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Abstract

Hybrid High-Order (HHO) methods are a recently developed class
of methods belonging to the broader family of Discontinuous Sketetal
methods. Other well known members of the same family are the well-
established Hybridizable Discontinuous Galerkin (HDG) method and the
Weak Galerkin (WG) method. HHO provides various valuable assets such
as simple construction, support for fully-polyhedral meshes and arbitrary
polynomial order, great computational efficiency, physical accuracy and
straightforward support for hp-refinement. In this work we propose an
HHO method for the indefinite time-harmonic Maxwell problem and we
evaluate its numerical performance. In addition, we present the valida-
tion of the method in two different settings: a resonant cavity with only
Dirichlet conditions and a parallel plate waveguide problem employing all
the available boundary conditions. Finally, as a realistic application, we
demonstrate HHO used on the study of the return loss in a waveguide
mode converter.

1 Introduction

Discontinuous Galerkin (DG) methods are very successful discretization meth-
ods for the numerical solution of PDEs. Such discretizations rely on discrete
spaces made out of broken polynomials, yielding discontinuous discrete solu-
tions. Because of the nature of broken spaces however, DG methods tipically
yield a number of degrees of freedom much higher than classical Finite Ele-
ments: this is frequently a source of criticism about DG. Hybrid methods were
therefore introduced to mitigate this issue while retaining all the advantages
typical of DG, like full polyhedral support and arbitrary polynomial order. The
strategy behind hybrid methods is, very informally, to define some element-local
problems and subsequently couple them via face unknowns only: in this way one
obtains a global problem posed only in terms of face-based unknowns, contrary
to DG which yields a global problem posed in terms of cell-based unknowns.
Since unknowns of the global problem are face-based, this class of methods is
also known as Discontinuous Skeletal (DS) methods.

An extremely successful DS method is the Hybridizable Discontinuous Galerkin
(HDG) [21], which has been used in a multitude of contexts including magneto-
statics [11] and electromagnetic wave propagation [33, 29, 32, 7, 30]. Roughly
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speaking, the HDG discretization relies on a mixed formulation of the problem
at hand, with the goal of approximating a triple including the primal variable,
the dual variable and the trace of the primal variable on the skeleton of the
mesh. Some form of static condensation is subsequently possible in order to
obtain a global problem posed only on the skeleton of the mesh.

A more recent development in the family of Discontinuous Skeletal meth-
ods is the Hybrid High-Order method (HHO in the following) [25, 24]. The
main features of HHO are the approximation of the solution with arbitrary or-
der polynomials, support for fully polyhedral meshes and easy hp-refinement.
In addition, HHO methods are constructed independently from the geometric
dimension and the element shape, allowing fully generic implementations [16].
Contrary to HDG, HHO takes a purely primal viewpoint and places the un-
knowns both in the cells and on the faces of the mesh in order to approximate
a pair including the primal variable in the cells and its trace on the skeleton.
In particular, these unknowns are used by (i) a reconstruction operator, which
reconstructs a high-order field in the cell and (ii) by a stabilization operator,
which weakly enforces in each mesh cell the matching of the traces of the cell
functions with the face unknowns. These two operators are then combined in a
local bilinear form which, after local static condensation, is assembled into the
global problem using the standard finite element procedure.

The different viewpoints taken by HDG and HHO are widely discussed in
literature, we refer the reader to [21, 22, 25, 18] for the full details. Despite the
very different viewpoints taken by the two methods, a remarkable result is that
HDG and HHO can be bridged toghether in a common framework, as discussed
in [20].

HHO methods have been used successfully in several fields of computational
mechanics, for example solid mechanics [1, 2, 3], contact problems [9], obstacle
problems [17] and fluid mechanics [8, 4]. Recent applications of HHO to acoustic
time-domain wave problems can be found in [5] and [6]. To the best of our
knowledge however, the only application to electromagnetics, and specifically
to magnetostatics, is found in [10].

In this work we present a construction of an HHO method for the time-
harmonic Maxwell problem, which adds to the family of polyhedral discretiza-
tions already successfully deployed on computational electromagnetics prob-
lems [33, 19]. As the time-harmonic Maxwell problem is notoriously hard to
solve with iterative methods [15], direct solvers are frequently employed. Direct
solvers however require huge amounts of memory, and for this reason efficient,
high-order discretization techniques are of utmost importance. By employing
skeletal (face-based) unknowns, hybrid methods are excellent candidates for this
task.

