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We study the algebra E of elliptic multizetas, which is an elliptic analog of the algebra of multizetas. We identify a set of generators of E, which satisfy a double shuffle type family of algebraic relations, similar to the double-shuffle relations for multizetas. We prove that the elliptic double shuffle relations give all algebraic relations among elliptic multizetas, if (a) the classical double shuffle relations give all algebraic relations among multizetas and if (b) the elliptic double shuffle Lie algebra has a certain natural semidirect product structure.

Introduction

An elliptic analog of the multizeta values (henceforth called elliptic multizetas for short) first made an explicit appearance in Enriquez' article [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF] under the name "analogues elliptiques de nombres multizetas". The elliptic multizetas are closely related to the elliptic Knizhnik-Zamolodchikov-Bernard (KZB) equation [START_REF] Calaque | Universal KZB equations: the elliptic case[END_REF][START_REF] Levin | Towards multiple elliptic polylogarithms[END_REF], elliptic associators [START_REF] Enriquez | Elliptic associators[END_REF] as well as multiple elliptic polylogarithms [START_REF] Brown | Multiple elliptic polylogarithms[END_REF][START_REF] Levin | Towards multiple elliptic polylogarithms[END_REF]. More recently, elliptic multizetas have found applications to computations in high energy physics [START_REF] Broedel | Elliptic multiple zeta values and one-loop superstring amplitudes[END_REF].

In [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF], elliptic multizetas are defined as iterated integrals on a once-punctured complex elliptic curve, which is analogous to the representation of the classical (genus zero) multizetas as iterated integrals on P 1 \ {0, 1, ∞}. However, an important difference to the classical multizetas is that their elliptic counterparts are holomorphic functions of one variable τ in the Poincaré upper half-plane, rather than numbers. 1 Taking the regularized limit τ → i∞ of elliptic multizetas, one retrieves the classical multizetas [START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF][START_REF] Matthes | Elliptic multiple zeta values[END_REF] thus reconciling them with their elliptic counterparts.

In this paper, we study the elliptic multizetas from a rather combinatorial point of view, building on the mould-theoretic approach towards elliptic Grothendieck-Teichmüller theory studied by the third-named author in [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF]. This leads to a definition of elliptic multizetas which is slightly different from Enriquez' original one, but closely related; namely, after possibly adjoining the function 2πiτ on H, the two versions of elliptic multizetas generate the same Q-algebra E. Previously, this algebra has also been studied in [START_REF] Broedel | Relations between elliptic multiple zeta values and a special derivation algebra[END_REF][START_REF] Enriquez | Analogues elliptiques des nombres multizétas[END_REF][START_REF] Matthes | Elliptic multiple zeta values[END_REF][START_REF] Matthes | Elliptic double zeta values[END_REF].

One of the main findings of this paper is that E decomposes into a geometric and an arithmetic part: The geometric part E geom of E consists of certain linear combinations of iterated integrals of Eisenstein series for SL 2 (Z) [START_REF] Brown | Multiple modular values for SL 2 (Z)[END_REF][START_REF] Manin | Iterated integrals of modular forms and noncommutative modular symbols[END_REF], and is intimately connected with the bi-graded Lie algebra u geom of the prounipotent radical of π geom 1 (M EM ), where M EM denotes the Tannakian category of universal mixed elliptic motives [START_REF] Hain | Universal Mixed Elliptic Motives[END_REF]. More precisely (as shown in [START_REF] Hain | Universal Mixed Elliptic Motives[END_REF], §22), there is a monodromy representation of u geom to the derivations of a free Lie algebra on two generators, whose image we denote by u. Our first result is then the Theorem (Theorem 2.6 below). There is a natural isomorphism

E geom ∼ = U(u) ∨ ,
where U(u) ∨ is the graded dual of the universal enveloping algebra of u. In particular, E geom is a commutative, graded, Hopf Q-algebra.

The proof of the theorem rests in large part on the C-linear independence of iterated integrals of Eisenstein series, which follows from a more general linear independence result for iterated integrals of quasimodular forms for SL 2 (Z) over the ring of quasimodular forms [START_REF] Matthes | On the algebraic structure of iterated integrals of quasimodular forms[END_REF]. Here, we give a slightly different proof of this result in the Eisenstein case which has the advantage that it works over a larger ground ring, namely the field Frac(Z[[q]]) (see Theorem 2.8 for the precise statement). This more general functional independence of iterated integrals of Eisenstein series is not put to use in the present paper but may be of independent interest, as it can be considered a genus one analog of linear independence of the classical polylogarithms [START_REF] Minh | Shuffle algebra and polylogarithms[END_REF].

Returning to the algebra E of elliptic multizetas, we will see how its arithmetic part essentially coincides with the algebra Z spanned by the classical multizetas. More precisely, we have the following Theorem (Theorem 3.5 below). Let E := E/ 2πi be the quotient of E modulo the ideal generated by 2πi. We have a canonical isomorphism

E[2πiτ ] ∼ = E geom ⊗ Q Z,
where Z := Z/ (2πi) 2 .

The proof systematically uses aspects of Ecalle's theory of moulds (cf. Section 4.1 for a short introduction as well as [START_REF] Ecalle | The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles[END_REF][START_REF] Schneps | An introduction to Ecalle's theory of moulds[END_REF] for more extensive treatments). The reason we work with the quotient E of E modulo 2πi is because this makes it possible to apply some results from mould theory directly; they could probably be extended with some additional work to the full algebra E. Combined with the isomorphism E geom ∼ = U(u) ∨ , the theorem gives a complete description of the algebra of elliptic multizetas (modulo 2πi) in terms of classical multizetas and special linear combinations of iterated Eisenstein integrals.

The last main result in this article concerns the algebraic relations satisfied by the elliptic multizetas that we introduce. These algebraic relations form a family of elliptic double shuffle relations similar in nature to the well-known (extended) double shuffle relations for multizetas [START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF]. Here, we recall (cf. [START_REF] Racinet | Doubles mélanges des polylogarithmes multiples aux racines de l'unité[END_REF]) that the double shuffle relations can be formulated conveniently as two functional equations satisfied by the generating series of multizetas, Φ KZ (also known as the Drinfeld associator [START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q)[END_REF]). In the language of mould theory [START_REF] Ecalle | ARI/GARI, la dimorphie et l'arithmétique des multizêtas: un premier bilan[END_REF][START_REF] Schneps | An introduction to Ecalle's theory of moulds[END_REF], the mould associated to Φ KZ is symmetral and its swap is symmetril (up to an explicit correction term).

In order to obtain a similar result in the elliptic setting, we consider the generating series E(τ ) of our elliptic multizetas, which is related to Enriquez' elliptic KZB associator [START_REF] Enriquez | Elliptic associators[END_REF]; in particular its coefficients generate the same Q-algebra E, but unlike the elliptic KZB associator, it possesses a twofold symmetry that is very close to that of Φ KZ , although surprisingly, somewhat simpler. We can describe this property quite easily on the Lie version e(τ ) of E(τ ) obtained by reducing the coefficients of E(τ ) modulo 2πi and products; namely we show that e(τ ) is ∆bialternal, which means that it is the twist, by a very simple mould operator ∆, of a mould that is alternal with alternal swap. This rather simple symmetry may be somewhat surprising since in the theory of multizetas the bialternality symmetry describes not the usual double shuffle Lie algebra [START_REF] Racinet | Doubles mélanges des polylogarithmes multiples aux racines de l'unité[END_REF] but instead its associated graded for the depth filtration [START_REF] Brown | Depth-graded motivic multiple zeta values[END_REF].

Theorem (Theorem 4.4 below). The mould e(τ ) is ∆-bialternal, i.e. the elliptic multizetas satisfy the elliptic double shuffle relations modulo 2πi.

The proof of the theorem proceeds in two steps. First, we show that the reduction E(τ ) modulo 2πi of the elliptic generating series E(τ ) is equal to the image of a suitable element ma(Γ(Φ)) under a certain automorphisms of moulds, where Γ denotes Enriquez' canonical section Γ : GRT → GRT ell from the (genus zero, graded) Grothendieck-Teichmüller group GRT to its elliptic analog GRT ell [START_REF] Enriquez | Elliptic associators[END_REF], and ma(Γ(Φ)) is the associated mould. This part of the proof relies on previous work by the third-named author [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF]. In the second step, we use a deep result of Ecalle (cf. [START_REF] Schneps | An introduction to Ecalle's theory of moulds[END_REF], Theorem 4.6.1) to the effect that ma(Γ(Φ)), is ∆ * -bisymmetral, where ∆ * denotes the group version of ∆. To verify that this implies the ∆bialternality of e(τ ) is then a relatively straightforward exercise in mould calculus.

Of course, the most interesting question concerning any set of algebraic relations satisfied by a set of elements is whether those relations form a complete set, i.e. whether they are sufficient to generate all algebraic relations. We show that this is true in depth two (Proposition 4.6), and that in general, the elliptic double shuffle relations do give a complete set of algebraic relations between elliptic multizetas modulo 2πi, if we assume the following two conjectures:

a) The double shuffle relations generate all algebraic relations among the multizetas modulo 2πi. b) The elliptic double shuffle Lie algebra 2 ds ell [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF] is isomorphic to a semidirect product ds ell ∼ = u γ(ds), where ds is the usual double shuffle Lie algebra and γ : grt → grt ell is the Lie version of Enriquez' section Γ. Conjecture a) is a standard conjecture in multizeta theory (cf. [START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF]). It would imply strong transcendence results for multizetas, and therefore seems out of reach at the moment. Conjecture b), however, is purely algebraic, and may therefore be more tractable. It would follow for example from Enriquez' generation conjecture ( [START_REF] Enriquez | Elliptic associators[END_REF], §10) together with the conjecture that grt ell ∼ = ds ell (an elliptic version of Furusho's theorem [START_REF] Furusho | Double shuffle relation for associators[END_REF]).

It should be mentioned that there has already been some work on algebraic relations, not between the elliptic multizetas defined here, but between those defined by Enriquez, arising as the coefficients of his elliptic KZB associator. These coefficients were shown to satisfy a family of Fay-shuffle relations that was described in depth two in [START_REF] Broedel | Relations between elliptic multiple zeta values and a special derivation algebra[END_REF][START_REF] Matthes | Elliptic double zeta values[END_REF] (where the term length instead of depth is used). It is proved in [START_REF] Matthes | Elliptic double zeta values[END_REF] that for elliptic multizetas of depth two, the Fay-shuffle relations give a complete 2 A Lie algebra essentially equivalent to ds ell has been introduced in [START_REF] Brown | Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve[END_REF], see Remark 4.3 for more details.

set of Q-linear relations. The extension to all depths, as well as the precise relation between the Fay-shuffle and the elliptic double shuffle relations, will be the subject of a forthcoming paper.

