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Two-dimensional Kinetic modeling of the power deposition in a coaxial ECR thruster IEPC

The electromagnetic power deposition drives the efficiency of Electron cyclotron Resonance plasma thrusters. The generation and heating of a plasma in a coaxial ECR thruster is investigated using a Particle in Cell model, which includes the self-consistent resolution of Maxwell's equations. The simulation domain includes a significant section of the magnetic nozzle to account for the bouncing motion of electrons. The model is scaled-down to reduce the computational cost, using two techniques: a reduced ion mass and a slower speed of light. The preliminary results show that a stable expanding plasma is formed, with a strong electron anisotropy in the coaxial source. As the electrons expand in the nozzle, the low energy particles are lost and only energetic trapped electrons remains. Future investigation will focus on the energy flux on the boundaries and the electromagnetic wave absorption in the volume.

I. Introduction

Electron Cyclotron Resonance thrusters are a type of electrodeless plasma thruster where radio-frequency power injected in a cavity heats up electrons and sustains a plasma. The use of a diverging static magnetic field then converts the electron kinetic energy in ion kinetic energy, thus ejecting a quasi-neutral plasma. The apparent simplicity of the device conceals a number of open questions. First, several topologies are possible for the cavity, but recently it has been found that a coaxial arrangement is superior to a classical waveguide cavity in terms of thruster efficiency or power coupling [START_REF] Peterschmitt | Impact of the Microwave Coupling Structure on an Electron-Cyclotron Resonance Thruster[END_REF]. In a coaxial source, power absorption routinely exceeds 80% and this is at odd with a simple view where a linearly polarized wave cannot couples more than 50% of this power due to the absorption of the right-hand polarized wave. Second, the operation of the thruster is more sensitive to the chamber background pressure than Hall effect thrusters [START_REF] Peterschmitt | Development of a Stable and Efficient Electron Cyclotron Resonance Thruster with Magnetic Nozzle[END_REF], [START_REF] Wachs | Effect of Background Pressure on Ion Dynamics in an Electron Cyclotron Resonance Thruster[END_REF]. This, in particular, is related to the self-polarization of the thruster in the chamber.

Answering these questions requires a deeper understanding of the plasma dynamics and power absorption in the coaxial cavity. As a first step, a global model was proposed in [START_REF] Cannat | Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model[END_REF], where the electromagnetic power is modeled as a source term for the electron energy equation. While it provided insight on the thruster performances at larger mass flow rate, it failed to account for the measured electron temperature at lower mass flow rate, which were the primary operation point. This was probably due to the assumption of isotropic electron temperature. Later a model tried to relax this assumption. The combination of an electrostatic and magnetic confinement confines the electrons, which undergo a bouncing motion along the magnetic field lines. Therefore, the electron heating in the ECR layer is similar to a random walk process [START_REF] Lieberman | Theory of electron cyclotron resonance heating. II. Long time and stochastic effects[END_REF]. A diffusion-like equation solved to compute the perpendicular electron energy distribution function [START_REF] Peterschmitt | A diffusion model in velocity space to describe the electron dynamics in an ECR plasma thruster with magnetic nozzle[END_REF]. This approach was able to explain qualitatively the ion energy in the thruster but could not explain the power absorption in the source. Subsequently, quasi-1D models were developed to account for the plasma source and the magnetic nozzle, along a flux tube, first with an imposed electromagnetic field [START_REF] Elias | Advances in the kinetic simulation of microwave absorption in an ECR thruster[END_REF] then with a selfconsistent wave propagation model [START_REF] Porto | Full-PIC Simulation of an ECR Plasma Thruster with Magnetic Nozzle[END_REF].

While these efforts are useful to gain a phenomenological understanding of the processes at work in the ECR thruster, they can provide at best a qualitative comparison to the experimental results. Quantitative model involves at least two-dimensional approaches. Recently, a 2D hybrid fluid-PIC model has been successfully developed to compute the power absorption and the plasma dynamics in the thruster and in the beginning of the magnetic nozzle [START_REF] Sánchez-Villar | Coupled plasma transport and electromagnetic wave simulation of an ECR thruster[END_REF]. In particular, this model showed that the power absorption is mainly located close to the internal conductor of the coaxial source, in agreement with experimental findings. It also showed that the plasma density decreases close to the internal conductor, thereby enabling wave propagation further downstream of the ECR region. While this result is an important first step in the understanding and modeling of the source, the hybrid model cannot account yet for some important phenomena, such as the electron anisotropy or the kinetic power absorption at resonance. Therefore, in parallel, this study seeks to obtain a fully kinetic description of the thruster source. Due to the computational cost of this approach, it cannot be seen as a practical tool to optimize the thruster. Instead, the goal of this model is, first, to confirm and expand the findings of previous theoretical models and of those of the hybrid-PIC simulations. Second, it is to analyze further the kinetic effects than cannot be accounted for in the fluid approximation. This paper will reports on the preliminary results obtained with this kinetic approach.

