

On light extinction spectrometry (LES) for the characterization of nano to microparticles in large to microscale systems

F. R.A. Onofri

► To cite this version:

F. R.A. Onofri. On light extinction spectrometry (LES) for the characterization of nano to microparticles in large to microscale systems. International Workshop on Optoelectronic Perception (IWOP2021), Oct 2022, Xi'An, Shaanxi, China. hal-03808060

HAL Id: hal-03808060 https://hal.science/hal-03808060

Submitted on 10 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On light extinction spectrometry (LES) for the characterization of nano to microparticles in large to microscale systems

Fabrice R.A. ONOFRI and collaborators: C. Arnas, L. Couedel, S. Barbosa, F. Lamadie, I. Rodriguez-Ruiz, M. Wozniak....

> Laboratory IUSTI, UMR n°7343 CNRS/Aix-Marseille University, Marseille, France.

IWOP2021 Invited lecture

Nano & microparticles are everywhere....

Nanocrystals

Materials

Environment

Dust

Energy

spherical particle cluster of very small particles

Aerosols

Safety

TS-FH-5-01 2

cleaved particle

x 10 m

Process

Filtration

x 10µ	r
-------	---

Light extinction spectrometry Basic setup

Optical setup : UV-NIR extinction

- Stabilized UV-NIR light source
- Achromatic collimating optics
- Optical and spatial filters
- Optical choppers

- High efficiency and low noise spectrometer
- Proprietary acquisition and processing software

$$T(\lambda) = \left(\frac{I(\lambda)}{I_0(\lambda)}\right) = \exp\left[-N\overline{C}_{ext}L\right]$$

Basic equations for optically diluted medium, small particles, no collection of multiscattered photons, ...

Barbosa et al. J. Plasma Phys 82, 2016

Measurement of the spectral transmission of a collimated beam

Linearized form of the discrete transmission:

 $\underbrace{\ln\left[T(\lambda_i)\right]}_{\widetilde{T}} = -NL\sum_{j=1}^{m}\overline{C}_{i,j}n_j$

iusti

N: particle number concentration L: probed length $\overline{C}_{i,j}$: extinction coeff. particle size j wavelength i n_j : PSD coefficient particle of size j

Basic equations for optically diluted medium, small particles, no collection of multiscattered photons, ...

Barbosa et al. J. Plasma Phys 82, 2016

Measurement of the spectral transmission of a collimated beam

Linearized form of the discrete transmission:

 $\underbrace{\ln\left[T\left(\lambda_{i}\right)\right]}_{T} = -NL\sum_{j=1}^{m}\overline{C}_{i,j}n_{j}$

iusti

N: particle number concentration L: probed length $\overline{C}_{i,j}$: extinction coeff. particle size j wavelength i n_j : PSD coefficient particle of size j

Algebraic equation to solve in the concentration was known: $\overline{\mathbf{C}} \times \mathbf{n} + \overline{\mathbf{T}} / (NL) = \mathbf{0}$ where $n_{j=1\cdots m} \ge \mathbf{0}$ + continuity, mono mode, ...

iusti

Light extinction spectrometry

Basic equations for optically diluted medium, small particles, no collection of multiscattered photons, ...

Barbosa et al. J. Plasma Phys 82, 2016

Measurement of the spectral transmission of a collimated beam

Linearized form of the discrete transmission:

 $\underbrace{\ln\left[T\left(\lambda_{i}\right)\right]}_{\bar{T}} = -NL\sum_{j=1}^{m}\overline{C}_{i,j}n_{j}$

N : particle number concentration L : probed length $\overline{C}_{i,j}$: extinction coeff. particle size j wavelength i n_j : PSD coefficient particle of size j

Algebraic equation to solve in the concentration was known: $\overline{\mathbf{C}} \times \mathbf{n} + \overline{\mathbf{T}} / (NL) = \mathbf{0}$ where $n_{j=1\cdots m} \ge \mathbf{0}$ + continuity, mono mode, ...