2 Continuous setting

Let Ω be an open, simply connected subset of R3 (the method is suitable for any
spatial dimension, we take d “ 3 for conciseness). Standard notation will be
used in the following, in particular L2pΩq denotes the Lebesgue space composed
of the square integrable functions and Hpcurl; Ωq the space of those functions in
L2pΩq whose curls are square-integrable. In addition, we denote as H0pcurl; Ωq
the subspace of Hpcurl; Ωq composed of the functions of Hpcurl; Ωq whose trace
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is zero on BΩ. Finally, we denote with p¨, ¨qL2pΩq the inner product on L2pΩq
and with }¨}L2pΩq the corresponding norm.

We consider initially the time-harmonic problem with homogeneous Dirichlet
boundary conditions

#

∇ˆ pµ´1∇ˆ eq ´ ω2εe “ f in Ω

n̂ˆ e “ 0 on BΩ
, (1)

where ω is the angular frequency, µ, ε are piecewise constant material parame-
ters, e P C3 is the unknown electric field and f :“ ´iωj P C3 is the divergence-
free source current density. Problem (1) is readily translated in weak form: let
V :“ H0pcurl; Ωq; we seek e P V such that

pµ´1∇ˆ e,∇ˆ vqL2pΩq ´ ω
2pεe,vqL2pΩq “ pf ,vqL2pΩq, @v P V. (2)

3 Discrete setting

Let MpT ,Fq be a polyhedral mesh with #T cells and #F faces. A generic
cell is denoted as T P T , whereas a generic face as F P F . Each cell T has
diameter hT and each face F has diameter hF . The mesh size is defined as
h “ maxTPT hT . We attach to each element T a cell-based vector-valued poly-
nomial Pk3pT q and to each one of its n faces F P BT a face-based vector-valued
polynomial Pk2pF q of degree k ě 1. Cell-based polynomials are 3-variate, have
values in C3 and are evaluated directly in the physical element, whereas face-
based polynomials have values in C2 tangent to the face itself. In particular,
to define the polynomial space Pk2pF q attached to a face F of the mesh, we
introduce the affine mapping TF : R2 Ñ HF , where HF is the hyperplane in
R3 supporting F . We subsequently set

Pk2pF q :“ Pk2 ˝ pT´1
F q|F .

We remark that an entirely similar procedure can be applied to evaluate face-
based functions in the case d “ 2 (the implementation details are available in
[16]), in addition in that case the face-based polynomials will be scalar-valued.
Generally speaking, the way in which we chose the face-based polynomial spaces
allows to reflect at the discrete level the tangential continuity requirement that
exists at the continuous level. By collecting the cell-based and face-based poly-
nomials attached to an element, the element-local space of degrees of freedom
is formed and denoted as

UkT :“ Pk3pT q ˆ

#

ą

FPBT

Pk2pF q

+

.

The elements of UkT are denoted as the pairs uT :“ puT , uBT q. In turn, uT P
Pk3pT q and uBT “ puF1 , . . . , uFnq, uFi P Pk2pFiq are the cell-based and the col-
lection of face-based polynomials respectively (Figure 1). By collecting all the
local polynomials attached to the mesh elements, the global discrete problem
space is introduced as

Ukh :“

#

ą

TPT
Pk3pT q

+

ˆ

#

ą

FPF
Pk2pF q

+

,
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uF
uT|F

uT

Figure 1: Visual representation of the local HHO space: to each mesh element
we attach a cell-based function uT and one face-based function uF for each face
F . Notice that on the vertices the face-based function are discontinuous.

where we remark that the face-based functions are single-valued (Figure 2). We
will denote as uh P Ukh the elements of the global discrete space and uh the
cell-based part of uh. Homogeneous Dirichlet boundary conditions are enforced
strongly by setting to zero the unknowns associated to the boundary faces by
considering the subspace of Ukh

Ukh,0 :“
 

uh P U
k
h | uF “ 0 @F P BΩ

(

.