II.Insight from 1D simulations

As discussed above, in a previous study we have considered the simpler case of the plasma formed in a constant-flux magnetic field tube [START_REF] Porto | Full-PIC Simulation of an ECR Plasma Thruster with Magnetic Nozzle[END_REF], [START_REF] Hernandez | Kinetic Simulation of a Magnetized Plasma in an Electron Cyclotron Resonance Plasma Thruster with Magnetic Nozzle[END_REF]. By assuming that the plasma remains in this tube of varying section, the problem becomes one-dimensional. In this study, when a polarized microwave heated the plasma, we observed a large difference in the parallel and perpendicular electron energy, as shown in Figure 2. This difference is maximum in the coaxial chamber, where the plasma density was the largest, and decreased in the expanding nozzle. In parallel, the computation of the Poynting flux showed that power absorption occurred in the coaxial cavity over several millimeters. The thickness of the absorption layer was due to the Doppler broadening. Indeed, it appeared that the bouncing motion of electrons is critical to explain this broadening. Bouncing electrons streaming toward the thruster backplate reached the resonant condition at higher magnetic field, while electrons streaming downstream reached the resonant condition at lower magnetic field. These findings underline the important role played by the magnetic nozzle. It forms a potential well which confines the electrons and enables the energy transfer between the wave and the field. Therefore, in order to study the heating of the electrons in a two-dimensional setting, it is necessary to account for the bouncing motion of the electrons. For this reason, in this study we have chosen to model a significant portion of the magnetic nozzle, in addition to the coaxial source. 

III.Numerical method

A two-dimensional Particle-In-Cell code with a Monte-Carlo collision module is used to perform the simulation. The code, called Rhei, uses two level of parallelism [START_REF] Decyk | Particle-in-Cell algorithms for emerging computer architectures[END_REF]. The first level uses a geometric domain decomposition, which corresponds to the MPI processes used for the parallel computation. The second level uses a set of spatially localized particles lists that are processed in parallel using a multithreaded approach.

The code uses a Cartesian mesh, which can accommodates arbitrary boundaries using the immersed boundary method. This feature is useful to build a hierarchy of grids: the finer grid is where the particles live; and a set of increasingly coarser grids is also defined. This hierarchy of grids is used to solver the Poisson problem with a geometric multigrid method, performed in parallel [START_REF] Joppich | Multigrid Methods for Process Simulation[END_REF]. This method can achieve fast convergence rate, while retaining a good scalability. Typically, for a 2D problem with N unknowns and a given reduction factor 𝜖, multigrid methods requires 𝑂(𝑁) operations [13, p. 103].

For comparison, direct methods need 𝑂 (𝑁 5 2 ) operations, while iterative methods such as the Conjugate Gradient method usually require 𝑂(𝑁 3 2 ) operations. The other features of the code implement widely used methods and algorithms. Briefly, the interpolation function and particle shape functions are linear [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF]. The particle pusher uses the classical 2 nd order Boris pusher. Particles collisions against a prescribed static background are managed using the null-collision algorithm [START_REF] Nanbu | Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and cases[END_REF].

A. Method for field solve

A key point for the simulation is to model self-consistently the interaction of the plasma with the incoming microwaves. Some previous kinetic simulation of ECR sources, assuming a negligible plasma current, used a precomputed electromagnetic field which is modulated by the power absorbed by the plasma [START_REF] Takao | Three-dimensional particle-in-cell simulation of a miniature plasma source for a microwave discharge ion thruster[END_REF], [START_REF] Yamashita | Numerical investigation of plasma properties for the microwave discharge ion thruster μ10 using PIC-MCC simulation[END_REF]. This method avoids to solve for the full Maxwell equations. Only the electrostatic part can be retained and thus, one can make use of standard electrostatic PIC methods, with a time step controlled by the electron velocity. However, when the feedback of the plasma on the field is important, it is necessary to solve for the full set of Maxwell's equations. This comes with two penalties.

First, the time integration of Maxwell equations is usually done with implicit or explicit method. Implicit methods can use larger time steps, but come at the price of a greater computational complexity. Explicit methods are simpler to implement but need to satisfy a stability condition. For example, standard FDTD algorithms in 2D require that the computation CFL number be lower that 0.7. In this work, we have sought to overcome this limitation, while keeping the simplicity of explicit method, by making use of a semi-lagrangian algorithm detailed below.

Second, in theory, if the divergence equations are satisfied initially and the charge conservation equation is satisfied during the time integration, then the divergences equations remains valid [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF]Chap. 15]. If these conditions are satisfied, this means that there is no need to solve for the Poisson equation. In practice, standard deposition algorithms do not enforce the discrete charge conservation equation. As a consequence, after some time, the divergence equation is no longer valid. Two solutions exists to solve this issue. First, one can design charge-conserving current deposition algorithms, such as Esirkepov method [START_REF] Zh | Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[END_REF]. However, in these cases, special care must be taken when dealing with conducting boundaries. Another approach is to correct the field given by the integration of Maxwell-Ampère and Maxwell-Faraday equation to enforce the charge conservation. This is called the Boris correction method [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF] and this requires to solve for a Poisson equation.

