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We study the effect of insoluble surfactants on the spatio-temporal evolution of tur-
bulent jets. We use three-dimensional numerical simulations and employ an interface-
tracking/level-set method that accounts for surfactant-induced Marangoni stresses. The
present study builds on our previous work (Constante-Amores et al., 2021, J. Fluid Mech.,
922, A6) in which we examined in detail the vortex-surface interaction in the absence of
surfactants. Numerical solutions are obtained for a wide range of Weber and elasticity
numbers in which vorticity production is generated by surface deformation and surfactant-
induced Marangoni stresses. The present work demonstrates, for the first time, the crucial
role of Marangoni stresses, brought about by surfactant concentration gradients, in the
formation of coherent, hairpin-like vortex structures. These structures have a profound
influence on the development of the three-dimensional interfacial dynamics. We also
present theoretical expressions for the mechanisms that influence the rate of production
of circulation in the presence of surfactants for a general, three-dimensional, two-phase
flow and highlight the dominant contribution surfactant-induced Marangoni stresses.

1. Introduction
The atomisation of a liquid jet has driven interest in the fluid mechanics community

because of its occurrence in both natural and industrial applications (e.g., propellant
combustion, pharmaceutical sprays, etc.). The process results in a ‘cascade mechanism’
for fluid fragmentation (Plateau 1873; Eggers 1997; Marmottant & Villermaux 2004;
Constante-Amores et al. 2020a): from the growth of linear modes through a Kelvin-
Helmholtz instability to the development of nonlinearities leading to capillary breakup
events via long filament pinch-off that can be modulated by a Rayleigh-Plateau instability
or controlled by an ‘end-pinching’ mechanism. The understanding of the interfacial
dynamics relies on the characterisation of the vortex-interface interactions. For instance,
Jarrahbashi et al. (2016), Zandian et al. (2018, 2019) and Constante-Amores et al. (2021a)
reported that their interplay determines the interfacial dynamics for turbulent jets;
Hoepffner & Paré (2013) showed that vorticity production results in a change in the
capillary retraction of a liquid thread. Theoretically, Longuet-Higgins (1992), Wu (1995),
Lundgren & Koumoutsakos (1999) demonstrated that vorticity production depends on the
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velocity field and the interfacial curvature for the condition of zero shear stress at a free
surface. Additionally, Brøns et al. (2014) and Terrington et al. (2020, 2021) extended the
previous results to show that interfacial curvature effects, viscosity and density difference
across the interface are the only mechanisms driving vorticity production. Recently,
Fuster & Rossi (2021) also demonstrated the role of interfacial curvature and density
differences across the interface with identical dynamical viscosity via two-dimensional,
non-axisymmetric numerical studies.
We note that the studies mentioned in the foregoing involve a constant surface

tension and therefore do not support the formation of Marangoni gradients. Liquid
streams, however, are invariably contaminated with surface-active-agents (surfactants),
deliberately-placed or naturally-occurring, which give rise to surface tension gradients,
and subsequently Marangoni-induced flow (Manikantan & Squires 2020). While the
atomisation of uncontaminated liquid jets has received significant attention in the literature
(Herrmann 2010; Desjardins & Pitsch 2010; Jarrahbashi & Sirignano 2014; Jarrahbashi
et al. 2016; Zandian et al. 2018, 2019; Constante-Amores et al. 2020b, 2021a), the effect
of surfactant on their dynamics remains far less studied. The multi-scale nature of the
flow, and the complex coupling between the surfactant concentration fields and interfacial
topology complicate its experimental scrutiny. This can be alleviated via the use of
high-fidelity simulations which can unravel the delicate interplay among the different
physical mechanisms across the relevant scales.
Through the use of state-of-the-art imaging techniques, Kooij et al. (2018), Sijs &

Bonn (2020), and Sijs et al. (2021) showed that the presence of surfactants influences
the interfacial fragmentation during atomisation and decreases the mean-droplet size in
agreement with Ellis et al. (2001) and Ariyapadi et al. (2004). All the previous studies,
however, have not reported the role of Marangoni stresses which the present paper will
address for the case of an insoluble surfactant. Although the presence of surfactants can
also induce both shear and dilatational surface rheological effects (discussed below), these
effects will not be considered in this study. Nonetheless, we will use transient numerical
simulations to demonstrate that the Marangoni stresses influence the production of
vorticity near the interface, and modify the interface-vortex interactions and the three-
dimensional destabilisation of the jet. In order to focus on the role of Marangoni stresses
in the jet dynamics, we will study the case of a jet of one fluid issuing into another
characterised by equal densities and viscosities.
There has been significant scientific interest in studying the role of surfactants in the

destabilization and fragmentation of non-turbulent liquid jets of pure Newtonian fluids (see
for example Eggers (1993); Lister & Stone (1998); Craster et al. (2002); Liao et al. (2004);
Craster et al. (2009)). Those authors have shown the existence of multiple intermediate
or transient scaling regimes which are not altered by the presence of surfactants as they
are convected away from the pinch-off region. However, McGough & Basaran (2006) and
Kamat et al. (2018) showed the formation of micro threads, which connect drops during
the surfactant-induced thinning. Additionally, the presence of surfactants not only give
rise to gradients in surface tension and hence tangential interfacial stresses, but also
induce both shear and dilatational surface rheological effects. Recently, work by Wee et al.
(2021) and Martínez-Calvo & Sevilla (2020) have analysed theoretically the influence
of surface viscosities on the pinch-off dynamics of a jet of an incompressible Newtonian
liquid that is surrounded by a passive gas.
The rest of this paper is structured as follows: in Section 2, the problem formulation,

governing dimensionless parameters, and numerical method are introduced. Section 3
provides a discussion of the results, and concluding remarks are given in Section 4.
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(a) (b)

Figure 1: (a) Initial interfacial shape, highlighting the computational domain of size (5D)3

in a three-dimensional Cartesian space x = (x, y, z); (b) schematic representation of the
problem in the x − y (z = 2.5D) plane showing the initial (t = 0) streamwise velocity
profile, ux, and a representation of a monolayer of an insoluble surfactant.

2. Problem formulation and numerical method
Since the aim here is to shed light on the different mechanisms that influence the

production of vorticity near the interface in the presence of surfactants, we present a
general theoretical description of vorticity and circulation in a three-dimensional control
volume enclosing an interface using Lighthill’s and Lyman’s flux definitions Terrington
et al. (2021). We also provide a brief description of the numerical technique which is used
to carry out the computations. Finally, we provide motivation for the choice of physical
and physico-chemical parameters made in the present work.

2.1. Problem formulation and numerical method
Figure 1 shows a representation of the flow configuration considered in this study in

a three-dimensional Cartesian domain x = (x, y, z): a liquid segment is initialised as
a cylinder of diameter D, with a finite length, i.e. 5D, in the positive x−(streamwise)
direction. Such an approach has been used by Desjardins & Pitsch (2010), Jarrahbashi et al.
(2016), and Zandian et al. (2018) for planar and cylindrical jets. Appendix A shows the
effect of varying the domain size. We will focus on the case of insoluble surfactants, which
enables us to isolate the surfactant-induced Marangoni dynamics during the atomisation
of the jet. We acknowledge, however, that experimental studies feature soluble surfactants
which are dissolved in the liquid that issues from a nozzle to form the jet and that the
sorption kinetics control the surfactant interfacial concentration adding extra layers of
complexity.
The dimensional governing equations, which can be found in the work of Shin et al.