Being the values of the face-based polynomials tangent to the faces of the ele-
ments, this naturally enforces n̂ˆ e “ 0. Lastly, we define the tangential trace
on the face F as γt,F puq :“ n̂ˆ puˆ n̂q, with n̂ being the outward normal.

T1 T2

uT1

uT2

uF

Figure 2: Visual representation of the global HHO space. On the left, the result
of assemblying the local contributions; notice that the face-based functions are
single-valued. On the right the HHO stencil, were we remark that the cell-based
unknowns communicate via the face-based unknowns. Cell-based unknowns are
eliminated locally via a Schur complement, so they do not appear in the global
linear system.

3.1 The HHO operators

The general idea behind skeletal methods is to define some element-local prob-
lem which couples to the neighbouring elements via face-based unknowns only.
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Subsequently, cell-based unknowns are eliminated locally via a Schur comple-
ment, allowing to obtain a global transmission problem posed in terms of face
unknowns only.

In HHO, such local problems are built out of a reconstruction operator and
a stabilization [24]. The reconstruction is typically derived from an integration
by parts formula. In the present case we employ the well-known formula

p∇ˆ u,vqL2pT q “ pu,∇ˆ vqL2pT q ` pu,v ˆ n̂qL2pBT q, (3)

to derive a curl reconstruction [10] operator C : UkT Ñ Pk3pT q. Informally speak-
ing, on the right-hand side of (3) u is replaced with the cell-based function uT in
the first term and with the face-based functions uBT in the second term. Having
done these substitutions, the right-hand side must now depend from the newly
introduced functions as

pCuT ,vqL2pT q :“ puT ,∇ˆ vqL2pT q `
ÿ

FPBT

puF ,v ˆ n̂qL2pF q, @v P Pk3pT q. (4)

Equation (4) constitutes the definition of the curl reconstruction operator and
the actual computation of C requires inverting a mass matrix in each element;
this is done just once if a reference element is available (see [18, Chapter 8] for
the implementation details).

Since C has a nontrivial kernel [18, Chapter 1], we also need a stabilization
that penalizes the difference between the face-based functions uBT and the tan-
gential component of the cell-based function uT on BT . This ultimately imposes
weakly a tangential continuity requirement between elements. Let πkF be the
standard face-based L2-orthogonal projector, let also πkγ,F “ πkF ˝ γt,F . We
employ a Lehrenfeld–Schöberl-like stabilization [18, 33] defined as

sT puT , vT q :“
ÿ

FPBT

ζpuF ´ π
k
γ,F puT q, vF ´ π

k
γ,F pvT qqL2pF q,

where ζ “ ω
a

ε{µ is a scaling factor chosen to have the correct units for the
stabilization. A similar approach concerning the choice of the penalization pa-
rameter is taken in [33] in the HDG context.

Notice that the definitions of the reconstruction and the stabilization are
completely element-local, and this feature will allow us to apply a local Schur
complement and eliminate cell-based unknowns during assembly.

With this construction, we expect a convergence rate of Ophk`1q for the
L2-norm of the error }e´ eh}L2pΩq, where e is the solution of (1) and eh is the
cell-based component of its numerical approximation.

3.2 The discrete problem

In order to build the discrete problem we use the curl reconstruction to mimic
locally the curl-curl term of (2). We collect this term alongside with the stabi-
lization and the discrete equivalent of the mass term of (2) plus the right-hand
side in the bilinear form aT : UkT ˆ UkT Ñ R and linear form lT : UkT Ñ R as

aT peT , vT q :“ µ´1pCeT , CvT qL2pT q ` sT peT , vT q ´ ω
2εppeT , 0q, pvT , 0qqL2pT q,

lT pvT q :“ pf , pvT , 0qqL2pT q,
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where the mass term ppeT , 0q, pvT , 0qqL2pT q is purely cell-based and the source f
is tested only against cell-based basis functions. Static condensation is applied
locally to eliminate cell-based DOFs, we refer the reader to [16] for the details.
The global problem is obtained by a standard finite element assembly of the
bilinear form ah : Ukh,0 ˆ Ukh,0 Ñ R and the linear form lhpvhq : Ukh,0 Ñ R

ahpeh, vhq :“
ÿ

TPT
aT pLT eh, LT vhq,

lhpvhq :“
ÿ

TPT
lT pLT vhq,

where LT is the classical global-to-local face numbering mapping. We finally
solve the global discrete problem of finding eh P U

k
h,0 such that

ahpeh, vhq “ lhpvhq @vT P U
k
h,0.