In Rhei, the latter method is used, leveraging the good convergence rate of the multigrid method. First, the electri c and magnetic field are advanced in time using the CIP algorithm detailed below. Starting at iteration 𝑛, we compute a new value for the electric field 𝐸 * and magnetic field

𝐵 * 𝐸 𝑛 𝐵 𝑛 𝐽 𝑛+ 1 2 → { 𝜕 𝑡 𝐸 = 𝑐 2 ∇ × 𝐵 - 𝐽 𝜖 0 𝜕 𝑡 𝐵 = -∇ × 𝐸 → 𝐸 * 𝐵 * ( 1) 
Then, the Boris correction is applied. A modified volume charge density 𝜌 * is computed by subtracting to the volume charge density the divergence of the new electric field 𝐸 * . If the previous steps strictly enforced the charge conservation, the modified charge density 𝜌 * would be zero everywhere. However, because of local error in the numerical scheme, non-zero residual charge density exists. The field is corrected by solving a Poisson equation for this residual charge and correcting the resulting electric field.

𝜌 * = 𝜌 𝑛 -𝜖 0 ∇ ⋅ 𝐸 * → {Δ𝑈 = - 𝜌 * 𝜖 0 → 𝐸 𝑛+1 = 𝐸 * -∇(𝑈) 𝐵 𝑛+1 = 𝐵 * ( 2) 
In theory, this requires the solution of the Poisson equation at each iteration. In practice, it was found reasonable to perform the correction once every 5 iterations, without significant effect of the solution.

Finally, the current source terms, obtained by using bilinear shape functions, is smoothed using the classical binomial filter (10 passes with compensation) [START_REF] Vay | Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame[END_REF]. This cancels oscillations at the grid Nyquist frequency and dampens oscillations with wavelength lower than 4Δ𝑥.

B. Constrained interpolation Profile (CIP) algorithm

Briefly, the Constrained Interpolation Profile is a time domain semi-Lagangian method which has been developed to solve hyperbolic equations [START_REF] Takewaki | The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multidimensional hyperbolic equations[END_REF]. A key idea of the CIP method is to reconstruct the profile of the convected quantity using the field quantities and their derivative along the advection direction. This implies a penalty in terms of storage, but improves the accuracy of the discretization.

In the Constrained Interpolation Method, the time integration is split into an Eulerian phase, which integrates the nonadvective components of the equations, and a semi-Lagrangian phase which propagates the fields. Dimensional splitting is used for multi-dimensional problems. As a consequence, each subproblem can be seen as a one-dimensional hyperbolic system. For Maxwell's equations, the dimensional splitting enables to express the equations in a characteristic form [START_REF] Okubo | Analysis of an Electromagnetic Field Created by Line Current Using Constrained Interpolation Profile Method[END_REF]. For this purpose, we consider Maxwell's equation in cylindrical coordinates, including the plasma current and electric and magnetic conductivities:

𝛁 × 𝑬 = - 𝜕 𝜕𝑡 𝑩 -𝜎 𝑚 𝑩 𝜇 𝛁 × ( 𝑩 𝜇 ) = 𝜎𝑬 + 𝜖 𝜕 𝜕𝑡 𝑬 + 𝑱
For the axial propagation, the advection equations for the characteristics are given by:

𝑃 ± = 𝐸 𝑟 ± 𝑐𝐵 𝜃 𝑄 ± = 𝐸 𝜃 ∓ 𝑐𝐵 𝑟 𝜕𝑃 ± 𝜕𝑡 ± 𝑐 𝜕𝑃 ± 𝜕𝑧 = -𝜅𝑃 ± 𝜕𝑄 ± 𝜕𝑡 ± 𝑐 𝜕𝑄 ± 𝜕𝑧 = -𝜅𝑄 ±
Thus, 4 characteristics propagate longitudinally. The coefficient 𝜅 lumps the effect of the conductivity 𝜎 and the articifial magnetic conductivity 𝜎 𝑚 , which are used only when absorbing layers are needed. For the radial propagation, the equations are cast in a slightly different form, for reasons that will be discussed below. Similarly, 4 characteristics propagate radially:

𝑅 ± = 𝐸 𝑧 ± 𝑍 𝑟 𝑗 (𝑟𝐵 𝜃 ) 𝑆 ± = 1 𝑟 𝑗 (𝑟𝐸 𝜃 ) ± 𝑐𝐵 𝑧 𝜕𝑅 ± 𝜕𝑡 ± 𝑐 𝜕𝑅 ± 𝜕𝑟 = -𝜅𝑅 ± 𝜕𝑆 ± 𝜕𝑡 ± 𝑐 𝜕𝑆 ± 𝜕𝑟 = -𝜅𝑆 ±
Note that the CIP method also requires similar advection equation for the derivative along the propagation axis. These are obtained by derivation of the above equations. One of the advantage of considering the characteristic form of the Maxwell's equations is the natural treatment of boundary conditions. Non-reflecting boundary conditions are enforced by simply setting the incoming waves to zero. Similarly, input boundaries are enforced by setting the incoming characteristics.

