. In particular, if T ⊆ V is a set of states, we use reach T to denote the set of all infinite paths in the Markov chain that visit at least one state in T , and use P M [reach T] to denote the probability of a random infinite path in the Markov chain reaching a vertex in T . When the Markov chain is clear from the context, we abbreviate the notation to P, P[O] and P[reach T].

Fix ∈ (0, 1)

 1 and consider an instance (G = (V, E), k) of the Vertex-Cover problem where n = |V | > 1 and n ≥ 4. In order to obtain our reduction, we construct an instance (M G,k , k G,k) of the Core problem where the Markov chain M G,k and natural number k G,k are both polynomial in the size of G and k and such that (G, k) ∈ Vertex-Cover if and

Figure 1

 1 Figure 1 The figure depicts an example of a Markov chain V G,k constructed in the proof of Theorem 1 for a graph G = (V, E) with V = {v1, v2, v3} and E = {(v1, v2), (v2, v3)}, and for an arbitrary value of k. Let n = |V | = 3. The states of the Markov chain V G,k are visually ordered in four layers. The first layer consists of the initial state v G,k and a chain of length n 3 = 27. The second layer consists of n = 3 chains, each of length 3 • n = 9. The third layer also consists of n = 3 chains, each of length 3 • n + 1 = 10. Finally, the fourth layer consists of a single state t. Edges induced by the probabilistic transition function are indicated by directed lines between states. Chain edges and all other edges of probability 1 are colored in black. Edges of probability p1 = 1 n 3 are colored in red, edges of probability p2 = 1n 10 in green and edges of probability p3 = 1 n 50 in blue. The edge of probability -M from the initial state v G,k to the first state v1 1 of the chain in the first layer is colored in purple. Finally, dotted edges depict the remaining edges to the state t in the fourth layer, which are introduced in order to ensure the probabilities of outgoing edges from each state sum up to 1.

 vertices and transition probabilities are of size polynomial in n, hence the size of M G,k is polynomial in the size of G and k.

Observation 4 .

 4 and it must contain v G,k and t, we conclude that at most k of these chains are from the third layer. This proves Observation 3. If MG,k contains an (M , k G,k)-core, then it also contains an (M , k G,k)core such that, for each 1 ≤ i ≤ n, the core contains either all states from the i-th chain in the second layer or all states from the i-th chain in the third layer.Let C be a set of states in MG,k that contains v G,k , t and all states of exactly n chains where at most k chains are in the third layer. Observation 3 implies that at least one core of such form exists whenever MG,k contains an (M , k G,k)-core. We show that, if C did not satisfy the property in Observation 4, then the probability of leaving C would strictly exceed M and thus it would not be an (M , k G,k)-core in MG,k . First, by our constructions of M G,k

 and for each subprogram P with associated Markov chain M P it computes a sequence of non-negative real numbers (a P [0], a P [1], . . . , a P [|V P |]), where |V P | is the number of states in M P and a P [k] = min ≥ 0 | M P contains an (, k)-core for each 0 ≤ k ≤ |V P |. In other words, the k-th entry in the sequence is the minimal probability threshold ≥ 0 with which a set of k states in the Markov chain M P may be left.

p 3 ,i,j = p 3 nl=1 (1 - 1 l=1 (1 -

 33111 p 2,i,l) jp 3,i,l)

3 nl=1 (1 - 1 l=1 (1 -

 3111 an edge in G as n ≥ 20. Then, for j > 1, by induction hypothesis we havep 3,i,j = p p 2,i,l) jp 3,i,l) ≤ 1/n 50 (1 -1/n) 2n = 1/n 50 (1 -1/n) 2n-2 (1 -1/n) 2 < e 2 n 48 (n -1) 2 < 1 n 49 .

probability 1 .

 1 Note that M * G,k contains n 3 +8n 2 +5n states and transition probabilities are of size polynomial in n, therefore M * G,k is polynomial in the size of G and k. Correctness of reduction. While our modified construction ensures that the maximal vertex degree in the constructed Markov chain M * G,k is equal to 3 and that M * G,k remains acyclic, it preserves the key properties of M G,k about probabilities of moving between different chains. Therefore, one can follow the sequence of observations in the proof of Theorem 1 and analogously prove correctness of this modified reduction. Due to the proofs being analogous, we omit the details.