3.3 Numerical validation

The described HHO method is implemented in the open-source numerical library
DiSk++ (https://github.com/wareHHOuse/diskpp). The numerical valida-
tion was done on a resonant cavity problem in the domain r0, 1s3. The RHS
is chosen to obtain the solution e “ p0, 0, sinpωxqsinpωyqqT with ω “ π and
ν “ ε “ 1. The objective of the validation is to verify that the method converges
with the expected rates and to assess its computational cost in comparison with
a classical Symmetric Interior Penalty Discontinuous Galerkin (SIP-DG) dis-
cretization [27]. The linear systems obtained from the HHO and SIP-DG dis-
cretizations are solved using the PARDISO linear solver found in the Intel MKL
library.

The convergence rates and the computational cost of the matrix factoriza-
tion are summarized in Figure 3. The error convergence rate in L2-norm results
to be Ophk`1q, as expected. In addition, the computational cost of HHO results
to be much lower than that of SIP-DG. Being HHO a skeletal discretization,
the number of DOFs of the global system grows as Op#F ¨ kd´1q, compared
to Op#T ¨ kdq in SIP-DG. As such, especially at high polynomial order and
on meshes composed mainly of “standard” elements (tetrahedra or hexahedra),
HHO is expected to perform much better than SIP-DG. Tables 1 and 2 provide
additional confirmation to that expectation. Table 1 reports the number of op-

Table 1: Computational cost comparison between HHO vs. SIP-DG on a tetra-
hedral mesh of 3072 elements.

HHO SIP-DG
Degree Memory Mflops Memory Mflops

k=1 0.5 Gb 8.723 0.3 Gb 20.040
k=2 0.9 Gb 66.759 2.4 Gb 313.133
k=3 2.6 Gb 309.072 9.3 Gb 2.560.647

erations done by PARDISO when deployed on the linear systems obtained from
the discretization of the test problem with a tetrahedral mesh of 3072 elements.
In Table 2, on the other hand, we report the computational advantage of HHO
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Table 2: Cost comparison between HHO vs. SIP-DG on a polyhedral mesh of
1210 elements (DBLS10 mesh of the FVCA6 benchmark).

HHO SIP-DG
Degree Memory Mflops Memory Mflops

k=1 0.4 Gb 16.264 0.3 Gb 12.646
k=2 1.4 Gb 130.122 1.6 Gb 211.267
k=3 3.7 Gb 584.182 6.2 Gb 1.690.146
k=4 8.6 Gb 1.971.620 18.5 Gb 8.539.361

on the DBLS10 polyhedral mesh of the FVCA6 benchmark. As expected the
HHO advantage, especially at low order, is slightly lower than in the tetrahedral
case.
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Figure 3: On the left panel, the L2-norm convergence rates of HHO compared
to Symmetric Interior Penalty Discontinuous Galerkin on tetrahedral meshes.
On the right panel, the number of floating poing operations done by the linear
solver. At high polynomial order, HHO is one order of magnitude cheaper than
SIP-DG.

We conclude the computational performance evaluation with Table 3, in
which we show the cost of HHO to attain a certain fixed error while varying
mesh size and polynomial order.

Table 3: Computational effort required for HHO to attain roughly the same
L2-norm error at different polynomial orders.

Mesh h k Error Mflops DOFs Memory

0.103843 2 3.56e-5 4089984 571392 11.7 Gb
0.207712 3 1.38e-5 309072 115200 2.6 Gb
0.415631 4 1.98e-5 16287 20160 0.5 Gb
0.832917 6 1.24e-5 1265 4032 0.1 Gb

4 Additional boundary conditions and field sources

Practical applications frequently require specialized treatment of boundaries
and sources. In this section we discuss a plane wave boundary condition [12]

7



and a total field/scattered field decomposition. The former is basically a non-
homogeneous Robin condition and is used either to impose an active plane wave
source or a passive absorbing boundary condition on a boundary ΓZ Ă BΩ.
The latter is a common technique to impose sources in the FDTD method and
study reflection coefficients; it has been successfully used also in FETD (Finite-
Element Time-Domain) [34] and other frequency domain methods [14, 31].
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scatterer

(b)

Figure 4: In the left panel, the fields, vectors and surfaces involved in the
definition of the plane wave boundary condition. In the right panel, the domains
and interfaces involved in the TF/SF decomposition. On Ωt the full field is
computed, whereas in Ωs only the reflections produced in Ωt are computed.