The other main advantage of the CIP method is its ability to overcome the time-step limitation commonly found in standard FDTD method, while remaining mainly explicit. For example, the 2D planar Yee algorithm frequently used in PIC code, this limitation appears as a necessary stability condition for the Courant-Friedrichs-Lewy (CFL) number 𝜈 = 𝑐Δ𝑡 Δ𝑥 ⁄ ≤ 2 -1 2 ⁄ ≃ 0.7 The semi-lagrangian phase of the CIP method enables to use larger time-steps. This features, has been demonstrated in [START_REF] Porto | Full-PIC Simulation of an ECR Plasma Thruster with Magnetic Nozzle[END_REF], [START_REF] Porto | Axisymmetric Electromagnetic Wave Propagation Computation Using the Constrained Interpolation Profile Scheme With Large Time Steps[END_REF], where CFL numbers greater than 1 were used. In this work, the computations are performed with a CFL 𝜈 = 1. While greater value are possible in theory, insufficient testing of the algorithm with larger CFL values have led us to restrict our investigation to 𝜈 = 1. Nevertheless, this represents roughly a speedup of 1.3 compared to the explicit Yee method. Finally, a special treatment is needed in axisymmetric geometry. The radial terms prevent the splitting between a purely advective phase and the eulerian phase. The workaround is to consider the radial propagation as a propagation in a graded medium, with a local impedance that depends on the radius. When the characteristics cross the boundary between two neighboring cells, a fraction of the wave is reflected while the remaining is transmitted. This approach has been described in [START_REF] Tanaka | Computation of Lightning Electromagnetic Pulses With the Constrained Interpolation Profile Method in the 2-D Cylindrical Coordinate System[END_REF] and further extended to cases with larger CFL in [START_REF] Porto | Axisymmetric Electromagnetic Wave Propagation Computation Using the Constrained Interpolation Profile Scheme With Large Time Steps[END_REF].

C. Simulation domain

The computational domain includes a coaxial chamber and the first part of the magnetic nozzle, as shown in Figure 1. The antenna has a radius 𝑅 𝑎 and the outer conductor has a radius 𝑅 𝑜𝑢𝑡 . The length of the coaxial cavity is 𝐿 𝑐 . Because of the simulation cost, only a limited part of the nozzle is simulated. The bouncing motion of the electrons is recovered by using a special boundary condition proposed in [START_REF] Andrews | Fully kinetic model of plasma expansion in a magnetic nozzle[END_REF] that reinjects those electrons that are below a certain energy threshold necessary to equate the ion and electron flow in the nozzle.

D. Particle boundary condition

Particles (electrons or ions) that reach the thruster conducting walls (antenna and outer cylinder) are removed from the simulation. As a first step, secondary emission processes are not included, although the code can implement either constant coefficient secondary emission or energy dependent models such as the one of Vaughan [START_REF] Villemant | Modélisation et caractérisation expérimentale de l'influence de l'émission électronique sur le fonctionnement des propulseurs à courant de Hall[END_REF], [START_REF] Vaughan | A new formula for secondary emission yield[END_REF]. Particle crossing the axis are reflected back in the simulation domain. Ions reaching the downstream boundary are removed from the simulation. Finally, electrons reaching the downstream boundary are either removed or reinjected in the simulation domain, depending on their kinetic energy. If 𝑚 𝑒 𝑣 2 > 𝑒𝑉 ∞ , the electron has a kinetic energy sufficient to overcome the remaining potential barrier in the nozzle. Consequently, it is removed from the simulation. Otherwise, the electron is reinjected with a velocity such that the magnetic moment 𝜇 is conserved. If 𝒗 = 𝑣 ∥ 𝒃 + 𝒗 ⊥ is the velocity prior to the reflection, where 𝒃 is the unit vector tangent to the magnetic field at the particle position, 𝑣 ∥ is the parallel component and 𝒗 ⊥ is the perpendicular velocity, the reflected electron velocity is given by 𝒗 * = -𝑣 ∥ 𝒃 + 𝒗 ⊥ . 