(2018), are rendered dimensionless using the following scalings:

x̃ =
x

D
, t̃ =

t

tr
, ũ =

u
U
, p̃ =

p

ρU2
, σ̃ =

σ

σs
, Γ̃ =

Γ

Γ∞
, (2.1)

where, t, u, and p stand for time, velocity, and pressure, respectively; here, the dimen-
sionless variables are designated using tildes. The physical parameters correspond to the
liquid density ρ, viscosity, µ, surface tension, σ, surfactant-free surface tension, σs, initial
jet diameter, D, and injection velocity, U . Hence, the characteristic time scale based on
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the injection velocity is tr = D/U . The interfacial surfactant concentration, Γ , is scaled
with the saturation interfacial concentration, Γ∞.

Using the relations in Eq. (2.1), the dimensionless form of the continuity and momentum
equations is respectively expressed as:

∇ · ũ = 0, (2.2)

ρ̃

(
∂ũ
∂t̃

+ ũ · ∇ũ
)

= −∇p̃+ 1

Re
∇ ·
[
µ̃(∇ũ +∇ũT )

]
+

1

We

∫
Ã(t̃)

(σ̃κ̃ŝ+∇sσ̃) δ
(
x̃− x̃

f

)
dÃ, (2.3)

where κ̃ represents the interface curvature, ∇s the surface gradient operator, and ŝ the
outward-pointing unit normal to the interface. Here, x̃f is the parametrization of the
time-dependent interface area Ã(t̃), where δ(x̃− x̃f ) is the three-dimensional Dirac delta
function. The density, ρ̃, and viscosity, µ̃, are given by the following expressions

ρ̃
(
x̃, t̃
)
=
ρg
ρl

+

(
1− ρg

ρl

)
H
(
x̃, t̃
)
, µ̃
(
x̃, t̃
)
=
µg

µl
+

(
1− µg

µl

)
H
(
x̃, t̃
)
, (2.4)

where H
(
x̃, t̃
)
represents a smoothed Heaviside function; this is zero in the gas phase

and unity in the liquid phase, while the subscripts l and g designate the individual liquid
and gas phases, respectively.

The dimensionless surfactant transport is given by:

∂Γ̃

∂t̃
+∇s · (Γ̃ ũt) =

1

Pes
∇2

sΓ̃ , (2.5)

where ũt = (ũs · t)t is the tangential velocity vector in which ũs is the surface velocity
and t is the unit tangent to the interface.

The scaling results in the following dimensionless groups:

Re =
ρUD

µ
, We =

ρU2D

σs
, P es =

UD

Ds
, βs =

<T Γ∞
σs

, (2.6)

where Re, We, and Pes denote the Reynolds, Weber, and (interfacial) Peclet numbers,
respectively, while βs is a surfactant elasticity number which represents a measure of
the sensitivity of σ to Γ ; here, < is the ideal gas constant value 8.314 J K−1 mol−1, T
denotes temperature and Ds refers to the diffusion coefficient.

To describe the relation between σ̃ and Γ̃ , we use the non-linear Langmuir equation:

σ̃ = 1 + βs ln (1− Γ̃ ). (2.7)

Surface tension gradients are expressed as a function of Γ̃ as

∇sσ̃/We = −Ma/(1− Γ̃ )∇sΓ̃ , (2.8)

where Ma = βs/We = <TΓ∞/ρU2D is a Marangoni parameter.
The three-dimensional numerical simulations were performed by solving the two-

phase Navier-Stokes equations in the Cartesian domain x = (x, y, z). A hybrid front-
tracking/level-set method was used to treat the interface where surfactant transport was
resolved in the plane of the interface (Shin et al. 2018). The simulations are initialised with
a turbulent velocity profile in the liquid jet segment (i.e., u(r) = 15/14 U(1− (r/(D/2))28)
(Constante-Amores et al. 2021a). Solutions are sought subject to Neumann boundary
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conditions on all variables at the lateral boundaries, and periodic boundary conditions in
the x−(streamwise) direction. The computational domain is a cube with dimensions (5D)3

globally resolved by a uniform grid of (786)3 cells; see Appendix of Constante-Amores et al.
(2021a) for details of mesh-refinement studies and validation of the numerical method.
This method has also been widely tested for surfactant-laden flows (Shin et al. 2018;
Constante-Amores et al. 2020a, 2021b, 2022; Batchvarov et al. 2021) and the numerical
simulations in this study conserve fluid volume and surfactant mass with a relative error
of less than 10−3%.
Next, we motivate the values of material properties by looking into the sources for

vorticity production at an interface in a three-dimensional framework. These sources
are due to differences in density (i.e., baroclinic effect) and viscosity, surface tension
forces (due to gradients of curvature along the interface), and Marangoni stresses. Thus,
to unravel the importance of the surfactant-induced Marangoni stresses on the vortex-
surface-surfactant interactions, we focus on situations in which surface tension forces and
Marangoni stresses are the only physical mechanisms responsible for vorticity production
at the interface, i.e., the jump in material properties across the interface is zero (Fuster &
Rossi 2021). This is a realistic assumption for immiscible liquid-liquid systems exemplified
by the silicone oil-water pairing used by Ibarra (2017) and Ibarra et al. (2020) in their
two-phase, stratified pipe flow experiments.

The values of the dimensionless quantities are consistent with experimentally-realisable
systems and are chosen to ensure a full coupling between surfactant-induced Marangoni
stresses and interfacial diffusion, and inertia. We set Re = 5000 to ensure a rich dynamics
(Constante-Amores et al. 2021a) and focus on the range 50 < We < 1000 to account for
realistic values of σs, i.e. O(10−3) < σs < O(10−1) N m−1. The parameter βs is related
to Γ∞ and therefore the critical micelle concentration (CMC), i.e. Γ∞ ∼ O(10−6) mol
m−2 for NBD-PC (1-palmitoyl-2-12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl-
sn-glycero-3 -phosphocholine) (Strickland et al. 2015); thus, we have explored the range
of 0.1 < βs < 0.9 which corresponds to CMC in the range O(10−7) < CMC < O(10−6)
mol m−2, for typical values of σs. We have set Pes = 102 following Batchvarov et al.
(2020) and Constante-Amores et al. (2020a) who showed that the interfacial dynamics
are weakly-dependent on Pes beyond this value.