The contents of this paper are organized as follows. In Section 2, we introduce the algebra E geom of geometric elliptic multizetas and describe their relation to iterated integrals of Eisenstein series and to the Lie algebra u of special derivations. A crucial result is the linear independence of iterated Eisenstein integrals which is proved in Section 2. In Section 3, we introduce elliptic multizetas using the elliptic generating series E(τ ), and prove the first two theorems above. In Section 4, we study the elliptic double shuffle relations between elliptic multizetas and give evidence for the completeness of this system of relations. We also study a second type of algebraic relations called push-neutrality relations, which are related to the Fay-shuffle relations. The necessary background about moulds is briefly summarized in Section 4.1.

Acknowledgments: This paper was written while Nils Matthes was a PhD student at Universität Hamburg under the supervision of Ulf Kühn.

Geometric Elliptic Multiple Zeta Values

In the first two sections, we respectively recall the definition of a certain Lie algebra u of derivations [START_REF] Pollack | Relations between derivations arising from modular forms[END_REF][START_REF] Tsunogai | On some derivations of Lie algebras related to Galois representations[END_REF] and of iterated integrals of Eisenstein series [START_REF] Brown | Multiple modular values for SL 2 (Z)[END_REF][START_REF] Manin | Iterated integrals of modular forms and noncommutative modular symbols[END_REF].

In §2.3, we introduce the algebra of geometric elliptic multizetas, and prove that it is isomorphic to the graded dual of the universal enveloping algebra of u. The crucial step is a linear independence result for iterated integrals of Eisenstein series, which we prove (in slightly greater generality than needed) in §2.4.

2.1.

A family of special derivations. We begin by fixing our notation. For a Qalgebra A, let f 2 (A) = Lie A [[x 1 , y 1 ]] be the completed (with respect to the descending central series) free Lie algebra over A on two generators x 1 , y 1 with Lie bracket [•, •]. Its (topological) universal enveloping algebra will be denoted by U(f 2 ) A , and

F 2 (A) := exp(f 2 (A)) ⊂ U(f 2 )
A is the set of exponentials of Lie series. Note that U(f 2 ) A is canonically isomorphic to A x 1 , y 1 , the A-algebra of formal power series in non-commuting variables x 1 , y 1 . Moreover, U(f 2 ) A is a complete Hopf A-algebra, whose (completed) coproduct ∆ is uniquely determined by ∆(w) = w ⊗ 1 + 1 ⊗ w, for w ∈ {x 1 , y 1 }. The group F 2 (A) can also be characterized as the set of group-like elements of U(f 2 ) A . Likewise, the Lie algebra f 2 (A) ⊂ U(f 2 ) A is precisely the subset of Lie-like (or primitive) elements. If A = Q, we will write f 2 instead of f 2 (Q) and likewise U(f 2 ) and F 2 instead of U(f 2 ) A and F 2 (A). Now let Der(f 2 ) denote the Lie algebra of derivations of f 2 , and define Der 0 (f 2 ) as the subalgebra of those D ∈ Der(f 2 ) which (i) annihilate the bracket [x 1 , y 1 ]:

D([x 1 , y 1 ]) = 0
and (ii) are such that D(y 1 ) contains no linear term in x 1 . Since f 2 is free, the commutator of y 1 is Q • y 1 , from which it follows easily that every derivation D ∈ Der 0 (f 2 ) is uniquely determined by its value on x 1 . Similarly, the only non-zero derivation D ∈ Der 0 (f 2 ) which annihilates y 1 is the derivation ε 0 defined by x 1 → y 1 , y 1 → 0.

We next recall the definition of a family of derivations, which was first considered in [START_REF] Tsunogai | On some derivations of Lie algebras related to Galois representations[END_REF], also played an important role in [START_REF] Calaque | Universal KZB equations: the elliptic case[END_REF], and was studied in detail in [START_REF] Pollack | Relations between derivations arising from modular forms[END_REF]. the Lie subalgebra generated by the ε 2n .

Note that ε 2 = -ad([x 1 , y 1 ]), and thus ε 2 is central in u.

We also define a Lie subalgebra u ⊂ u as the kernel of the canonical projection u → Qε 0 . Equivalently,

u = Lie(ad k (ε 0 )(ε 2n ); n ≥ 1, k ≥ 0).
As seen above, every ε 2k is uniquely determined by its value on x 1 , while ε 0 is the only non-zero derivation D ∈ u, which annihilates y 1 . From this, we get Proposition 2.2. The Q-linear evaluation maps

v x1 : u → f 2 , D → D(x 1 ), v y1 : u → f 2 , D → D(y 1 ), are injective.
For the applications to elliptic multizetas, it will be more natural to scale the derivations ε 2k as follows:

ε 2k := 2 (2k-2)! ε 2k k > 0 -ε 0 k = 0.
In this way, ε 2k is the image of the Eisenstein generator e 2k under the monodromy representation u geom → Der 0 (f 2 ) (cf. [START_REF] Hain | Universal Mixed Elliptic Motives[END_REF], Theorem 22.3).

Iterated Eisenstein Integrals.

In a sense to be made precise below, the derivation ε 2k naturally corresponds to integrals of Hecke-normalized Eisenstein series of weight 2k (for SL 2 (Z)), whereas commutators of ε 2k correspond to iterated integrals of Eisenstein series. These are special cases of iterated Shimura integrals (or iterated Eichler integrals) of modular forms introduced by Manin [START_REF] Manin | Iterated integrals of modular forms and noncommutative modular symbols[END_REF], and later generalized by Brown [START_REF] Brown | Multiple modular values for SL 2 (Z)[END_REF]. 3 For k ≥ 0, let G 2k (q) be the Hecke-normalized Eisenstein series, defined by G 0 (q) := -1 and for k ≥ 1

G 2k (q) = - B 2k 4k + n≥1 σ 2k-1 (n)q n , q = e 2πiτ
Here, σ (n) = d|n d denotes the -th divisor function, and the B 2k are the Bernoulli numbers defined by

z e z -1 = 1 - z 2 + n≥1 B 2n z 2n (2n)! .
3 To be precise, Manin defined iterated Shimura integrals of cusp forms between base points on the upper half-plane (possibly cusps), and the extension to Eisenstein series (which requires a regularization procedure) is due to Brown.

Via the exponential map exp : H → D * , τ → q = exp(2πiτ ), from the upper half-plane to the punctured unit disc

D * = {q ∈ C, 0 < |q| < 1},
we may consider G 2k as a function of either variable q or τ , and we shall do so according to context. Next, we define iterated integrals of Eisenstein series. More generally, if f (q) = ∞ n=0 a n q n is such that a 0 = 0, (e.g. f is a cusp form), then the definition of the indefinite integral i∞ τ f (τ 1 )dτ 1 poses no problem, as by definition f vanishes at i∞. This is not the case for the Eisenstein series G 2k , and consequently

i∞ τ G 2k (τ 1 )dτ 1 diverges. It can be regularized by setting, for k ≥ 1, i∞ τ G 2k (τ 1 )dτ 1 := i∞ τ G 2k (τ 1 ) -G ∞ 2k dτ 1 - τ 0 G ∞ 2k dτ 1 ,
where

G ∞ 2k = -B 2k
4k is the constant term in the Fourier expansion of G 2k (if k = 0, a similar method works). Note that the integral of G 2k so defined satisfies the differential equation df (τ ) = -G 2k (τ )dτ . The definition of regularized iterated integrals of Eisenstein series in [START_REF] Brown | Multiple modular values for SL 2 (Z)[END_REF], which is a special case of Deligne's tangential base point regularization ( [START_REF] Deligne | Le groupe fondamental de la droite projective moins trois points[END_REF], §15) generalizes this construction, and runs as follows.

Let W = C[[q]] <1 be the C-algebra of formal power series, which converge on

D = {q ∈ C | |q| < 1}. We may decompose W = W 0 ⊕ W ∞ with W 0 = qC[[q]
] and W ∞ = C. For a power series f ∈ W , define f 0 to be its image in W 0 under the natural projection, and define f ∞ ∈ W ∞ likewise. For example, in the case of the Eisenstein series G 2k (q) with k > 0, we have

G ∞ 2k = - B 2k 4k , G 0 2k (q) = n≥1 σ 2k-1 (n)q n .
We denote by T c (W ) the shuffle algebra on the C-vector space W . As a C-vector space, T c (W ) is simply the graded (for the length of tensors) dual of the tensor algebra T (W ) = n≥0 W ⊗n . It is customary to write down elements of the dual space (W ⊗n ) ∨ using bar notation [f 1 |, . . . , |f n ]. Moreover, T c (W ) is naturally a commutative C-algebra, whose product is the shuffle product ¡, defined by

[f 1 | . . . |f r ] ¡ [f r+1 | . . . |f r+s ] = σ∈Σr,s f σ -1 (1) . . . f σ -1 (r+s) ,
where Σ r,s denotes the set of permutations σ on {1, . . . , r+s}, such that σ is strictly increasing on both {1, . . . r} and on {r + 1, . . . , r + s}. Now define a map R :

T c (W ) → T c (W ) by the formula R[f 1 | . . . |f n ] = n i=0 (-1) n-i [f 1 | . . . |f i ] ¡ [f ∞ n | . . . |f ∞ i+1 ].
Following [START_REF] Brown | Multiple modular values for SL 2 (Z)[END_REF], eq. (4.11), we can now make the Definition 2.3. Given f 1 , . . . , f n ∈ W as above, their regularized iterated integral is defined as

I(f 1 , . . . , f n ; τ ) := (2πi) n n i=0 i∞ τ R[f 1 | . . . |f i ] dτ 0 τ [f ∞ i+1 | . . . |f ∞ n ] dτ , where b a [f 1 | . . . |f n ] dτ := • • • a≤τ1≤...≤τn≤b f 1 (τ 1 ) . . . f n (τ n )dτ 1 . . . dτ n .
Remark 2.4. The reason for the (2πi) n -prefactor is to preserve the rationality of the Fourier coefficients. More precisely, if f 1 , . . . , f n have rational coefficients (i.e.

f i ∈ W Q := Q[[q]] <1 ), then I(f 1 , . . . , f n ; τ ) ∈ W Q [log(q)],
where log(q) := 2πiτ .