E. Field Boundary conditions

Electrostatic boundary conditions

The potential of the antenna is arbitrarily set to 0V. The outer conductor can float to a voltage 𝑈 𝑓 with respect to the antenna. Its capacitance with respect to the reference is 𝐶 𝑓 . The time evolution of the floating voltage is 𝑈 ̇𝑓 = 𝐼 𝑓 /𝐶 𝑓 , where 𝐼 𝑓 is the total current collected on the outer cylinder. The downstream boundary uses a Robin boundary conditions, as recently proposed by Andrews and coworkers [START_REF] Andrews | Fully kinetic model of plasma expansion in a magnetic nozzle[END_REF]. The potential at infinity 𝑈 ∞ is governed similarly by considering a capacitance 𝐶 ∞ between the antenna and the far-field. This in fact models the charging of the thruster when charged particles are ejected. Initially, when fast electrons are collected downstream, the potential at infinity will drop, repelling more and more electrons and attracting ions. The potential reach a steady value when the ion and electron fluxes are balanced.

Finally, the charging of the dielectric backplate is modeled as a thin planar capacitor. Indeed, the surface potential along the backplate can vary with the radius, depending on the local particle flux. To account for this non-uniform charging while avoiding to mesh the dielectric volume, the backplate is approximated as a thin capacitor. Using Gauss law on an infinitesimal volume on the dielectric interface, as shown in Figure 5 𝜖 0 𝐸 𝑛 -𝜖𝐸 𝑛 ′ = 𝜎(𝑟) Which translates to a Robin boundary, taking into account the local surface charge 𝜎(𝑟). For a boundary with a normal along the z axis, this reads:

-𝜖 0 𝜕𝑈 𝜕𝑧 + 𝜖 ℎ 𝑈 = 𝜎 + 𝜖 ℎ 𝑈 𝑟𝑒𝑓

Electromagnetic boundary conditions

Thruster walls are modeled as perfect electric conductors. This means that we enforce a purely normal field on the walls, canceling out the tangential electric field 𝐸 𝑡 = 0. Microwaves are injected through the backplate by setting the forward propagating characteristic 𝑃 + as a TEM mode. More precisely, the 𝑃 + wave is initialized such as:

𝑃 + (𝑟, 𝑧 = 0, 𝑡) = 𝐸 0 𝑅 𝑎 𝑟 cos(𝜔𝑡) + 𝑐𝐵 0 R a 𝑟 cos(𝜔𝑡)
Where 𝑐𝐵 0 = 𝐸 0 . The magnitude of the wave is set by integrating the Poynting vector of the section of the coaxial cavity and taking the time-average to get the input power 𝒫 at the cavity power inlet.

𝐸 0 = √ 𝜇𝑐𝒫 𝜋𝑅 𝑎 2 ln (𝑅 𝑜𝑢𝑡 𝑅 𝑎 ) ⁄
The backward propagating characteristic 𝑃 -is freely updated from the backaward wave coming from the domain. This enables to compute the reflected power. For the downstream boundary, the outgoing characteristics from the downstream boundaries is consistently updated from the domain, while the incoming characteristics are set to zero. In addition, a perfectly matched layer a few cells in width absorbs the outgoing wave before the boundary, making use of an artificial electric conductivity 𝜎 and magnetic conductivity 𝜎 𝑚 . Finally, a symmetry condition is applied along the axis, as discussed in [START_REF] Porto | Axisymmetric Electromagnetic Wave Propagation Computation Using the Constrained Interpolation Profile Scheme With Large Time Steps[END_REF].

F. Validation

The different components of the code are validated using different available benchmarks. The capacitive discharge benchmark of Turner [START_REF] Turner | Simulation benchmarks for low-pressure plasmas: Capacitive discharges[END_REF] was used to check the collision module. The integration of the Maxwell solver was check by extracting the dispersion relations in a magnetized plasma (in 1D) and comparing the results to the theoretical cold plasma dispersion relations, as shown in Figure 6. Finally, the 2D particle pusher and Poisson solver was checked using a benchmark modeling the coulombian expansion of a cylindrical electron beam [START_REF] O'connor | A Set of Benchmark Tests for Validation of 3-D Particle in Cell Methods[END_REF].

G. Acceleration method

The kinetic simulation of the ECR thruster involves significantly different timescales. The smallest timescale is given the CFL condition. In effect, if Δ is the mesh size and 𝑐 is the velocity of light, then the timestep is Δ𝑡 = Δ 𝑐 ⁄ . The largest timescale corresponds to the time necessary to reach a steady-state, which requires a couple of ion transit times. Thus the simulation duration 𝑇 is 𝑇 = 𝐿/𝑉, where 𝐿 is the characteristic length of the domain and 𝑉 is the characteristic ion velocity. This velocity can be estimated as the acoustic ionic velocity. Finally, one can decide to set Δ as the Debye length for the largest plasma density expected in the simulation. Hence, the number of iterations required to reach a steady-state is :