2.2. Vorticity and circulation
This section aims to present a general description of vorticity generation in a three-

dimensional framework. We present a theoretical formulation which builds upon the
inviscid theory presented by Morton (1984) for near-interface vorticity generation in three
dimensions. For inviscid fluids, the rate of generation of vorticity is a result of the relative
tangential acceleration of fluid on each side of the interface, which is caused by tangential
pressure gradients or body forces. The present theoretical formulation is expressed as
a conservation law for circulation in a control volume that includes a general surface.
The total circulation is expressed as the vorticity from the fluids from both sides of the
interface as well as circulation contained in the interface.
It is well known that curvature induces the generation of vorticity as the normal

viscous stress at an interface is balanced by the capillary pressure. However, the
presence of surfactant leads to a reduction in surface tension, which influences this
mechanism. Furthermore, surfactant interfacial concentration variations induce surface
tension gradients, and, as we will show, lead to a new route for vorticity generation near
the interface. Once we have presented our theoretical expressions for a general three-
dimensional surface, we will simplify them for the limiting case in which the jump in the
tangential and normal components of the velocity across the interface vanish; this is the
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Figure 2: Schematic showing a volume V with a surface ∂V which encloses two fluids
separated by an interface surface I. Here, the two smaller control volumes V1 and V2 refer
to the control volume of each fluid. Local unit vectors to the interface are b̂ , ŝ and t̂; n̂
corresponds to the unit normal vector to the control volume ∂V , b̂ is a vector tangent to
I, but orthogonal to ∂I, and t̂ is the unit tangent vector to the boundary curve ∂I.

case for identical material properties such as density and viscosity. This assumption will
help to shed some light on the crucial role of the Marangoni-induced vorticity generation
mentioned above. Future studies should extend our work to situations featuring density
and viscosity contrasts.

In order to examine the effect of the surfactant on the vorticity near the interface, we
consider a fixed, three-dimensional (3D) control volume V bounded by a closed surface
of area ∂V with an outward-pointing unit normal n̂ (see figure 2). This volume encloses
regions of the incompressible fluids 1 and 2, of volumes, V1 and V2, separated by an
interfacial surface I whose intersection with V defines the curve ∂I. The vector ŝ is the
outward-pointing unit normal to the surface I while t̂ and b̂ are two orthogonal unit
tangent vectors to the interface. We proceed below using dimensional variables and then
apply the scalings in equation 2.1 to render the final equations dimensionless.
For fluid ‘i’, it is possible to write down expressions for ωb,i and ωt,i, which represent

the components of the vorticity ωi in the b̂ and t̂ directions, respectively:

ωb,i = (ŝ× t̂) · (∇× ui), (2.9)

ωt,i = (ŝ× b̂) · (∇× ui), (2.10)

where ui denotes the velocity fields. These expressions may be recast as follows †

ωb,i = ŝ · ∇ui · t̂− t̂ · ∇ui · ŝ, (2.11)

ωt,i = ŝ · ∇ui · b̂− b̂ · ∇ui · ŝ. (2.12)

In the presence of interfacial stresses arising from gradients of surface tension σ due to

† Using (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c), valid for any vector a, b, c, and d.
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surfactant concentration gradients, the interfacial shear stress conditions are given by[[
t̂ ·T · ŝ

]]
= −t̂ · ∇σ, (2.13)[[

b̂ ·T · ŝ
]]

= −b̂ · ∇σ, (2.14)

[[q]] = q2 − q1 represents the jump across the interface of a quantity q, Ti = −pi + µiDi

is the total stress in fluid ‘i’ in which pi is the pressure, Di = (∇ui +∇uT
i)/2 is the rate

of deformation tensor, and µi denote the viscosities, whence[[
µ
(
t̂ · ∇u · ŝ+ ŝ · ∇u · t̂

)]]
= −2t̂ · ∇σ, (2.15)[[

µ
(
b̂ · ∇u · ŝ+ ŝ · ∇u · b̂

)]]
= −2b̂ · ∇σ. (2.16)

Substitution of these results into Eqs. (2.11) and (2.12) yields[[
µ
(
ωb + 2t̂ · ∇u · ŝ

)]]
= −2t̂ · ∇σ, (2.17)[[

µ
(
ωt + 2b̂ · ∇u · ŝ

)]]
= −2b̂ · ∇σ. (2.18)

For the case [[µ]] = 0, which is the focus of this paper, we obtain

[[wb]] = −
2

µ
∇σ · t̂− 2

[[
t̂ · ∇u · ŝ

]]
, (2.19)

[[wt]] = −
2

µ
∇σ · b̂− 2

[[
b̂ · ∇u · ŝ

]]
, (2.20)

where µ2 = µ1 = µ. Noting that t̂ · ∇ = ∂/∂s and b̂ · ∇ = ∂/∂b, it can be shown that

[[ωb]] = −
2

µ

∂σ

∂s
− 2

[
∂

∂s
[[u · ŝ]]− κ1

[[
u · t̂

]]]
, (2.21)

[[ωt]] = −
2

µ

∂σ

∂b
− 2

[
∂

∂b
[[u · ŝ]]− κ2

[[
u · b̂

]]]
, (2.22)

where the curvatures κ1 and κ2 are defined as follows

κ1 = t̂ · ∂ŝ
∂s
, κ2 = b̂ · ∂ŝ

∂b
. (2.23)

From continuity of the normal and tangential components of the velocity at the interface,
i.e., [[u · ŝ]] = 0, and [[u · t̂]] = [[u · b̂]] = 0, respectively, it is seen that the interfacial
jumps in the vorticity components are directly related to the Marangoni stresses:

[[ωb]] = −
2

µ

∂σ

∂s
, (2.24)

[[ωt]] = −
2

µ

∂σ

∂b
. (2.25)

We now consider the circulation vector Ω for 3D flows given by

Ω =

∫
V

ωdV, (2.26)

for the fixed 3D control volume V shown in figure 2. The 3D vorticity equation is given by

∂ω

∂t
+∇ · (uω) = ∇ · (ωu) + ν∇2ω, (2.27)
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and the total rate of change of Ω is then expressed by
DΩ

Dt
=

∫
V

Dω

Dt
dV =

D

Dt

∫
V

ωdV =

∫
V

∇ · (ωu+ ν∇ω) dV

=

∫
∂V

n̂ · (ωu)dS +

∫
∂V

n̂ · (ν∇ω)dS. (2.28)

The first term on the RHS of Eq. (2.28) corresponds to vortex stretching/tilting and is
present only in 3D. We now write

D

Dt

∫
V1UV2

ωdV =

∮
∂V1

n̂ · (ωu+ ν∇ω) dS +

∮
∂V2

n̂ · (ωu+ ν∇ω) dS

+

∮
∂V ′

1

n̂ · (ω1u1 + ν1∇ω1) dS +

∮
∂V ′

2

n̂ · (ω2u2 + ν2∇ω2) dS,(2.29)

and let V1UV2 → V , n̂→ ŝ from fluid 1, n̂→ −ŝ from fluid 2, and (∂V1, ∂V2)→ I, then
it follows that

D

Dt

∫
V

ωdV =

∮
∂V

n̂ · (ωu+ ν∇ω) dS −

∮
I

[[ŝ · (ωu)]]dS +

∮
I

[[νŝ · ∇ω]]dS

 . (2.30)

It is important to establish a connection between
∮
I
[[νŝ · ∇ω]]dS, which represents

the jump across the plane of the interface of the vorticity flux, and the momentum
conservation equation given by