4.1 Plane wave boundary condition

With reference to Figure 4a, let E` denote the complex amplitude of the known
electric field of a wavel entering Ω through ΓZ and propagating in direction d;
similarly let E´ denote the complex amplitude of the unknown electric field of
a wave exiting Ω through ΓZ and propagating in direction n̂. In addition, let
κ2 “ ω2µε. In this setting, the total electric field on ΓZ at the point x P ΓZ is
given by

epxq “ E`e
´iκpd¨xq `E´e

´iκpn¨xq. (5)

By taking the curl of (5) and applying the vector calculus identity ∇ˆ pψAq “
ψp∇ˆAq + ∇ψ ˆA, we obtain

∇ˆ e “ ´iκ
´

dˆE`e
´iκpd¨xq ` n̂ˆE´e

´iκpn̂¨xq
¯

. (6)

We now post-multiply by n̂ and replace (5) in the result to obtain

p∇ˆ eq ˆ n̂` iκ pn̂ˆ peˆ n̂qq “ iκ
´

pn̂´ dq ˆE`e
´iκpd¨xq

¯

ˆ n̂. (7)

By pre-multiplying both sides of (7) by µ´1 we can make the wave admittance
Y “

a

ε{µ explicit

pµ´1∇ˆ eq ˆ n̂` iωY et “ iωY e`t pdq, (8)

where we replaced the two double-cross-product terms of (7) with the short-
hands et :“ n̂ˆpeˆ n̂q and e`t pdq :“

`

pn̂´ dq ˆE`e
´iκpd¨xq

˘

ˆ n̂ respectively.
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The condition just obtained goes under the name of plane wave condition. It
can then be incorporated in the strong form Maxwell problem as

$

’

&

’

%

∇ˆ pµ´1∇ˆ eq ´ ω2εe “ ´iωj in Ω

n̂ˆ e “ 0 on ΓD

pµ´1∇ˆ eq ˆ n̂` iωY et “ iωY e`t pdq on ΓZ

, (9)

where j is the divergence-free current density, ΓZYΓD “ BΩ and ΓZXΓD “ H.
Let Hipcurl; Ωq be the space defined as

Hipcurl; Ωq :“ tφ P Hpcurl; Ωq | γt,ΓZ
pφq P L2pΓZq on ΓZ , n̂ˆ φ “ 0 on ΓDu.

With standard manipulations, Problem (9) is translated to weak form, where
we look for e P Hipcurl; Ωq such that the expression

µ´1p∇ˆ e,∇ˆ vqL2pΩq ´ ω
2εpe,vqL2pΩq ` iωY pet,vqL2pΓZq “

“ iωY pe`t pdq,vqL2pΓZq ´ iωpj,vqL2pΩq,
(10)

holds for all the test functions v P Hipcurl; Ωq. In the local HHO bilinear forms,
the new impedance and boundary source terms appearing in (10) translate to a
face-based mass matrix and a face-based right-hand side respectively, as in

aT peT , vT q :“ µ´1pCeT , CvT qL2pT q ` sT peT , vT q

´ ω2εppeT , 0q, pvT , 0qqL2pT q

`
ÿ

FPBT

iωY pp0, uF q, p0, vF qqL2pΓZq

lT pvT q :“
ÿ

FPBT

iωY pp0, e`t pdqq, p0, vF qqL2pΓZq ´ iωpj, pvT , 0qqL2pT q

The global system assembly procedure remains identical to the previous case,
except for the discrete global space of the problem, which is now

Ukh,i :“
 

uh P U
k
h | uF “ 0 @F P ΓD

(

.