𝑁 = 𝑇 Δ𝑡 = 𝐿 Δ 𝑐 𝑉 Setting : Δ ∼ 𝜆 𝐷 = √ 𝜖 0 𝑘𝑇 𝑒 𝑒 2 𝑛 𝑚𝑎𝑥 and 𝑉 ∼ √ 𝑘𝑇 𝑒 𝑀
Recalling that the speed of light is given by 𝑐 = 1 √𝜇 0 𝜖 0 ⁄ , we can express the estimate of the number of iteration as:

𝑁 ∼ 𝐿 𝜖 0 𝑘𝑇 𝑒 𝑒 √ 𝑛 𝑀𝑎𝑥 𝜇 0 √𝑀 ( 3) 
In addition, we can estimate the number of particles and the time for a single particle cycle. For a domain length L, the number of cells scales as 𝑁 𝑐 ∼ 𝐿 2 𝜆 𝐷 2 ⁄ . Taking, as an estimate, 20 particle per cell and a particle cycle time 𝛿𝑡 = 20 ns/part/timestep (assuming a perfect parallel scaling as the number of particles grows), the simulation time is simply 𝑇 𝑠𝑖𝑚 = 20 𝑁 𝑐 𝛿𝑡𝑁. Now, as discussed above, we need to include a portion of the magnetic nozzle to account for the bouncing motion of the electrons. For this reason a length 𝐿 ∼ 10 cm is a reasonable guess. From these hypotheses, the first two lines in Table 1 give the number of iteration and simulation time for two plasma densities. With no acceleration, the simulation time is too large. Let us not here that the estimate for 𝛿𝑡 is crude. However, it provides a reasonable upper bound for the total time. For this reason, acceleration techniques are employed. In this work, we use a common technique which is to reduce the ion mass. Instead of a Xenon mass of ∼ 133 amu, we scale down the mass by a factor of 100. This provides already a significant speed up in the simulation time, as shown in lines 3 and 4 of the table below. Note that in that case, to maintain the same ion Larmor radius, the static magnetic field seen by the ion is scaled up by the same factor. In addition, we scale up the vacuum magnetic permeability 𝜇 0 by two order of magnitude. In effect, this is equivalent to decreasing the speed of light by a factor 10. Finally, although denser simulation are still too costly, this scaling enables to tackle low-density simulations. As a check of the effect of the decrease of the speed of light, we compared the dispersion relation obtained in a non-scaled 1D simulation and a scaled simulation, as shown in Figure 6. The scaled simulation retrieve the same features than the nonscaled one. The simulation reproduces the same theoretical dispersion curves (ordinary wave and extraordinary wave), obtained with the scaled or non-scaled value for the speed of light. Finally, let us note that slowing down the speed of light changes the wavelength 𝜆. In vacuum, the dispersion relation is 

𝜔 𝐸𝑀 𝑐 ⁄ = 2𝜋 𝜆 ⁄ ,

IV.Preliminary results

Simulation parameters

The simulation parameters are detailed in the tables below. For the collisions of the electrons with a static background, three processes are modeled: elastic, excitation and ionization (Table 6). For the ions, only elastic collisions are modeled through two different scattering pathways: isotropic and backward. The static neutral density is constant in the coaxial chamber, and exponentially decreases ith a characteristic length L in the nozzle.

Initially, the coaxial cavity is loaded with a neutral plasma, where ions are cold and the isotropic electron temperature is 𝑇 𝑒 = 3 eV. The number of particles per cell is constant, resulting in a 1/𝑟 decrease of the plasma density as the radius increases. The initial microwave power is increased to sustain the plasma during the transient phase. As ionization picks up, the power is gradually decreased until it reaches a steady-state (Table 5).

Time evolution of the fluxes and plasma distribution

The time evolution of the number of particles and boundary fluxes is given in Figure 7. A steady state is achieved after approximately 8000 wave cycles. The ion and electron fluxes on the boundaries reach an equilibrium. The particle fluxes across the different boundaries are shown in Table 7. The divergence of the magnetic field confines the plasma in the coaxial chamber. The outgoing flux represents two-third of the total particle losses. The remaining losses are on the backplate. Note that the flux on the antenna remains small in this configuration. In addition, the particle flux informs on the current crossing each boundary. The power flux informs on the power loss, but has not been extracted yet from the simulation. Momentum transfer [START_REF] Hepner | Wave-driven non-classical electron transport in a low temperature magnetically expanding plasma[END_REF] Excitation (lumped level) [START_REF] Carbone | Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial[END_REF] Ionization [START_REF] Carbone | Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial[END_REF] Ion collision cross section [START_REF] Piscitelli | Ion mobilities in Xe/Ne and other rare-gas mixtures[END_REF] Isotropic Bacward field lines. In particular, in the source, the electrons does not fill the whole volume. The outer boundary follows the magnetic field line that intersects the outer conductor. In addition, the electron number density decreases close to the antenna. Ions, having larger Larmor radii, are less bound to the field lines, but the ambipolar electric field maintains a quasineutral plasma where the density is large enough. Deviation from the quasi-neutrality occurs near the source walls, as shown in Figure 10. In Figure 9, the instantaneous electric field in the domain is shown. The radiation pattern of the coaxial port appears as field modulation in the nozzle region. In the source, one notice a strong axial component close to the backplate, corresponding to the sheath formed here. Similarly, an ion-repelling field builds up close to the antenna. This is so because, in the absence of anomalous cross field diffusion, the nearly tangential magnetic field prevent electrons from reaching the antenna. Ions, however, are less influenced by the confining magnetic field. Thus, heavier ions impacting the antenna build up its charge. This results in a positive radial electric field in this region.