As is the case for usual iterated integrals ( [START_REF] Hain | The geometry of the mixed Hodge structure on the fundamental group[END_REF], Sect. 2), regularized iterated integrals satisfy the differential equation

∂ ∂τ τ =τ0 I(f 1 , . . . , f n ; τ ) = -f 1 (τ 0 )I(f 2 , . . . , f n ; τ 0 ), (2.1) 
as well as the shuffle product formula

I(f 1 , . . . , f r ; τ )I(f r+1 , . . . , f r+s ; τ ) = σ∈Σr,s I(f σ(1) , . . . , f σ(r+s) ; τ ). (2.2)
The only case of interest for us will be when f 1 , . . . , f n are given by Eisenstein series G 2k1 , . . . , G 2kn . In this case, we set

G k (τ ) := I(G 2k1 , . . . , G 2kn ; τ ),
where k = (k 1 , . . . , k n ) and likewise denote by

I Eis := Span Q {G k (τ )} ⊂ O(H) the Q-span of all iterated Eisenstein integrals G k (τ ) for all multi-indices k (including G ∅ := 1 for the empty index). Note that I Eis is a Q-subalgebra of O(H) by (2.
2), and that it contains Q[2πiτ ] as a subalgebra, since G 0 (τ ) = 2πiτ .

2.3.

The τ -evolution equation and the algebra of geometric elliptic multizetas. We now put together the special derivations ε 2k and the iterated Eisenstein integrals into a single, formal series

g(τ ) := k G k (τ ) ε k , (2.3) 
where the sum is over all multi-indices k ∈ Z n ≥0 , for all n, and for k = (k 1 , . . . , k n ), we define

ε k := ε 2k1 • . . . • ε 2kn ∈ U(u), the universal enveloping algebra of u. From (2.1), it is clear that g(τ ) satisfies the differential equation 1 2πi ∂ ∂τ g(τ ) = - k≥0 G 2k (τ ) ε 2k g(τ ),
and it follows that g(τ ) is group-like, i.e. it is the exponential g(τ ) = exp(r(τ )) of a Lie series r(τ ) ∈ u ⊗ Q I Eis (here u is the graded completion of u, and ⊗ denotes the completed tensor product).

Definition 2.5. Define the Q-algebra E geom of geometric elliptic multizetas to be the Q-algebra generated by the coefficients of r(τ )

• x 1 .
Equivalently, E geom is equal to the Q-vector space linearly spanned by the coefficients of the series g(τ ) • e x1 , because the coefficients of each of the power series r(τ ) • x 1 and g(τ ) • e x1 can be written as algebraic expressions in the coefficients of the other. Also, note that since every derivation in u is uniquely determined by its value on x 1 , the Q-algebra E geom is also the same as the Q-algebra spanned by the coefficients of g(τ ), viewed as a series in the monomials ε 2k1 • . . . • ε 2kn .

We can now state the main result of §2.

Theorem 2.6. For every Q-subalgebra A ⊂ C, there is an isomorphism

U(u) ∨ ⊗ Q A ∼ = E geom ⊗ Q A of A-algebras.
In particular, E geom is a commutative, graded Hopf algebra in a natural way.

Proof. The main ingredient in the proof is that the iterated Eisenstein integrals G k (τ ) are linearly independent over C, as functions in τ . More precisely, by Corollary 2.9, proved in the next section, there is a natural isomorphism

I Eis ⊗ Q A ∼ = T c (V Eis ) ⊗ Q A,
where T c (V Eis ) is the shuffle algebra on the Q-vector space V Eis spanned by all Eisenstein series G 2k , k ≥ 0. Assuming Corollary 2.9 for the moment, the proof of Theorem 2.6 proceeds as follows. Since the tensor algebra T (V Eis ) is freely generated by one element in every even degree 2k ≥ 0, we get a canonical surjection T (V Eis ) → U(u) of Q-algebras, which induces by duality an injection

ι : U(u) ∨ → T c (V Eis ) ∼ = I Eis .
On the other hand, choosing a (homogeneous) linear basis B of U(u), the element g(τ ) naturally defines a map

ι : U(u) ∨ → I Eis b ∨ → b ∨ (g(τ )),
where b ∨ ∈ B ∨ are the dual basis elements. Clearly, the image of ι does not depend on the choice of basis, and equals E geom by definition. On the other hand, it is easy to see that the maps ι, ι : U(u) ∨ → I Eis are equal, whence the result for A = Q, and the general case follows simply by extension of scalars. Finally, it is well-known that the universal enveloping algebra of any graded Lie algebra has a natural structure of a (cocommutative) graded Hopf algebra, thus U(u) ∨ is naturally a (commutative) graded Hopf algebra.

2.4. Linear independence. In this subsection, we complete the proof of Theorem 2.6 by proving that the family of iterated Eisenstein integrals is linearly independent over C, and that as a consequence

I Eis ⊗ Q C ∼ = T c (V Eis ) ⊗ Q C as C-
algebras. This result could be deduced from [START_REF] Matthes | On the algebraic structure of iterated integrals of quasimodular forms[END_REF] which proves linear independence of iterated integrals of quasimodular forms for SL 2 (Z) over the (fraction field of the) ring of quasimodular forms for SL 2 (Z). In this subsection, we give a slightly different proof in the special case of Eisenstein series which has the advantage that it works over a larger field of coefficients.

As in [START_REF] Matthes | On the algebraic structure of iterated integrals of quasimodular forms[END_REF], the idea is to use the following general linear independence result.

Theorem 2.7 ([10]

). Let (A, d) be a differential algebra over a field k of characteristic zero, whose ring of constants ker(d) is precisely equal to k. Let C be a differential subfield of A (i.e. a subfield such that dC ⊂ C), X any set with associated free monoid X * . Suppose that S ∈ A X is a solution to the differential equation

dS = M • S,
where M = x∈X u x x ∈ C X is a homogeneous series of degree 1, with initial condition S 1 = 1, where S 1 denotes the coefficient of the empty word in the series S. The following are equivalent:

(i) The family of coefficients (S w ) w∈X * of S is linearly independent over C.

(ii) The family {u x } x∈X is linearly independent over k, and we have

dC ∩ Span k ({u x } x∈X ) = {0}. (2.4)
Using this theorem, we can now prove linear independence of iterated Eisenstein integrals.

Theorem 2.8. The family {G k (τ )} is linearly independent over Frac(Z[[q]]).

Proof. We will apply Theorem 2.7 with the following parameters:

• k = Q, A = Q[log(q)]((q)) with differential d = q ∂
∂q , and C = Frac(Z[[q]]) (the latter is a differential field by the quotient rule for derivatives)

• X = {a 2k } k≥0 , u a 2k = -G 2k (q), hence M (q) = - k≥0 G 2k (q)a 2k .
With these conventions, it follows from (2.1) that the formal series

1 + 0 q [M ] d log q + 0 q [M |M ] d log q + . . . ∈ O(H) X ,
with the iterated integrals regularized as in Section 2.2, is a solution of the differential equation dS = M • S, with S 1 = 1. Consequently, the coefficient of the word w = a 2k1 . . . a 2kn in S is equal to G(2k 1 , . . . , 2k n ; τ ). Moreover, since the Qlinear independence of the Eisenstein series is well-known (cf. e.g. [START_REF] Serre | Cours d'arithmétique, volume 2 of Collection SUP[END_REF], VII.3.2), it remains to verify (2.4) in our situation.

To this end, assume that there exist α 2k ∈ Q, all but finitely many of which are equal to zero, such that k≥0 α 2k G 2k (q) ∈ dC.

(2.5)

Clearing denominators, we may assume that α 2k ∈ Z. Furthermore, from the definition of d = q ∂ ∂q , one sees that the image dC of the differential operator d does not contain any constant except for zero. Therefore, the coefficient of the trivial word 1 in (2.5) vanishes; in other words

k≥0 α 2k G 2k (q) = k≥1 α 2k E 0 2k (q) ∈ qQ[[q]].

Now the differential d is invertible on qQ[[q]

], and inverting d is the same as integrating. Hence (2.5) is equivalent to

k≥1 α 2k G 0 2k (τ ) ∈ C, G 0 2k (τ ) := 0 q E 0 2k (q 1 ) dq 1 q 1 . (2.6)
But this is absurd, unless all the α 2k vanish, as we shall see now. Indeed, if

f ∈ C = Frac(Z[[q]]), then there exists m ∈ Z \ {0} such that f ∈ Z[m -1 ]((q)).
This follows from the well-known inversion formula for power series. On the other hand, the coefficient of q p in G 0 2k (τ ), for p a prime number, is given by

σ 2k-1 (p) p = p 2k-1 + 1 p ≡ 1 p mod Z.
Thus, we must have

1 p k≥1 α 2k ∈ Z[m -1 ],
for every prime number p, in particular k≥1 α 2k is divisible by infinitely many primes (namely, at least all the primes which don't divide m), which implies k≥1 α 2k = 0. Now assume that k 1 is the smallest positive, even integer with the property that α k1 = 0. Consider the coefficient of q p k 1 in G 0 2k (τ ), which is equal to

σ 2k-1 (p k1 ) p k1 = 1 p k1 k1 j=0 p j(2k-1) ≡ 1 p k 1 mod Z if 2k > k 1 1 p k 1 + 1 p mod Z if 2k = k 1 .
By (2.6), we have

α k 1 p + 1 p k 1 k≥1 α 2k ∈ Z[m -1 ],
and by what we have seen before, k≥1 α 2k = 0. Hence

α k 1 p ∈ Z[m -1 ],
for every prime number p, which again implies α k1 = 0, in contradiction to our assumption α k1 = 0. Therefore, in (2.6), we must have α 2k = 0 for all k ≥ 1 and (2.4) is verified.

Corollary 2.9. The iterated Eisenstein integrals G k (τ ) are C-linearly independent, and for every Q-subalgebra A ⊂ C, we have a natural isomorphism of A-algebras

ψ A : T c (V Eis ) ⊗ Q A → I Eis ⊗ Q A [G 2k1 | . . . |G 2kn ] → G k (τ ),
where k = (k 1 , . . . , k n ) and Theorem 2.8 shows in particular that the G k are linearly independent over Q. Since the Eisenstein series G 2k have coefficients in Q, it follows from the definition that G k ∈ Q((q))[log(q)], and elements of W Q [log(q)] = Q((q))[log(q)] are linearly independent over Q, if and only they are so over C.

V Eis = Span Q {G 2k (τ ) | k ≥ 0} ⊂ O(H). Proof. Since Q ⊂ Frac(Z[[q]]),
For the second statement, it is clear that ψ A is a homomorphism of Q-algebras (since both sides are endowed with the shuffle product) and that it is surjective. The injectivity of ψ A is just the A-linear independence of iterated Eisenstein integrals.