4.2 Total field/scattered field decomposition

In a total/scattered field (TF/SF) decomposition the computational domain Ω
is split in two partitions Ωt and Ωs such that Ωt Y Ωs “ Ω, Ωt X Ωs “ H and
Ωt X Ωs “ Γts (Figure 4b). The field computed in Ωs is then the result of the
scatterings occurring in Ωt minus the field due to the surface source applied on
the interface Γts or a subset of it. We refer the reader to [31, Section 3.2] for
a detailed derivation of the TF/SF decomposition, here we limit ourselves to
recall that in order to impose a surface source field esrcpxq, x P Γts one can use
the source term

`tspvq :“ µ´1p∇ˆ esrc,∇ˆ vqL2pΩsq ´ ω
2εpesrc,vqL2pΩsq

´ iωY pesrc ˆ n̂ts,vqL2pΓtsq

, (11)

where n̂ts is the normal vector on Γts and pointing from Ωt to Ωs.
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Let ItsT puq :“ p0, πk,tsγ,F1
u, . . . , πk,tsγ,Fn

uq P UkT , where πk,tsγ,Fi
u returns the L2

projection of u on Fi if Fi P Γts and zero otherwise. The term (11) is readily
translated to HHO as the element-local contribution to the right-hand side

ltsT pvT q :“ µ´1pCItsT pesrcq, CvT qL2pT q ` sT pItsT pesrcq, vT q
´ iωY pItsT pesrcq, vT qL2pΓtsq

. (12)

where T is an element that belongs to Ωs and has at least one face in com-
mon with Γts. Notice that since the cell part of ItsT pesrcq is zero, the discrete
volumetric mass term vanishes.

5 Numerical validation of additional conditions
and sources

In this section we provide some validation results about the impedance boundary
condition and the total field/scattered field decomposition. To this aim, we set
up a parallel-plate waveguide problem whose analytical solution can be readily
obtained by basic transmission line theory considerations [23]. In particular,
we will consider the propagation of an electromagnetic wave through a material
discontinuity with various degrees of impedance mismatch. In this setting, we
study the convergence to the analytical solution and the convergence of the
return loss measured at the source.

5.1 Detailed validation setup

Ω3 Ω1 Ω2
z3 z0 z1 z2

z
x

y

Figure 5: Computational domain used to setup a parallel-plate waveguide for the
validation of the impedance boundary condition and the TF/SF decomposition.

Concretely, we consider the domain Ω “ p0, 0.1qˆ p0, 0.1qˆ p´0.2, 2q. Addi-
tionally, we subdivide Ω along the coordinate z in three subregions Ω3,Ω1 and
Ω2 (Figure 5). The region Ω3 extends in the interval p´0.2, 0q along z and is a
scattered field region, whereas Ω1 and Ω2 are both total field region which cover
the z intervals p0, 1q and p1, 2q respectively. On the boundaries parallel to the
xz-plane a homogeneous Dirichlet boundary condition (n̂ ˆ e “ 0) is applied,
whereas on the boundaries parallel to the yz-plane a homogeneous Neumann
boundary condition (n̂ ˆ h “ 0) is applied. A plane wave source of amplitude
E0 “ p0, 1, 0q

T is applied via (12) in the plane at z “ z0 “ 0, whereas on the
planes z “ z3 “ ´0.2 and z “ z2 “ 2 an impedance boundary condition is
imposed. In the regions Ω3 and Ω1 the material parameters are set to ε “ ε0
and µ “ µ0, simulating free space. On the other hand, in Ω2 we set ε “ εrε0 and
µ “ µ0 in order to obtain a material discontinuity on the plane at z “ z1 “ 1. In
turn, this gives on the same plane a reflection coefficient γ12 and a transmission
coefficient τ12 (seen from 1 to 2).
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In this setting, the reference solution can be defined piecewise by resorting to
the standard transmission line theory (Figure 6). We start with Ω1 by observing
that there will be a forward wave due to the excitation at z0, and a backward
wave reflected by the material discontinuity at z1. The expression of the forward
wave is easily deduced to be E0e