Electron distribution anisotropy

The velocity distribution and the electron energy distribution close to the axis, where the magnetic field is mostly axial, are shown in Figure 11 and Figure 12. In the source (x=1 cm), the electron distribution is anisotropic. The resonant wave absorption preferentially heats the perpendicular component of the kinetic energy. As we move along the thruster axis, there is a depletion of electrons of low energy. This is due to the combined effect of the mirror force due to the diverging magnetic field and the time-average potential that attracts electrons to the backplate. [START_REF] Hernandez | Kinetic Simulation of a Magnetized Plasma in an Electron Cyclotron Resonance Plasma Thruster with Magnetic Nozzle[END_REF]. 

Discussion

The results of this PIC simulation could provide a wealth of information that is yet to process. In particular, we will focus on the energy fluxes on the walls, ionization dynamics and electromagnetic power flow in the chamber. The preliminary data presented in this paper illustrate several key phenomena observed in the 1D simulation: the large temperature anisotropy in the source and the depletion of low energy electrons in the nozzle. They also show the peculiar shape of the plasma in the source: the outer boundary of the plasma follows closed the magnetic field line that intersect the edge of the outer conductor. The ion density profile on the backplate, seen in Figure 10 (z=0), is zero beyond r=10 mm. This means that no particle flux impinges the outer ring of the backplate such as r>10 mm. This explains the particular feature observed experimentally on the backplate. The darker coloration seen in Figure 13 corresponds to sputtered material redeposited on the backplate. The clear disk at the center marks the zone where the plasma impinges the backplate. The ion flux continuously clean the material, hence the absence of sputtered material.

Finally, it is worth discussing the limitation of this approach. First, the scaling used to reduce the simulation time impacts the shape of the electromagnetic field line in the source. In the scale simulation, the wavelength is 1,24 cm, while it is 12,4 cm in the non-scaled system. Such a small wavelength results in several electric field peaks along the antenna, whereas only one should be observed with the real wavelength (at the tip of the antenna). This can alter the wave propagation in the source. Second, only low density plasma have been simulated (peak density 𝑛 𝑒 ∼ 5 × 10 9 cm -3 . In this regime, the ratio of the plasma pulsation to the electromagnetic pulsation is 𝜔 𝑝 𝜔 𝐸𝑀 ⁄ = 0.26. This means that the wave propagate in an under-dense plasma with weak absorption and reflection. Overdense plasma propagation would require at least a four-fold increase in the peak plasma density. Third, the model misses several important physical processes. Although in its present form, this simulation does not seek to reproduce experiments, improving the model representativeness will require to account for these processes : electron and ion induced secondary emission on the backplate, anomalous transport in the coaxial chamber and in the plume [START_REF] Hepner | Wave-driven non-classical electron transport in a low temperature magnetically expanding plasma[END_REF].

V. Conclusion

The Electromagnetic PIC model proposed in this work seek to model the microwave power absorption in a coaxial ECR thruster. For this purpose, we have developed a cylindrical semi-lagrangian Maxwell solver which enables to use larger CFL number while keeping a complexity level on par with explicit method. This solver, coupled with a parallel multigrid solver used to enforce the divergence equation, is used to model the plasma formation and expansion in the coaxial cavity and a significant portion of the magnetic nozzle. Two accelerations techniques are used to speedup the computation: a reduced ion mass, and a reduction of the speed of light. The simulation of the plasma formation is achieved in an under-dense regime. With the simulation conditions chosen, two-third of the plasma current flows through the nozzle. The results confirms some experimental findings regarding the shape of the plasma in the coaxial source. In addition, they show that the microwave preferentially heats electrons in the perpendicular direction. As they expand in the nozzle, only higher energy electrons remain trapped. Future work will seek to further expand on these preliminary findings. In particular, we will focus on the power transfer from the wave to plasma and the power losses channels (walls, collisions).
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 1 Figure 1 -Plasma density in a magnetic field tube [8], [10].
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 23 Figure 2-Parallel and perpendicular electron energy profile along the flux tube axis. The electromagnetic wave enters from the left
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 4 Figure 4-Computational domain. The dimensions are given in Table 2
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 5 Figure 5-Model for a thin dielectric on the backplate. The surface charge 𝝈 builds up due to particles impact on the dielectric.