Du

Dt
= −∇p

ρ
− ν∇× ω. (2.31)

In order to relate this term to the ν∇× ω term in Eq. (2.31), we first write down the
following general result †

−
∮
∂V

ŝ · ∇ωdS = −
∫
V

∇2ωdV = −
∫
V

(∇(∇ · ω)−∇×∇× ω) dV =

∫
V

∇×∇× ωdV

= −
∮
∂V

(∇× ω)× ŝdS =

∮
∂V

ŝ×∇× ωdS. (2.32)

Note that this relation links Lighthill’s vorticity flux to Lyman’s flux, the latter being
another form of the former (see Terrington et al. (2021) and references therein).
Inspired by the form of Lyman’s flux, the natural way to proceed is to take the cross

product of ŝ = t̂× b̂ with the LHS of Eq. (2.31) and its pressure gradient term ‡ and a
cross product of ŝ with its ν∇× ω term to arrive at

−νŝ×∇× ω = b̂t̂ · Du

Dt
− b̂t̂ · ∇

(
p

ρ

)
= b̂

[(
D

Dt
(u · t̂)− u · Dt̂

Dt

)
+ t̂ · ∇

(
p

ρ

)]
= νŝ · ∇ω;

† We have used the vector identity
∫
V
∇×AdV = −

∮
∂V

A×dS = −
∮
∂V

A×ndS =
∮
∂V

n×AdS,
for any vector A, and volume V enclosed by a surface ∂V with a unit normal n.
‡ We have exploited the fact that t̂× b̂× c = b̂(t̂ · c)− c(t̂ · b̂) = b̂(t̂ · c) since t̂ · b̂ = 0.
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here, we note that the sources of vorticity are due to acceleration in the plane of the
interface, which we can think of as a vortex sheet, and interfacial pressure gradients.
Making use of this relation in Eq. (2.30), we arrive at

D

Dt

∫
V

ωdV + b̂

∮
I

[[u · t̂]]dS

 =

∮
∂V

n̂ · (ωu+ ν∇ω) dS

−
∮
I

[[ŝ · (ωu)]]dS +

∮
I

b̂[[u · Dt̂

Dt
]]dS −

∮
I

b̂
∂

∂s
[[
p

ρ
]]dS,

(2.33)

where we have set t̂ ·∇(p/ρ) = ∂(p/ρ)/∂s. An expression for u · (Dt̂/Dt) can be developed
given by (the details are in Appendix B)

u · Dt̂

Dt
=

1

2

∂

∂s

[
(u · ŝ)2 + (u · b̂)2

]
+

1

2

∂

∂b

[
(u · ŝ)2 + (u · b̂)2

]
− κ1(u · t̂)(u · ŝ). (2.34)

Furthermore, for [[ρ]] = 0, the remaining term required to close equation 2.33 is one for
[[p]] (the details are in Appendix C):

[[p]] = −σ(κ1 + κ2)− 2[[µ

(
∂

∂s

[
(u · t̂) + (u · b̂)

]
+ (κ1 + κ2)(u · ŝ)

)
]]. (2.35)

To collapse these equations to their two-dimensional (2D) equivalents, we first note that
ŝ ·ω = n̂ ·ω = u · b̂ = 0 in 2D, and set ∂/∂b = 0; the latter leads to κ2 = 0. We then take
a dot product of Eq. (2.33) with b̂ (and convert the volume and area integrals to area
and line integrals, respectively) to arrive at a 2D analogue involving the vorticity scalar
ω. Moreover, in the case studied here, characterised by [[µ]] = 0, [[u · ŝ]] = 0, [[u · t̂]] = 0,
and [[u · b̂]] = 0, equation (2.33) reduces to

D

Dt

∫
V

ωdV

 =

∮
∂V

n̂ · (ωu+ ν∇ω) dS −
∮
I

[[ŝ · (ωu)]]dS +
1

ρ

∮
I

b̂
∂

∂s
(σ [κ1 + κ2]) dS.

(2.36)
We note that the term involving [[ŝ · (ωu)]] on the right-hand-side of this equation is

zero. To see this, we first note that [[ŝ · ωu]] can be re-expressed as

[[ŝ · ωu]] = (ŝ · ω2)u2 − (ŝ · ω1)u1

= (ŝ · ω2 − ŝ · ω1)u1

= (ŝ · ω2 − ŝ · ω1)u2

= [[ŝ · ω]]u1 = [[ŝ · ω]]u2, (2.37)

since [[u]] = 0. We also note that ŝ · ω = (b̂× t̂) · (∇× u), which can be re-written as

ŝ · ω = b̂ · ∇u · t̂− t̂ · ∇u · b̂
= b̂ · ∂u

∂s
− t̂ · ∂u

∂b

=
∂

∂s
(b̂ · u)− ∂

∂b
(t̂ · u), (2.38)
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since b̂ 6= b̂(s) and t̂ 6= t̂(b). Thus, we can write

[[ŝ · ω]] = [[
∂

∂s
(b̂ · u)]]− [[

∂

∂b
(t̂ · u)]]

=
∂

∂s
[[b̂ · u]]− ∂

∂b
[[t̂ · u]] = 0, (2.39)

since [[b̂ ·u]] = 0 and [[t̂ ·u]] = 0, whence [[ŝ ·ωu]] = 0. Inspection of the terms remaining
in equation 2.36 suggests that circulation is influenced by vorticity diffusion, vortex
tilting/stretching, and gradients of curvature and interfacial tension.

The dimensionless versions of equations (2.25) and (2.24) are then expressed by

[[ω̃t]] = −2ReMa
1

(1− Γ̃ )
∂Γ̃

∂b
, (2.40)

[[ω̃b]] = −2ReMa
1

(1− Γ̃ )
∂Γ̃

∂s
, (2.41)

and the dimensionless equation (2.36) reads

D

Dt̃

∫
Ṽ

ω̃dṼ

 =

∮
∂Ṽ

n̂ ·
(
ω̃ũ+

1

Re
∇ω̃

)
dS̃ +

1

We

∮
I

b̂
∂

∂s̃
(σ̃ [κ̃1 + κ̃2]) dS̃, (2.42)

and the tildes are dropped henceforth.
Note that in the case of non-isothermal systems, σ̃ has a linear dependence on the local

temperature T , and a linear equation of state describes σ̃(T̃ ) (see, for example, Williams
et al. (2021)). It is possible to relate the present, surfactant-laden case to that involving
thermal gradients by linearising our equation of state, σ = 1 + βs ln(1− Γ ), for Γ � 1
such that it reads σ = 1− βsΓ . Although this analogy is useful, it is, however, incomplete
since the non-isothermal case does not involve a surface species whose concentration
evolves spatio-temporally for which a transport equation must be solved.