Corollary 2.10. We have

I Eis ∩ C = Q and E geom ∩ C = Q. In particular, the Q- subalgebra of O(H) generated by I Eis and C is canonically isomorphic to I Eis ⊗ Q C.
Proof. If some linear combination of the G k with coefficients in Q were equal to c ∈ C, then since G ∅ = 1, this would give a linear relation

-cG ∅ + k a k G k = 0,
so by Theorem 2.8 we must have c = a ∅ , i.e. c ∈ Q. The second statement follows from the first, since by definition of E geom , it lies inside I Eis .

The generating series of elliptic multizetas

In the first part of this section we will recall the definition of the elliptic associator defined by B. Enriquez and use it to define a power series E ∈ F 2 (Z); we then set E(τ ) = g(τ ) • E, where g(τ ) is the automorphism studied in the previous section. We call E(τ ) the elliptic generating series, and its coefficients the elliptic multizetas.

We define E to be the Q-algebra generated by the elliptic multizetas. This algebra is essentially the same as the one generated by the coefficients of the elliptic associator, but the elliptic multizetas themselves are different from those coefficients (which are called "analogues elliptiques de nombres multizetas" by Enriquez).

In the remainder of the section, we work modulo 2πi. In particular, we consider the power series Φ KZ and E which are obtained from Φ KZ and E by reducing the coefficients from

Z to Z = Z/ (2πi) 2 .
In §3.2, we give an expression for E which relates it explicitly to the Drinfel'd associator Φ KZ . In §3.3 we use this expression for E to prove the equality

E[2πiτ ] = E geom ⊗ Q Z.
These two results will allow us to compute the algebraic relations satisfied by the elliptic multizetas, as well as algebraic relations satisfied by Enriquez' elliptic multizetas, which are the coefficients of the elliptic associator (always modulo 2πi). Because these results necessitate a very brief introduction to mould theory, we introduce them in §4.

3.1. Definition of the elliptic generating series E(τ ). Throughout this section, we use the following change of variables: a = y 1 and b = x 1 . This change of variables will be applied to all the expressions in x 1 , y 1 encountered in the previous section, such as g(τ ) • y 1 , and we will also express other quantities studied by B. Enriquez in terms of a and b, in particular the elliptic associator. The purpose of this change of variables is for the application of mould theory in §4.

Let Ass µ denote the set of genus zero associators Φ ∈ F 2 (C) such that the coefficient of ab in Φ is equal to µ 2 /24 [START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q)[END_REF]. We will use the same elements t 01 , t 02 , t 12 as in [START_REF] Enriquez | Elliptic associators[END_REF], but rewritten in the variables a, b:

t 01 = Ber b (-a), t 02 = Ber -b (a), t 12 = [a, b], (3.1) 
where Ber x (y) = ad(x) e ad(x) -1 (y), so that t 01 + t 02 + t 12 = 0. Recall that Enriquez showed that a section from Ass µ to the set of elliptic associators is given by mapping Φ ∈ Ass µ to the elliptic associator (µ, Φ, A, B) defined by

A = Φ(t 01 , t 12 )e µ t01 Φ(t 01 , t 12 ) -1 B = e µ t12/2 Φ(t 02 , t 12 )e b Φ(t 01 , t 12 ) -1
(this is denoted (µ, Φ, A + , A -) in [START_REF] Enriquez | Elliptic associators[END_REF]).

In this section we take µ = 2πi, so µ 2 /24 = -ζ(2), and consider Φ KZ , the Drinfeld associator, whose coefficients are the (shuffle-regularized) multizetas [START_REF] Furusho | The multiple zeta value algebra and the stable derivation algebra[END_REF]. The Lie algebra f 2 = Lie[[a, b]] is topologically generated by a and b, but since the operator Ber b is invertible, we have

a = -Ber -1 b (t 01 ) = e ad(b) -1 ad(b) (-t 01 ), (3.2) 
so that we can just as well take t 01 and b as generators. Similarly, we can take e t01 and e b as generators of the group

F 2 = F 2 (Q) = exp(f 2 )
, which is a priori generated by e a and e b . Let us define an automorphism σ of F 2 (Z), where Z is the Q-algebra of multizetas, by σ(e t01 ) = Φ KZ (t 01 , t 12 )e t01 Φ KZ (t 01 , t 12 ) -1 σ(e b ) = e πit12 Φ KZ (t 02 , t 12 )e b Φ KZ (t 01 , t 12 ) -1 .

We set E = 1 -a + σ(a), C = exp(E -1). The automorphism σ extends to an automorphism of the completed enveloping algebra U(f 2 ), and restricts to an automorphism of f 2 . Thus the power series σ(a) is Lie-like, so E -1 is Lie-like. Thus, by Lazard elimination, it can be expressed in the variables a and c i = ad(a) i-1 (b), i ≥ 1. From now on, we expand all group-like and Lie-like power series in these variables, and when we refer to the coefficients of such power series, we intend the coefficients of the power series in these variables. (This language is adapted to mould theory and will be useful in §4.) Up to degree 4, the explicit expansion of E is given by

E = 1 - iπ 2 c 3 + π 2 6 c 4 + iπ 12 [c 1 , c 3 ].
We now recall the automorphism

g(τ ) = k G k (τ ) ε k
defined in the previous section, and consider it as an automorphism of the group

F 2 (E geom ⊗ Q Z).
Acting on a, we find

g(τ ) • a = a - 1 2πi G 2 (τ ) ad(a) 2 (b) + 3 (2πi) 2 G 0,2 (τ ) ad(b) 2 (a) + • • •
In [START_REF] Enriquez | Elliptic associators[END_REF], Enriquez studied the elliptic associator 2πi, Φ KZ , A(τ ), B(τ ) (

where

A(τ ) = g(τ ) • A, B(τ ) = g(τ ) • B.
In analogy with this, we set

E(τ ) = g(τ ) • E = g(τ ) 1 -a + σ(a) , C(τ ) = exp E(τ ) -1 .
As above, g(τ ) extends to an automorphism of the universal enveloping algebra, so in particular it preserves the Lie algebra We can use C(τ ) to obtain a vector space basis for E. Lemma 3.2. The underlying vector space of E is spanned by the coefficients of C(τ ).

f 2 ⊗ Q (E geom ⊗ Q Z). Thus E(τ ) -1 is Lie-like,
Proof. Let E denote the Q-vector space generated by the coefficients of C(τ ). Then E is in fact a Q-algebra, because C(τ ) is a group-like power series so that the product of two of its coefficients can be written as a linear combination of such by using the (multiplicative) shuffle relations. Since E(τ ) = 1 + log(C(τ )), we see that the coefficients of E(τ ) can be expressed as algebraic and thus linear combinations of the coefficients of C(τ ), so that E ⊂ E . Conversely, since C(τ ) = exp E(τ ) -1 , the coefficients of C(τ ) are algebraic combinations of those of E(τ ), and therefore lie in E, so E ⊂ E, which completes the proof.

3.

2. An expression for E modulo 2πi. From now until the end of this section, we work modulo 2πi, in the sense that if a series has coefficients in Z, we reduce these coefficients to the quotient Z of Z modulo the idea generated by (2πi) 2 , or equivalently, by ζ(2). We use overlining to denote the reduced objects. The goal of the section is to obtain an expression for E that relates it directly to the reduced Drinfeld associator Φ KZ .

In order to approach this result, we will move from the Lie algebra of derivations over to power series in a and b by using the map given by evaluation at a. This is important because it allows us to compare derivations with power series in a and b such as Φ KZ .

Let v a denote the linear map given by evaluation at a, i.e.

v a : Der 0 (f 2 ) → f 2 (3.4) D → D(a).
Let the push-operator be defined to cyclically permute the powers of a between the letters b in a monomial:

push(a k0 b • • • ba kr ) = a kr ba k0 b • • • a kr-1 , (3.5) 
extended to polynomials and power series by linearity. A power series is said to be push-invariant if push(p) = p. It is shown in [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF] that the restriction of v a to the Lie subalgebra generated by Der 0 (f 2 ) \ Qε 0 is an injective linear map whose image is equal to the space of push-invariant Lie series f push 2 ⊂ f 2 . The map v a transports the Lie bracket and exponential from Der 0 (f 2 ) to f push 2 as follows:

D(a), D (a) = [D, D ](a), exp a D(a) = 1 + n≥1 1 n! D n (a) (3.6)
We have the useful identity

exp(D) • a = a + D(a) + 1 2 D 2 (a) + • • • = a -1 + exp a (D(a)). (3.7)
Let grt ell be the elliptic Grothendieck-Teichmüller Lie algebra defined by B. Enriquez in [START_REF] Enriquez | Elliptic associators[END_REF]. Not surprisingly, this Lie algebra will be an essential tool in proving our results. Let us recall some of the basic facts concerning it. Firstly, Enriquez showed that there is a natural Lie morphism grt ell → Der 0 (f 2 ). It was further shown in [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF] that this map is injective. We will identify grt ell with its image in Der 0 (f 2 ).

Enriquez also proved the following results. There is a canonical surjection grt ell → grt. Let r ell denote the kernel; then it is easy to see that u ⊂ r ell . Finally, Enriquez gave a section γ : grt → grt ell of the canonical surjection, and grt ell has the form of a semi-direct product grt ell ∼ = r ell γ(grt).

We write γ a for the composition map v a • γ, so that

γ a : grt → f push 2 . (3.8)
Let exp denote the ("twisted Magnus") exponential map exp : grt → GRT . Then we have the commutative diagram

Der * (Lie[[x, y]]) ← grt γ → grt ell va -→ f push 2 exp ↓ exp ↓ exp ↓ ↓ exp a Aut * (Lie[[x, y]]) ← GRT Γ → GRT ell 1-a+va -→ F 2 ,
where Γ is the group homomorphism that makes the middle square commmute. The upper map grt → Der * (Lie[[x, y]]) in the left-hand square is the map that takes a Lie element ψ ∈ f 2 to the associated Ihara derivation D ψ defined by

D ψ (x) = 0, D ψ (y) = [ψ(x, y), y]. (3.9) 
Ihara [START_REF] Ihara | The Galois representation arising from P 1 -{0, 1, ∞} and Tate twists of even degree[END_REF][START_REF] Ihara | On the stable derivation algebra associated with some braid groups[END_REF] studied these derivations in detail, and in particular, he showed that if Ψ = exp (ψ) and A Ψ denotes the automorphism exp(D ψ ) of U(Lie[[x, y]]), then

A Ψ (x) = x, A Ψ (y) = Ψ y Ψ -1 . (3.10) 
The lower horizontal map of the left-hand square is thus given by Ψ → A Ψ . In analogy with γ a , we set Γ a = v a • Γ.

We can now state the main result of this subsection.

Theorem 3.3. Let E be obtained from E by reducing the coefficients from Z to Z/ (2πi) 2 . Then E = Γ a (Φ KZ ).