Figure 6 -

 6 Figure 6-Dispersion relation in a magnetized plasma, 𝝎 𝒃 𝝎 𝒑 ⁄ = 𝟏. 𝟑𝟐, 𝝀 𝑫 𝚫𝒙 ⁄ = 𝟏. 𝟔𝟏. The left column shows the dispersion curves for 𝝁 𝒓 = 𝟏 (simulation speed of light equal to the true speed of light in vacuum 𝒄 𝟎 ), while the right column shows the dispersion curves for 𝝁 𝒓 = 𝟏𝟔 ( simulation speed of light equal to 𝒄 𝟎 𝟒 ⁄ ). The dashed lines are the cold-plasma dispersion relations, computed with the simulation speed of light.
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 8 Figure 8 -Cross-section of the particle number density, at 𝒕 𝑻 𝑬𝑴 ⁄ = 𝟖𝟓𝟎𝟎: top half for the ions, bottom half for the electrons. A factor 10 9 needs to be applied to retrieve the dimensional number density (in m -3 ). The static magnetic field lines are shown in white.
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 9 Figure 9-Cross section of the electromagnetic fields at 𝒕 𝑻 𝑬𝑴 ⁄ = 𝟖𝟓𝟎𝟎. Top half : Axial electric field Ez. Bottom half : radial electric field.

Figure 8

 8 Figure8shows the particle number density obtained when the steady state is reached. The maximum density is in the coaxial density, where most of the ionization takes place. The electron number density follows closely the magnetic
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 7 Figure 7-Time evolution of the particle number (top), the particles boundary fluxes (middle) and 𝑼 ∞ (bottom). The time is normalized by the microwave period 𝑻 𝑬𝑴 = 𝟏 𝒇 𝑬𝑴 ⁄

Figure 10 -

 10 Figure 10 -Electron and ion number density cross section in the source. Red curve for the ion, blue for the electrons.
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 11 Figure 11-Electron velocity distribution function at three axial locations. The electron population is sampled from a volume of 1 cm 2 (1 cm axial length, 1 cm radius). The velocities are normalized to the simulation
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 12 Figure 12 -Electron parallel and perpendicular energy distributions at three locations along the axis. The distributions are normalized.
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 13 Figure 13 -Picture of the backplate of an ECR thruster after several hours of operations

Table 1 -Runtime estimates for a 2D PIC simulation of the ECR including the magnetic nozzle.

 1 

	Maximum	Iterations N	Number of particles	Simulation	Comment
	plasma density nmax [cm -3 ] 10 11	[iteration] 1.5 × 10 9	𝑁 𝑝 = 20𝑁 𝑐 [1] ~3 × 10 8	time 𝑇 𝑠𝑖𝑚 500 years	
	10 9	1.5 × 10 7	∼ 3 × 10 6	180 days	
	10 11	1.5 × 10 8	~3 × 10 8	50 years	Reduced ion mass
	10 9	1.5 × 10 7	∼ 3 × 10 6	18 days	Reduced ion mass
	10 11	1.5 × 10 7	~3 × 10 8	5 years	Reduced ion mass + Scaled µ
	10 9	1.5 × 10 6	∼ 3 × 10 6	1.8 days	Reduced ion mass +Scaled µ

Table 7 -Particle fluxes across the domain boundaries

 7 

	Boundary	Flux [part/dt]	Flux [% of total]
	Nozzle	15	66
	Backplate	6	26
	Outer conductor	1.5	6.5
	Antenna	0.1	0.5

Table 2 -

 2 Geometric parameters

	Domain Length [mm]	100
	Domain radius [mm]	50
	Antenna radius [mm]	1.09
	Antenna length [mm]	20
	Outer conductor radius [mm]	15
	Outer conductor length [mm]	20
	Mesh size [mm]	0.15625

Table 3 -

 3 Particles parameters

	Ion mass [amu]	1.33
	Particles weight [1]	5000
	Initial particle loading	500
	[particle per cell]	
	Critical density n* [cm -3 ]	2.6 × 10 10
	Final peak density nf [cm -3 ]	5 × 10 9

Table 4 -Integration parameters

 4 

	Time step dt [fs]	5112.9
	CFL [1]	1
	Number of iterations	~ 10 6
	Ion sub-cycling [1]	5
	Monte-Carlo subcycling [1] Electrons 1
		Ions 10

Table 5 -Boundary parameters

 5 

	Initial input Power [W]	400
	Final input Power [W]	1.7
	Microwave frequency [GHz]	2.45
	Outer conductor capacitance 𝐶 𝑓 [pF]	0.4
	Backplate surface capacitance 𝑐 [pf/cm 2 ]	0.0044
	Nozzle capacitance 𝐶 ∞ [pF]	22

Table 6 -Collision parameters

 6 

	Density in the source [m -3 ]	6.10 19
	Characteristic density length L [cm]	1
	Electron collisions cross section