0 2 2 36:8 Algorithms and Hardness Results for Computing Cores of Markov Chains To

 see this, observe that each edge between two successive states in a chain has probability 1, therefore if the whole chain is not contained in C then one may remove all states of that chain from C without increasing the probability of a random infinite path in MG,k leaving C. Hence, removal of such states from C gives rise to an (M , k G,k)-core. If MG,k contains an (M , k G,k)-core, then it also contains an (M , k G,k)core that consists of the initial state v G,k , the state t and all states of exactly n chains. Furthermore, at most k of these chains are contained in the third layer.Consider an (M , k G,k)-core in MG,k . The initial state v G,k is contained in the core as otherwise the probability of leaving the core would be 1 > M . Moreover, a random infinite path in MG,k reaches t with probability 1 so as M < 1 the state t must also be in the core. Hence, there are at most k G,k -2 = 3 • n 2 + k remaining states in the core. Now, by Observation 2, we may remove states of chains that are not fully contained in the core to obtain an (M , k G,k)-core whose remainder consists only of whole chains. Since

	that contains n 3 by removing all states from the chain. The set of states 1 , . . . , v 1 no state in the chain v 1 contained in this new core would give rise to an (M , k G,k)-core in MG,k . Conversely, a set of states that form an (Observation 3.

M , k G,k)-core in MG,k also form an (, k G,k)-core in M G,k . This proves Observation 1.

Observation 2.

If C is an (M , k G,k)-core in MG,k , then removing states of all chains in the second and all chains in the third layer that are not entirely contained in C also gives rise to an (M , k G,k)-core.

F S T T C S 2

chains have length 3 • n or 3 • n + 1 and 3 • n • (n + 1) > 3 • n 2 + k, the core must contain states of at most n chains. On the other hand, a random infinite path in MG,k leaves the core with probability at least p 1 for every chain not fully contained in the core. So as

 Due to the assumption that C contains all states of exactly n chains, it follows that for each 1 ≤ i ≤ n the set C should contain either the i-th chain in the second layer or the i-th chain in the third layer for the probability of leaving C not to exceed M . This concludes the proof of If MG,k contains an (M , k G,k)-core, then it also contains an (M , k G,k)core C for which there does not exist an edge in MG,k of probability p 3 whose source state is in C but target state is not in C.Suppose that MG,k contains an (M , k G,k)-core. Let C be an (M , k G,k)-core in MG,k which satisfies the properties in Observation 4. It follows from the proof of Observation 4 that the probability of a random infinite path in MG,k leaving C must be exactly M and that this probability is attained solely by taking edges of probabilities p 1 and p 2 . Hence, there may not exist an edge in MG,k of probability p 3 whose source state is in C but target state is not in C, which proves Observation 5.

	Observation 4.
	Observation 5.

with the equality attained if and only if there is no 1 ≤ i ≤ n for which both the i-th chain in the second layer and the i-th chain in the third layer are contained in C. Observation 6. If MG,k contains an (M , k G,k)-core then G has a vertex cover of size k. Hence, from Observation 1 we may conclude that

0 2 2 36:12 Algorithms and Hardness Results for Computing Cores of Markov Chains and

 , the Markov chain M has initial state s from which a random infinite path either moves to the initial state s 1 of M 1 with probability p, or to the initial state s 2 of M 2 with probability 1 -p. Then, upon reaching terminal states t 1 of M 1 or t 2 of M 2 , a random infinite path moves to the terminal state t of M and stays there indefinitely due to the probability 1 self-loop. let M 1 = (V 1 , s 1 , δ 1 , t 1) be the Markov chains associated to prog 1 . To construct the Markov chain associated to the parent node program, we introduce two new states s and t and consider M

Loop Nodes. Suppose that a parent node program is given by while prob(p) do prog 1 ,