Proof. Let ψ ∈ grt, and let Ψ = exp (ψ) ∈ GRT . Then γ(ψ) ∈ grt ell ⊂ Der 0 (f 2 ) and Γ(Ψ) = exp γ(ψ) ∈ GRT ell ⊂ Aut 0 (f 2 ). The proof is based on a result from [START_REF] Enriquez | Elliptic associators[END_REF], Lemma-Definition 4.6, which states that the automorphism Γ(Ψ) acts as follows:

Γ(Ψ)(t 01 ) = Ψ(t 01 , t 12 )t 01 Ψ(t 01 , t 12 ) -1 (3.11) Γ(Ψ)(b) = log Ψ(t 02 , t 12 )e b Ψ(t 01 , t 12 ) -1 ,
where t 01 is as in (3.1). Recall from (3.2) that we can take t 01 and b as generators of f 2 .

Recall that Φ KZ ∈ GRT ⊗ Q Z. (This is the reason for which we work mod 2πi, since the term -ζ(2)[x, y] in Φ KZ means that it does not lie in GRT , preventing us from taking advantage of the results on grt ell .) Set φ KZ = log (Φ KZ ), so that φ KZ ∈ grt ⊗ Q Z. Let σ be the automorphism of F 2 (Z) obtained from σ by reducing modulo 2πi, i.e.

σ(e t01 ) = Φ KZ (t 01 , t 12 )e t01 Φ KZ (t 01 , t 12 ) -1 σ(e b ) = Φ KZ (t 02 , t 12 )e b Φ KZ (t 01 , t 12 ) -1 .

Comparing with the values of Γ(Φ KZ ) from (3.11) on the generators t 01 , b of f 2 , we find that σ = Γ(Φ KZ ), so log(σ) = γ(φ KZ ). Evaluating on a, we have log(σ)(a) = v a γ(φ KZ ) = γ a (φ KZ ), so by (3.7), we have

σ(a) = a -1 + exp a γ a (φ KZ ) = a -1 + Γ a (Φ KZ ).
Since E = 1 -a + σ(a), we have

E = 1 -a + σ(a) = Γ a (Φ KZ ),
which concludes the proof.

Corollary 3.4. The Q-algebra generated by the coefficients of E is all of Z.

Proof. As remarked earlier (Lemma 3.2), the Q-algebra linearly spanned by the coefficients of a group-like power series is equal to that multiplicatively generated by the coefficients of its log. Therefore in particular, since the coefficients of Φ KZ linearly span Z, the coefficients of φ KZ multiplicatively generate the same ring. Similarly, the Q-algebra generated by the coefficients of γ(φ KZ ) (written in a basis of grt, say) is the same as the one linearly spanned by the coefficients of E = Γ(Φ KZ ). But since the section map γ a : grt → f push 2 is injective and defined over Q, it maps a linear basis of grt to linearly independent elements of f push 2 with the same coefficients, so the coefficients of γ a (φ KZ ) again generate the same Q-algebra as those of φ KZ , which is Z.

3.3.

Structure of the Q-algebra E. Since E(τ ) = g(τ ) • E, the Q-algebra E generated by the coefficients of E(τ ) is contained in the Q-algebra generated by E geom (the ring generated by the coefficients of g(τ )) together with the algebra Z of multizetas (generated by the coefficients of E). Thanks to Corollary 2.10, the algebra generated by these two rings is equal to their tensor product over Q. Thus, working modulo 2πi, the algebra generated by E geom and Z is also equal to their tensor product. The main result of this subsection is the following comparison of the Q-algebra E generated by the coefficients of E(τ ) with

E geom ⊗ Q Z. Theorem 3.5. We have E[2πiτ ] ∼ = E geom ⊗ Q Z.
Proof. Let v a denote the evaluation map introduced in (3.4). The exponential exp a f push 2 forms a group under the group law given by the Campbell-Hausdorff formula exp a (f ) * exp a (g) = exp a ch , (f, g) .

The automorphism A = exp(D) acts on the group exp a (f push 2

) via this multiplication, i.e.

A exp a (f ) = exp(D) • exp a (f ) = exp a D(a) * exp a (f ).

(3.12)

We will use the multiplication law (3.12) to express the action of the automorphism g(τ ) defined in (2.3) on E.

We will need to use a linear basis of u that is adapted to the depth grading. Recall that u = ε 0 ⊕ u . Let u 0 = ε 0 . For each r ≥ 1, let u r denote the subspace of derivations D ∈ u such that v a (D) is of homogeneous b-degree r. Let u i , i ≥ 1 denote a linear basis for u that is depth-graded, in the sense that each basis element u i lies in some u r . Let V = v a (u) and V = v a (u ), and for each r ≥ 1, let V r = v a (u r ). The images

v i = v a (u i ) with u i ∈ u r form a basis of V r ⊂ f push 2
, since v a is injective on u by Proposition 2.2. The u i for i ≥ 0 form a basis for u.

Let r(τ ) = log g(τ ) . Since r(τ ) ∈ u, we can expand it in the basis u i . We write

r(τ ) = i≥0 r i u i . (3.13)
Each coefficient r i is an algebraic (so given the shuffle product, linear) expression in the G k , and together they generate

E geom ∼ = U(u) ∨ . Also, note that r 0 = G 0 = 2πiτ . Let r a (τ ) = v a r(τ ) = r(τ ) • a.
Then because ε 0 (a) = 0, we can write

r a (τ ) = i≥1 r i v i ∈ V ⊗ Q E geom 0 ,
where E geom 0 be the subring of E geom generated by the coefficents r i , i ≥ 1. We note that E geom 0 ∼ = U(u ) ∨ , viewing u as the vector space quotient of u by ε 0 .

We saw above that the ring E lies in E geom ⊗ Q Z. The Q-algebra E geom is generated by r 0 = 2πiτ and E geom 0 , so in order to prove that E[2πiτ ] is equal to the full tensor product E geom ⊗ Q Z, it will suffice to prove separately that E ⊃ Z and E ⊃ E geom 0 . Let us write nz for the vector space of new multizetas obtained by taking the vector space quotient of Z by the vector subspace spanned by Q and by the ideal of Z generated by products z 1 z 2 of elements z 1 , z 2 ∈ Z \ Q.

Let MZ denote the Q-algebra of motivic multizetas defined by Goncharov (in which ζ m (2) = 0), which is graded for the weight. Let nmz denote the quotient of the space MZ >0 of positive weight elements by products. We have the sequence of inclusions nz ∨ ⊂ nmz ∨ ⊂ grt, (3.14) where the first is the dual injection arising from the surjection MZ → Z and the second is the dual injection arising from the fact that Goncharov's motivic multizetas satisfy the associator relations. Note that these are all subspaces of f 2 . The Lie series φ KZ lies in the vector space nz ∨ ⊗ Q Z, but by (3.14), it can also be considered as lying in the larger vector spaces nmz ∨ ⊗ Q Z or grt ⊗ Q Z. In particular, since it lies in grt, we can apply Enriquez' section to this element, giving the derivation γ(φ KZ ) studied §3.2, and the Lie series γ a (φ KZ ) = v a γ(φ KZ ) . Set e = γ a (φ KZ ).

From Theorem 3.3, we have E = Γ a (Φ KZ ), i.e. E = exp a (e). Using this and (3.12), we can compute

E(τ ) = g(τ ) • E = exp r(τ ) • E = exp r(τ ) • exp a (e)
= exp a v a r(τ ) * exp a (e) = exp a r a (τ ) * exp a (e) = exp a ch , r a (τ ), e .

Set e(τ ) = log a E(τ ) , so e(τ ) = ch , r a (τ ), e = r a (τ ) + e + 1 2 r a (τ ), e + • • • , which we write as e(τ ) = e + r a (τ ) + s(τ ), where s(τ ) is the sum of all the bracketed terms. As always, the coefficients of e(τ ) multiplicatively generate the same Q-algebra as that spanned linearly by the coefficients of E(τ ), namely E. We will show that the ring of coefficients of e(τ ) contains both Z and E geom 0 . It follows from Brown's result in [START_REF] Brown | Mixed Tate motives over Z[END_REF] that the Lie algebra nmz ∨ is identified with the fundamental Lie algebra of the category of mixed Tate motives over Z, which is free on one generator in each odd weight ≥ 3. In [START_REF] Hain | Universal Mixed Elliptic Motives[END_REF], a category of universal mixed elliptic motives is defined, and it is shown that the fundamental Lie algebra of that category has a monodromy representation in Der 0 (f 2 ) whose image Π is isomorphic to a semi-direct product Π ∼ = V nmz ∨ . In particular, nmz ∨ normalizes V , and therefore the bracket of an element of V (such as r a (τ )) with an element of nmz ∨ (such as e) will lie in V , and so the entire bracketed term s(τ

) lies in V ⊗ Q E. Also r a (τ ) lies in V ⊗ Q E, so since e ∈ nmz ∨ ⊗ Q E, we have e(τ ) ∈ Π ⊗ Q E.
Let us choose a linear basis of elements z i of nmz ∨ . Then the z i and the v i form a basis of Π. If we write e(τ ) in this (or any) basis, then the coefficients of e(τ ) in that basis generate E. In particular, the coefficient of z i in e(τ ) is equal to the coefficient of z i in e, since V and nmz ∨ form a direct sum of vector spaces. Thus these coefficients for all z i generate Z, which proves that E ⊃ Z.

It remains to prove that E ⊃ E geom 0 , which is a priori the ring generated by the coefficients of r a (τ ) written in the basis of V given by the v i . In e(τ ), however, the coefficient of v i is a sum r i + s i , where s i is the coefficient of v i in s(τ ). We will prove that E ⊃ E geom 0 by showing by induction on the depth that E contains each individual coefficient r i .

For the base case r = 1, the depth 1 part of r a (τ )+s(τ ) comes entirely from r a (τ ), since the sum s(τ ) of bracketed terms has no depth 1 part. Thus, the coefficients r i of basis elements v i ∈ V 1 occur as coefficients of r a (τ ) + s(τ ), and therefore they lie in E. Now fix r > 1 and assume that that all the r j that are the coefficients in r a (τ ) of basis elements v j ∈ V s with s < r lie in E, and consider a basis element v i ∈ V r . Its coefficient in r a (τ ) + s(τ ) is r i + s i . But since s(τ ) is a sum of brackets, the coefficient s i is an algebraic expression in elements of Z and coefficients r j of r a (τ ) corresponding to basis elements v j of depth < r. Thus by the induction hypothesis together with the inclusion Z ⊂ E, we have s i ∈ E, and thus r i ∈ E. This shows that all the coefficients r i of r a (τ ) lie in E, and thus E geom 0 ⊂ E as desired. This concludes the proof.