3. Results
Figure 3 shows a flow regime map for Re = 5000 that depicts the interfacial morphology

associated with various regions of the βs −We parameter space generated by over 100
transient simulations performed in the ranges 100 < We < 1000 and 0.1 < βs < 0.9.
We have divided the map into two distinct regions depending on the morphology: for
small We, capillary forces control the interfacial dynamics preventing the development
of lobes which could result in the formation of large droplets; for large We, inertial
forces dominate the dynamics triggering the formation of interfacial lobes whose thinning
eventually results in the generation of holes and eventually droplets. The resulting non-
uniform surfactant distribution generates gradients in surface tension affecting the local
dynamics. Surfactant accumulation takes places in high-curvature regions giving rise to
Marangoni stresses that drive surfactant redistribution from high- to low-concentration
regions. Marangoni stresses, therefore, oppose the shear stresses produced by the flow
field, the former exerting a restoring effect and the latter a perturbing effect in the
local surfactant concentration field. The dimensionelss Marangoni velocities induced by
surface tension differences ∆σ are of O(ReWe−1(∆σ/σs)). Similarly, the dimensionless
Marangoni stresses, τ , are of O(We−1∇̃σ̃), or, equivalently, O(βsWe−1∇̃Γ̃ ), viz. equation
(2.8), while capillary forces and shear stresses are of O(We−1) and O(Re−1), respectively.
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Figure 3: Regime map of the interfacial morphology in the βs −We space for Re = 5000,
Pes = 100, and Γo = Γ∞/2. The capillary-dominated and inertia-dominated regimes, and
their boundaries are clearly demarcated; the symbols represent simulations carried out at
the transition lines separating these regimes. Three-dimensional representations of the
interface for both regimes are also shown.

Furthermore, from equations (2.40) and (2.41), it is clear that the Marangoni-induced
vorticity jumps across the interface are of O(Re βsWe−1). Inspection of figure 3, which was
generated for a fixed Re value, reveals that the presence of Marangoni stresses counteracts
the transition from the low- to high-We regimes as the critical We increases with βs with
a quasi-linear dependence. The latter is consistent with the scaling highlighted above,
τ ∼ βsWe−1, which demonstrates that increasing βs and decreasing We serve to enhance
the restoring influence of the Marangoni stresses. The boundary demarcated in figure 3
was generated by examining the temporal evolution of the interfacial area normalised by
its initial value over a range of We and with βs varying parametrically and Re = 5000;
this shows that the normalised area is maximised for an intermediate value of We, for
fixed βs (and Re) which heralds the transition towards an inertia-dominated regime.

To assess the effect of Marangoni-induced flow, we have analysed the flow physics of the
surfactant-free and surfactant-laden flows characterised by Re = 5000 and We = 500. We
start with the surfactant-free case depicted in Figure 4 which shows the spatio-temporal
interfacial dynamics for the surfactant-free case through the Q-criterion (e.g., a measure
of the dominance of vorticity ω over strain s, i.e., Q = (||ω||2 − ||s||2)/2 (Hunt et al.
1988)). At early times, we observe the formation of a periodic array of quasi-symmetric
Kelvin-Helhomltz (KH)-driven vortex rings as a result of the difference in velocity in
the shear layer located under the interface (see figure 4a). With increasing time, the
three-dimensional instability starts with the deformation of the vortex-rings leading to
a mutual-induction between two consecutive vortex rings resulting in their ‘knitting’
(see figure 4b); similar vortex-pairing has been reported by Broze & Hussain (1996) and
da Silva & Métais (2002). With increasing time, we observe the formation of inner and
outer hairpin vortices whose pairing brings about a region where both overlap. The cascade
mechanism resulting in the formation of hairpin-vortices from KH-rings is triggered by
the magnitude of the streamwise vorticity, ωx, which becomes comparable to its azimuthal
counterpart, ωy, in agreement with Jarrahbashi et al. (2016) and Constante-Amores et al.
(2021a), as shown in figure 4b.



12 Constante-Amores et al.

Inner lobeOuter lobes

HV
legs

HV

�5

5

(a) (b)

(c) (d)

HV

!x

Figure 4: Spatio-temporal representation of the interfacial dynamics and the coherent
vortical structures for Re = 5000 andWe = 500 at t = (23.28, 28.12, 31.25, 31.50) shown
in (a)-(d), respectively. For (c) and (d), the first row represents the 3D coherent structures
with the location of the interface, the middle row represents only the interface location,
and the bottom row shows two transversal cuts of the interface coloured by the magnitude
of ωx (the white lines represent the interface location). The three-dimensional coherent
structures are visualised by the Q-criterion with values of Q = (3, 220, 320, 320), where
the colour represents the streamwise vorticity field, ωx. In each panel, we also show ωx in
the y–z plane for each sampling location.

To provide more conclusive evidence of the existence of inner/outer hairpin vortices in
the jet dynamics, a careful study of the distribution of vortex signs shows the assembling
into counter-rotating vortex pairs (see ωx in the y-z plane for each sampled location of the
panels in figure 4). By analysing the distribution of streamwise vorticity between the ring
and braid regions of the jet core (see figure 4a), we observe that their distribution is π-out-
of-phase. The arrangement of the vorticity comes from vortex induction arguments, similar
to those explained by Jarrahbashi et al. (2016), Zandian et al. (2018) and Constante-
Amores et al. (2021a), i.e., the upstream hairpin vortex from the ring overtakes the
upstream hairpin vortex from the braid as the mutual induction takes place. Finally,
the vortex-surface interaction triggers the formation of the interfacial structure as the
interface adopts the shape of the vortex which is in its vicinity (see figure 4b-d, ‘HV’ stands
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for hairpin vortices). The mutual induction between outer and inner hairpin vortices
eventually leads to the thinning of the lobes to ultimately form inertia-induced holes
whose capillary-driven expansion gives rise to the formation of droplets (Jarrahbashi et al.
2016; Zandian et al. 2018; Constante-Amores et al. 2021a).

Next, we turn our attention to the effect of surfactants on the flow dynamics. Figure 5
shows the early interfacial surfactant concentration together with the three-dimensional
coherent vortical structures via the Q-criterion. Similarly to the surfactant-free case,
we observe the formation of a periodic array of quasi-axisymmetric KH-vortex rings.
These rings induce the formation of interfacial waves that are characterised by regions
of radially converging and diverging motion that lead to higher and lower interfacial
areas, and subsequently to lower and higher surfactant concentration regions, respectively;
accumulation of Γ is observed in the vicinity of the KH rings (see figure 5a). Figure 5c
presents the interfacial concentration Γ , and Marangoni stresses τ along an arc length,
s, corresponding to t = 32.03. We observe that the non-uniform distribution of Γ gives
rise to Marangoni-induced flow, which drives fluid motion from ring-1, ‘VR1’, (τ > 0)
to ring-2, ‘VR2’, and vice versa (i.e, flow from VR2 to VR1, τ < 0). This flow is
therefore accompanied by the retardation of the development of the interfacial waves and
a subsequent delay of the onset of the three-dimensional instability of the jet observed in
the surfactant-free case in figure 4.
Additionally, these Marangoni stresses promote jumps in the vorticity across the

interface which we can calculate using equations 2.24 and 2.25 in the location which
coincides with the formation of vortex SV 1 and SV 2 from figure 6 at t = 32.81. Figure
5d shows a three-dimensional representation of the interface together with an x-z plane at
y = 2.875 colored by the the magnitude of vorticity, |ω|. Figure 5e,f show respectively the
variation of the interface location and the Γ profiles, and of the distribution of [[ωb]] and
[[ωt]], along the arc length, s (not to be confused with ŝ the unit vector in figure 2), in the
plane cutting the interface shown in figure 5d. From figure 5e, it is seen that the surfactant
accumulates in the down-sloping region immediately downstream of an interfacial wave
peak; here, the gradients in Γ , and therefore in σ, are smallest corresponding to the
weakest vorticity jumps, while the largest such jumps are in the wave peak and trough
regions where the Γ (and σ) gradients are highest, as shown in figure 5f. Inspection of
figure 5f also shows that [[ωb]] � [[ωt]], that is, near-interface vorticity production in
the azimuthal direction is dominant. This acts to disrupt the dynamics of vortex-pairing
relative to the surfactant-free case as the ‘knitting process’ is promoted by streamwise
rather than azimuthal vorticity production and the vortex-ring deformation is replaced by
vortex-reconnection and merging in the azimuthal direction in the surfactant-laden case.