´iκ1pz´z0q; in addition we notice that at the
point z1 the phase is φ1 “ ´iκ1pz1 ´ z0q. Subsequently, by using the last
observation and the fact that at z1 the reflection coefficient is γ12, we deduce
that the backward wave originating at z1 can be written as E0 γ12 e

iκ1pz´z1qeφ1 .
Concerning Ω2, as the domain is terminated by a matched impedance condition,
we expect only a forward wave with initial amplitude E0 τ12 and initial phase φ1.
Finally, as Ω3 is a scattered field region, we expect to see only the backward wave
originating at z1, whose expression was already derived above. The complete,
piecewise reference solution can finally be written as follows:

erefpxq “

$

’

’

&

’

’

%

E0 γ12 e
iκ1pz´z1qeφ1 in Ω3

E0e
´iκ1pz´z0q `E0 γ12 e

iκ1pz´z1qeφ1 in Ω1

E0 τ12 e
´iκ2pz´z1qeφ1 in Ω2

(13)

5.2 Validation results

For the validation we consider three different situations: an almost matched sit-
uation, a situation with a moderate mismatch and one with a severe mismatch.
In particular we will consider the values of εr in Ω2 reported in Table 4. We
recall [23] that the wave impedance in the domain Ωi is computed from the
material parameters as Zi “

a

ε{µ. Given two differents, adjacent domains Ωi
and Ωj , the reflection and transmission coefficients at the interface from Ωi to

Ωj are computed as γij “
Zi´Zj

Zi`Zj
and τij “ 2

Zj

Zi`Zj
respectively; the return loss

in decibels at at the same interface is computed as RL(dB) = 20log10|γij | and

the voltage standing wave ratio as VSWR =
1`|γij |
1´|γij |

. We recall that the return

loss is given also by the ratio between the reflected and incident power at a
given interface as RLpdBq “ 10log10pPref{Pfwdq. Finally, the power P flowing
at a given interface Γ is obtained by evaluating the flux of the Poynting vector
[28, Section 5.1] as P “

ş

Γ
|e|2{ZdΓ, where Z is the impedance of the domain

adjacent to Γ.

Situation εr γ12 τ12 RL(dB) VSWR
Almost matched 1.44 -1/11 10/11 -20.8279 1.2:1

Moderate mismatch 4 -1/3 2/3 -9.5424 2:1
Severe mismatch 64 -7/9 2/9 -2.1829 8:1

Table 4: The parameters of the three situations considered as validation cases.
For a given value of εr, the analytical values of the reflection coefficient, trans-
mission coefficient, return loss in dB and VSWR respectively are reported.

The results of the validation are reported in the Figures 7, 8 and 9. We
considered polynomials degrees k “ 1 (top row in the figures) and k “ 2 (bottom
row in the figures). In all cases the error decays with the expected rate (Oph2q in
the case k “ 1 and Oph3q in the case k “ 2), see left column of Figures 7, 8 and
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Figure 6: Analytical solution at 300 MHz in the three considered test cases. The
symbol ε2 denotes the relative permittivity in the subregion Ω2 of the testing
domain.

9. On the right column of the figures we reported the convergence of the return
loss at the interface at z0; we remark that this computation, especially in the
severely mismatched situation, benefits greatly from higher order. In addition,
we notice that there is no “direction” in the convergence of the value of the
return loss: in some cases the convergence is from above, in some cases from
below and in other cases there is an oscillation (getting smaller with smaller h)
around the true value. This behaviour is in accordance with what was already
observed in [13].
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Figure 7: Almost matched (VSWR 1.2:1), on the top row polynomial order
k “ 1 and on the bottom row polynomial order k “ 2. On the left column
the convergence rate to the reference solution is reported, whereas in the right
column the convergence of the return loss is depicted.

6 Study of a TE10 to TE20 mode converter

To conclude the numerical evaluation of the proposed HHO method, we consider
a realistic test case of a waveguide mode converter. In this setting a waveguide is
a hollow metallic pipe used to transport electromagnetic energy from a generator
to a load (for example a transmitter and an antenna). Practical waveguides are
tipically rectangular or circular and, as prescribed by the electromagnetic theory
[23], the electromagnetic field inside a waveguide travels in discrete transverse
modes indexed by integers m and n. A mode converter is a microwave device
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Figure 8: Moderate mismatch (VSWR 2:1), on the top row polynomial order
k “ 1 and on the bottom row polynomial order k “ 2. On the left column
the convergence rate to the reference solution is reported, whereas in the right
column the convergence of the return loss is depicted.
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Figure 9: Severe mismatch (VSWR 8:1), on the top row polynomial order k “ 1
and on the bottom row polynomial order k “ 2. On the left column the con-
vergence rate to the reference solution is reported, whereas in the right column
the convergence of the return loss is depicted.
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capable of changing the propation mode of a field in a waveguide, and can be
used for example to split the power between two loads.