The elliptic double shuffle and push-neutrality relations

In this section we use mould theory to explore and compare algebraic relations between the elliptic multizetas (coefficients of E(τ )), and algebraic relations between Enriquez' "analogues elliptiques de nombres multizetas".

Our main result on elliptic multizetas arises as a corollary of the preceding theorem and the main result of [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF]. We show that E(τ ) satisfies a certain double family of algebraic relations called the elliptic double shuffle relations, related to the familiar double shuffle properties of Φ KZ . In fact, they bear a close relation to the linearized double shuffle relations studied for example in [START_REF] Brown | Depth-graded motivic multiple zeta values[END_REF]. We show that if one assumes certain standard conjectures in multizeta and Grothendieck-Teichmüller theory, the elliptic double shuffle relations can be expected to form a complete set of algebraic relations for the elliptic multizetas mod 2πi. We investigate these relations in detail in depth 2.

In §4.3 we turn our attention to the power series A(τ ) that forms part of Enriquez' elliptic KZB associator [START_REF] Enriquez | Elliptic associators[END_REF]. Since we want to work modulo 2πi and A(τ ) ≡ 0 mod 2πi, we first define a power series a(τ ) that is closely related to A(τ ) but not trivial mod 2πi. The goal of the section is to display a double family of relations satisfied by a(τ ). The first is just the usual shuffle, but the second is very different from the second shuffle relation satisfied by E(τ ); we call it the family of push-neutrality relations (of Fay relations). We show that these are related to the Fay-shuffle relations studied in [START_REF] Matthes | Elliptic double zeta values[END_REF].

4.1.

A very brief introduction to moulds. We recall some notions from Ecalle's theory of moulds [START_REF] Ecalle | ARI/GARI, la dimorphie et l'arithmétique des multizêtas: un premier bilan[END_REF][START_REF] Ecalle | The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles[END_REF] that we will need in order to study algebraic relations between elliptic multizetas. Besides the original references, a more detailed introduction to moulds can be found in [START_REF] Schneps | An introduction to Ecalle's theory of moulds[END_REF].

4.1.1. Moulds and bialternality. In this article, we use the term 'mould' to refer only to rational-function valued moulds with coefficients in Q. Thus, a mould is a family of functions {P (u 1 , . . . , u r ) | r ≥ 0} with P (u 1 , . . . , u r ) ∈ Q(u 1 , . . . , u r ). In particular P (∅) is a constant. The depth r part of a mould is the function P (u 1 , . . . , u r ) in r variables. By defining addition and scalar multiplication of moulds in the obvious way, i.e. depth by depth, moulds form a Q-vector space that we call M oulds. We write M oulds pol for the subspace of polynomial-valued moulds. The vector space ARI is the subspace of M oulds consisting of moulds P with constant term A(∅) = 0, and ARI pol is again the subspace of polynomial-valued moulds in ARI.

The standard mould multiplication mu is given by

mu(P, Q)(u 1 , . . . , u r ) = r i=0 P (u 1 , . . . , u i )Q(u i+1 , . . . , u r ). (4.1) 
For simplicity, we write P Q = mu(P, Q). This multiplication defines a Lie algebra structure on ARI with Lie bracket lu defined by lu(P, Q) = mu(P, Q) -mu(Q, P ).

We now introduce four operators on moulds. The ∆-operator on moulds is defined as follows: if P ∈ ARI, then

∆(P )(u 1 , . . . , u r ) = u 1 • • • u r (u 1 + • • • + u r )P (u 1 , . . . , u r ). (4.2) 
The dar-operator is defined by

dar(P )(u 1 , . . . , u r ) = u 1 • • • u r P (u 1 , . . . , u r ). (4.3) 
The push-operator is defined by

push(B)(u 1 , . . . , u r ) = B(u 2 , . . . , u r , -u 1 -• • • -u r ). (4.4) 
Finally, the swap operator is defined by

swap(A)(v 1 , . . . , v r ) = A(v r , v r-1 -v r , . . . , v 1 -v 2 ). (4.5) 
Here the use of the alphabet v 1 , v 2 , . . . instead of u 1 , . . . , u r is purely a convenient way to distinguish a mould from its swap. The main property on moulds that we will need to consider is alternality. A mould P is said to be alternal if for all r > 1 and for 1 ≤ i ≤ [r/2], we have u∈sh((u1,...,ui),(ui+1,...,ur))

P (u) = 0, (4.6) 
where the set of r-tuples sh (u 1 , . . . , u i ), (u i+1 , . . . , u r ) is the set

(u σ -1 (1) , . . . , u σ -1 (r) ) σ ∈ S r such that σ(1) < • • • < σ(i), σ(i+1) < • • • < σ(r) .
The mould swap(A) is alternal if it satisfies the same property (4.6) in the variables v i .

We write ARI al for the space of alternal moulds in ARI, and ARI al/al for the space of moulds which are alternal and whose swap is also alternal. We also consider moulds which are alternal and whose swap is alternal up to addition of a constantvalued mould. The space of these moulds is denoted ARI al * al and we call them bialternal.

We say that a mould P is ∆-bialternal if ∆ -1 (P ) is bialternal, and we write ARI ∆-al * al for the space of such moulds. Following Écalle, let ma denote the standard vector space isomorphism from Q C to the space (M oulds) pol defined by ma -→ ARI al lu,pol . Finally, we recall that for any mould P ∈ ARI, Écalle defines a derivation arit(P ) of the Lie algebra ARI lu . We do not need to recall the definition of arit here (but it is given in §4.4 below where we prove a technical lemma). For now it is enough to know that when restricted to polynomial-valued moulds, it is related to the Ihara derivations (3.9) via the morphism ma: ma D f (g) = -arit ma(f ) • ma(f ).

ma : Q C ∼ → (M oulds) pol c k1 • • • c kr → (-1) k1+•••+kr-r u k1-1 1 • • • u kr-1
For each P ∈ ARI, we also define the derivation arat(P ) = -arit(P ) + ad(P ), (4.8) where ad(P ) • Q = lu(P, Q).

4.1.3. Reminders on the elliptic double shuffle Lie algebra ds ell . We end this subsection by recalling the definition and a few facts about the elliptic double shuffle Lie algebra ds ell from [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF]. The following results are shown in [START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF].

Proposition 4.2. The space ds ell satisfies the following properties.

(i) ds ell ⊂ f push
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, where f push 2 has been defined in Section 3.2;

(ii) ds ell is a Lie algebra under the bracket , on f push 2 defined in (3.6). (iii) There is a Lie algebra inclusion grt ell ⊂ ds ell , where grt ell is the Lie subalgebra of grt ell generated by γ(grt) and u.

Remark 4.3. In [START_REF] Brown | Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve[END_REF], a Lie algebra called pls (for "polar linearized shuffle") is introduced, which is essentially equivalent to ds ell . It is also shown that u embeds into pls ([6], Proposition 4.6) and, moreover, it is asked whether the equality u = pls holds. Proposition 4.2.(iii) implies that ds ell is, in fact, much larger than u. More precisely, Enriquez ([14], §7) has shown that u lies in the kernel of the surjection grt ell → grt from which it follows that the image γ(grt) ⊂ grt ell of grt under the splitting γ is disjoint from u. In particular, the Lie algebra u cannot equal ds ell . 4.2. The elliptic double shuffle relations. We can now give the elliptic double shuffle property of E(τ ). It is in fact phrased more directly as a property on e(τ ) = log a E(τ ) , or rather, on the mould version of this power series e m (τ ) = ma e(τ ) . Proof. We saw in the proof of Theorem 3.5 that e(τ ) = e + r a (τ ) + s(τ ) where e ∈ γ(grt) ⊗ Q E and r a (τ ) + s(τ ) ∈ u ⊗ Q E. Therefore, e(τ ) ∈ grt ell by the definition of grt , and since grt ell ⊂ ds ell by Proposition 4.2 (iii), we also have e(τ ) ∈ ds ell ⊗ Q E. But this is equivalent to e m (τ ) ∈ ARI ∆-al * al pol .

We conjecture that the elliptic double shuffle relations form a complete set of algebraic relations between the elliptic multizetas modulo 2πi. This statement really breaks down into two statements, one concerning the arithmetic part Z of E and the other the geometric part U(u) ∨ . We show that indeed, the result follows from two conjectures: the first one a standard conjecture from multizeta theory, and the second a similar conjecture from elliptic multizeta theory. Due to the fact that it is much easier to work in the geometric situation than the arithmetic situation (as there are no problems of transcendence), we are actually able to prove that the elliptic double shuffle relations are complete in depth 2, without any recourse to conjectures (see Proposition 4.6).

The first conjecture amounts to the inclusions in (3.14) being all isomorphisms as well as the standard conjecture that the inclusion grt ⊂ ds (proved by Furusho in [START_REF] Furusho | Double shuffle relation for associators[END_REF]) is actually also an isomorphism. We simply state the conjecture Conjecture 1:

nz ∨ ∼ = ds.
This is equivalent to conjecturing that the double shuffle relations suffice to generate all the algebraic relations satisfied by multizetas [START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF].

The second conjecture amounts to the existence of a canonical semi-direct product structure on the elliptic double shuffle Lie algebra ds ell . This is inspired by Enriquez result that the elliptic Grothendieck-Teichmüller Lie algebra grt ell is isomorphic to a semi-direct product r ell γ(grt) where r ell is a certain Lie ideal of grt ell containing u. Analogously, we have This conjecture is closely related to Enriquez' "generation conjecture" for grt ell [START_REF] Enriquez | Elliptic associators[END_REF], namely that u ∼ = r ell . If Enriquez' conjecture were true, then the left hand side of our Conjecture 2 would be isomorphic to grt ell , and Conjecture 2 would reduce to showing that grt ell ∼ = ds ell (the elliptic analog of Furusho's theorem [START_REF] Furusho | Double shuffle relation for associators[END_REF]). One can also merge Conjectures 1 and 2 into a single conjecture, thereby extending (3.14) to the elliptic setting. The elliptic analog of nmz ∨ is the elliptic motivic fundamental Lie algebra, which is conjecturally isomorphic to its image Π = V nmz ∨ in the derivation algebra Der 0 (f 2 ) (cf. the proof of Theorem 3.5). Then we get inclusions

V nz ∨ ⊂ V nmz ∨ ∼ = Π ⊂ grt ell , (4.9) 
which conjecturally are all equalities. Note that the first equality would also follow from Conjecture 1 above.

Proposition 4.5. If Conjectures 1 and 2 are true, then the elliptic double shuffle relations generate all algebraic relations between elliptic multizetas.