For increasing time, figure 6 shows the formation of surfactant-induced inner hairpin-like
vortical structures. The shear stress, which is generated to balance the gradients in σ
gives rise to counter-rotating streamwise vortices of similar magnitude to the KH rings
(labelled ‘SV1’ and ‘SV2’ in figure 6b). These structures grow in the x−direction into
a combination of streamwise vortices close to the interface, i.e. legs, and a hairpin-like
head close to the center-plane of the jet (see figure 6d). The hairpin-legs extend from the
regions of high-to-low values of Γ on the surface, while the hairpin-head points down
in the positive x−direction (labelled ‘HV1’ and ‘HV2’ in figure 6e). To complete the
presentation of these hairpin-like vortical structures, figure 6f,g show the direction of flow
rotation of the legs and head for HV1. For comparison, we have added arrows to show
velocity direction and to prove that this coherent vortical structure exhibits the same
qualitative behaviour as the HV proposed by Theodorsen (1952) for near-wall turbulence.
To the best of our knowledge, the formation of hairpin-like vortical structures induced by
surfactant effects has not been reported yet. We have also observed surfactant-driven outer
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Figure 5: Effect of surfactants on the early interfacial dynamics for Re = 5000, We = 500,
βs = 0.5, Pes = 100 and Γo = Γ∞/2 at t = 32.03, (a), and 32.81, (b). The top and bottom
panels represent the interface coloured by Γ and the coherent vortical structures visualised
via Q-criterion with Q = 10. Panel (c) shows a 2D representation of Γ , and τ , with
respect to the arc length s (see inset) at t = 32.03. Panel (d) shows a 2D representation
of the magnitude of vorticity |ω| in the x–z plane (y = 2.875) at t = 32.81; interface
location and Γ , and [[ωb]] and [[ωt]] vs the arc length s (e.g., s corresponds to the x–z
plane (y = 2.875) intersecting the interface) shown in (e) and (f), respectively. The center
of the jet core corresponds to z = 2.5
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(a)

(b) (c) (d) (e)

(f) (g)

Figure 6: Surfactant-driven hairpin-vortical structures: temporal development of the HV1
and HV2 hairpin-like vortical structures via Q-criterion with Q = 200 together with
the interfacial location coloured by Γ at time t = (32.81, 33.59, 34.37, 36.71, 39.06),
corresponding to panels (a)-(e), respectively. In panel (e), we show the two transversal
slices displayed in panels (f) and (g) which depict the streamwise vorticity ωx through the
legs and head of HV 1, respectively; arrows of in-plane velocity vectors have been added;
the white lines represent the interface location. The parameter values are the same as in
figure 5.

hairpin-like vortical structures (not shown) whose heads are in the negative x−direction
(in the frame of reference of the legs).

At later times, figure 7a-d shows the variation with arc length of the interfacial location,
Γ , and [[ωt]] and [[ωb]] at t = 36.51 and t = 44.68; corresponding three-dimensional
representations of the interface are also shown in figure 7e,f for t = 44.68 coloured by the
magnitude of Γ and the Q-criterion, respectively. The flow is accompanied by radially-
converging and diverging motion due to vortex-surface-interaction; interfacial convection
drives surfactant towards the inner lobes (interfacial contraction), and away from the
outer lobes (interfacial expansion). Vorticity jumps are highest in the interfacial regions
with the largest gradients in Γ . As time evolves, the ratio of these Marangoni-driven
[[ωt]] to [[ωb]] reduces and this results in large coherent structures which merge to form
counter-rotating streamwise vortical rings that eventually ‘knit’ with the adjacent vortex
ring located in the x−direction (labelled ‘VR1-VR4 ’ in figure 7f); this pairing is similar
to the surfactant-free case (in agreement with Urbin & Métais (1997) and da Silva &
Métais (2002)).
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Panels (a-b) and (c-d) show the location of the interface together with the
surfactant concentration and the jumps of the vorticity across the interface for t = 36.81
and t = 44.68, respectively. Panels (e-f) show a three dimensional representation of the
interface location coloured by Γ at t = 44.68, and vortex knitting visualised via Q-criterion
with value of Q = 1600 where the colour represents ωx, respectively. The arc length s
corresponds to the x–z plane (y = 2.5) intersecting the interface. The center of the jet
core corresponds to z = 2.5. The parameter values are the same as in figure 5.

We now examine the dynamics of the circulation Ω by considering equation 2.42 which
we express as follows:

DΩ

Dt̃
= Itilt + Idiff + Icurv, (3.1)

where Itilt, Idiff , and Icurv are defined as

Itilt ≡
∮
∂Ṽ

n̂ ·ωudS, Idiff ≡
1

Re

∮
∂V

n̂ ·∇ωdS, Icurv ≡
1

We

∮
I

b̂
∂

∂s
(σ [κ1 + κ2]) dS, (3.2)

which correspond to vortex tilting/stretching, diffusion of vorticity, and circulation
variation due to gradients in curvature and interfacial tension (in the case of surfactant-
laden systems). Figure 8 shows the temporal evolution of DΩ/Dt, Itilt, Idiff , and Icurv
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Surfactant-laden case Surfactant-free case
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Figure 8: Total rate of change of circulation, Ω, according to equation 2.42: DΩ/Dt,
vortex diffusion (Idiff), vortex tilting (Itilt), and surface tension (Icurv) are shown in
rows one to four, respectively; see equation (3.2) for the definitions of Itilt, Idiff , and
Icurv. Surfactant-laden and surfactant-free cases correspond to left and right panels,
respectively. For panel (g), we represent the contributions that arise from the gradients of
curvature (solid lines) and the gradients of surface tension (dashed lines) to underscore the
relative importance of the Marangoni stresses. Red, blue, and black colored lines represent
component x, y and z of DΩ/Dt, Itilt, diff , and Icurv. The parameters are Re = 5000,
We = 500 (and for the surfactant-laden case) βs = 0.5, Pes = 100 and Γo = Γ∞/2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Spatio-temporal evolution of the control volume V with a surface ∂V which
encloses an interface plane I used to calculate the rate of change of the circulation in
figure 8. Panels (a)-(d) and (e)-(h) correspond to the surfactant-laden and surfactant-free
cases, respectively, at t = (25.20, 35.50, 40.37, 43.75) and t = (27.12, 30.43, 34.37, 40.55),
and the same parameters as in figure (8).