We consider a TE10 to TE20 waveguide mode converter of the type studied
in [35, Chapter 14] and depicted in Figure 10. We are interested in determining

Dielectric rods: εr = 24
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rt 
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Figure 10: Structure of the simulated mode converter. The structure is built
in a WR-90 waveguide and the dielectric rods (blue circles) have a relative
permittivity εr “ 24. The input port is on the left (TE10 mode) and the output
port is on the right (TE20 mode)

the TE10 reflection coefficient at the Port 1 (i.e. the S-parameter S11 [23])
of the structure in the frequency ranges between 7 and 11 GHz, where the
mode conversion does not take place, and between 13 and 17 GHz, where mode
conversion takes place (Figure 12). We compare our solution with the solution
computed by a commercial multiphysics FEM package.

In the FEM model, the structure is terminated at both ends with Per-
fectly Matched Layers (PMLs) and excited with a waveguide port, as custom
impedance boundary conditions are not available. On the other hand, in our
HHO model we use an impedance boundary condition to terminate the struc-
ture. On the left side the impedance condition is matched to the wave impedance
of the TE10 mode, whereas on the right side the termination is matched to the
impedance of the output mode. The reason why we do not employ PMLs in our
model is that their development requires a better understanding of the HHO
behaviour when complex wavenumbers appear. Indeed, as observed also with
the HDG method [26], HHO too appears to break down in this setting. To the
best of our knowledge however, the HDG receipt [26] seems to not be straight-
forwardly applicable to HHO, therefore more investigation (which we will leave
for a future contribution) is needed in this area.

The FEM mesh is composed of tetrahedral elements, whereas the HHO mesh
is composed – in order to put in evidence the polyhedral nature of HHO –
by a single layer of triangular prisms. In both the FEM and HHO models
the amplitude of the reflected field is evaluated by exploiting the orthogonality
between modes [28, Section 5.1.3] as

aTE10
:“

ş

Γ
pe´ e10q ¨ e10 dΓ
ş

Γ
e10 ¨ e10 dΓ

, (14)

where Γ is the interface corresponding to Port 1 (Figure 10), e is the computed
total field on Γ and e10 is the excitation applied on Γ. The amplitude is then
used to compute the return loss S11 in decibels (Figure 11). In both regimes
we observe a good match between the FEM solution and the HHO solution;
the slight differences, negligible in practice, can be attributed to the slightly
different models we employed.
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Figure 11: On the left the computed return loss between 7 and 11 GHz, where
the mode conversion does not take place. On the right the computed return loss
as TE10 mode between 13 and 17 GHz, where a TE10 to TE20 mode conversion
takes place.

Figure 12: Field pattern at 15.5 GHz. From the left to right one can observe
the scattered field region, the TF/SF transition where the excitation is applied
and the total field region, where the mode conversion takes place. The left
end is terminated with the impedance of the TE10 mode, whereas right end is
terminated with the impedance of the TE20 mode.

7 Conclusions

We introduced a numerical method for the indefinite time-harmonic Maxwell
problem inspired on the design philosophy of the original HHO method for el-
liptic problems, and we evaluated experimentally its computational performance
against the classical SIP-DG method. As expected from hybrid methods, HHO
requires far less computational effort than SIP-DG, which is an important ad-
vantage on the considered problem. More importantly, HHO also helps in re-
ducing the quantity of memory required by the linear solver when compared to
SIP-DG.

Subsequently we described the HHO realization of two important tools,
namely a plane wave boundary condition and a total field/scattered field de-
composition, which we validated obtaining the expected convergence of the con-
sidered quantities.

As a more real-world problem, we presented the study of a waveguide mode
converter and we compared our results with those obtained from a commercial
code. Satisfactory agreement was found.

There are many aspects of the method that still need to be understood, we
leave deeper theoretical studies, as well as the introduction of other important
numerical tools such as the PMLs, for a future contribution.
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