Proof. By Conjecture 1, we would have Z ∼ = U(ds) ∨ , so since E geom ∼ = U(u) ∨ ∼ = U(V ) ∨ by Theorem 2.6, we would have

E[2πiτ ] ∼ = U(V ) ∨ ⊗ Q U(ds) ∨ .
It is known that the underlying vector space of the universal enveloping algebra U(R L) of a semi-direct product of Lie algebras R L is the space U(R) ⊗ Q U(L); in fact U(R L) is a Hopf algebra equipped with the smash product ( [START_REF] Molnar | Semi-direct products of Hopf algebras[END_REF]) and with the standard coproduct for which elements of R L are primitive. The dual U(R L) ∨ has underlying Q-algebra U(R) ∨ ⊗ Q U(L) ∨ (and is equipped with the smash coproduct).

Thus by Conjecture 2, we would have the isomorphism of Q-algebras

E[2πiτ ] ∼ = U(u) ∨ ⊗ Q U(ds) ∨ ∼ = U(ds ell ) ∨ .
Now, for any Lie algebra g defined over Q and any Q-algebra R, if f is an element of g ⊗ Q R, then the subring of R generated by the coefficients of f (in a linear basis of g) generate a subring of R which is necessarily isomorphic to a quotient of U(g) ∨ ; in other words, the coefficients of f satisfy relations that are imposed by the fact that f lies in the Lie algebra g, and possibly others. If this quotient is actually isomorphic to U(g) ∨ , this signifies that the coefficients do not satisfy any further algebraic relations than those imposed on them by the fact that f lies in g.

In our case, we have e(τ ) ∈ ds ell ⊗ Q E, and the coefficients of e(τ ), together with 2πiτ , generate E[2πiτ ], which by the conjectures is isomorphic to U(ds ell ) ∨ , implying that the coefficients of e(τ ) do not satisfy any other algebraic relations than those imposed by the fact that e(τ ) lies in ds ell , i.e. is ∆-bialternal.

Explicit elliptic double shuffle relations. Let us take a closer look at what the ∆bialternality properties are. The first property is that e m (τ ) is ∆-alternal, i.e. that ∆ -1 (e m (τ )) is alternal. But ∆ trivially preserves alternality, so this is equivalent to saying that e m (τ ) is alternal, i.e. that for each r > 1, (EDS.1) u∈sh (u1,...,u k ),(u k+1 ,...,ur)

e m (τ )(u) = 0 for 1 ≤ k ≤ [r/2]
. This condition is equivalent to the statement that the power series e(τ ) is a Lie series.

The new relations on e m (τ ) are the second set, which say that up to adding on a constant-valued mould, the swap of the mould ∆ -1 e m (τ ) is also alternal, where the swap-operator is defined in (4.5). This alternality is given by the equalities for r > 1

(EDS.2) v∈sh (v1,...,v k ),(v k+1 ,...,vr) swap ∆ -1 e m (τ ) (v) = 0 for 1 ≤ k ≤ [r/2].
The swapped mould is given explicitly by

swap ∆ -1 e m (τ ) = 1 v 1 (v 1 -v 2 ) • • • (v r-1 -v r )v r e m (τ )(v r , v r-1 -v r , . . . , v 1 -v 2 ).
Thus the alternality conditions in (EDS.2) are all sums of rational functions with denominators that are products of terms of the form v i and (v i -v j ), which sum to zero. Therefore, by multiplying through by the common denominator

v 1 • • • v r i>j (v i -v j ),
the second elliptic shuffle equation can be expressed as a family of polynomial conditions on the mould swap(e m (τ )).

Elliptic double shuffle relations in depth 2. Let us work this out explicitly in depth 2. The usual alternality condition reduces to (EDS.1-depth 2) e m (τ )(u 1 , u 2 ) + e m (τ )(u 2 , u 1 ) = 0.

The swap alternality condition reads

1 v 1 (v 1 -v 2 )v 2 swap(e m (τ ))(v 1 , v 2 ) + 1 v 1 (v 2 -v 1 )v 2
swap(e m (τ ))(v 2 , v 1 ) = 0, which, clearing denominators, reduces simply to

swap(e m (τ ))(v 1 , v 2 ) -swap(e m (τ ))(v 2 , v 1 ) = 0. Since swap(e m (τ ))(v 1 , v 2 ) = e m (v 2 , v 1 -v 2 )
, this is given by the relation

e m (τ )(v 2 , v 1 -v 2 ) = e m (τ )(v 1 , v 2 -v 1 )
directly on e m (τ ). Applying the depth 2 swap operator from ARI to ARI (given by v

1 → u 1 + u 2 , v 2 → u 1 ), we transform this relation into e m (τ )(u 1 , u 2 ) = e m (τ )(u 1 + u 2 , -u 2 ).
Finally, e m (τ ) is of odd degree, so by the depth 2 version of (EDS.1), we have e m (τ )(-u 2 , -u 1 ) = e m (τ )(u 1 , u 2 ), which gives

(EDS.2-depth 2) e m (τ )(u 1 , u 2 ) = e m (τ )(u 2 , -u 1 -u 2 ).
Note that this is nothing other than e m (τ )(u 1 , u 2 ) = push e m (τ ) (u 1 , u 2 ) where the push-operator is defined in (4.4). Thus in depth 2, the ∆-bialternality conditions correspond to alternality and push-invariance of e m (τ ) (which in turn correspond to the fact that e(τ ) is a Lie series that is push-invariant in depth 2 in the sense of power series, as in (3.5)). This simple reformulation is special to depth 2; the ∆bialternal property does not lend itself so easily to a direct expression as a property of e(τ ) in higher depths.

We end this subsection by showing that the conjecture that the ∆-bialternal relations are sufficient holds in depth 2. Proof. We can prove this result without recourse to any conjectures, essentially because depth 2 is too small to contain any of the arithmetic part of e m (τ ) (we qualify this statement below), and the geometric part V = v a (u) is well-understood in depth two. We know that e(τ ) ∈ ds ell ⊂ f push Indeed, the last equality follows from the fact that in depth 2, V is spanned by the [ε 2j , ε 2k ](a) with j < k, j, k = 1, which are all of odd weight, and the fact that, as shown in [START_REF] Pollack | Relations between derivations arising from modular forms[END_REF], the only relations between these n-3 4 brackets come from period polynomials, whose number is given by n-7

4

n-5
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. Thus V 2 = ds 2 ell = (f push 2 ) 2 , so the Lie relation (EDS.1) and the push-invariance relation (EDS.2) suffice to characterize elements of ds ell in depth 2. push-neutrality relations are strictly weaker than the full set of algebraic relations that must be satisfied by the elliptic multizetas, whereas the ∆-bialternality is conjecturally complete.

We will give our relations in terms of mould theory (but see Corollary 4.11 for a translation into power series terms at the end). For this we recall the push and dar-operators defined in (4.4) and (4.3). We will say that a mould B is push-neutral if B(u 1 , . . . , u r ) + push(B)(u 1 , . . . , u r ) + • • • + push r (B)(u 1 , . . . , u r ) = 0 (4.12) for all r ≥ 1, where push denotes the push-operator on moulds defined in (4.4). Let σ denote the automorphism of f 2 defined in §3.2. We have a = σ(t 01 ).

Recall from §3.2 that σ = γ(φ KZ ), where φ KZ = log a Φ KZ . The derivation γ(φ KZ ) lies in Der 0 (f 2 ), so γ(φ KZ ) • t 01 ∈ f 2 ; thus a is a Lie series. Since r(τ ) ∈ Der 0 (f 2 ), we have r(τ ) n • a ∈ f 2 for all n ≥ 1, so by (4.16), a(τ ) = g(τ ) • a ∈ f 2 , which means that a m (τ ) is alternal. This settles the first property of a m (τ ) stated in the theorem.

Let us consider the second property. Since γ(φ KZ ) ∈ Der 0 (f 2 ), it annihilates t 12 . Therefore, setting t 01 = t 01 + 1 2 t 12 , we have a = γ(φ KZ ) • t 01 = γ(φ KZ ) • t 01 .

(4.18)

Set T 01 = ma(t 01 ), and set z = ma v a γ(φ KZ ) = ma γ a (φ KZ ) .

where mu is the mould multiplication defined in (4.1); these correspond precisely to the 'missing' terms a = ∅ and c = ∅, so that arat(P ) • A actually has the simpler expression Because the push-neutrality relations take place in fixed depth, we may assume that A is concentrated in depth s and P in depth t, with s + t = r. We will prove the push-neurality of the first term in (4.24); the proof for the second term is completely analogous.

Therefore the decompositions w = abc we need to consider are those of the form w = abc = (u 1 , . . . , u i )(u i+1 , . . . , u i+t )(u i+t+1 , . . . , u r ), and we can rewrite the first term of (4.24) as r-t i=0 A(u 1 , . . . , u i , u i+1 + • • • + u i+t+1 , u i+t+2 , . . . , u r )P (u i+1 , . . . , u i+t ).

The k-th power of the push-operator acts by u i → u i-k , with indices considered modulo (r + 1). The push-neutrality condition thus reads •P (u i+1-k , . . . , u i+t-k ) = 0.

We will show that the coefficients of each term P (u m+1 , . . . , u m+t ) sums to zero due to the push-neutrality of A. In fact it is enough to show that the coefficient of P (u 1 , . . . , u t ) sums to zero, as all the other terms are obtained from this one by applying powers of the push-operator. The terms containing P (u 1 , . . . , u t ) are those for which the index k = i, so that k ∈ {0, . . . , r -t = s}, and we must show that the sum s k=0 A(u r-k+2 , . . . , u r , u 0 , u 1 + • • • + u t+1 , u t+2 , . . . , u r-k ) vanishes, where u 0 = -u 1 -• • • -u r and we have shifted some of the indices modulo (r + 1) in order to make them positive. Note now that

u 1 + • • • + u t+1 = -u 0 -u t+2 -• • • + u r .
As a result the last sum runs over the (s + 1) cyclic permutations of u t+2 , . . . , u r , u 0 and -u t+2 -• • • -u r -u 0 , so it is equal to the sum over the push s -orbit of just one term, say the one with k = s, i.e. to s k=0 A(u t+2 , . . . , u r , u 0 ),

Definition 2 . 1 .

 21 For k ≥ 0, define a derivation ε 2k ∈ Der 0 (f 2 ) by ε 2n (x 1 ) = ad(x 1 ) 2n (y 1 ), and denote by u = Lie(ε 2n ; n ≥ 0) ⊂ Der 0 (f 2 )

  and C(τ ) is group-like. Definition 3.1. The Lie-like power series E(τ ) -1 is called the elliptic generating series, and its coefficients are the elliptic multizetas. For k = (k 1 , . . . , k r ) we write E(k) for the coefficient in E(τ ) -1 of the monomial c k1 • • • c kr . The Q-algebra generated by the elliptic multizetas E(k) is denoted E.