which allows us to identify the dominant physical mechanisms that contribute to the
creation and dissipation of circulation. In figure 9 we also show snapshots of the three-
dimensional representation of the interface corresponding to the volume used to carry
out the computations necessary to calculate DΩ/Dt and its constituent terms for the
surfactant-laden and surfactant-free cases; this allows one to pinpoint the mechanisms
primarily responsible for the interfacial structures observed. It is clearly seen from figure 8
that during the early stages of the flow, Ω remains approximately constant. Inspection of
panels (c)-(h) of figure 8 shows clearly that the rate of change of circulation is dominated
by the mechanisms related to vortex diffusion Idiff and curvature Icurv, with vortex
tilting/shielding playing a relatively minor role. It is also clear that in the surfactant-laden
jet case, the Marangoni contribution to Icurv dominates that associated with curvature
derivatives. This observation further bolsters the claim that Marangoni stresses drive
vorticity generation in the jet dynamics.

The snapshots depicted in figure 9 for the surfactant-laden (panels (a)-(d)) and
surfactant-free (panels (e)-(h)) cases have been chosen carefully so as to link the various
stages of jet destabilisation to the prominent changes in the temporal variation of Idiff ,
Itilt, Icurv, and DΩ/Dt. Given the dominance of Icurv over the time range considered
(0 6 t 6 40), we focus on the variations in this quantity and its signature effects on the
interfacial shape. Inspection of figures 8(g) and 9(a) reveals that the relatively gentle
interfacial undulations are linked to variations of the Marangoni contribution to Icurv in
the x− y plane. The development of the more complex interfacial shapes, on the other
hand, is accompanied by a concomitant rise in three-dimensionality of Icurv (in addition
to significant contributions from the x−component of Icurv). In the surfactant-free case,
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(a) (b)

(c)

Figure 10: Temporal evolution of (a) surface area, A, (b) kinetic energy, Ek = ρ
∫
V
u2/2dV ,

and (c) enstrophy, ε =
∫
V
|ω2|dV , scaled by the initial interfacial area, A0, kinetic energy,

Ek0, and enstrophy, ε0, respectively. The parameter values are the same as in figure 5.

inspection of figures (8)(d) and (h), and (9)(e)-(h) shows that the interfacial jet evolution
is accompanied by large variations in the x−component of Icurv and vorticity diffusion
characterised by Idiff .
Lastly, we plot in figure 10 the effect of surfactants on the interfacial area, kinetic

energy, defined as Ek = ρ
∫
V
u2/2dV , and the enstrophy, ε =

∫
V
|ω2|dV , normalised by

their initial values, A0, Ek0, ε0, respectively. After the onset of destabilization (defined
when the interfacial surface has reached A = 1.025), we observe that the surfactant-
induced effects discussed above, which include the interfacial vorticity jumps brought
about by Marangoni stresses, and their effect on the production of circulation, and jet
destabilisation mechanisms associated with vortex formation and spanwise reconnection,
promote the delay in increase and subsequent reduction in interfacial area; these effects
also lead to a delay in the decay of the jet kinetic energy as well as its enstrophy.

4. Concluding remarks
Three-dimensional numerical simulations of jet destabilisation and atomisation in

the presence of a monolayer of insoluble surfactants have been carried out for the first
time. A phase diagram in the space of dimensionless surfactant elasticity and Weber
number in the inertia-dominated region is presented in the limiting case where there
is no vorticity production associated with jumps in material properties such as fluid
density and viscosity; in the present work, surface tension forces and Marangoni stress
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give rise to variations in vorticity and circulation in addition to the vortex tilting/shielding
and diffusion mechanisms. We have also derived formulae for the vorticity jumps across
the interface due to Marangoni stresses, and equations that provide a breakdown of
the rate of production of circulation within the jet into constituent terms which we
associate with vortex tilting/shielding, diffusion, and gradients in interfacial curvature
and surface tension. The present theoretical formulation is expressed as a conservation law
for circulation.We have focused on the limiting case where there is no vorticity production
associated with jumps in material properties. Future studies should examine situations
characterised by fluids with different material properties.
Then, we have analysed in details the vortex-interface-surfactant interactions in the

flow dynamics. At early times, the presence of surfactants induces spanwise vortex
reconnections brought about Marangoni-induced flow resulting in the delay of the onset
of destabilisation to the three-dimensional interfacial instabilities. We also show that
surfactant-induced Marangoni-stresses trigger the formation of hairpin-like structures
whose head and legs extend in the streamwise direction. Lastly, we have attempted to link
the changes in interfacial topology to the mechanisms that influence the production of
vorticity and circulation demonstrating a balance between curvature gradients and diffusion
for surfactant-free jets, and the dominance of Marangoni stresses in the surfactant-laden
cases.

The present results have been obtained for insoluble surfactants, and we acknowledge
that experimental and numerical studies feature soluble surfactants which are dissolved
in the liquid that issues from a nozzle to form the jet (Sijs et al. 2021; Constante-Amores
2021). It is well known that the addition of surfactant-solubility will lead to additional
richness and complexity. Although they do not affect the governing equations that
describe the bulk fluid, they will change the boundary conditions that constrain them,
resulting in a change in the flow dynamics. We can anticipate that a change of flow in the
vicinity of the interface will have a detrimental effect on the coherent structures that
emerge, subsequently affecting the close interplay between interface-vorticity-surfactant.
These challenges will be the subject of future work.
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Appendix A. Effect of domain size
To provide conclusive evidence that the lateral size of the domain is sufficiently large to

avoid finite-size effects, we have performed additional simulations accounting for different
domain sizes, and measured the wavelength between the emergent crests. The selected
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wavelength for panels for domain sizes of (4D)3, (5D)3 and (6D)3 correspond to λ ∼ 1.52D,
λ ∼ 1.55D and λ ∼ 1.60D, respectively. Thus, the wavelength values are very weakly
dependent on the domain size indicating the absence of finite-size effects. We also note
that the size of the computational domain is in agreement with previous studies (see for
example Jarrahbashi & Sirignano (2014); Jarrahbashi et al. (2016), Zandian et al. (2016)
and Desjardins & Pitsch (2010)), which have also used periodic boundary conditions for
all three components of velocity in the streamwise direction.