F S T T C S 2

36:14 Algorithms and Hardness Results for Computing Cores of Markov Chains and

 prog 1 else prog 2 , and let (a prog 1 [0], . . . , a prog 1 [|V 1 |]) and (a prog 2 [0], . . . , a prog 2 [|V 2 |]) be the sequences that the algorithm has computed for the child node programs prog 1 and prog 2 in the parse tree T P . The algorithm then sets• a prog 1 [j 1] + (1 -p) • a prog 2 [j 2] , k ≥ 2To see that this formula indeed defines the minimal probability with which a set of k states in the Markov chain M prog of prog may be left, note that for any positive probability threshold > 0, an -core in M prog must contain the source state, the terminal state and the total of k -2 states in the Markov chains M prog 1 of prog 1 and M prog 2 of prog 2 . Thus, if we denote by j 1 and j 2 the number of these k -2 states that are contained in M prog 1 and M prog 2 , by the correctness of the algorithm for child node programs we conclude that the above formula minimizes the probability with which a set of k states in the Markov chain M prog of prog may be left. let (a prog 1 [0], . . . , a prog 1 [|V 1 |]) be the sequence that the algorithm has computed for the child node program prog 1 in the parse tree T P . The algorithm sets

	Probabilistic if-branching node. Consider now the parse tree node that corresponds to the
	probabilistic if-branching
	  prog = if prob(p) a prog [k] = 1,  min j1,j2≥0,j1+j2=k-2 p Probabilistic loop node. Next, consider the parse tree node that corresponds to the k = 0, 1
	probabilistic loop
	prog = while prob(p) do prog 1 ,
	F S T T C S 2 0 2 2

 1 . The algorithm starts each new loop iteration with probability p, and by the correctness of the algorithm for the root node program we know that in each loop iteration it leaves the set of k -2 states in M prog 1 with probability at most a prog 1 [k -2]. Hence, by summing up the geometric series, we conclude that a set of k states in the Markov chain M prog of prog may be left with probability at most

 decomposition node. Finally, consider the parse tree node that corresponds to the sequential composition prog = prog 1 ; prog 2 , and let (a prog 1 [0], . . . , a prog 1 [|V 1 |]) and (a prog 2 [0], . . . , a prog 2 [|V 2 |]) be the sequences that the algorithm has computed for the child node programs prog 1 and prog 1 in the parse tree T P . The algorithm sets

Theorem 3 .

 3 Let P be a probabilistic program generated by the syntax grammar in Equation (1) and let M P be the Markov chain induced by P with state space V P . Let (a P [0], . . . , a P [|V P |]) be the sequence that the algorithm computes for the program P . Then, for each 0 ≤ k ≤ |V P |, it holds that a

P [k] = min ≥ 0 | M P contains an (, k)-core .

A. Ahmadi, K. Chatterjee, A.K. Goharshady, T. Meggendorfer, R.

Safavi and Ð. Žikelić 36:15

Funding The research was partially supported by the Hong Kong Research Grants Council ECS Project No. 26208122, ERC CoG 863818 (FoRM-SMArt), the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385, HKUST-Kaisa Joint Research Institute Project Grant HKJRI3A-055 and HKUST Startup Grant R9272.

A Proof of Theorem 2

In Theorem 1, we showed that Core is contained in NP. Hence, as acyclic and the maximal vertex degree conditions may be checked in linear time, we conclude that Core * is also in NP.

To prove that Core * is NP-hard, we again show a reduction from the Vertex-Cover chain as the probabilities of transitions between successive states will not be 1.

Then, for each 1

where p 1,i and p 1,n+i are probabilities that are defined inductively as follows. For i = 1,

.

Then, connect the last state v 1, * 2n to the first state v 1 1 of the chain v 1 1 , . . . , v 1 n 3 of length n 3 by an edge with probability

so that the probability of reaching the chain of length n 3 from the initial state v 1, * 1 is equal to -M as in the proof of Theorem 1.

Finally, for each 1

, where t * 1 is the first state in the fourth layer that will be defined in what follows.

To prove that each p 1,i ∈ [0, 1], we show by induction on i that p 1,i < 1 n 2 . Indeed,

and for i > 1 by induction hypothesis we have

for n ≥ 20, where we use that (1 -1/x) -x+1 < e for x > 0.

The choices of probabilities ensure that a random infinite path in M * G,k is equally likely to traverse an edge from a state in the first layer to the first state of each chain in the second