PSD & concentration:

Light extinction spectrometry Inversion with "no" PSD model assumption

Phillips-Twomey regularization and NNLSQ inversion:

$$\underset{\mathbf{n}>0}{Min}\left\{\left\|\mathbf{C}\mathbf{n}-\overline{\mathbf{T}}\right\|^{2}+\lambda^{2}\left\|\mathbf{L}\left(\mathbf{n}-\mathbf{n}_{0}\right)\right\|^{2}\right\}$$

Tikhonov regularization and NNLSQ inversion (or SVD...) $Min_{n>0} \left\{ \left\| \left(\mathbf{C}^{T}\mathbf{C} + \gamma \mathbf{H} \right) \mathbf{n} - \mathbf{C}^{T}\overline{\mathbf{T}} \right\|^{2} \right\}$

where

- $\overline{\mathbf{T}}$: Measured transmission spectrum
- C: Extinction matrix (core of the fredholm integral) \Leftarrow part. & scatt. models
- \mathbf{n}_{0} : Initial guess for the PSD ($\mathbf{n}_{0} = \mathbf{0}$)
- **n**: Unknown PSD
- H,L:Smoothing/continuity matrices (identity, firsts derivatives,&)
- γ, λ : Regularization parameters (truncated singular values, L-Curve,...),
 - \parallel : L2 norm

Models to describe the morphology of particles Buckyball-shaped aggregates

Colloidal suspensions sprayed: a regular pentagonal-hexagonal surface lattice

Onofri et al. JQRST 126:160-168 (2013)

Models to describe the morphology of particles Buckyball-shaped aggregates

(1) Geodesic dome model starting with the icosahedron

Silica aggregates of nanoparticles

Scattering models : T-Matrice vs. Lorenz-Mie Theory with "effective refractive index"

For aggregates of other sizes & geometrical volume fraction:

8

iusti 13

Scattering models : T-Matrice vs. Lorenz-Mie Theory with "effective refractive index"

Input data: refractive index...

Light-scattering calculations:

- Particle agregats (nano-spheres, clusters, effective medium)
- Mixed dipoles (arbitrary shapes)

 \rightarrow limited in size and complexity (references ?)

Kramers-Koning relations:

$$m(\lambda) = 1 + \frac{c}{\pi} \int_0^\infty \frac{\alpha(\lambda')}{\lambda'^2 - \lambda^2} d\lambda'$$

 \rightarrow Compacted powder & Absorption measurements (integrating sphere + FTIR)

Extinction measurements:

- Experiments
- Reference technique for the PSD (electron microscopy...)
- Accurate light scattering model
 - \rightarrow Iterative process with minization of a residu

In-situ characterization of dust mobilized by laser cleaning methods and loss of vacuum accident

Tungsten aggregates

Investigations:

- Sizing with LES (fractal model & T-Matrix)
- Effect of wall proximity
- Effect of laser ablation techniques (broadband emittance, shock wave)
- Test & setup:
- Spraying tungsten nanopowders
- Mobile wall
- YAG laser (laser-induced breakdown of air, 240

<u>Onofri et al. JQRST 126:160-168 (2013)</u>

Light extinction spectrometry

e.g. Application to Buckyball-shaped silica nanoaggregates

Example: sedimentation time of 24 h

iusti

16

Wozniak et al. J. Aerosol Science 47:12-26 (2012)

Models to describe the morphology of particles Fractal-like aggregates

Soot and Silicone-Carbide aggregates

(1) Model of the fractal aggregate

 $n_p = k_f \left(R_g / r_p \right)^{D_f}$

Primary particles: n_p number R_p mean radius Aggregate: D_f fractal dimension R_g radius of gyration k_f struct. coefficient