Appendix B. Kinematics
We first develop an expression for Dt̂/Dt. We consider the motion of an infinitesimal

fluid parcel in the plane of the interface, which is treated as a material surface. The
position vector is x = x(s, b, t) where s and b represent arc length distances along the t̂

and b̂ directions, respectively. At time, t+ δt, to leading order in δt, we can write the
following expression for the tangent to the interface at the fluid parcel which at time t
was located at x(0, 0, t)

t̃(t+ δt) =
∂x

∂s
(0, 0, t) +∇u ·

(
∂x

∂s
+
∂x

∂b

)
δt. (B 1)

Noting that t̂ = ∂x/∂s, b = ∂x/∂b, t̂ · ∇u = ∂u/∂s, and b̂ · ∇u = ∂u/∂b, this equation
can be re-expressed as

t̃(t+ δt) = t̂+

(
∂u

∂s
+
∂u

∂b

)
δt. (B 2)

The magnitude of t̃(t+ δt) is given by

|t̃| = 1 + t̂ ·
(
∂u

∂s
+
∂u

∂b

)
δt+O(δt)2, (B 3)

and normalisation of t̃(t+ δt) by this magnitude gives the following tangent unit vector
t̂(t+ δt)

t̂(t+ δt) =
t̂+

(
∂u
∂s + ∂u

∂b

)
δt

|˜̂t(t+ δt)|
=

t̂+
(
∂u
∂s + ∂u

∂b

)
δt

1 + t̂ ·
(
∂u
∂s + ∂u

∂b

)
δt

=

(
t̂+

(
∂u

∂s
+
∂u

∂b

)
δt

)(
1− t̂ ·

(
∂u

∂s
+
∂u

∂b

)
δt+O(δt)2

)
= t̂+

(
∂u

∂s
+
∂u

∂b
− t̂

(
t̂ ·
(
∂u

∂s
+
∂u

∂b

)))
δt+O(δt)2. (B 4)

From this expression, we can arrive at an approximate formula for Dt̂/Dt:

Dt̂

Dt
∼ t̂(t+ δt)− t̂(t)

δt
=
∂u

∂s
+
∂u

∂b
− t̂

(
t̂ ·
(
∂u

∂s
+
∂u

∂b

))
+O(δt). (B 5)

We now insert the following expression for u into u ·Dt̂/Dt

u = (u · ŝ)ŝ+ (u · t̂)t̂+ (u · b̂)b̂, (B 6)

which yields

u · Dt̂

Dt
= (u · ŝ)ŝ · Dt̂

Dt
+ (u · b̂)b̂ · Dt̂

Dt
. (B 7)
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Substitution of Eq. (B 5) into ŝ ·Dt̂/Dt and b̂ ·Dt̂/Dt gives

ŝ · Dt̂

Dt
= ŝ ·

(
∂u

∂s
+
∂u

∂b

)
, (B 8)

b̂ · Dt̂

Dt
= b̂ ·

(
∂u

∂s
+
∂u

∂b

)
, (B 9)

where we have made use of ŝ · t̂ = 0 and b̂ · t̂ = 0. We can re-express the RHS of Eqs.
(B 8) and (B 9) as follows

ŝ · ∂u
∂s

=
∂

∂s
(ŝ · u)− u · ∂ŝ

∂s
, (B 10)

ŝ · ∂u
∂b

=
∂

∂b
(ŝ · u)− u · ∂ŝ

∂b
, (B 11)

b̂ · ∂u
∂s

=
∂

∂s
(b̂ · u)− u · ∂b̂

∂s
, (B 12)

b̂ · ∂u
∂b

=
∂

∂b
(b̂ · u)− u · ∂b̂

∂b
. (B 13)

Inserting Eq. (B 6) into the second term on the RHS of Eqs. (B 10)-(B 13), we obtain

u · ∂ŝ
∂s

= κ1(u · t̂), (B 14)

u · ∂ŝ
∂b

= κ2(u · b̂), (B 15)

u · ∂b̂
∂s

= 0, (B 16)

u · ∂b̂
∂b

= −κ2(u · ŝ), (B 17)

where the curvatures κ1 and κ2 are defined as follows

κ1 = t̂ · ∂ŝ
∂s
, κ2 = b̂ · ∂ŝ

∂b
. (B 18)

In deriving Eqs. (B 14)-(B 17), we have noted that t̂ 6= t̂(b) and b̂ 6= b̂(s). Substitution of
Eqs. (B 14)-(B 17) into Eqs. (B 10)-(B 13) and the resultant relations into Eqs. (B 8) and
(B 9) respectively yields the following expressions for ŝ · (Dt̂/Dt) and b̂ · (Dt̂/Dt)

ŝ · Dt̂

Dt
=

∂

∂s
(u · ŝ) + ∂

∂b
(u · ŝ)− κ1(u · t̂)− κ2(u · b̂), (B 19)

b̂ · Dt̂

Dt
=

∂

∂s
(u · b̂) + ∂

∂b
(u · b̂) + κ2(u · ŝ). (B 20)

Substitution of Eqs. (B 19) and (B 20) into Eq. (B 7) and re-arranging yields

u · Dt̂

Dt
=

1

2

∂

∂s

[
(u · ŝ)2 + (u · b̂)2

]
+

1

2

∂

∂b

[
(u · ŝ)2 + (u · b̂)2

]
− κ1(u · t̂)(u · ŝ). (B 21)

Appendix C. Near-interface normal stress jump
In order to generate a 3D version of the pressure gradient term in Eq. (2.33), we first

consider the jump in the normal stress across the plane of the interface:

p2 − p1 = −σ(κ1 + κ2) + [[µŝ ·D · ŝ], (C 1)
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where κ1 and κ2 are given by Eqs. (B 18). Substitution of Eq. (B 6) into ∇ · u = 0 yields

ŝ · ∇u · ŝ = −t̂ · ∇u · t̂− b̂ · ∇u · b̂
= −t̂ · ∂u

∂s
− b̂ · ∂u

∂b
, (C 2)

where we have set t̂ · ∇u = ∂u/∂s and b̂ · ∇u = ∂u/∂b. We can re-express t̂ · (∂u/∂s)
and b̂ · (∂u/∂b) as follows

t̂ · ∂u
∂s

=
∂

∂s
(u · t̂)− u · ∂t̂

∂s
, (C 3)

b̂ · ∂u
∂b

=
∂

∂b
(u · b̂)− u · ∂b̂

∂b
. (C 4)

Substitution of Eq. (B 6) into u · (∂t̂/∂s) and u · (∂b̂/∂s) leads to

u · ∂t̂
∂s

= −κ1(u · ŝ), (C 5)

u · ∂b̂
∂b

= −κ2(u · ŝ), (C 6)

where, again, we have made use of the fact that t̂ 6= t̂(b) and b̂ 6= b̂(s). Substitution of
Eqs. (C 5) and (C 6) into Eqs. (C 3) and (C 4) and the resultant relations into Eq. (C 2)
gives

ŝ · ∇u · ŝ = − ∂

∂s

[
(u · t̂) + (u · b̂)

]
− (κ1 + κ2)(u · ŝ). (C 7)

Since ŝ ·D · ŝ = 2ŝ · ∇u · ŝ, it follows that

ŝ ·D · ŝ = −2 ∂
∂s

[
(u · t̂) + (u · b̂)

]
− 2(κ1 + κ2)(u · ŝ). (C 8)

Substitution of this equation into Eq. (C 1) yields the following expression for the pressure
jump

[[p]] = −σ(κ1 + κ2)− 2[[µ

(
∂

∂s

[
(u · t̂) + (u · b̂)

]
+ (κ1 + κ2)(u · ŝ)

)
]]. (C 9)
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