4. 1 . 2 .

 12 From power series to moulds. Let c i = ad(a) i-1 (b) for i ≥ 1 as in §3.1. Let the depth of a monomial c i1 • • • c ir be the number r of c i in the monomial; the depth forms a grading on the formal power series ring Q C = Q c 1 , c 2 , . . . on the free variables c i . Similarly, we write L[[C]] = Lie[[c 1 , c 2 , . . .]] for the corresponding free Lie algebra. By Lazard elimination, we have an isomorphism Qa ⊕ L[[C]] ∼ = f 2 = Lie[[a, b]].

Definition 4 . 1 .

 41 The elliptic double shuffle Lie algebra ds ell is the subspace of f 2 such that ma ds ell = ARI ∆-al * al pol , i.e. ds ell consists of the Lie power series f ∈ f 2 such that ma(f ) is ∆-bialternal.

Theorem 4 . 4 .

 44 The mould e m (τ ) is ∆-bialternal, i.e. ∆ -1 e m (τ ) is a bialternal mould.

Conjecture 2 :

 2 u γ(ds) ∼ = ds ell .

Proposition 4 . 6 .

 46 The relations (EDS.1) and (EDS.2) in odd degrees are the only relations satisfied by e m (τ ) in depth 2.

2 .ds ell 2 n

 22 The graded dimensions of f 2 in depth 2 are given bydimtwo part of ds ell ⊃ V γ(nz ∨ ) is contained in the depth two part of V , since γ(nz ∨ ) is of depth ≥ 3. Thus dim

Theorem 4 . 8 .

 48 Let a m (τ ) = ma a(τ ) . Then a m (τ ) is alternal and dar -1 a m (τ ) is push-neutral in depth r > 1.Proof. Recall the derivation arat defined in (4.8). For any P ∈ ARI, setDarit(P ) = dar • arat ∆ -1 (P ) • dar -1 . (4.13)It is shown in[START_REF] Schneps | Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory[END_REF] that the mapDer 0 (f 2 ) → Der(ARI lu ) D → Darit ma(v a (D))(4.14)is an injective Lie morphism, so that we havema D(f ) = Darit ma(v a (D)) • ma(f ). (4.15) Let a m = ma(a), a m (τ ) = ma a(τ ) , and r m (τ ) = ma r a (τ ) . Under the map (4.14), we have r(τ ) → Darit r m (τ ) , so ma r(τ ) • a = Darit r m (τ ) • a m . Since a(τ ) = g(τ ) • a = Darit r m (τ ) n • a m . (4.17)

  arat(P ) • A (w) = w=abc A(a c)P (b) -A(a c)P (b) .(4.23) Now let A be push-neutral, and let P ∈ ARI. We need to show that (4.23) is push-neutral. In fact we will show that the two terms w=abc A(a c)P (b) and w=abc A(a c)P (b) (4.24) of (4.23) are separately push-neutral.

  1-k , . . . , u i-1-k , u i-k , u i+1-k + • • • + u i+t+1-k , u i+t+2-k , . . . , u r-k )

  It is well-known that p ∈ Q C satisfies the shuffle relations if and only if p is a Lie series, i.e. p ∈ Lie[[C]]. The alternality property on moulds is analogous to these shuffle relations, that is a series p ∈ Q C satisfies the shuffle relations if and only if ma(p) is alternal (see e.g. [33], §2.3 and Lemma 3.4.1]). Writing ARI al for the subspace of alternal moulds and ARI al pol for the subspace of alternal polynomial-valued moulds, this shows that the map ma restricts to a Lie algebra isomorphism ma : Lie[[C]]

	r	(4.7)
	on monomials, extended by linearity to all power series.	

Depth 2 elements of ds ell in low weights:

• in weight 5, ma [ε 0 , ε 4 ](a) = 2u 3 1 + 3u 2 1 u 2 -3u 1 u 2 2 -2u 3 2 .

• in weight 7,

• in weight 9,

• in weight 11, ma [ε 0 , ε 10 ](a) = 8u 9 1 + 36u 

4.3.

The elliptic associator and the push-neutrality relations mod 2πi. Let A(τ ), B(τ ) be the elliptic associator recalled in (3.3); in particular, A(τ ) is given explicitly by g(τ ) • A, where

In this subsection, we will investigate relations modulo 2πi satisfied by the power series A(τ ).

The coefficients of A(τ ) are the numbers called elliptic analogs of multizetas (up to the powers of 2πi produced by the variable change above). The ring generated by the coefficients of A(τ ) is closely related to the ring E. However, there is an obvious difference due to the fact that the coefficients of A(τ ) are all divisible by 2πi, i.e. A ≡ 1 mod 2πi.

In this subsection we want to work modulo 2πi, so we cannot use A(τ ) as is. We start by defining a modified version of A(τ ) whose reduction mod 2πi is not trivial. Definition 4.7. Let a be the power series with coefficients in Z given by a = 1 2πi log(A) mod 2πi = Φ KZ (t 01 , t 12 )t 01 Φ KZ (t 01 , t 12 ) -1 , and let a(τ ) = g(τ ) • a, where g(τ ) was defined in (2.3).

It follows from [START_REF] Matthes | Elliptic multiple zeta values[END_REF], Theorem 5.4.2, that the coefficients of the power series a generate all of Z, so by the same argument as in the proof of Theorem 3.5, the coefficients of a(τ ) together with G 0 = 2πiτ generate all of E geom ⊗ Q Z. Therefore the coefficients of a provide us with a new set of generators for the ring E geom ⊗ Q Z, different from the set studied in §3, given by the coefficients of e(τ ) together with G 0 . Recall that the relations satisfied by the latter set are the ∆-bialternality relations given in Theorem 4.4.

The purpose of this subsection is to give a double family of relations satisfied by the coefficients of a(τ ). The first one is the usual family of alternality relations and the second is the family of push-neutrality relations. These relations are related (mod 2πi) to the Fay-shuffle relations introduced in [START_REF] Matthes | Elliptic double zeta values[END_REF], and studied explicitly in depth 2. We show that modulo 2πi our relations are the same as the Fay-shuffle relations. We also show that even in depth 2 and mod 2πi, the alternality and Then by (4.15), the equality (4.18) translates into moulds as

To complete the proof of the second property, we will use the following lemma, whose proof is deferred to the final subsection of this paper. Lemma 4.9. Let A ∈ ARI. If A is push-neutral, then arat(P ) • A is push-neutral for all P ∈ ARI. If dar -1 A is push-neutral, then dar -1 •Darit(P )•A is push-neutral for all P ∈ ARI.

It is easy to see that if A is a push-invariant mould, then dar -1 A is push-neutral, since

where

By Proposition 4.10 below, dar -1 T 01 is push-neutral and by Lemma 4.9, so is

To show that dar -1 a m (τ ) is push-neutral we use the same lemma again. Since dar -1 a m is push-neutral, so is dar -1 • Darit r m (τ ) • a m , and then successively, so is dar

n • a m for all n ≥ 1. Thus dar -1 a m (τ ) is push-neutral by (4.17). This proves the theorem.

The following proposition was used in the proof of Theorem 4.8. is push-neutral.

Proof. It is enough to show the push-neutrality of f n := ma([ad n (b)(a), a]) for all n ≥ 2 separately. Using the definition of ma (cf. Section 4.1), we see that

Now in depth n, the operator ad(a) on Q C corresponds to multiplication by

On the other hand, by the definition of the push-operator (4.4), we have push(

, where the indices are to be taken mod n (so that u k+n = u k ). Using the elementary fact that

i.e. f n is push-neutral for all n ≥ 2, as was to be shown.

We end this subsection by studying these relations more explicitly in depth 2 and comparing them with the elliptic double shuffle relations on e m (τ ). The alternality relation is of course the same:

The push-neutrality relation in depth 2 is given by

Multiplying by the common denominator u 0 u 1 u 2 yields the polynomial relation

It was shown in [START_REF] Matthes | Elliptic double zeta values[END_REF] that the dimension of the space of polynomials in u 1 , u 2 of odd degree d satisfying (FS.1) and (FS.2) is given by d 3 + 1. In terms of the weight n = d + 2 of the corresponding polynomials in f 2 , this is

In weight 5, for example, there are two independent such polynomials:

In weight 7, there are again two independent polynomials, given by

In weight 9, the space is three-dimensional, given by

Finally, we work out the case of weight 11, where the dimension is four:

Observe that these dimensions are significantly bigger than those given by the elliptic double shuffle equations (EDS.1) and (EDS.2) in depth 2. This is explained by the fact that the vector space generated by the coefficients of a m (τ ) in a given weight and depth is not equal to the one generated by the analogous coefficients of e m (τ ).

Under the conjecture Z ∼ = U(grt) ∨ , the Q-algebra E is isomorphic to U(grt ell ) ∨ , and thus inherits a natural bigrading dual to that of grt ell . Together with products of elements of E of smaller depth and weight (including G 0 ), the coefficients of e m (τ ) in a given weight n and depth d span the bigraded part E d n , whereas those of a m (τ ) do not.

For example, in weight 5 and depth 2, the coefficients of e m (τ ) generate the 1-dimensional space 2G 0,4 + G 0 G 4 . The bigraded subspace E 

We end this subsection with a power series statement of the alternality and push-neutrality relations on a m (τ ).

Corollary 4.11. The power series A = [a, a(τ )] is push-neutral in the sense that, if A r denotes the depth r part of A for r > 1, then

where push denotes the push-operator on power series defined in (3.5).

Proof. By Theorem 4.8, the mould dar -1 a m (τ ) is push-neutral. Consider the operator

Since the factor u 1 . . . u r (-u 1 -. . . -u r ) is push-invariant, the mould -∆(A) is push-neutral if A is. Therefore in particular -∆ dar -1 a m (τ ) is push-neutral. But this mould is given by

where the last equality is a standard identity (see Appendix A of [START_REF] Racinet | Séries génératrices non commutatives de polyzêtas et associateurs de Drinfeld[END_REF] or (3.3.1) of [START_REF] Schneps | An introduction to Ecalle's theory of moulds[END_REF]). Therefore the mould ma([a, a(τ )]) is a push-neutral mould, i.e. [a, a(τ )] is push-neutral as a power series. 4.4. Proof of Lemma 4.9. In order to prove this lemma, we need to have recourse to the complete formula for the action of arat. We first recall Écalle's formula for arit (cf. [START_REF] Ecalle | The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles[END_REF] or [START_REF] Schneps | An introduction to Ecalle's theory of moulds[END_REF]), which is given as which indeed vanishes since A is push-neutral. This concludes the proof of Lemma 4.9.