(2) Diffusion limited aggregation code

0 0	100	Ns - mono	omers quantity	Use multiple appearance	e value of Rh to calculate e and boundary spheres Multipler of Rh	Fi Theta Ksi	Perform serial measurements Serial measurements Output	
00 ± Sphere overlepping 10 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± Mean redux of moromers 10 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± More reductions 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± More reductions 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± More reductions 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± More reductions 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± More reductions 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 0.0 ± Agorithm convergence 100 ± Agorit	0.001	Df accurat	Cý	10	Radius of appearance sphere	Rotate cluster	0.000 Df itteration ste	
No. X Y Z Current Diff Theoretical Rg Current Rg Appendix Rg Control Column Rg Controlumn Rg Control C	0.00 Sphere overlapping 1.00 Mean radius of monomers 1.50 Kf factor			10 2 Radius of boundary sphere 0.10 2 Algorithm convergence 1.00 4 Step of monomers		Check duster No. of errors: Perform serial rotations D Number of rotations Start serial rotations		
Tot Construction Construction <thconstruction< th=""> Construction</thconstruction<>	No r	: (5/3)*(Df/2) restrictions ce accurate value of	I DI	0.010 ±	Rg accuracy is of gyration (Rf)	X Y Z 00 ± 00 ± 00 ±	Create output bin files	
11. 13831328646 -2.30054/360/6 -1.91420446941 1.74958280477 3.12218014643 3.1230278946 196499040038	1. 2. 3. 4.	0. 0. -0.969307415078 1.4310472558 -1.40228200203 -0.735870125732 1.7437072345	0. 0. -0.624181939179 1.17276721687 1.32050778163 1.04357197523 -2.15589696916	0. 0. 1.63427049226 -0.759421363068 1.80952715215 3.67478900247 2.65841736792	0. 1.75 1.17867362032 1 1.49700933664 1.48599428 1.7737121841 1.75150226 1.75141544979 1.98970116 1.74892094321 2.20817902		Particle	

(3-4) Rendering views (SEM/TEM)

Particle nucleation and growth in a low-pressure Argon/Silane discharge

Corrected spectra

Measured PSD

Particle nucleation and growth in a low-pressure Argon/Silane discharge

Barbosa et al. J. Phys. D: Appl. Phys. 49 045203 (2016)

Light extinction spectrometry Particle nucleation and growth in a low-pressure Argon/Tungsten RF discharge

Barbosa et al. J. Phys. D: Appl. Phys. 49 045203 (2016)

Hematite

LES : nanotubes, nanorods and needle shapes particle characterization in suspensions

Acicular TiO₂

Gold nanorods

Carbon nanotubes

Characterization of colloids at the Microscale Photonic Lab-on-a-Chip (PLOC)

Why?

Reduced costs & dimensions

Improve space-time yields, selectivity, reaction residence times and conversions capabilities Highly demanding fields: Biology, chemical engineering, chemistry...

LES at the Microscale Photonic Lab-on-a-Chip (PLOC)

iusti

25

Onofri et al., Optics Express (Submitted 2021)

Concentraions: 1-1000ppm

LES at the Microscale First prototype - Photonic Lab-on-a-Chip (PLOC)

Onofri et al. Optics Express 30:2881-2890 (2022)

LES at the Microscale First prototype - Photonic Lab-on-a-Chip (PLOC)

iusti

27

LES at the Microscale

Example: signals for 80nm silica suspensions in two concentrations

LES at the Microscale - PLOC Comparison of size and concentration measurements

References: Size : MEB (NIST) Concentrations: Weighings

Onofri et al. Optics Express 30:2881-2890 (2022)

Preliminary conclusions for LES at microscale

Experimental results are already very promising

- Size from 30 nm to 0.5 μm
- Volume concentrations from 1 to 1000 ppm

Works for both stationary suspensions and dynamic particulate flows

Straight improvements:

- Channels could be further optimized to fit the optical properties, size and concentration of the particles
- Better control the SNR of the transmittance signals.

Perspectives

- Increasing the optical path length with wave guide s
- Integrating a microfluidic-controlled optical router for multiplexed analyses

